drm: powerpc can use a simpler drm_io_prot()
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem.c
blob4ca3a6dcf10bdc7dc30d4e40e074a0fac9c76561
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
77 return obj->pin_display;
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
88 obj->fence_dirty = false;
89 obj->fence_reg = I915_FENCE_REG_NONE;
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
105 spin_lock(&dev_priv->mm.object_stat_lock);
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
108 spin_unlock(&dev_priv->mm.object_stat_lock);
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
114 int ret;
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
118 if (EXIT_COND)
119 return 0;
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
133 return ret;
135 #undef EXIT_COND
137 return 0;
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 int ret;
145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 if (ret)
147 return ret;
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
153 WARN_ON(i915_verify_lists(dev));
154 return 0;
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
160 return i915_gem_obj_bound_any(obj) && !obj->active;
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_init *args = data;
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
181 mutex_lock(&dev->struct_mutex);
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
184 dev_priv->gtt.mappable_end = args->gtt_end;
185 mutex_unlock(&dev->struct_mutex);
187 return 0;
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_get_aperture *args = data;
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
199 pinned = 0;
200 mutex_lock(&dev->struct_mutex);
201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 if (i915_gem_obj_is_pinned(obj))
203 pinned += i915_gem_obj_ggtt_size(obj);
204 mutex_unlock(&dev->struct_mutex);
206 args->aper_size = dev_priv->gtt.base.total;
207 args->aper_available_size = args->aper_size - pinned;
209 return 0;
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
214 drm_dma_handle_t *phys = obj->phys_handle;
216 if (!phys)
217 return;
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
236 vaddr += PAGE_SIZE;
238 i915_gem_chipset_flush(obj->base.dev);
241 #ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
261 return 0;
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
267 if (obj->base.filp == NULL)
268 return -EINVAL;
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
275 vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
297 mark_page_accessed(page);
298 page_cache_release(page);
300 vaddr += PAGE_SIZE;
303 obj->phys_handle = phys;
304 return 0;
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
330 i915_gem_chipset_flush(dev);
331 return 0;
334 void *i915_gem_object_alloc(struct drm_device *dev)
336 struct drm_i915_private *dev_priv = dev->dev_private;
337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
346 static int
347 i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
352 struct drm_i915_gem_object *obj;
353 int ret;
354 u32 handle;
356 size = roundup(size, PAGE_SIZE);
357 if (size == 0)
358 return -EINVAL;
360 /* Allocate the new object */
361 obj = i915_gem_alloc_object(dev, size);
362 if (obj == NULL)
363 return -ENOMEM;
365 ret = drm_gem_handle_create(file, &obj->base, &handle);
366 /* drop reference from allocate - handle holds it now */
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
371 *handle_p = handle;
372 return 0;
376 i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
380 /* have to work out size/pitch and return them */
381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
388 * Creates a new mm object and returns a handle to it.
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
394 struct drm_i915_gem_create *args = data;
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
405 int ret, cpu_offset = 0;
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
423 return 0;
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
429 int length)
431 int ret, cpu_offset = 0;
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
449 return 0;
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
460 int ret;
462 *needs_clflush = 0;
464 if (!obj->base.filp)
465 return -EINVAL;
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
478 i915_gem_object_retire(obj);
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
485 i915_gem_object_pin_pages(obj);
487 return ret;
490 /* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
498 char *vaddr;
499 int ret;
501 if (unlikely(page_do_bit17_swizzling))
502 return -EINVAL;
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
513 return ret ? -EFAULT : 0;
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
520 if (unlikely(swizzled)) {
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
538 /* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
545 char *vaddr;
546 int ret;
548 vaddr = kmap(page);
549 if (needs_clflush)
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
564 return ret ? - EFAULT : 0;
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
573 char __user *user_data;
574 ssize_t remain;
575 loff_t offset;
576 int shmem_page_offset, page_length, ret = 0;
577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578 int prefaulted = 0;
579 int needs_clflush = 0;
580 struct sg_page_iter sg_iter;
582 user_data = to_user_ptr(args->data_ptr);
583 remain = args->size;
585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 if (ret)
589 return ret;
591 offset = args->offset;
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
595 struct page *page = sg_page_iter_page(&sg_iter);
597 if (remain <= 0)
598 break;
600 /* Operation in this page
602 * shmem_page_offset = offset within page in shmem file
603 * page_length = bytes to copy for this page
605 shmem_page_offset = offset_in_page(offset);
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
619 mutex_unlock(&dev->struct_mutex);
621 if (likely(!i915.prefault_disable) && !prefaulted) {
622 ret = fault_in_multipages_writeable(user_data, remain);
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
635 mutex_lock(&dev->struct_mutex);
637 if (ret)
638 goto out;
640 next_page:
641 remain -= page_length;
642 user_data += page_length;
643 offset += page_length;
646 out:
647 i915_gem_object_unpin_pages(obj);
649 return ret;
653 * Reads data from the object referenced by handle.
655 * On error, the contents of *data are undefined.
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
661 struct drm_i915_gem_pread *args = data;
662 struct drm_i915_gem_object *obj;
663 int ret = 0;
665 if (args->size == 0)
666 return 0;
668 if (!access_ok(VERIFY_WRITE,
669 to_user_ptr(args->data_ptr),
670 args->size))
671 return -EFAULT;
673 ret = i915_mutex_lock_interruptible(dev);
674 if (ret)
675 return ret;
677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 if (&obj->base == NULL) {
679 ret = -ENOENT;
680 goto unlock;
683 /* Bounds check source. */
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
686 ret = -EINVAL;
687 goto out;
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
700 ret = i915_gem_shmem_pread(dev, obj, args, file);
702 out:
703 drm_gem_object_unreference(&obj->base);
704 unlock:
705 mutex_unlock(&dev->struct_mutex);
706 return ret;
709 /* This is the fast write path which cannot handle
710 * page faults in the source data
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
719 void __iomem *vaddr_atomic;
720 void *vaddr;
721 unsigned long unwritten;
723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
727 user_data, length);
728 io_mapping_unmap_atomic(vaddr_atomic);
729 return unwritten;
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file)
742 struct drm_i915_private *dev_priv = dev->dev_private;
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length, ret;
748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749 if (ret)
750 goto out;
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
760 user_data = to_user_ptr(args->data_ptr);
761 remain = args->size;
763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
765 while (remain > 0) {
766 /* Operation in this page
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
778 /* If we get a fault while copying data, then (presumably) our
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
793 out_unpin:
794 i915_gem_object_ggtt_unpin(obj);
795 out:
796 return ret;
799 /* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
810 char *vaddr;
811 int ret;
813 if (unlikely(page_do_bit17_swizzling))
814 return -EINVAL;
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
827 return ret ? -EFAULT : 0;
830 /* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
839 char *vaddr;
840 int ret;
842 vaddr = kmap(page);
843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 user_data,
850 page_length);
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
859 kunmap(page);
861 return ret ? -EFAULT : 0;
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
870 ssize_t remain;
871 loff_t offset;
872 char __user *user_data;
873 int shmem_page_offset, page_length, ret = 0;
874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875 int hit_slowpath = 0;
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
878 struct sg_page_iter sg_iter;
880 user_data = to_user_ptr(args->data_ptr);
881 remain = args->size;
883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
890 needs_clflush_after = cpu_write_needs_clflush(obj);
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
895 i915_gem_object_retire(obj);
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
907 i915_gem_object_pin_pages(obj);
909 offset = args->offset;
910 obj->dirty = 1;
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
914 struct page *page = sg_page_iter_page(&sg_iter);
915 int partial_cacheline_write;
917 if (remain <= 0)
918 break;
920 /* Operation in this page
922 * shmem_page_offset = offset within page in shmem file
923 * page_length = bytes to copy for this page
925 shmem_page_offset = offset_in_page(offset);
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
948 hit_slowpath = 1;
949 mutex_unlock(&dev->struct_mutex);
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
955 mutex_lock(&dev->struct_mutex);
957 if (ret)
958 goto out;
960 next_page:
961 remain -= page_length;
962 user_data += page_length;
963 offset += page_length;
966 out:
967 i915_gem_object_unpin_pages(obj);
969 if (hit_slowpath) {
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
982 if (needs_clflush_after)
983 i915_gem_chipset_flush(dev);
985 return ret;
989 * Writes data to the object referenced by handle.
991 * On error, the contents of the buffer that were to be modified are undefined.
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995 struct drm_file *file)
997 struct drm_i915_gem_pwrite *args = data;
998 struct drm_i915_gem_object *obj;
999 int ret;
1001 if (args->size == 0)
1002 return 0;
1004 if (!access_ok(VERIFY_READ,
1005 to_user_ptr(args->data_ptr),
1006 args->size))
1007 return -EFAULT;
1009 if (likely(!i915.prefault_disable)) {
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1016 ret = i915_mutex_lock_interruptible(dev);
1017 if (ret)
1018 return ret;
1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021 if (&obj->base == NULL) {
1022 ret = -ENOENT;
1023 goto unlock;
1026 /* Bounds check destination. */
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
1029 ret = -EINVAL;
1030 goto out;
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1043 ret = -EFAULT;
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
1052 goto out;
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
1064 if (ret == -EFAULT || ret == -ENOSPC)
1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1067 out:
1068 drm_gem_object_unreference(&obj->base);
1069 unlock:
1070 mutex_unlock(&dev->struct_mutex);
1071 return ret;
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076 bool interruptible)
1078 if (i915_reset_in_progress(error)) {
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
1086 return -EIO;
1089 * Check if GPU Reset is in progress - we need intel_ring_begin
1090 * to work properly to reinit the hw state while the gpu is
1091 * still marked as reset-in-progress. Handle this with a flag.
1093 if (!error->reload_in_reset)
1094 return -EAGAIN;
1097 return 0;
1101 * Compare seqno against outstanding lazy request. Emit a request if they are
1102 * equal.
1105 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1107 int ret;
1109 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1111 ret = 0;
1112 if (seqno == ring->outstanding_lazy_seqno)
1113 ret = i915_add_request(ring, NULL);
1115 return ret;
1118 static void fake_irq(unsigned long data)
1120 wake_up_process((struct task_struct *)data);
1123 static bool missed_irq(struct drm_i915_private *dev_priv,
1124 struct intel_engine_cs *ring)
1126 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1129 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1131 if (file_priv == NULL)
1132 return true;
1134 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1138 * __wait_seqno - wait until execution of seqno has finished
1139 * @ring: the ring expected to report seqno
1140 * @seqno: duh!
1141 * @reset_counter: reset sequence associated with the given seqno
1142 * @interruptible: do an interruptible wait (normally yes)
1143 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1145 * Note: It is of utmost importance that the passed in seqno and reset_counter
1146 * values have been read by the caller in an smp safe manner. Where read-side
1147 * locks are involved, it is sufficient to read the reset_counter before
1148 * unlocking the lock that protects the seqno. For lockless tricks, the
1149 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1150 * inserted.
1152 * Returns 0 if the seqno was found within the alloted time. Else returns the
1153 * errno with remaining time filled in timeout argument.
1155 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1156 unsigned reset_counter,
1157 bool interruptible,
1158 s64 *timeout,
1159 struct drm_i915_file_private *file_priv)
1161 struct drm_device *dev = ring->dev;
1162 struct drm_i915_private *dev_priv = dev->dev_private;
1163 const bool irq_test_in_progress =
1164 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1165 DEFINE_WAIT(wait);
1166 unsigned long timeout_expire;
1167 s64 before, now;
1168 int ret;
1170 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1172 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1173 return 0;
1175 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1177 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1178 gen6_rps_boost(dev_priv);
1179 if (file_priv)
1180 mod_delayed_work(dev_priv->wq,
1181 &file_priv->mm.idle_work,
1182 msecs_to_jiffies(100));
1185 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1186 return -ENODEV;
1188 /* Record current time in case interrupted by signal, or wedged */
1189 trace_i915_gem_request_wait_begin(ring, seqno);
1190 before = ktime_get_raw_ns();
1191 for (;;) {
1192 struct timer_list timer;
1194 prepare_to_wait(&ring->irq_queue, &wait,
1195 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1197 /* We need to check whether any gpu reset happened in between
1198 * the caller grabbing the seqno and now ... */
1199 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1200 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1201 * is truely gone. */
1202 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1203 if (ret == 0)
1204 ret = -EAGAIN;
1205 break;
1208 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1209 ret = 0;
1210 break;
1213 if (interruptible && signal_pending(current)) {
1214 ret = -ERESTARTSYS;
1215 break;
1218 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1219 ret = -ETIME;
1220 break;
1223 timer.function = NULL;
1224 if (timeout || missed_irq(dev_priv, ring)) {
1225 unsigned long expire;
1227 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1228 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1229 mod_timer(&timer, expire);
1232 io_schedule();
1234 if (timer.function) {
1235 del_singleshot_timer_sync(&timer);
1236 destroy_timer_on_stack(&timer);
1239 now = ktime_get_raw_ns();
1240 trace_i915_gem_request_wait_end(ring, seqno);
1242 if (!irq_test_in_progress)
1243 ring->irq_put(ring);
1245 finish_wait(&ring->irq_queue, &wait);
1247 if (timeout) {
1248 s64 tres = *timeout - (now - before);
1250 *timeout = tres < 0 ? 0 : tres;
1253 return ret;
1257 * Waits for a sequence number to be signaled, and cleans up the
1258 * request and object lists appropriately for that event.
1261 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1263 struct drm_device *dev = ring->dev;
1264 struct drm_i915_private *dev_priv = dev->dev_private;
1265 bool interruptible = dev_priv->mm.interruptible;
1266 int ret;
1268 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1269 BUG_ON(seqno == 0);
1271 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1272 if (ret)
1273 return ret;
1275 ret = i915_gem_check_olr(ring, seqno);
1276 if (ret)
1277 return ret;
1279 return __wait_seqno(ring, seqno,
1280 atomic_read(&dev_priv->gpu_error.reset_counter),
1281 interruptible, NULL, NULL);
1284 static int
1285 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1286 struct intel_engine_cs *ring)
1288 if (!obj->active)
1289 return 0;
1291 /* Manually manage the write flush as we may have not yet
1292 * retired the buffer.
1294 * Note that the last_write_seqno is always the earlier of
1295 * the two (read/write) seqno, so if we haved successfully waited,
1296 * we know we have passed the last write.
1298 obj->last_write_seqno = 0;
1300 return 0;
1304 * Ensures that all rendering to the object has completed and the object is
1305 * safe to unbind from the GTT or access from the CPU.
