drm: powerpc can use a simpler drm_io_prot()
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_hdmi.c
blobc5861736b4b0f97fbea8f73554e525303ee8f8fb
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
40 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
42 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
45 static void
46 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
48 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
49 struct drm_i915_private *dev_priv = dev->dev_private;
50 uint32_t enabled_bits;
52 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
54 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
55 "HDMI port enabled, expecting disabled\n");
58 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
60 struct intel_digital_port *intel_dig_port =
61 container_of(encoder, struct intel_digital_port, base.base);
62 return &intel_dig_port->hdmi;
65 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
67 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
70 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
72 switch (type) {
73 case HDMI_INFOFRAME_TYPE_AVI:
74 return VIDEO_DIP_SELECT_AVI;
75 case HDMI_INFOFRAME_TYPE_SPD:
76 return VIDEO_DIP_SELECT_SPD;
77 case HDMI_INFOFRAME_TYPE_VENDOR:
78 return VIDEO_DIP_SELECT_VENDOR;
79 default:
80 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
81 return 0;
85 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
87 switch (type) {
88 case HDMI_INFOFRAME_TYPE_AVI:
89 return VIDEO_DIP_ENABLE_AVI;
90 case HDMI_INFOFRAME_TYPE_SPD:
91 return VIDEO_DIP_ENABLE_SPD;
92 case HDMI_INFOFRAME_TYPE_VENDOR:
93 return VIDEO_DIP_ENABLE_VENDOR;
94 default:
95 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
96 return 0;
100 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
102 switch (type) {
103 case HDMI_INFOFRAME_TYPE_AVI:
104 return VIDEO_DIP_ENABLE_AVI_HSW;
105 case HDMI_INFOFRAME_TYPE_SPD:
106 return VIDEO_DIP_ENABLE_SPD_HSW;
107 case HDMI_INFOFRAME_TYPE_VENDOR:
108 return VIDEO_DIP_ENABLE_VS_HSW;
109 default:
110 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
111 return 0;
115 static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
116 enum transcoder cpu_transcoder,
117 struct drm_i915_private *dev_priv)
119 switch (type) {
120 case HDMI_INFOFRAME_TYPE_AVI:
121 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
122 case HDMI_INFOFRAME_TYPE_SPD:
123 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
124 case HDMI_INFOFRAME_TYPE_VENDOR:
125 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
126 default:
127 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
128 return 0;
132 static void g4x_write_infoframe(struct drm_encoder *encoder,
133 enum hdmi_infoframe_type type,
134 const void *frame, ssize_t len)
136 const uint32_t *data = frame;
137 struct drm_device *dev = encoder->dev;
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 u32 val = I915_READ(VIDEO_DIP_CTL);
140 int i;
142 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
144 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
145 val |= g4x_infoframe_index(type);
147 val &= ~g4x_infoframe_enable(type);
149 I915_WRITE(VIDEO_DIP_CTL, val);
151 mmiowb();
152 for (i = 0; i < len; i += 4) {
153 I915_WRITE(VIDEO_DIP_DATA, *data);
154 data++;
156 /* Write every possible data byte to force correct ECC calculation. */
157 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
158 I915_WRITE(VIDEO_DIP_DATA, 0);
159 mmiowb();
161 val |= g4x_infoframe_enable(type);
162 val &= ~VIDEO_DIP_FREQ_MASK;
163 val |= VIDEO_DIP_FREQ_VSYNC;
165 I915_WRITE(VIDEO_DIP_CTL, val);
166 POSTING_READ(VIDEO_DIP_CTL);
169 static void ibx_write_infoframe(struct drm_encoder *encoder,
170 enum hdmi_infoframe_type type,
171 const void *frame, ssize_t len)
173 const uint32_t *data = frame;
174 struct drm_device *dev = encoder->dev;
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
177 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
178 u32 val = I915_READ(reg);
180 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
182 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
183 val |= g4x_infoframe_index(type);
185 val &= ~g4x_infoframe_enable(type);
187 I915_WRITE(reg, val);
189 mmiowb();
190 for (i = 0; i < len; i += 4) {
191 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
192 data++;
194 /* Write every possible data byte to force correct ECC calculation. */
195 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
196 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
197 mmiowb();
199 val |= g4x_infoframe_enable(type);
200 val &= ~VIDEO_DIP_FREQ_MASK;
201 val |= VIDEO_DIP_FREQ_VSYNC;
203 I915_WRITE(reg, val);
204 POSTING_READ(reg);
207 static void cpt_write_infoframe(struct drm_encoder *encoder,
208 enum hdmi_infoframe_type type,
209 const void *frame, ssize_t len)
211 const uint32_t *data = frame;
212 struct drm_device *dev = encoder->dev;
213 struct drm_i915_private *dev_priv = dev->dev_private;
214 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
215 