1307 static __must_check int
1308 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1309 bool readonly)
1311 struct intel_engine_cs *ring = obj->ring;
1312 u32 seqno;
1313 int ret;
1315 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1316 if (seqno == 0)
1317 return 0;
1319 ret = i915_wait_seqno(ring, seqno);
1320 if (ret)
1321 return ret;
1323 return i915_gem_object_wait_rendering__tail(obj, ring);
1326 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1327 * as the object state may change during this call.
1329 static __must_check int
1330 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1331 struct drm_i915_file_private *file_priv,
1332 bool readonly)
1334 struct drm_device *dev = obj->base.dev;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
1336 struct intel_engine_cs *ring = obj->ring;
1337 unsigned reset_counter;
1338 u32 seqno;
1339 int ret;
1341 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1342 BUG_ON(!dev_priv->mm.interruptible);
1344 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1345 if (seqno == 0)
1346 return 0;
1348 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1349 if (ret)
1350 return ret;
1352 ret = i915_gem_check_olr(ring, seqno);
1353 if (ret)
1354 return ret;
1356 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1357 mutex_unlock(&dev->struct_mutex);
1358 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1359 mutex_lock(&dev->struct_mutex);
1360 if (ret)
1361 return ret;
1363 return i915_gem_object_wait_rendering__tail(obj, ring);
1367 * Called when user space prepares to use an object with the CPU, either
1368 * through the mmap ioctl's mapping or a GTT mapping.
1371 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1372 struct drm_file *file)
1374 struct drm_i915_gem_set_domain *args = data;
1375 struct drm_i915_gem_object *obj;
1376 uint32_t read_domains = args->read_domains;
1377 uint32_t write_domain = args->write_domain;
1378 int ret;
1380 /* Only handle setting domains to types used by the CPU. */
1381 if (write_domain & I915_GEM_GPU_DOMAINS)
1382 return -EINVAL;
1384 if (read_domains & I915_GEM_GPU_DOMAINS)
1385 return -EINVAL;
1387 /* Having something in the write domain implies it's in the read
1388 * domain, and only that read domain. Enforce that in the request.
1390 if (write_domain != 0 && read_domains != write_domain)
1391 return -EINVAL;
1393 ret = i915_mutex_lock_interruptible(dev);
1394 if (ret)
1395 return ret;
1397 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1398 if (&obj->base == NULL) {
1399 ret = -ENOENT;
1400 goto unlock;
1403 /* Try to flush the object off the GPU without holding the lock.
1404 * We will repeat the flush holding the lock in the normal manner
1405 * to catch cases where we are gazumped.
1407 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1408 file->driver_priv,
1409 !write_domain);
1410 if (ret)
1411 goto unref;
1413 if (read_domains & I915_GEM_DOMAIN_GTT) {
1414 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1416 /* Silently promote "you're not bound, there was nothing to do"
1417 * to success, since the client was just asking us to
1418 * make sure everything was done.
1420 if (ret == -EINVAL)
1421 ret = 0;
1422 } else {
1423 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1426 unref:
1427 drm_gem_object_unreference(&obj->base);
1428 unlock:
1429 mutex_unlock(&dev->struct_mutex);
1430 return ret;
1434 * Called when user space has done writes to this buffer
1437 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1438 struct drm_file *file)
1440 struct drm_i915_gem_sw_finish *args = data;
1441 struct drm_i915_gem_object *obj;
1442 int ret = 0;
1444 ret = i915_mutex_lock_interruptible(dev);
1445 if (ret)
1446 return ret;
1448 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1449 if (&obj->base == NULL) {
1450 ret = -ENOENT;
1451 goto unlock;
1454 /* Pinned buffers may be scanout, so flush the cache */
1455 if (obj->pin_display)
1456 i915_gem_object_flush_cpu_write_domain(obj, true);
1458 drm_gem_object_unreference(&obj->base);
1459 unlock:
1460 mutex_unlock(&dev->struct_mutex);
1461 return ret;
1465 * Maps the contents of an object, returning the address it is mapped
1466 * into.
1468 * While the mapping holds a reference on the contents of the object, it doesn't
1469 * imply a ref on the object itself.
1472 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1473 struct drm_file *file)
1475 struct drm_i915_gem_mmap *args = data;
1476 struct drm_gem_object *obj;
1477 unsigned long addr;
1479 obj = drm_gem_object_lookup(dev, file, args->handle);
1480 if (obj == NULL)
1481 return -ENOENT;
1483 /* prime objects have no backing filp to GEM mmap
1484 * pages from.
1486 if (!obj->filp) {
1487 drm_gem_object_unreference_unlocked(obj);
1488 return -EINVAL;
1491 addr = vm_mmap(obj->filp, 0, args->size,
1492 PROT_READ | PROT_WRITE, MAP_SHARED,
1493 args->offset);
1494 drm_gem_object_unreference_unlocked(obj);
1495 if (IS_ERR((void *)addr))
1496 return addr;
1498 args->addr_ptr = (uint64_t) addr;
1500 return 0;
1504 * i915_gem_fault - fault a page into the GTT
1505 * vma: VMA in question
1506 * vmf: fault info
1508 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1509 * from userspace. The fault handler takes care of binding the object to
1510 * the GTT (if needed), allocating and programming a fence register (again,
1511 * only if needed based on whether the old reg is still valid or the object
1512 * is tiled) and inserting a new PTE into the faulting process.
1514 * Note that the faulting process may involve evicting existing objects
1515 * from the GTT and/or fence registers to make room. So performance may
1516 * suffer if the GTT working set is large or there are few fence registers
1517 * left.
1519 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1521 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1522 struct drm_device *dev = obj->base.dev;
1523 struct drm_i915_private *dev_priv = dev->dev_private;
1524 pgoff_t page_offset;
1525 unsigned long pfn;
1526 int ret = 0;
1527 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1529 intel_runtime_pm_get(dev_priv);
1531 /* We don't use vmf->pgoff since that has the fake offset */
1532 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1533 PAGE_SHIFT;
1535 ret = i915_mutex_lock_interruptible(dev);
1536 if (ret)
1537 goto out;
1539 trace_i915_gem_object_fault(obj, page_offset, true, write);
1541 /* Try to flush the object off the GPU first without holding the lock.
1542 * Upon reacquiring the lock, we will perform our sanity checks and then
1543 * repeat the flush holding the lock in the normal manner to catch cases
1544 * where we are gazumped.
1546 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1547 if (ret)
1548 goto unlock;
1550 /* Access to snoopable pages through the GTT is incoherent. */
1551 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1552 ret = -EFAULT;
1553 goto unlock;
1556 /* Now bind it into the GTT if needed */
1557 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1558 if (ret)
1559 goto unlock;
1561 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1562 if (ret)
1563 goto unpin;
1565 ret = i915_gem_object_get_fence(obj);
1566 if (ret)
1567 goto unpin;
1569 /* Finally, remap it using the new GTT offset */
1570 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1571 pfn >>= PAGE_SHIFT;
1573 if (!obj->fault_mappable) {
1574 unsigned long size = min_t(unsigned long,
1575 vma->vm_end - vma->vm_start,
1576 obj->base.size);
1577 int i;
1579 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1580 ret = vm_insert_pfn(vma,
1581 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1582 pfn + i);
1583 if (ret)
1584 break;
1587 obj->fault_mappable = true;
1588 } else
1589 ret = vm_insert_pfn(vma,
1590 (unsigned long)vmf->virtual_address,
1591 pfn + page_offset);
1592 unpin:
1593 i915_gem_object_ggtt_unpin(obj);
1594 unlock:
1595 mutex_unlock(&dev->struct_mutex);
1596 out:
1597 switch (ret) {
1598 case -EIO:
1600 * We eat errors when the gpu is terminally wedged to avoid
1601 * userspace unduly crashing (gl has no provisions for mmaps to
1602 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1603 * and so needs to be reported.
1605 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1606 ret = VM_FAULT_SIGBUS;
1607 break;
1609 case -EAGAIN:
1611 * EAGAIN means the gpu is hung and we'll wait for the error
1612 * handler to reset everything when re-faulting in
1613 * i915_mutex_lock_interruptible.
1615 case 0:
1616 case -ERESTARTSYS:
1617 case -EINTR:
1618 case -EBUSY:
1620 * EBUSY is ok: this just means that another thread
1621 * already did the job.
1623 ret = VM_FAULT_NOPAGE;
1624 break;
1625 case -ENOMEM:
1626 ret = VM_FAULT_OOM;
1627 break;
1628 case -ENOSPC:
1629 case -EFAULT:
1630 ret = VM_FAULT_SIGBUS;
1631 break;
1632 default:
1633 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1634 ret = VM_FAULT_SIGBUS;
1635 break;
1638 intel_runtime_pm_put(dev_priv);
1639 return ret;
1643 * i915_gem_release_mmap - remove physical page mappings
1644 * @obj: obj in question
1646 * Preserve the reservation of the mmapping with the DRM core code, but
1647 * relinquish ownership of the pages back to the system.
1649 * It is vital that we remove the page mapping if we have mapped a tiled
1650 * object through the GTT and then lose the fence register due to
1651 * resource pressure. Similarly if the object has been moved out of the
1652 * aperture, than pages mapped into userspace must be revoked. Removing the
1653 * mapping will then trigger a page fault on the next user access, allowing
1654 * fixup by i915_gem_fault().
1656 void
1657 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1659 if (!obj->fault_mappable)
1660 return;
1662 drm_vma_node_unmap(&obj->base.vma_node,
1663 obj->base.dev->anon_inode->i_mapping);
1664 obj->fault_mappable = false;
1667 void
1668 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1670 struct drm_i915_gem_object *obj;
1672 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1673 i915_gem_release_mmap(obj);
1676 uint32_t
1677 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1679 uint32_t gtt_size;
1681 if (INTEL_INFO(dev)->gen >= 4 ||
1682 tiling_mode == I915_TILING_NONE)
1683 return size;
1685 /* Previous chips need a power-of-two fence region when tiling */
1686 if (INTEL_INFO(dev)->gen == 3)
1687 gtt_size = 1024*1024;
1688 else
1689 gtt_size = 512*1024;
1691 while (gtt_size < size)
1692 gtt_size <<= 1;
1694 return gtt_size;
1698 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1699 * @obj: object to check
1701 * Return the required GTT alignment for an object, taking into account
1702 * potential fence register mapping.
1704 uint32_t
1705 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1706 int tiling_mode, bool fenced)
1709 * Minimum alignment is 4k (GTT page size), but might be greater
1710 * if a fence register is needed for the object.
1712 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1713 tiling_mode == I915_TILING_NONE)
1714 return 4096;
1717 * Previous chips need to be aligned to the size of the smallest
1718 * fence register that can contain the object.
1720 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1723 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1725 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1726 int ret;
1728 if (drm_vma_node_has_offset(&obj->base.vma_node))
1729 return 0;
1731 dev_priv->mm.shrinker_no_lock_stealing = true;
1733 ret = drm_gem_create_mmap_offset(&obj->base);
1734 if (ret != -ENOSPC)
1735 goto out;
1737 /* Badly fragmented mmap space? The only way we can recover
1738 * space is by destroying unwanted objects. We can't randomly release
1739 * mmap_offsets as userspace expects them to be persistent for the
1740 * lifetime of the objects. The closest we can is to release the
1741 * offsets on purgeable objects by truncating it and marking it purged,
1742 * which prevents userspace from ever using that object again.
1744 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1745 ret = drm_gem_create_mmap_offset(&obj->base);
1746 if (ret != -ENOSPC)
1747 goto out;
1749 i915_gem_shrink_all(dev_priv);
1750 ret = drm_gem_create_mmap_offset(&obj->base);
1751 out:
1752 dev_priv->mm.shrinker_no_lock_stealing = false;
1754 return ret;
1757 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1759 drm_gem_free_mmap_offset(&obj->base);
1763 i915_gem_mmap_gtt(struct drm_file *file,
1764 struct drm_device *dev,
1765 uint32_t handle,
1766 uint64_t *offset)
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct drm_i915_gem_object *obj;
1770 int ret;
1772 ret = i915_mutex_lock_interruptible(dev);
1773 if (ret)
1774 return ret;
1776 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1777 if (&obj->base == NULL) {
1778 ret = -ENOENT;
1779 goto unlock;
1782 if (obj->base.size > dev_priv->gtt.mappable_end) {
1783 ret = -E2BIG;
1784 goto out;
1787 if (obj->madv != I915_MADV_WILLNEED) {
1788 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1789 ret = -EFAULT;
1790 goto out;
1793 ret = i915_gem_object_create_mmap_offset(obj);
1794 if (ret)
1795 goto out;
1797 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1799 out:
1800 drm_gem_object_unreference(&obj->base);
1801 unlock:
1802 mutex_unlock(&dev->struct_mutex);
1803 return ret;
1807 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1808 * @dev: DRM device
1809 * @data: GTT mapping ioctl data
1810 * @file: GEM object info
1812 * Simply returns the fake offset to userspace so it can mmap it.
1813 * The mmap call will end up in drm_gem_mmap(), which will set things
1814 * up so we can get faults in the handler above.
1816 * The fault handler will take care of binding the object into the GTT
1817 * (since it may have been evicted to make room for something), allocating
1818 * a fence register, and mapping the appropriate aperture address into
1819 * userspace.
1822 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1823 struct drm_file *file)
1825 struct drm_i915_gem_mmap_gtt *args = data;
1827 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1830 static inline int
1831 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1833 return obj->madv == I915_MADV_DONTNEED;
1836 /* Immediately discard the backing storage */
1837 static void
1838 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1840 i915_gem_object_free_mmap_offset(obj);
1842 if (obj->base.filp == NULL)
1843 return;
1845 /* Our goal here is to return as much of the memory as
1846 * is possible back to the system as we are called from OOM.
1847 * To do this we must instruct the shmfs to drop all of its
1848 * backing pages, *now*.
1850 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1851 obj->madv = __I915_MADV_PURGED;
1854 /* Try to discard unwanted pages */
1855 static void
1856 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1858 struct address_space *mapping;
1860 switch (obj->madv) {
1861 case I915_MADV_DONTNEED:
1862 i915_gem_object_truncate(obj);
1863 case __I915_MADV_PURGED:
1864 return;
1867 if (obj->base.filp == NULL)
1868 return;
1870 mapping = file_inode(obj->base.filp)->i_mapping,
1871 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1874 static void
1875 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1877 struct sg_page_iter sg_iter;
1878 int ret;
1880 BUG_ON(obj->madv == __I915_MADV_PURGED);
1882 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1883 if (ret) {
1884 /* In the event of a disaster, abandon all caches and
1885 * hope for the best.
1887 WARN_ON(ret != -EIO);
1888 i915_gem_clflush_object(obj, true);
1889 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1892 if (i915_gem_object_needs_bit17_swizzle(obj))
1893 i915_gem_object_save_bit_17_swizzle(obj);
1895 if (obj->madv == I915_MADV_DONTNEED)
1896 obj->dirty = 0;
1898 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1899 struct page *page = sg_page_iter_page(&sg_iter);
1901 if (obj->dirty)
1902 set_page_dirty(page);
1904 if (obj->madv == I915_MADV_WILLNEED)
1905 mark_page_accessed(page);
1907 page_cache_release(page);
1909 obj->dirty = 0;
1911 sg_free_table(obj->pages);
1912 kfree(obj->pages);
1916 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1918 const struct drm_i915_gem_object_ops *ops = obj->ops;
1920 if (obj->pages == NULL)
1921 return 0;
1923 if (obj->pages_pin_count)
1924 return -EBUSY;
1926 BUG_ON(i915_gem_obj_bound_any(obj));
1928 /* ->put_pages might need to allocate memory for the bit17 swizzle
1929 * array, hence protect them from being reaped by removing them from gtt
1930 * lists early. */
1931 list_del(&obj->global_list);
1933 ops->put_pages(obj);
1934 obj->pages = NULL;
1936 i915_gem_object_invalidate(obj);
1938 return 0;
1941 static unsigned long
1942 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1943 bool purgeable_only)
1945 struct list_head still_in_list;
1946 struct drm_i915_gem_object *obj;
1947 unsigned long count = 0;
1950 * As we may completely rewrite the (un)bound list whilst unbinding
1951 * (due to retiring requests) we have to strictly process only
1952 * one element of the list at the time, and recheck the list
1953 * on every iteration.
1955 * In particular, we must hold a reference whilst removing the
1956 * object as we may end up waiting for and/or retiring the objects.
1957 * This might release the final reference (held by the active list)
1958 * and result in the object being freed from under us. This is
1959 * similar to the precautions the eviction code must take whilst
1960 * removing objects.
1962 * Also note that although these lists do not hold a reference to
1963 * the object we can safely grab one here: The final object
1964 * unreferencing and the bound_list are both protected by the
1965 * dev->struct_mutex and so we won't ever be able to observe an
1966 * object on the bound_list with a reference count equals 0.
1968 INIT_LIST_HEAD(&still_in_list);
1969 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1970 obj = list_first_entry(&dev_priv->mm.unbound_list,
1971 typeof(*obj), global_list);
1972 list_move_tail(&obj->global_list, &still_in_list);
1974 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1975 continue;
1977 drm_gem_object_reference(&obj->base);
1979 if (i915_gem_object_put_pages(obj) == 0)
1980 count += obj->base.size >> PAGE_SHIFT;
1982 drm_gem_object_unreference(&obj->base);
1984 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1986 INIT_LIST_HEAD(&still_in_list);
1987 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1988 struct i915_vma *vma, *v;
1990 obj = list_first_entry(&dev_priv->mm.bound_list,
1991 typeof(*obj), global_list);
1992 list_move_tail(&obj->global_list, &still_in_list);
1994 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1995 continue;
1997 drm_gem_object_reference(&obj->base);
1999 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2000 if (i915_vma_unbind(vma))
2001 break;
2003 if (i915_gem_object_put_pages(obj) == 0)
2004 count += obj->base.size >> PAGE_SHIFT;
2006 drm_gem_object_unreference(&obj->base);
2008 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2010 return count;
2013 static unsigned long
2014 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2016 return __i915_gem_shrink(dev_priv, target, true);
2019 static unsigned long
2020 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2022 i915_gem_evict_everything(dev_priv->dev);
2023 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2026 static int
2027 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2029 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2030 int page_count, i;
2031 struct address_space *mapping;
2032 struct sg_table *st;
2033 struct scatterlist *sg;
2034 struct sg_page_iter sg_iter;
2035 struct page *page;
2036 unsigned long last_pfn = 0; /* suppress gcc warning */
2037 gfp_t gfp;
2039 /* Assert that the object is not currently in any GPU domain. As it
2040 * wasn't in the GTT, there shouldn't be any way it could have been in
2041 * a GPU cache
2043 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2044 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2046 st = kmalloc(sizeof(*st), GFP_KERNEL);
2047 if (st == NULL)
2048 return -ENOMEM;
2050 page_count = obj->base.size / PAGE_SIZE;
2051 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2052 kfree(st);
2053 return -ENOMEM;
2056 /* Get the list of pages out of our struct file. They'll be pinned
2057 * at this point until we release them.
2059 * Fail silently without starting the shrinker
2061 mapping = file_inode(obj->base.filp)->i_mapping;
2062 gfp = mapping_gfp_mask(mapping);
2063 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2064 gfp &= ~(__GFP_IO | __GFP_WAIT);
2065 sg = st->sgl;
2066 st->nents = 0;
2067 for (i = 0; i < page_count; i++) {
2068 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2069 if (IS_ERR(page)) {
2070 i915_gem_purge(dev_priv, page_count);
2071 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2073 if (IS_ERR(page)) {
2074 /* We've tried hard to allocate the memory by reaping
2075 * our own buffer, now let the real VM do its job and
2076 * go down in flames if truly OOM.
2078 i915_gem_shrink_all(dev_priv);
2079 page = shmem_read_mapping_page(mapping, i);
2080 if (IS_ERR(page))
2081 goto err_pages;
2083 #ifdef CONFIG_SWIOTLB
2084 if (swiotlb_nr_tbl()) {
2085 st->nents++;
2086 sg_set_page(sg, page, PAGE_SIZE, 0);
2087 sg = sg_next(sg);
2088 continue;
2090 #endif
2091 if (!i || page_to_pfn(page) != last_pfn + 1) {
2092 if (i)
2093 sg = sg_next(sg);
2094 st->nents++;
2095 sg_set_page(sg, page, PAGE_SIZE, 0);
2096 } else {
2097 sg->length += PAGE_SIZE;
2099 last_pfn = page_to_pfn(page);
2101 /* Check that the i965g/gm workaround works. */
2102 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2104 #ifdef CONFIG_SWIOTLB
2105 if (!swiotlb_nr_tbl())
2106 #endif
2107 sg_mark_end(sg);
2108 obj->pages = st;
2110 if (i915_gem_object_needs_bit17_swizzle(obj))
2111 i915_gem_object_do_bit_17_swizzle(obj);
2113 return 0;
2115 err_pages:
2116 sg_mark_end(sg);
2117 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2118 page_cache_release(sg_page_iter_page(&sg_iter));
2119 sg_free_table(st);
2120 kfree(st);
2122 /* shmemfs first checks if there is enough memory to allocate the page
2123 * and reports ENOSPC should there be insufficient, along with the usual
2124 * ENOMEM for a genuine allocation failure.
2126 * We use ENOSPC in our driver to mean that we have run out of aperture
2127 * space and so want to translate the error from shmemfs back to our
2128 * usual understanding of ENOMEM.
2130 if (PTR_ERR(page) == -ENOSPC)
2131 return -ENOMEM;
2132 else
2133 return PTR_ERR(page);
2136 /* Ensure that the associated pages are gathered from the backing storage
2137 * and pinned into our object. i915_gem_object_get_pages() may be called
2138 * multiple times before they are released by a single call to
2139 * i915_gem_object_put_pages() - once the pages are no longer referenced
2140 * either as a result of memory pressure (reaping pages under the shrinker)
2141 * or as the object is itself released.
2144 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2146 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2147 const struct drm_i915_gem_object_ops *ops = obj->ops;
2148 int ret;
2150 if (obj->pages)
2151 return 0;
2153 if (obj->madv != I915_MADV_WILLNEED) {
2154 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2155 return -EFAULT;
2158 BUG_ON(obj->pages_pin_count);
2160 ret = ops->get_pages(obj);
2161 if (ret)
2162 return ret;
2164 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2165 return 0;
2168 static void
2169 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2170 struct intel_engine_cs *ring)
2172 u32 seqno = intel_ring_get_seqno(ring);
2174 BUG_ON(ring == NULL);
2175 if (obj->ring != ring && obj->last_write_seqno) {
2176 /* Keep the seqno relative to the current ring */
2177 obj->last_write_seqno = seqno;
2179 obj->ring = ring;
2181 /* Add a reference if we're newly entering the active list. */
2182 if (!obj->active) {
2183 drm_gem_object_reference(&obj->base);
2184 obj->active = 1;
2187 list_move_tail(&obj->ring_list, &ring->active_list);
2189 obj->last_read_seqno = seqno;
2192 void i915_vma_move_to_active(struct i915_vma *vma,
2193 struct intel_engine_cs *ring)
2195 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2196 return i915_gem_object_move_to_active(vma->obj, ring);
2199 static void
2200 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2202 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2203 struct i915_address_space *vm;
2204 struct i915_vma *vma;
2206 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2207 BUG_ON(!obj->active);
2209 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2210 vma = i915_gem_obj_to_vma(obj, vm);
2211 if (vma && !list_empty(&vma->mm_list))
2212 list_move_tail(&vma->mm_list, &vm->inactive_list);
2215 intel_fb_obj_flush(obj, true);
2217 list_del_init(&obj->ring_list);
2218 obj->ring = NULL;
2220 obj->last_read_seqno = 0;
2221 obj->last_write_seqno = 0;
2222 obj->base.write_domain = 0;
2224 obj->last_fenced_seqno = 0;
2226 obj->active = 0;
2227 drm_gem_object_unreference(&obj->base);
2229 WARN_ON(i915_verify_lists(dev));
2232 static void
2233 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2235 struct intel_engine_cs *ring = obj->ring;
2237 if (ring == NULL)
2238 return;
2240 if (i915_seqno_passed(ring->get_seqno(ring, true),
2241 obj->last_read_seqno))
2242 i915_gem_object_move_to_inactive(obj);
2245 static int
2246 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2248 struct drm_i915_private *dev_priv = dev->dev_private;
2249 struct intel_engine_cs *ring;
2250 int ret, i, j;
2252 /* Carefully retire all requests without writing to the rings */
2253 for_each_ring(ring, dev_priv, i) {
2254 ret = intel_ring_idle(ring);
2255 if (ret)
2256 return ret;
2258 i915_gem_retire_requests(dev);
2260 /* Finally reset hw state */
2261 for_each_ring(ring, dev_priv, i) {
2262 intel_ring_init_seqno(ring, seqno);
2264 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2265 ring->semaphore.sync_seqno[j] = 0;
2268 return 0;
2271 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274 int ret;
2276 if (seqno == 0)
2277 return -EINVAL;
2279 /* HWS page needs to be set less than what we
2280 * will inject to ring
2282 ret = i915_gem_init_seqno(dev, seqno - 1);
2283 if (ret)
2284 return ret;
2286 /* Carefully set the last_seqno value so that wrap
2287 * detection still works
2289 dev_priv->next_seqno = seqno;
2290 dev_priv->last_seqno = seqno - 1;
2291 if (dev_priv->last_seqno == 0)
2292 dev_priv->last_seqno--;
2294 return 0;
2298 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2302 /* reserve 0 for non-seqno */
2303 if (dev_priv->next_seqno == 0) {
2304 int ret = i915_gem_init_seqno(dev, 0);
2305 if (ret)
2306 return ret;
2308 dev_priv->next_seqno = 1;
2311 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2312 return 0;
2315 int __i915_add_request(struct intel_engine_cs *ring,
2316 struct drm_file *file,
2317 struct drm_i915_gem_object *obj,
2318 u32 *out_seqno)
2320 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2321 struct drm_i915_gem_request *request;
2322 struct intel_ringbuffer *ringbuf;
2323 u32 request_ring_position, request_start;
2324 int ret;
2326 request = ring->preallocated_lazy_request;
2327 if (WARN_ON(request == NULL))
2328 return -ENOMEM;
2330 if (i915.enable_execlists) {
2331 struct intel_context *ctx = request->ctx;
2332 ringbuf = ctx->engine[ring->id].ringbuf;
2333 } else
2334 ringbuf = ring->buffer;
2336 request_start = intel_ring_get_tail(ringbuf);
2338 * Emit any outstanding flushes - execbuf can fail to emit the flush
2339 * after having emitted the batchbuffer command. Hence we need to fix
2340 * things up similar to emitting the lazy request. The difference here
2341 * is that the flush _must_ happen before the next request, no matter
2342 * what.
2344 if (i915.enable_execlists) {
2345 ret = logical_ring_flush_all_caches(ringbuf);
2346 if (ret)
2347 return ret;
2348 } else {
2349 ret = intel_ring_flush_all_caches(ring);
2350 if (ret)
2351 return ret;
2354 /* Record the position of the start of the request so that
2355 * should we detect the updated seqno part-way through the
2356 * GPU processing the request, we never over-estimate the
2357 * position of the head.
2359 request_ring_position = intel_ring_get_tail(ringbuf);
2361 if (i915.enable_execlists) {
2362 ret = ring->emit_request(ringbuf);
2363 if (ret)
2364 return ret;
2365 } else {
2366 ret = ring->add_request(ring);
2367 if (ret)
2368 return ret;
2371 request->seqno = intel_ring_get_seqno(ring);
2372 request->ring = ring;
2373 request->head = request_start;
2374 request->tail = request_ring_position;
2376 /* Whilst this request exists, batch_obj will be on the
2377 * active_list, and so will hold the active reference. Only when this
2378 * request is retired will the the batch_obj be moved onto the
2379 * inactive_list and lose its active reference. Hence we do not need
2380 * to explicitly hold another reference here.
2382 request->batch_obj = obj;
2384 if (!i915.enable_execlists) {
2385 /* Hold a reference to the current context so that we can inspect
2386 * it later in case a hangcheck error event fires.
2388 request->ctx = ring->last_context;
2389 if (request->ctx)
2390 i915_gem_context_reference(request->ctx);
2393 request->emitted_jiffies = jiffies;
2394 list_add_tail(&request->list, &ring->request_list);
2395 request->file_priv = NULL;
2397 if (file) {
2398 struct drm_i915_file_private *file_priv = file->driver_priv;
2400 spin_lock(&file_priv->mm.lock);
2401 request->file_priv = file_priv;
2402 list_add_tail(&request->client_list,
2403 &file_priv->mm.request_list);
2404 spin_unlock(&file_priv->mm.lock);
2407 trace_i915_gem_request_add(ring, request->seqno);
2408 ring->outstanding_lazy_seqno = 0;
2409 ring->preallocated_lazy_request = NULL;
2411 if (!dev_priv->ums.mm_suspended) {
2412 i915_queue_hangcheck(ring->dev);
2414 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2415 queue_delayed_work(dev_priv->wq,
2416 &dev_priv->mm.retire_work,
2417 round_jiffies_up_relative(HZ));
2418 intel_mark_busy(dev_priv->dev);
2421 if (out_seqno)
2422 *out_seqno = request->seqno;
2423 return 0;
2426 static inline void
2427 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2429 struct drm_i915_file_private *file_priv = request->file_priv;
2431 if (!file_priv)
2432 return;
2434 spin_lock(&file_priv->mm.lock);
2435 list_del(&request->client_list);
2436 request->file_priv = NULL;
2437 spin_unlock(&file_priv->mm.lock);
2440 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2441 const struct intel_context *ctx)
2443 unsigned long elapsed;
2445 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2447 if (ctx->hang_stats.banned)
2448 return true;
2450 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2451 if (!i915_gem_context_is_default(ctx)) {
2452 DRM_DEBUG("context hanging too fast, banning!\n");
2453 return true;
2454 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2455 if (i915_stop_ring_allow_warn(dev_priv))
2456 DRM_ERROR("gpu hanging too fast, banning!\n");
2457 return true;
2461 return false;
2464 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2465 struct intel_context *ctx,
2466 const bool guilty)
2468 struct i915_ctx_hang_stats *hs;
2470 if (WARN_ON(!ctx))
2471 return;
2473 hs = &ctx->hang_stats;
2475 if (guilty) {
2476 hs->banned = i915_context_is_banned(dev_priv, ctx);
2477 hs->batch_active++;
2478 hs->guilty_ts = get_seconds();
2479 } else {
2480 hs->batch_pending++;
2484 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2486 list_del(&request->list);
2487 i915_gem_request_remove_from_client(request);
2489 if (request->ctx)
2490 i915_gem_context_unreference(request->ctx);
2492 kfree(request);
2495 struct drm_i915_gem_request *
2496 i915_gem_find_active_request(struct intel_engine_cs *ring)
2498 struct drm_i915_gem_request *request;
2499 u32 completed_seqno;
2501 completed_seqno = ring->get_seqno(ring, false);
2503 list_for_each_entry(request, &ring->request_list, list) {
2504 if (i915_seqno_passed(completed_seqno, request->seqno))
2505 continue;
2507 return request;
2510 return NULL;
2513 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2514 struct intel_engine_cs *ring)
2516 struct drm_i915_gem_request *request;
2517 bool ring_hung;
2519 request = i915_gem_find_active_request(ring);
2521 if (request == NULL)
2522 return;
2524 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2526 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2528 list_for_each_entry_continue(request, &ring->request_list, list)
2529 i915_set_reset_status(dev_priv, request->ctx, false);
2532 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2533 struct intel_engine_cs *ring)
2535 while (!list_empty(&ring->active_list)) {
2536 struct drm_i915_gem_object *obj;
2538 obj = list_first_entry(&ring->active_list,
2539 struct drm_i915_gem_object,
2540 ring_list);
2542 i915_gem_object_move_to_inactive(obj);
2546 * We must free the requests after all the corresponding objects have
2547 * been moved off active lists. Which is the same order as the normal
2548 * retire_requests function does. This is important if object hold
2549 * implicit references on things like e.g. ppgtt address spaces through
2550 * the request.
2552 while (!list_empty(&ring->request_list)) {
2553 struct drm_i915_gem_request *request;
2555 request = list_first_entry(&ring->request_list,
2556 struct drm_i915_gem_request,
2557 list);
2559 i915_gem_free_request(request);
2562 while (!list_empty(&ring->execlist_queue)) {
2563 struct intel_ctx_submit_request *submit_req;
2565 submit_req = list_first_entry(&ring->execlist_queue,
2566 struct intel_ctx_submit_request,
2567 execlist_link);
2568 list_del(&submit_req->execlist_link);
2569 intel_runtime_pm_put(dev_priv);
2570 i915_gem_context_unreference(submit_req->ctx);
2571 kfree(submit_req);
2574 /* These may not have been flush before the reset, do so now */
2575 kfree(ring->preallocated_lazy_request);
2576 ring->preallocated_lazy_request = NULL;
2577 ring->outstanding_lazy_seqno = 0;
2580 void i915_gem_restore_fences(struct drm_device *dev)
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 int i;
2585 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2586 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2589 * Commit delayed tiling changes if we have an object still
2590 * attached to the fence, otherwise just clear the fence.
2592 if (reg->obj) {
2593 i915_gem_object_update_fence(reg->obj, reg,
2594 reg->obj->tiling_mode);
2595 } else {
2596 i915_gem_write_fence(dev, i, NULL);
2601 void i915_gem_reset(struct drm_device *dev)
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_engine_cs *ring;
2605 int i;
2608 * Before we free the objects from the requests, we need to inspect
2609 * them for finding the guilty party. As the requests only borrow
2610 * their reference to the objects, the inspection must be done first.
2612 for_each_ring(ring, dev_priv, i)
2613 i915_gem_reset_ring_status(dev_priv, ring);
2615 for_each_ring(ring, dev_priv, i)
2616 i915_gem_reset_ring_cleanup(dev_priv, ring);
2618 i915_gem_context_reset(dev);
2620 i915_gem_restore_fences(dev);
2624 * This function clears the request list as sequence numbers are passed.
2626 void
2627 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2629 uint32_t seqno;
2631 if (list_empty(&ring->request_list))
2632 return;
2634 WARN_ON(i915_verify_lists(ring->dev));
2636 seqno = ring->get_seqno(ring, true);
2638 /* Move any buffers on the active list that are no longer referenced
2639 * by the ringbuffer to the flushing/inactive lists as appropriate,
2640 * before we free the context associated with the requests.
2642 while (!list_empty(&ring->active_list)) {
2643 struct drm_i915_gem_object *obj;
2645 obj = list_first_entry(&ring->active_list,
2646 struct drm_i915_gem_object,
2647 ring_list);
2649 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2650 break;
2652 i915_gem_object_move_to_inactive(obj);
2656 while (!list_empty(&ring->request_list)) {
2657 struct drm_i915_gem_request *request;
2658 struct intel_ringbuffer *ringbuf;
2660 request = list_first_entry(&ring->request_list,
2661 struct drm_i915_gem_request,
2662 list);
2664 if (!i915_seqno_passed(seqno, request->seqno))
2665 break;
2667 trace_i915_gem_request_retire(ring, request->seqno);
2669 /* This is one of the few common intersection points
2670 * between legacy ringbuffer submission and execlists:
2671 * we need to tell them apart in order to find the correct
2672 * ringbuffer to which the request belongs to.
2674 if (i915.enable_execlists) {
2675 struct intel_context *ctx = request->ctx;
2676 ringbuf = ctx->engine[ring->id].ringbuf;
2677 } else
2678 ringbuf = ring->buffer;
2680 /* We know the GPU must have read the request to have
2681 * sent us the seqno + interrupt, so use the position
2682 * of tail of the request to update the last known position
2683 * of the GPU head.
2685 ringbuf->last_retired_head = request->tail;
2687 i915_gem_free_request(request);
2690 if (unlikely(ring->trace_irq_seqno &&
2691 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2692 ring->irq_put(ring);
2693 ring->trace_irq_seqno = 0;
2696 WARN_ON(i915_verify_lists(ring->dev));
2699 bool
2700 i915_gem_retire_requests(struct drm_device *dev)
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 struct intel_engine_cs *ring;
2704 bool idle = true;
2705 int i;
2707 for_each_ring(ring, dev_priv, i) {
2708 i915_gem_retire_requests_ring(ring);
2709 idle &= list_empty(&ring->request_list);
2712 if (idle)
2713 mod_delayed_work(dev_priv->wq,
2714 &dev_priv->mm.idle_work,
2715 msecs_to_jiffies(100));
2717 return idle;
2720 static void
2721 i915_gem_retire_work_handler(struct work_struct *work)
2723 struct drm_i915_private *dev_priv =
2724 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2725 struct drm_device *dev = dev_priv->dev;
2726 bool idle;
2728 /* Come back later if the device is busy... */
2729 idle = false;
2730 if (mutex_trylock(&dev->struct_mutex)) {
2731 idle = i915_gem_retire_requests(dev);
2732 mutex_unlock(&dev->struct_mutex);
2734 if (!idle)
2735 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2736 round_jiffies_up_relative(HZ));
2739 static void
2740 i915_gem_idle_work_handler(struct work_struct *work)
2742 struct drm_i915_private *dev_priv =
2743 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2745 intel_mark_idle(dev_priv->dev);
2749 * Ensures that an object will eventually get non-busy by flushing any required
2750 * write domains, emitting any outstanding lazy request and retiring and
2751 * completed requests.
2753 static int
2754 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2756 int ret;
2758 if (obj->active) {
2759 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2760 if (ret)
2761 return ret;
2763 i915_gem_retire_requests_ring(obj->ring);
2766 return 0;
2770 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2771 * @DRM_IOCTL_ARGS: standard ioctl arguments
2773 * Returns 0 if successful, else an error is returned with the remaining time in
2774 * the timeout parameter.
2775 * -ETIME: object is still busy after timeout
2776 * -ERESTARTSYS: signal interrupted the wait
2777 * -ENONENT: object doesn't exist
2778 * Also possible, but rare:
2779 * -EAGAIN: GPU wedged
2780 * -ENOMEM: damn
2781 * -ENODEV: Internal IRQ fail
2782 * -E?: The add request failed
2784 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2785 * non-zero timeout parameter the wait ioctl will wait for the given number of
2786 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2787 * without holding struct_mutex the object may become re-busied before this
2788 * function completes. A similar but shorter * race condition exists in the busy
2789 * ioctl
2792 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2794 struct drm_i915_private *dev_priv = dev->dev_private;
2795 struct drm_i915_gem_wait *args = data;
2796 struct drm_i915_gem_object *obj;
2797 struct intel_engine_cs *ring = NULL;
2798 unsigned reset_counter;
2799 u32 seqno = 0;
2800 int ret = 0;
2802 ret = i915_mutex_lock_interruptible(dev);
2803 if (ret)
2804 return ret;
2806 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2807 if (&obj->base == NULL) {
2808 mutex_unlock(&dev->struct_mutex);
2809 return -ENOENT;
2812 /* Need to make sure the object gets inactive eventually. */
2813 ret = i915_gem_object_flush_active(obj);
2814 if (ret)
2815 goto out;
2817 if (obj->active) {
2818 seqno = obj->last_read_seqno;
2819 ring = obj->ring;
2822 if (seqno == 0)
2823 goto out;
2825 /* Do this after OLR check to make sure we make forward progress polling
2826 * on this IOCTL with a timeout <=0 (like busy ioctl)
2828 if (args->timeout_ns <= 0) {
2829 ret = -ETIME;
2830 goto out;
2833 drm_gem_object_unreference(&obj->base);
2834 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2835 mutex_unlock(&dev->struct_mutex);
2837 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2838 file->driver_priv);
2840 out:
2841 drm_gem_object_unreference(&obj->base);
2842 mutex_unlock(&dev->struct_mutex);
2843 return ret;
2847 * i915_gem_object_sync - sync an object to a ring.
2849 * @obj: object which may be in use on another ring.
2850 * @to: ring we wish to use the object on. May be NULL.
2852 * This code is meant to abstract object synchronization with the GPU.
2853 * Calling with NULL implies synchronizing the object with the CPU
2854 * rather than a particular GPU ring.
2856 * Returns 0 if successful, else propagates up the lower layer error.
2859 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2860 struct intel_engine_cs *to)
2862 struct intel_engine_cs *from = obj->ring;
2863 u32 seqno;
2864 int ret, idx;
2866 if (from == NULL || to == from)
2867 return 0;
2869 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2870 return i915_gem_object_wait_rendering(obj, false);
2872 idx = intel_ring_sync_index(from, to);
2874 seqno = obj->last_read_seqno;
2875 /* Optimization: Avoid semaphore sync when we are sure we already
2876 * waited for an object with higher seqno */
2877 if (seqno <= from->semaphore.sync_seqno[idx])
2878 return 0;
2880 ret = i915_gem_check_olr(obj->ring, seqno);
2881 if (ret)
2882 return ret;
2884 trace_i915_gem_ring_sync_to(from, to, seqno);
2885 ret = to->semaphore.sync_to(to, from, seqno);
2886 if (!ret)
2887 /* We use last_read_seqno because sync_to()
2888 * might have just caused seqno wrap under
2889 * the radar.
2891 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2893 return ret;
2896 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2898 u32 old_write_domain, old_read_domains;
2900 /* Force a pagefault for domain tracking on next user access */
2901 i915_gem_release_mmap(obj);
2903 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2904 return;
2906 /* Wait for any direct GTT access to complete */
2907 mb();
2909 old_read_domains = obj->base.read_domains;
2910 old_write_domain = obj->base.write_domain;
2912 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2913 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2915 trace_i915_gem_object_change_domain(obj,
2916 old_read_domains,
2917 old_write_domain);
2920 int i915_vma_unbind(struct i915_vma *vma)
2922 struct drm_i915_gem_object *obj = vma->obj;
2923 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2924 int ret;
2926 if (list_empty(&vma->vma_link))
2927 return 0;
2929 if (!drm_mm_node_allocated(&vma->node)) {
2930 i915_gem_vma_destroy(vma);
2931 return 0;
2934 if (vma->pin_count)
2935 return -EBUSY;
2937 BUG_ON(obj->pages == NULL);
2939 ret = i915_gem_object_finish_gpu(obj);
2940 if (ret)
2941 return ret;
2942 /* Continue on if we fail due to EIO, the GPU is hung so we
2943 * should be safe and we need to cleanup or else we might
2944 * cause memory corruption through use-after-free.
2947 if (i915_is_ggtt(vma->vm)) {
2948 i915_gem_object_finish_gtt(obj);
2950 /* release the fence reg _after_ flushing */
2951 ret = i915_gem_object_put_fence(obj);
2952 if (ret)
2953 return ret;
2956 trace_i915_vma_unbind(vma);
2958 vma->unbind_vma(vma);
2960 list_del_init(&vma->mm_list);
2961 if (i915_is_ggtt(vma->vm))
2962 obj->map_and_fenceable = false;
2964 drm_mm_remove_node(&vma->node);
2965 i915_gem_vma_destroy(vma);
2967 /* Since the unbound list is global, only move to that list if
2968 * no more VMAs exist. */
2969 if (list_empty(&obj->vma_list)) {
2970 i915_gem_gtt_finish_object(obj);
2971 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2974 /* And finally now the object is completely decoupled from this vma,
2975 * we can drop its hold on the backing storage and allow it to be
2976 * reaped by the shrinker.
2978 i915_gem_object_unpin_pages(obj);
2980 return 0;
2983 int i915_gpu_idle(struct drm_device *dev)
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986 struct intel_engine_cs *ring;
2987 int ret, i;
2989 /* Flush everything onto the inactive list. */
2990 for_each_ring(ring, dev_priv, i) {
2991 if (!i915.enable_execlists) {
2992 ret = i915_switch_context(ring, ring->default_context);
2993 if (ret)
2994 return ret;
2997 ret = intel_ring_idle(ring);
2998 if (ret)
2999 return ret;
3002 return 0;
3005 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3006 struct drm_i915_gem_object *obj)
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 int fence_reg;
3010 int fence_pitch_shift;
3012 if (INTEL_INFO(dev)->gen >= 6) {
3013 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3014 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3015 } else {
3016 fence_reg = FENCE_REG_965_0;
3017 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3020 fence_reg += reg * 8;
3022 /* To w/a incoherency with non-atomic 64-bit register updates,
3023 * we split the 64-bit update into two 32-bit writes. In order
3024 * for a partial fence not to be evaluated between writes, we
3025 * precede the update with write to turn off the fence register,
3026 * and only enable the fence as the last step.
3028 * For extra levels of paranoia, we make sure each step lands
3029 * before applying the next step.
3031 I915_WRITE(fence_reg, 0);
3032 POSTING_READ(fence_reg);
3034 if (obj) {
3035 u32 size = i915_gem_obj_ggtt_size(obj);
3036 uint64_t val;
3038 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3039 0xfffff000) << 32;
3040 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3041 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3042 if (obj->tiling_mode == I915_TILING_Y)
3043 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3044 val |= I965_FENCE_REG_VALID;
3046 I915_WRITE(fence_reg + 4, val >> 32);
3047 POSTING_READ(fence_reg + 4);
3049 I915_WRITE(fence_reg + 0, val);
3050 POSTING_READ(fence_reg);
3051 } else {
3052 I915_WRITE(fence_reg + 4, 0);
3053 POSTING_READ(fence_reg + 4);
3057 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3058 struct drm_i915_gem_object *obj)
3060 struct drm_i915_private *dev_priv = dev->dev_private;
3061 u32 val;
3063 if (obj) {
3064 u32 size = i915_gem_obj_ggtt_size(obj);
3065 int pitch_val;
3066 int tile_width;
3068 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3069 (size & -size) != size ||
3070 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3071 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3072 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3074 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3075 tile_width = 128;
3076 else
3077 tile_width = 512;
3079 /* Note: pitch better be a power of two tile widths */
3080 pitch_val = obj->stride / tile_width;
3081 pitch_val = ffs(pitch_val) - 1;
3083 val = i915_gem_obj_ggtt_offset(obj);
3084 if (obj->tiling_mode == I915_TILING_Y)
3085 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3086 val |= I915_FENCE_SIZE_BITS(size);
3087 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3088 val |= I830_FENCE_REG_VALID;
3089 } else
3090 val = 0;
3092 if (reg < 8)
3093 reg = FENCE_REG_830_0 + reg * 4;
3094 else
3095 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3097 I915_WRITE(reg, val);
3098 POSTING_READ(reg);
3101 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3102 struct drm_i915_gem_object *obj)
3104 struct drm_i915_private *dev_priv = dev->dev_private;
3105 uint32_t val;
3107 if (obj) {
3108 u32 size = i915_gem_obj_ggtt_size(obj);
3109 uint32_t pitch_val;
3111 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3112 (size & -size) != size ||
3113 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3114 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3115 i915_gem_obj_ggtt_offset(obj), size);
3117 pitch_val = obj->stride / 128;
3118 pitch_val = ffs(pitch_val) - 1;
3120 val = i915_gem_obj_ggtt_offset(obj);
3121 if (obj->tiling_mode == I915_TILING_Y)
3122 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3123 val |= I830_FENCE_SIZE_BITS(size);
3124 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3125 val |= I830_FENCE_REG_VALID;
3126 } else
3127 val = 0;
3129 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3130 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3133 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3135 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3138 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3139 struct drm_i915_gem_object *obj)
3141 struct drm_i915_private *dev_priv = dev->dev_private;
3143 /* Ensure that all CPU reads are completed before installing a fence
3144 * and all writes before removing the fence.
3146 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3147 mb();
3149 WARN(obj && (!obj->stride || !obj->tiling_mode),
3150 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3151 obj->stride, obj->tiling_mode);
3153 switch (INTEL_INFO(dev)->gen) {
3154 case 8:
3155 case 7:
3156 case 6:
3157 case 5:
3158 case 4: i965_write_fence_reg(dev, reg, obj); break;
3159 case 3: i915_write_fence_reg(dev, reg, obj); break;
3160 case 2: i830_write_fence_reg(dev, reg, obj); break;
3161 default: BUG();
3164 /* And similarly be paranoid that no direct access to this region
3165 * is reordered to before the fence is installed.
3167 if (i915_gem_object_needs_mb(obj))
3168 mb();
3171 static inline int fence_number(struct drm_i915_private *dev_priv,
3172 struct drm_i915_fence_reg *fence)
3174 return fence - dev_priv->fence_regs;
3177 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3178 struct drm_i915_fence_reg *fence,
3179 bool enable)
3181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3182 int reg = fence_number(dev_priv, fence);
3184 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3186 if (enable) {
3187 obj->fence_reg = reg;
3188 fence->obj = obj;
3189 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3190 } else {
3191 obj->fence_reg = I915_FENCE_REG_NONE;
3192 fence->obj = NULL;
3193 list_del_init(&fence->lru_list);
3195 obj->fence_dirty = false;
3198 static int
3199 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3201 if (obj->last_fenced_seqno) {
3202 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3203 if (ret)
3204 return ret;
3206 obj->last_fenced_seqno = 0;
3209 return 0;
3213 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3215 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3216 struct drm_i915_fence_reg *fence;
3217 int ret;
3219 ret = i915_gem_object_wait_fence(obj);
3220 if (ret)
3221 return ret;
3223 if (obj->fence_reg == I915_FENCE_REG_NONE)
3224 return 0;
3226 fence = &dev_priv->fence_regs[obj->fence_reg];
3228 if (WARN_ON(fence->pin_count))
3229 return -EBUSY;
3231 i915_gem_object_fence_lost(obj);
3232 i915_gem_object_update_fence(obj, fence, false);
3234 return 0;
3237 static struct drm_i915_fence_reg *
3238 i915_find_fence_reg(struct drm_device *dev)
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct drm_i915_fence_reg *reg, *avail;
3242 int i;
3244 /* First try to find a free reg */
3245 avail = NULL;
3246 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3247 reg = &dev_priv->fence_regs[i];
3248 if (!reg->obj)
3249 return reg;
3251 if (!reg->pin_count)
3252 avail = reg;
3255 if (avail == NULL)
3256 goto deadlock;
3258 /* None available, try to steal one or wait for a user to finish */
3259 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3260 if (reg->pin_count)
3261 continue;
3263 return reg;
3266 deadlock:
3267 /* Wait for completion of pending flips which consume fences */
3268 if (intel_has_pending_fb_unpin(dev))
3269 return ERR_PTR(-EAGAIN);
3271 return ERR_PTR(-EDEADLK);
3275 * i915_gem_object_get_fence - set up fencing for an object
3276 * @obj: object to map through a fence reg
3278 * When mapping objects through the GTT, userspace wants to be able to write
3279 * to them without having to worry about swizzling if the object is tiled.
3280 * This function walks the fence regs looking for a free one for @obj,
3281 * stealing one if it can't find any.
3283 * It then sets up the reg based on the object's properties: address, pitch
3284 * and tiling format.
3286 * For an untiled surface, this removes any existing fence.
3289 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3291 struct drm_device *dev = obj->base.dev;
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 bool enable = obj->tiling_mode != I915_TILING_NONE;
3294 struct drm_i915_fence_reg *reg;
3295 int ret;
3297 /* Have we updated the tiling parameters upon the object and so
3298 * will need to serialise the write to the associated fence register?
3300 if (obj->fence_dirty) {
3301 ret = i915_gem_object_wait_fence(obj);
3302 if (ret)
3303 return ret;
3306 /* Just update our place in the LRU if our fence is getting reused. */
3307 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3308 reg = &dev_priv->fence_regs[obj->fence_reg];
3309 if (!obj->fence_dirty) {
3310 list_move_tail(&reg->lru_list,
3311 &dev_priv->mm.fence_list);
3312 return 0;
3314 } else if (enable) {
3315 if (WARN_ON(!obj->map_and_fenceable))
3316 return -EINVAL;
3318 reg = i915_find_fence_reg(dev);
3319 if (IS_ERR(reg))
3320 return PTR_ERR(reg);
3322 if (reg->obj) {
3323 struct drm_i915_gem_object *old = reg->obj;
3325 ret = i915_gem_object_wait_fence(old);
3326 if (ret)
3327 return ret;
3329 i915_gem_object_fence_lost(old);
3331 } else
3332 return 0;
3334 i915_gem_object_update_fence(obj, reg, enable);
3336 return 0;
3339 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3340 struct drm_mm_node *gtt_space,
3341 unsigned long cache_level)
3343 struct drm_mm_node *other;
3345 /* On non-LLC machines we have to be careful when putting differing
3346 * types of snoopable memory together to avoid the prefetcher
3347 * crossing memory domains and dying.
3349 if (HAS_LLC(dev))
3350 return true;
3352 if (!drm_mm_node_allocated(gtt_space))
3353 return true;
3355 if (list_empty(&gtt_space->node_list))
3356 return true;
3358 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3359 if (other->allocated && !other->hole_follows && other->color != cache_level)
3360 return false;
3362 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3363 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3364 return false;
3366 return true;
3369 static void i915_gem_verify_gtt(struct drm_device *dev)
3371 #if WATCH_GTT
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373 struct drm_i915_gem_object *obj;
3374 int err = 0;
3376 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3377 if (obj->gtt_space == NULL) {
3378 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3379 err++;
3380 continue;
3383 if (obj->cache_level != obj->gtt_space->color) {
3384 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3385 i915_gem_obj_ggtt_offset(obj),
3386 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3387 obj->cache_level,
3388 obj->gtt_space->color);
3389 err++;
3390 continue;
3393 if (!i915_gem_valid_gtt_space(dev,
3394 obj->gtt_space,
3395 obj->cache_level)) {
3396 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3397 i915_gem_obj_ggtt_offset(obj),
3398 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3399 obj->cache_level);
3400 err++;
3401 continue;
3405 WARN_ON(err);
3406 #endif
3410 * Finds free space in the GTT aperture and binds the object there.
3412 static struct i915_vma *
3413 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3414 struct i915_address_space *vm,
3415 unsigned alignment,
3416 uint64_t flags)
3418 struct drm_device *dev = obj->base.dev;
3419 struct drm_i915_private *dev_priv = dev->dev_private;
3420 u32 size, fence_size, fence_alignment, unfenced_alignment;
3421 unsigned long start =
3422 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3423 unsigned long end =
3424 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3425 struct i915_vma *vma;
3426 int ret;
3428 fence_size = i915_gem_get_gtt_size(dev,
3429 obj->base.size,
3430 obj->tiling_mode);
3431 fence_alignment = i915_gem_get_gtt_alignment(dev,
3432 obj->base.size,
3433 obj->tiling_mode, true);
3434 unfenced_alignment =
3435 i915_gem_get_gtt_alignment(dev,
3436 obj->base.size,
3437 obj->tiling_mode, false);
3439 if (alignment == 0)
3440 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3441 unfenced_alignment;
3442 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3443 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3444 return ERR_PTR(-EINVAL);
3447 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3449 /* If the object is bigger than the entire aperture, reject it early
3450 * before evicting everything in a vain attempt to find space.
3452 if (obj->base.size > end) {
3453 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3454 obj->base.size,
3455 flags & PIN_MAPPABLE ? "mappable" : "total",
3456 end);
3457 return ERR_PTR(-E2BIG);
3460 ret = i915_gem_object_get_pages(obj);
3461 if (ret)
3462 return ERR_PTR(ret);
3464 i915_gem_object_pin_pages(obj);
3466 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3467 if (IS_ERR(vma))
3468 goto err_unpin;
3470 search_free:
3471 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3472 size, alignment,
3473 obj->cache_level,
3474 start, end,
3475 DRM_MM_SEARCH_DEFAULT,
3476 DRM_MM_CREATE_DEFAULT);
3477 if (ret) {
3478 ret = i915_gem_evict_something(dev, vm, size, alignment,
3479 obj->cache_level,
3480 start, end,
3481 flags);
3482 if (ret == 0)
3483 goto search_free;
3485 goto err_free_vma;
3487 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3488 obj->cache_level))) {
3489 ret = -EINVAL;
3490 goto err_remove_node;
3493 ret = i915_gem_gtt_prepare_object(obj);
3494 if (ret)
3495 goto err_remove_node;
3497 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3498 list_add_tail(&vma->mm_list, &vm->inactive_list);
3500 if (i915_is_ggtt(vm)) {
3501 bool mappable, fenceable;
3503 fenceable = (vma->node.size == fence_size &&
3504 (vma->node.start & (fence_alignment - 1)) == 0);
3506 mappable = (vma->node.start + obj->base.size <=
3507 dev_priv->gtt.mappable_end);
3509 obj->map_and_fenceable = mappable && fenceable;
3512 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3514 trace_i915_vma_bind(vma, flags);
3515 vma->bind_vma(vma, obj->cache_level,
3516 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3518 i915_gem_verify_gtt(dev);
3519 return vma;
3521 err_remove_node:
3522 drm_mm_remove_node(&vma->node);
3523 err_free_vma:
3524 i915_gem_vma_destroy(vma);
3525 vma = ERR_PTR(ret);
3526 err_unpin:
3527 i915_gem_object_unpin_pages(obj);
3528 return vma;
3531 bool
3532 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3533 bool force)
3535 /* If we don't have a page list set up, then we're not pinned
3536 * to GPU, and we can ignore the cache flush because it'll happen
3537 * again at bind time.
3539 if (obj->pages == NULL)
3540 return false;
3543 * Stolen memory is always coherent with the GPU as it is explicitly
3544 * marked as wc by the system, or the system is cache-coherent.
3546 if (obj->stolen)
3547 return false;
3549 /* If the GPU is snooping the contents of the CPU cache,
3550 * we do not need to manually clear the CPU cache lines. However,
3551 * the caches are only snooped when the render cache is
3552 * flushed/invalidated. As we always have to emit invalidations
3553 * and flushes when moving into and out of the RENDER domain, correct
3554 * snooping behaviour occurs naturally as the result of our domain
3555 * tracking.
3557 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3558 return false;
3560 trace_i915_gem_object_clflush(obj);
3561 drm_clflush_sg(obj->pages);
3563 return true;
3566 /** Flushes the GTT write domain for the object if it's dirty. */
3567 static void
3568 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3570 uint32_t old_write_domain;
3572 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3573 return;
3575 /* No actual flushing is required for the GTT write domain. Writes
3576 * to it immediately go to main memory as far as we know, so there's
3577 * no chipset flush. It also doesn't land in render cache.
3579 * However, we do have to enforce the order so that all writes through
3580 * the GTT land before any writes to the device, such as updates to
3581 * the GATT itself.
3583 wmb();
3585 old_write_domain = obj->base.write_domain;
3586 obj->base.write_domain = 0;
3588 intel_fb_obj_flush(obj, false);
3590 trace_i915_gem_object_change_domain(obj,
3591 obj->base.read_domains,
3592 old_write_domain);
3595 /** Flushes the CPU write domain for the object if it's dirty. */
3596 static void
3597 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3598 bool force)
3600 uint32_t old_write_domain;
3602 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3603 return;
3605 if (i915_gem_clflush_object(obj, force))
3606 i915_gem_chipset_flush(obj->base.dev);
3608 old_write_domain = obj->base.write_domain;
3609 obj->base.write_domain = 0;
3611 intel_fb_obj_flush(obj, false);
3613 trace_i915_gem_object_change_domain(obj,
3614 obj->base.read_domains,
3615 old_write_domain);
3619 * Moves a single object to the GTT read, and possibly write domain.
3621 * This function returns when the move is complete, including waiting on
3622 * flushes to occur.
3625 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3627 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3628 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3629 uint32_t old_write_domain, old_read_domains;
3630 int ret;
3632 /* Not valid to be called on unbound objects. */
3633 if (vma == NULL)
3634 return -EINVAL;
3636 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3637 return 0;
3639 ret = i915_gem_object_wait_rendering(obj, !write);
3640 if (ret)
3641 return ret;
3643 i915_gem_object_retire(obj);
3644 i915_gem_object_flush_cpu_write_domain(obj, false);
3646 /* Serialise direct access to this object with the barriers for
3647 * coherent writes from the GPU, by effectively invalidating the
3648 * GTT domain upon first access.
3650 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3651 mb();
3653 old_write_domain = obj->base.write_domain;
3654 old_read_domains = obj->base.read_domains;
3656 /* It should now be out of any other write domains, and we can update
3657 * the domain values for our changes.
3659 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3660 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3661 if (write) {
3662 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3663 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3664 obj->dirty = 1;
3667 if (write)
3668 intel_fb_obj_invalidate(obj, NULL);
3670 trace_i915_gem_object_change_domain(obj,
3671 old_read_domains,
3672 old_write_domain);
3674 /* And bump the LRU for this access */
3675 if (i915_gem_object_is_inactive(obj))
3676 list_move_tail(&vma->mm_list,
3677 &dev_priv->gtt.base.inactive_list);
3679 return 0;
3682 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3683 enum i915_cache_level cache_level)
3685 struct drm_device *dev = obj->base.dev;
3686 struct i915_vma *vma, *next;
3687 int ret;
3689 if (obj->cache_level == cache_level)
3690 return 0;
3692 if (i915_gem_obj_is_pinned(obj)) {
3693 DRM_DEBUG("can not change the cache level of pinned objects\n");
3694 return -EBUSY;
3697 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3698 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3699 ret = i915_vma_unbind(vma);
3700 if (ret)
3701 return ret;
3705 if (i915_gem_obj_bound_any(obj)) {
3706 ret = i915_gem_object_finish_gpu(obj);
3707 if (ret)
3708 return ret;
3710 i915_gem_object_finish_gtt(obj);
3712 /* Before SandyBridge, you could not use tiling or fence
3713 * registers with snooped memory, so relinquish any fences
3714 * currently pointing to our region in the aperture.
3716 if (INTEL_INFO(dev)->gen < 6) {
3717 ret = i915_gem_object_put_fence(obj);
3718 if (ret)
3719 return ret;
3722 list_for_each_entry(vma, &obj->vma_list, vma_link)
3723 if (drm_mm_node_allocated(&vma->node))
3724 vma->bind_vma(vma, cache_level,
3725 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3728 list_for_each_entry(vma, &obj->vma_list, vma_link)
3729 vma->node.color = cache_level;
3730 obj->cache_level = cache_level;
3732 if (cpu_write_needs_clflush(obj)) {
3733 u32 old_read_domains, old_write_domain;
3735 /* If we're coming from LLC cached, then we haven't
3736 * actually been tracking whether the data is in the
3737 * CPU cache or not, since we only allow one bit set
3738 * in obj->write_domain and have been skipping the clflushes.
3739 * Just set it to the CPU cache for now.
3741 i915_gem_object_retire(obj);
3742 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3744 old_read_domains = obj->base.read_domains;
3745 old_write_domain = obj->base.write_domain;
3747 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3748 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3750 trace_i915_gem_object_change_domain(obj,
3751 old_read_domains,
3752 old_write_domain);
3755 i915_gem_verify_gtt(dev);
3756 return 0;
3759 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3760 struct drm_file *file)
3762 struct drm_i915_gem_caching *args = data;
3763 struct drm_i915_gem_object *obj;
3764 int ret;
3766 ret = i915_mutex_lock_interruptible(dev);
3767 if (ret)
3768 return ret;
3770 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3771 if (&obj->base == NULL) {
3772 ret = -ENOENT;
3773 goto unlock;
3776 switch (obj->cache_level) {
3777 case I915_CACHE_LLC:
3778 case I915_CACHE_L3_LLC:
3779 args->caching = I915_CACHING_CACHED;
3780 break;
3782 case I915_CACHE_WT:
3783 args->caching = I915_CACHING_DISPLAY;
3784 break;
3786 default:
3787 args->caching = I915_CACHING_NONE;
3788 break;
3791 drm_gem_object_unreference(&obj->base);
3792 unlock:
3793 mutex_unlock(&dev->struct_mutex);
3794 return ret;
3797 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3798 struct drm_file *file)
3800 struct drm_i915_gem_caching *args = data;
3801 struct drm_i915_gem_object *obj;
3802 enum i915_cache_level level;
3803 int ret;
3805 switch (args->caching) {
3806 case I915_CACHING_NONE:
3807 level = I915_CACHE_NONE;
3808 break;
3809 case I915_CACHING_CACHED:
3810 level = I915_CACHE_LLC;
3811 break;
3812 case I915_CACHING_DISPLAY:
3813 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3814 break;
3815 default:
3816 return -EINVAL;
3819 ret = i915_mutex_lock_interruptible(dev);
3820 if (ret)
3821 return ret;
3823 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3824 if (&obj->base == NULL) {
3825 ret = -ENOENT;
3826 goto unlock;
3829 ret = i915_gem_object_set_cache_level(obj, level);
3831 drm_gem_object_unreference(&obj->base);
3832 unlock:
3833 mutex_unlock(&dev->struct_mutex);
3834 return ret;
3837 static bool is_pin_display(struct drm_i915_gem_object *obj)
3839 struct i915_vma *vma;
3841 vma = i915_gem_obj_to_ggtt(obj);
3842 if (!vma)
3843 return false;
3845 /* There are 3 sources that pin objects:
3846 * 1. The display engine (scanouts, sprites, cursors);
3847 * 2. Reservations for execbuffer;
3848 * 3. The user.
3850 * We can ignore reservations as we hold the struct_mutex and
3851 * are only called outside of the reservation path. The user
3852 * can only increment pin_count once, and so if after
3853 * subtracting the potential reference by the user, any pin_count
3854 * remains, it must be due to another use by the display engine.
3856 return vma->pin_count - !!obj->user_pin_count;
3860 * Prepare buffer for display plane (scanout, cursors, etc).
3861 * Can be called from an uninterruptible phase (modesetting) and allows
3862 * any flushes to be pipelined (for pageflips).
3865 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3866 u32 alignment,
3867 struct intel_engine_cs *pipelined)
3869 u32 old_read_domains, old_write_domain;
3870 bool was_pin_display;
3871 int ret;
3873 if (pipelined != obj->ring) {
3874 ret = i915_gem_object_sync(obj, pipelined);
3875 if (ret)
3876 return ret;
3879 /* Mark the pin_display early so that we account for the
3880 * display coherency whilst setting up the cache domains.
3882 was_pin_display = obj->pin_display;
3883 obj->pin_display = true;
3885 /* The display engine is not coherent with the LLC cache on gen6. As
3886 * a result, we make sure that the pinning that is about to occur is
3887 * done with uncached PTEs. This is lowest common denominator for all
3888 * chipsets.
3890 * However for gen6+, we could do better by using the GFDT bit instead
3891 * of uncaching, which would allow us to flush all the LLC-cached data
3892 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3894 ret = i915_gem_object_set_cache_level(obj,
3895 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3896 if (ret)
3897 goto err_unpin_display;
3899 /* As the user may map the buffer once pinned in the display plane
3900 * (e.g. libkms for the bootup splash), we have to ensure that we
3901 * always use map_and_fenceable for all scanout buffers.
3903 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3904 if (ret)
3905 goto err_unpin_display;
3907 i915_gem_object_flush_cpu_write_domain(obj, true);
3909 old_write_domain = obj->base.write_domain;
3910 old_read_domains = obj->base.read_domains;
3912 /* It should now be out of any other write domains, and we can update
3913 * the domain values for our changes.
3915 obj->base.write_domain = 0;
3916 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3918 trace_i915_gem_object_change_domain(obj,
3919 old_read_domains,
3920 old_write_domain);
3922 return 0;
3924 err_unpin_display:
3925 WARN_ON(was_pin_display != is_pin_display(obj));
3926 obj->pin_display = was_pin_display;
3927 return ret;
3930 void
3931 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3933 i915_gem_object_ggtt_unpin(obj);
3934 obj->pin_display = is_pin_display(obj);
3938 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3940 int ret;
3942 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3943 return 0;
3945 ret = i915_gem_object_wait_rendering(obj, false);
3946 if (ret)
3947 return ret;
3949 /* Ensure that we invalidate the GPU's caches and TLBs. */
3950 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3951 return 0;
3955 * Moves a single object to the CPU read, and possibly write domain.
3957 * This function returns when the move is complete, including waiting on
3958 * flushes to occur.
3961 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3963 uint32_t old_write_domain, old_read_domains;
3964 int ret;
3966 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3967 return 0;
3969 ret = i915_gem_object_wait_rendering(obj, !write);
3970 if (ret)
3971 return ret;
3973 i915_gem_object_retire(obj);
3974 i915_gem_object_flush_gtt_write_domain(obj);
3976 old_write_domain = obj->base.write_domain;
3977 old_read_domains = obj->base.read_domains;
3979 /* Flush the CPU cache if it's still invalid. */
3980 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3981 i915_gem_clflush_object(obj, false);
3983 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3986 /* It should now be out of any other write domains, and we can update
3987 * the domain values for our changes.
3989 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3991 /* If we're writing through the CPU, then the GPU read domains will
3992 * need to be invalidated at next use.
3994 if (write) {
3995 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3996 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3999 if (write)
4000 intel_fb_obj_invalidate(obj, NULL);
4002 trace_i915_gem_object_change_domain(obj,
4003 old_read_domains,
4004 old_write_domain);
4006 return 0;
4009 /* Throttle our rendering by waiting until the ring has completed our requests
4010 * emitted over 20 msec ago.
4012 * Note that if we were to use the current jiffies each time around the loop,
4013 * we wouldn't escape the function with any frames outstanding if the time to
4014 * render a frame was over 20ms.
4016 * This should get us reasonable parallelism between CPU and GPU but also
4017 * relatively low latency when blocking on a particular request to finish.
4019 static int
4020 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4022 struct drm_i915_private *dev_priv = dev->dev_private;
4023 struct drm_i915_file_private *file_priv = file->driver_priv;
4024 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4025 struct drm_i915_gem_request *request;
4026 struct intel_engine_cs *ring = NULL;
4027 unsigned reset_counter;
4028 u32 seqno = 0;
4029 int ret;
4031 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4032 if (ret)
4033 return ret;
4035 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4036 if (ret)
4037 return ret;
4039 spin_lock(&file_priv->mm.lock);
4040 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4041 if (time_after_eq(request->emitted_jiffies, recent_enough))
4042 break;
4044 ring = request->ring;
4045 seqno = request->seqno;
4047 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4048 spin_unlock(&file_priv->mm.lock);
4050 if (seqno == 0)
4051 return 0;
4053 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4054 if (ret == 0)
4055 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4057 return ret;
4060 static bool
4061 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4063 struct drm_i915_gem_object *obj = vma->obj;
4065 if (alignment &&
4066 vma->node.start & (alignment - 1))
4067 return true;
4069 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4070 return true;
4072 if (flags & PIN_OFFSET_BIAS &&
4073 vma->node.start < (flags & PIN_OFFSET_MASK))
4074 return true;
4076 return false;
4080 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4081 struct i915_address_space *vm,
4082 uint32_t alignment,
4083 uint64_t flags)
4085 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4086 struct i915_vma *vma;
4087 int ret;
4089 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4090 return -ENODEV;
4092 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4093 return -EINVAL;
4095 vma = i915_gem_obj_to_vma(obj, vm);
4096 if (vma) {
4097 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4098 return -EBUSY;
4100 if (i915_vma_misplaced(vma, alignment, flags)) {
4101 WARN(vma->pin_count,
4102 "bo is already pinned with incorrect alignment:"
4103 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4104 " obj->map_and_fenceable=%d\n",
4105 i915_gem_obj_offset(obj, vm), alignment,
4106 !!(flags & PIN_MAPPABLE),
4107 obj->map_and_fenceable);
4108 ret = i915_vma_unbind(vma);
4109 if (ret)
4110 return ret;
4112 vma = NULL;
4116 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4117 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4118 if (IS_ERR(vma))
4119 return PTR_ERR(vma);
4122 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4123 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4125 vma->pin_count++;
4126 if (flags & PIN_MAPPABLE)
4127 obj->pin_mappable |= true;
4129 return 0;
4132 void
4133 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4135 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4137 BUG_ON(!vma);
4138 BUG_ON(vma->pin_count == 0);
4139 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4141 if (--vma->pin_count == 0)
4142 obj->pin_mappable = false;
4145 bool
4146 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4148 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4149 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4150 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4152 WARN_ON(!ggtt_vma ||
4153 dev_priv->fence_regs[obj->fence_reg].pin_count >
4154 ggtt_vma->pin_count);
4155 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4156 return true;
4157 } else
4158 return false;
4161 void
4162 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4164 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4165 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4166 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4167 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4172 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4173 struct drm_file *file)
4175 struct drm_i915_gem_pin *args = data;
4176 struct drm_i915_gem_object *obj;
4177 int ret;
4179 if (INTEL_INFO(dev)->gen >= 6)
4180 return -ENODEV;
4182 ret = i915_mutex_lock_interruptible(dev);
4183 if (ret)
4184 return ret;
4186 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4187 if (&obj->base == NULL) {
4188 ret = -ENOENT;
4189 goto unlock;
4192 if (obj->madv != I915_MADV_WILLNEED) {
4193 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4194 ret = -EFAULT;
4195 goto out;
4198 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4199 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4200 args->handle);
4201 ret = -EINVAL;
4202 goto out;
4205 if (obj->user_pin_count == ULONG_MAX) {
4206 ret = -EBUSY;
4207 goto out;
4210 if (obj->user_pin_count == 0) {
4211 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4212 if (ret)
4213 goto out;
4216 obj->user_pin_count++;
4217 obj->pin_filp = file;
4219 args->offset = i915_gem_obj_ggtt_offset(obj);
4220 out:
4221 drm_gem_object_unreference(&obj->base);
4222 unlock:
4223 mutex_unlock(&dev->struct_mutex);
4224 return ret;
4228 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4229 struct drm_file *file)
4231 struct drm_i915_gem_pin *args = data;
4232 struct drm_i915_gem_object *obj;
4233 int ret;
4235 ret = i915_mutex_lock_interruptible(dev);
4236 if (ret)
4237 return ret;
4239 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4240 if (&obj->base == NULL) {
4241 ret = -ENOENT;
4242 goto unlock;
4245 if (obj->pin_filp != file) {
4246 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4247 args->handle);
4248 ret = -EINVAL;
4249 goto out;
4251 obj->user_pin_count--;
4252 if (obj->user_pin_count == 0) {
4253 obj->pin_filp = NULL;
4254 i915_gem_object_ggtt_unpin(obj);
4257 out:
4258 drm_gem_object_unreference(&obj->base);
4259 unlock:
4260 mutex_unlock(&dev->struct_mutex);
4261 return ret;
4265 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4266 struct drm_file *file)
4268 struct drm_i915_gem_busy *args = data;
4269 struct drm_i915_gem_object *obj;
4270 int ret;
4272 ret = i915_mutex_lock_interruptible(dev);
4273 if (ret)
4274 return ret;
4276 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4277 if (&obj->base == NULL) {
4278 ret = -ENOENT;
4279 goto unlock;
4282 /* Count all active objects as busy, even if they are currently not used
4283 * by the gpu. Users of this interface expect objects to eventually
4284 * become non-busy without any further actions, therefore emit any
4285 * necessary flushes here.
4287 ret = i915_gem_object_flush_active(obj);
4289 args->busy = obj->active;
4290 if (obj->ring) {
4291 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4292 args->busy |= intel_ring_flag(obj->ring) << 16;
4295 drm_gem_object_unreference(&obj->base);
4296 unlock:
4297 mutex_unlock(&dev->struct_mutex);
4298 return ret;
4302 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4303 struct drm_file *file_priv)
4305 return i915_gem_ring_throttle(dev, file_priv);
4309 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4310 struct drm_file *file_priv)
4312 struct drm_i915_gem_madvise *args = data;
4313 struct drm_i915_gem_object *obj;
4314 int ret;
4316 switch (args->madv) {
4317 case I915_MADV_DONTNEED:
4318 case I915_MADV_WILLNEED:
4319 break;
4320 default:
4321 return -EINVAL;
4324 ret = i915_mutex_lock_interruptible(dev);
4325 if (ret)
4326 return ret;
4328 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4329 if (&obj->base == NULL) {
4330 ret = -ENOENT;
4331 goto unlock;
4334 if (i915_gem_obj_is_pinned(obj)) {
4335 ret = -EINVAL;
4336 goto out;
4339 if (obj->madv != __I915_MADV_PURGED)
4340 obj->madv = args->madv;
4342 /* if the object is no longer attached, discard its backing storage */
4343 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4344 i915_gem_object_truncate(obj);
4346 args->retained = obj->madv != __I915_MADV_PURGED;
4348 out:
4349 drm_gem_object_unreference(&obj->base);
4350 unlock:
4351 mutex_unlock(&dev->struct_mutex);
4352 return ret;
4355 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4356 const struct drm_i915_gem_object_ops *ops)
4358 INIT_LIST_HEAD(&obj->global_list);
4359 INIT_LIST_HEAD(&obj->ring_list);
4360 INIT_LIST_HEAD(&obj->obj_exec_link);
4361 INIT_LIST_HEAD(&obj->vma_list);
4363 obj->ops = ops;
4365 obj->fence_reg = I915_FENCE_REG_NONE;
4366 obj->madv = I915_MADV_WILLNEED;
4368 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4371 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4372 .get_pages = i915_gem_object_get_pages_gtt,
4373 .put_pages = i915_gem_object_put_pages_gtt,
4376 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4377 size_t size)
4379 struct drm_i915_gem_object *obj;
4380 struct address_space *mapping;
4381 gfp_t mask;
4383 obj = i915_gem_object_alloc(dev);
4384 if (obj == NULL)
4385 return NULL;
4387 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4388 i915_gem_object_free(obj);
4389 return NULL;
4392 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4393 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4394 /* 965gm cannot relocate objects above 4GiB. */
4395 mask &= ~__GFP_HIGHMEM;
4396 mask |= __GFP_DMA32;
4399 mapping = file_inode(obj->base.filp)->i_mapping;
4400 mapping_set_gfp_mask(mapping, mask);
4402 i915_gem_object_init(obj, &i915_gem_object_ops);
4404 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4405 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4407 if (HAS_LLC(dev)) {
4408 /* On some devices, we can have the GPU use the LLC (the CPU
4409 * cache) for about a 10% performance improvement
4410 * compared to uncached. Graphics requests other than
4411 * display scanout are coherent with the CPU in
4412 * accessing this cache. This means in this mode we
4413 * don't need to clflush on the CPU side, and on the
4414 * GPU side we only need to flush internal caches to
4415 * get data visible to the CPU.
4417 * However, we maintain the display planes as UC, and so
4418 * need to rebind when first used as such.
4420 obj->cache_level = I915_CACHE_LLC;
4421 } else
4422 obj->cache_level = I915_CACHE_NONE;
4424 trace_i915_gem_object_create(obj);
4426 return obj;
4429 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4431 /* If we are the last user of the backing storage (be it shmemfs
4432 * pages or stolen etc), we know that the pages are going to be
4433 * immediately released. In this case, we can then skip copying
4434 * back the contents from the GPU.
4437 if (obj->madv != I915_MADV_WILLNEED)
4438 return false;
4440 if (obj->base.filp == NULL)
4441 return true;
4443 /* At first glance, this looks racy, but then again so would be
4444 * userspace racing mmap against close. However, the first external
4445 * reference to the filp can only be obtained through the
4446 * i915_gem_mmap_ioctl() which safeguards us against the user
4447 * acquiring such a reference whilst we are in the middle of
4448 * freeing the object.
4450 return atomic_long_read(&obj->base.filp->f_count) == 1;
4453 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4455 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4456 struct drm_device *dev = obj->base.dev;
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458 struct i915_vma *vma, *next;
4460 intel_runtime_pm_get(dev_priv);
4462 trace_i915_gem_object_destroy(obj);
4464 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4465 int ret;
4467 vma->pin_count = 0;
4468 ret = i915_vma_unbind(vma);
4469 if (WARN_ON(ret == -ERESTARTSYS)) {
4470 bool was_interruptible;
4472 was_interruptible = dev_priv->mm.interruptible;
4473 dev_priv->mm.interruptible = false;
4475 WARN_ON(i915_vma_unbind(vma));
4477 dev_priv->mm.interruptible = was_interruptible;
4481 i915_gem_object_detach_phys(obj);
4483 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4484 * before progressing. */
4485 if (obj->stolen)
4486 i915_gem_object_unpin_pages(obj);
4488 WARN_ON(obj->frontbuffer_bits);
4490 if (WARN_ON(obj->pages_pin_count))
4491 obj->pages_pin_count = 0;
4492 if (discard_backing_storage(obj))
4493 obj->madv = I915_MADV_DONTNEED;
4494 i915_gem_object_put_pages(obj);
4495 i915_gem_object_free_mmap_offset(obj);
4497 BUG_ON(obj->pages);
4499 if (obj->base.import_attach)
4500 drm_prime_gem_destroy(&obj->base, NULL);
4502 if (obj->ops->release)
4503 obj->ops->release(obj);
4505 drm_gem_object_release(&obj->base);
4506 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4508 kfree(obj->bit_17);
4509 i915_gem_object_free(obj);
4511 intel_runtime_pm_put(dev_priv);
4514 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4515 struct i915_address_space *vm)
4517 struct i915_vma *vma;
4518 list_for_each_entry(vma, &obj->vma_list, vma_link)
4519 if (vma->vm == vm)
4520 return vma;
4522 return NULL;
4525 void i915_gem_vma_destroy(struct i915_vma *vma)
4527 struct i915_address_space *vm = NULL;
4528 WARN_ON(vma->node.allocated);
4530 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4531 if (!list_empty(&vma->exec_list))
4532 return;
4534 vm = vma->vm;
4536 if (!i915_is_ggtt(vm))
4537 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4539 list_del(&vma->vma_link);
4541 kfree(vma);
4544 static void
4545 i915_gem_stop_ringbuffers(struct drm_device *dev)
4547 struct drm_i915_private *dev_priv = dev->dev_private;
4548 struct intel_engine_cs *ring;
4549 int i;
4551 for_each_ring(ring, dev_priv, i)
4552 dev_priv->gt.stop_ring(ring);
4556 i915_gem_suspend(struct drm_device *dev)
4558 struct drm_i915_private *dev_priv = dev->dev_private;
4559 int ret = 0;
4561 mutex_lock(&dev->struct_mutex);
4562 if (dev_priv->ums.mm_suspended)
4563 goto err;
4565 ret = i915_gpu_idle(dev);
4566 if (ret)
4567 goto err;
4569 i915_gem_retire_requests(dev);
4571 /* Under UMS, be paranoid and evict. */
4572 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4573 i915_gem_evict_everything(dev);
4575 i915_kernel_lost_context(dev);
4576 i915_gem_stop_ringbuffers(dev);
4578 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4579 * We need to replace this with a semaphore, or something.
4580 * And not confound ums.mm_suspended!
4582 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4583 DRIVER_MODESET);
4584 mutex_unlock(&dev->struct_mutex);
4586 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4587 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4588 flush_delayed_work(&dev_priv->mm.idle_work);
4590 return 0;
4592 err:
4593 mutex_unlock(&dev->struct_mutex);
4594 return ret;
4597 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4599 struct drm_device *dev = ring->dev;
4600 struct drm_i915_private *dev_priv = dev->dev_private;
4601 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4602 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4603 int i, ret;
4605 if (!HAS_L3_DPF(dev) || !remap_info)
4606 return 0;
4608 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4609 if (ret)
4610 return ret;
4613 * Note: We do not worry about the concurrent register cacheline hang
4614 * here because no other code should access these registers other than
4615 * at initialization time.
4617 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4618 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4619 intel_ring_emit(ring, reg_base + i);
4620 intel_ring_emit(ring, remap_info[i/4]);
4623 intel_ring_advance(ring);
4625 return ret;
4628 void i915_gem_init_swizzling(struct drm_device *dev)
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4632 if (INTEL_INFO(dev)->gen < 5 ||
4633 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4634 return;
4636 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4637 DISP_TILE_SURFACE_SWIZZLING);
4639 if (IS_GEN5(dev))
4640 return;
4642 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4643 if (IS_GEN6(dev))
4644 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4645 else if (IS_GEN7(dev))
4646 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4647 else if (IS_GEN8(dev))
4648 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4649 else
4650 BUG();
4653 static bool
4654 intel_enable_blt(struct drm_device *dev)
4656 if (!HAS_BLT(dev))
4657 return false;
4659 /* The blitter was dysfunctional on early prototypes */
4660 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4661 DRM_INFO("BLT not supported on this pre-production hardware;"
4662 " graphics performance will be degraded.\n");
4663 return false;
4666 return true;
4669 static void init_unused_ring(struct drm_device *dev, u32 base)
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4673 I915_WRITE(RING_CTL(base), 0);
4674 I915_WRITE(RING_HEAD(base), 0);
4675 I915_WRITE(RING_TAIL(base), 0);
4676 I915_WRITE(RING_START(base), 0);
4679 static void init_unused_rings(struct drm_device *dev)
4681 if (IS_I830(dev)) {
4682 init_unused_ring(dev, PRB1_BASE);
4683 init_unused_ring(dev, SRB0_BASE);
4684 init_unused_ring(dev, SRB1_BASE);
4685 init_unused_ring(dev, SRB2_BASE);
4686 init_unused_ring(dev, SRB3_BASE);
4687 } else if (IS_GEN2(dev)) {
4688 init_unused_ring(dev, SRB0_BASE);
4689 init_unused_ring(dev, SRB1_BASE);
4690 } else if (IS_GEN3(dev)) {
4691 init_unused_ring(dev, PRB1_BASE);
4692 init_unused_ring(dev, PRB2_BASE);
4696 int i915_gem_init_rings(struct drm_device *dev)
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699 int ret;
4702 * At least 830 can leave some of the unused rings
4703 * "active" (ie. head != tail) after resume which
4704 * will prevent c3 entry. Makes sure all unused rings
4705 * are totally idle.
4707 init_unused_rings(dev);
4709 ret = intel_init_render_ring_buffer(dev);
4710 if (ret)
4711 return ret;
4713 if (HAS_BSD(dev)) {
4714 ret = intel_init_bsd_ring_buffer(dev);
4715 if (ret)
4716 goto cleanup_render_ring;
4719 if (intel_enable_blt(dev)) {
4720 ret = intel_init_blt_ring_buffer(dev);
4721 if (ret)
4722 goto cleanup_bsd_ring;
4725 if (HAS_VEBOX(dev)) {
4726 ret = intel_init_vebox_ring_buffer(dev);
4727 if (ret)
4728 goto cleanup_blt_ring;
4731 if (HAS_BSD2(dev)) {
4732 ret = intel_init_bsd2_ring_buffer(dev);
4733 if (ret)
4734 goto cleanup_vebox_ring;
4737 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4738 if (ret)
4739 goto cleanup_bsd2_ring;
4741 return 0;
4743 cleanup_bsd2_ring:
4744 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4745 cleanup_vebox_ring:
4746 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4747 cleanup_blt_ring:
4748 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4749 cleanup_bsd_ring:
4750 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4751 cleanup_render_ring:
4752 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4754 return ret;
4758 i915_gem_init_hw(struct drm_device *dev)
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761 int ret, i;
4763 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4764 return -EIO;
4766 if (dev_priv->ellc_size)
4767 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4769 if (IS_HASWELL(dev))
4770 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4771 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4773 if (HAS_PCH_NOP(dev)) {
4774 if (IS_IVYBRIDGE(dev)) {
4775 u32 temp = I915_READ(GEN7_MSG_CTL);
4776 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4777 I915_WRITE(GEN7_MSG_CTL, temp);
4778 } else if (INTEL_INFO(dev)->gen >= 7) {
4779 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4780 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4781 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4785 i915_gem_init_swizzling(dev);
4787 ret = dev_priv->gt.init_rings(dev);
4788 if (ret)
4789 return ret;
4791 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4792 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4795 * XXX: Contexts should only be initialized once. Doing a switch to the
4796 * default context switch however is something we'd like to do after
4797 * reset or thaw (the latter may not actually be necessary for HW, but
4798 * goes with our code better). Context switching requires rings (for
4799 * the do_switch), but before enabling PPGTT. So don't move this.
4801 ret = i915_gem_context_enable(dev_priv);
4802 if (ret && ret != -EIO) {
4803 DRM_ERROR("Context enable failed %d\n", ret);
4804 i915_gem_cleanup_ringbuffer(dev);
4806 return ret;
4809 ret = i915_ppgtt_init_hw(dev);
4810 if (ret && ret != -EIO) {
4811 DRM_ERROR("PPGTT enable failed %d\n", ret);
4812 i915_gem_cleanup_ringbuffer(dev);
4815 return ret;
4818 int i915_gem_init(struct drm_device *dev)
4820 struct drm_i915_private *dev_priv = dev->dev_private;
4821 int ret;
4823 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4824 i915.enable_execlists);
4826 mutex_lock(&dev->struct_mutex);
4828 if (IS_VALLEYVIEW(dev)) {
4829 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4830 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4831 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4832 VLV_GTLC_ALLOWWAKEACK), 10))
4833 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4836 if (!i915.enable_execlists) {
4837 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4838 dev_priv->gt.init_rings = i915_gem_init_rings;
4839 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4840 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4841 } else {
4842 dev_priv->gt.do_execbuf = intel_execlists_submission;
4843 dev_priv->gt.init_rings = intel_logical_rings_init;
4844 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4845 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4848 ret = i915_gem_init_userptr(dev);
4849 if (ret) {
4850 mutex_unlock(&dev->struct_mutex);
4851 return ret;
4854 i915_gem_init_global_gtt(dev);
4856 ret = i915_gem_context_init(dev);
4857 if (ret) {
4858 mutex_unlock(&dev->struct_mutex);
4859 return ret;
4862 ret = i915_gem_init_hw(dev);
4863 if (ret == -EIO) {
4864 /* Allow ring initialisation to fail by marking the GPU as
4865 * wedged. But we only want to do this where the GPU is angry,
4866 * for all other failure, such as an allocation failure, bail.
4868 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4869 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4870 ret = 0;
4872 mutex_unlock(&dev->struct_mutex);
4874 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4875 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4876 dev_priv->dri1.allow_batchbuffer = 1;
4877 return ret;
4880 void
4881 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4883 struct drm_i915_private *dev_priv = dev->dev_private;
4884 struct intel_engine_cs *ring;
4885 int i;
4887 for_each_ring(ring, dev_priv, i)
4888 dev_priv->gt.cleanup_ring(ring);
4892 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4893 struct drm_file *file_priv)
4895 struct drm_i915_private *dev_priv = dev->dev_private;
4896 int ret;
4898 if (drm_core_check_feature(dev, DRIVER_MODESET))
4899 return 0;
4901 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4902 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4903 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4906 mutex_lock(&dev->struct_mutex);
4907 dev_priv->ums.mm_suspended = 0;
4909 ret = i915_gem_init_hw(dev);
4910 if (ret != 0) {
4911 mutex_unlock(&dev->struct_mutex);
4912 return ret;
4915 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4917 ret = drm_irq_install(dev, dev->pdev->irq);
4918 if (ret)
4919 goto cleanup_ringbuffer;
4920 mutex_unlock(&dev->struct_mutex);
4922 return 0;
4924 cleanup_ringbuffer:
4925 i915_gem_cleanup_ringbuffer(dev);
4926 dev_priv->ums.mm_suspended = 1;
4927 mutex_unlock(&dev->struct_mutex);
4929 return ret;
4933 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4934 struct drm_file *file_priv)
4936 if (drm_core_check_feature(dev, DRIVER_MODESET))
4937 return 0;
4939 mutex_lock(&dev->struct_mutex);
4940 drm_irq_uninstall(dev);
4941 mutex_unlock(&dev->struct_mutex);
4943 return i915_gem_suspend(dev);
4946 void
4947 i915_gem_lastclose(struct drm_device *dev)
4949 int ret;
4951 if (drm_core_check_feature(dev, DRIVER_MODESET))
4952 return;
4954 ret = i915_gem_suspend(dev);
4955 if (ret)
4956 DRM_ERROR("failed to idle hardware: %d\n", ret);
4959 static void
4960 init_ring_lists(struct intel_engine_cs *ring)
4962 INIT_LIST_HEAD(&ring->active_list);
4963 INIT_LIST_HEAD(&ring->request_list);
4966 void i915_init_vm(struct drm_i915_private *dev_priv,
4967 struct i915_address_space *vm)
4969 if (!i915_is_ggtt(vm))
4970 drm_mm_init(&vm->mm, vm->start, vm->total);
4971 vm->dev = dev_priv->dev;
4972 INIT_LIST_HEAD(&vm->active_list);
4973 INIT_LIST_HEAD(&vm->inactive_list);
4974 INIT_LIST_HEAD(&vm->global_link);
4975 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4978 void
4979 i915_gem_load(struct drm_device *dev)
4981 struct drm_i915_private *dev_priv = dev->dev_private;
4982 int i;
4984 dev_priv->slab =
4985 kmem_cache_create("i915_gem_object",
4986 sizeof(struct drm_i915_gem_object), 0,
4987 SLAB_HWCACHE_ALIGN,
4988 NULL);
4990 INIT_LIST_HEAD(&dev_priv->vm_list);
4991 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4993 INIT_LIST_HEAD(&dev_priv->context_list);
4994 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4995 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4996 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4997 for (i = 0; i < I915_NUM_RINGS; i++)
4998 init_ring_lists(&dev_priv->ring[i]);
4999 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5000 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5001 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5002 i915_gem_retire_work_handler);
5003 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5004 i915_gem_idle_work_handler);
5005 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5007 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5008 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5009 I915_WRITE(MI_ARB_STATE,
5010 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5013 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5015 /* Old X drivers will take 0-2 for front, back, depth buffers */
5016 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5017 dev_priv->fence_reg_start = 3;
5019 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5020 dev_priv->num_fence_regs = 32;
5021 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5022 dev_priv->num_fence_regs = 16;
5023 else
5024 dev_priv->num_fence_regs = 8;
5026 /* Initialize fence registers to zero */
5027 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5028 i915_gem_restore_fences(dev);
5030 i915_gem_detect_bit_6_swizzle(dev);
5031 init_waitqueue_head(&dev_priv->pending_flip_queue);
5033 dev_priv->mm.interruptible = true;
5035 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5036 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5037 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5038 register_shrinker(&dev_priv->mm.shrinker);
5040 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5041 register_oom_notifier(&dev_priv->mm.oom_notifier);
5043 mutex_init(&dev_priv->fb_tracking.lock);
5046 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5048 struct drm_i915_file_private *file_priv = file->driver_priv;
5050 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5052 /* Clean up our request list when the client is going away, so that
5053 * later retire_requests won't dereference our soon-to-be-gone
5054 * file_priv.
5056 spin_lock(&file_priv->mm.lock);
5057 while (!list_empty(&file_priv->mm.request_list)) {
5058 struct drm_i915_gem_request *request;
5060 request = list_first_entry(&file_priv->mm.request_list,
5061 struct drm_i915_gem_request,
5062 client_list);
5063 list_del(&request->client_list);
5064 request->file_priv = NULL;
5066 spin_unlock(&file_priv->mm.lock);
5069 static void
5070 i915_gem_file_idle_work_handler(struct work_struct *work)
5072 struct drm_i915_file_private *file_priv =
5073 container_of(work, typeof(*file_priv), mm.idle_work.work);
5075 atomic_set(&file_priv->rps_wait_boost, false);
5078 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5080 struct drm_i915_file_private *file_priv;
5081 int ret;
5083 DRM_DEBUG_DRIVER("\n");
5085 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5086 if (!file_priv)
5087 return -ENOMEM;
5089 file->driver_priv = file_priv;
5090 file_priv->dev_priv = dev->dev_private;
5091 file_priv->file = file;
5093 spin_lock_init(&file_priv->mm.lock);
5094 INIT_LIST_HEAD(&file_priv->mm.request_list);
5095 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5096 i915_gem_file_idle_work_handler);
5098 ret = i915_gem_context_open(dev, file);
5099 if (ret)
5100 kfree(file_priv);
5102 return ret;
5105 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5106 struct drm_i915_gem_object *new,
5107 unsigned frontbuffer_bits)
5109 if (old) {
5110 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5111 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5112 old->frontbuffer_bits &= ~frontbuffer_bits;
5115 if (new) {
5116 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5117 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5118 new->frontbuffer_bits |= frontbuffer_bits;
5122 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5124 if (!mutex_is_locked(mutex))
5125 return false;
5127 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5128 return mutex->owner == task;
5129 #else
5130 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5131 return false;
5132 #endif
5135 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5137 if (!mutex_trylock(&dev->struct_mutex)) {
5138 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5139 return false;
5141 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5142 return false;
5144 *unlock = false;
5145 } else
5146 *unlock = true;
5148 return true;
5151 static int num_vma_bound(struct drm_i915_gem_object *obj)
5153 struct i915_vma *vma;
5154 int count = 0;
5156 list_for_each_entry(vma, &obj->vma_list, vma_link)
5157 if (drm_mm_node_allocated(&vma->node))
5158 count++;
5160 return count;
5163 static unsigned long
5164 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5166 struct drm_i915_private *dev_priv =
5167 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5168 struct drm_device *dev = dev_priv->dev;
5169 struct drm_i915_gem_object *obj;
5170 unsigned long count;
5171 bool unlock;
5173 if (!i915_gem_shrinker_lock(dev, &unlock))
5174 return 0;
5176 count = 0;
5177 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5178 if (obj->pages_pin_count == 0)
5179 count += obj->base.size >> PAGE_SHIFT;
5181 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5182 if (!i915_gem_obj_is_pinned(obj) &&
5183 obj->pages_pin_count == num_vma_bound(obj))
5184 count += obj->base.size >> PAGE_SHIFT;
5187 if (unlock)
5188 mutex_unlock(&dev->struct_mutex);
5190 return count;
5193 /* All the new VM stuff */
5194 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5195 struct i915_address_space *vm)
5197 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5198 struct i915_vma *vma;
5200 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5202 list_for_each_entry(vma, &o->vma_list, vma_link) {
5203 if (vma->vm == vm)
5204 return vma->node.start;
5207 WARN(1, "%s vma for this object not found.\n",
5208 i915_is_ggtt(vm) ? "global" : "ppgtt");
5209 return -1;
5212 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5213 struct i915_address_space *vm)
5215 struct i915_vma *vma;
5217 list_for_each_entry(vma, &o->vma_list, vma_link)
5218 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5219 return true;
5221 return false;
5224 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5226 struct i915_vma *vma;
5228 list_for_each_entry(vma, &o->vma_list, vma_link)
5229 if (drm_mm_node_allocated(&vma->node))
5230 return true;
5232 return false;
5235 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5236 struct i915_address_space *vm)
5238 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5239 struct i915_vma *vma;
5241 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5243 BUG_ON(list_empty(&o->vma_list));
5245 list_for_each_entry(vma, &o->vma_list, vma_link)
5246 if (vma->vm == vm)
5247 return vma->node.size;
5249 return 0;
5252 static unsigned long
5253 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5255 struct drm_i915_private *dev_priv =
5256 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5257 struct drm_device *dev = dev_priv->dev;
5258 unsigned long freed;
5259 bool unlock;
5261 if (!i915_gem_shrinker_lock(dev, &unlock))
5262 return SHRINK_STOP;
5264 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5265 if (freed < sc->nr_to_scan)
5266 freed += __i915_gem_shrink(dev_priv,
5267 sc->nr_to_scan - freed,
5268 false);
5269 if (unlock)
5270 mutex_unlock(&dev->struct_mutex);
5272 return freed;
5275 static int
5276 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5278 struct drm_i915_private *dev_priv =
5279 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5280 struct drm_device *dev = dev_priv->dev;
5281 struct drm_i915_gem_object *obj;
5282 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5283 unsigned long pinned, bound, unbound, freed;
5284 bool was_interruptible;
5285 bool unlock;
5287 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5288 schedule_timeout_killable(1);
5289 if (fatal_signal_pending(current))
5290 return NOTIFY_DONE;
5292 if (timeout == 0) {
5293 pr_err("Unable to purge GPU memory due lock contention.\n");
5294 return NOTIFY_DONE;
5297 was_interruptible = dev_priv->mm.interruptible;
5298 dev_priv->mm.interruptible = false;
5300 freed = i915_gem_shrink_all(dev_priv);
5302 dev_priv->mm.interruptible = was_interruptible;
5304 /* Because we may be allocating inside our own driver, we cannot
5305 * assert that there are no objects with pinned pages that are not
5306 * being pointed to by hardware.
5308 unbound = bound = pinned = 0;
5309 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5310 if (!obj->base.filp) /* not backed by a freeable object */
5311 continue;
5313 if (obj->pages_pin_count)
5314 pinned += obj->base.size;
5315 else
5316 unbound += obj->base.size;
5318 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5319 if (!obj->base.filp)
5320 continue;
5322 if (obj->pages_pin_count)
5323 pinned += obj->base.size;
5324 else
5325 bound += obj->base.size;
5328 if (unlock)
5329 mutex_unlock(&dev->struct_mutex);
5331 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5332 freed, pinned);
5333 if (unbound || bound)
5334 pr_err("%lu and %lu bytes still available in the "
5335 "bound and unbound GPU page lists.\n",
5336 bound, unbound);
5338 *(unsigned long *)ptr += freed;
5339 return NOTIFY_DONE;
5342 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5344 struct i915_vma *vma;
5346 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5347 if (vma->vm != i915_obj_to_ggtt(obj))
5348 return NULL;
5350 return vma;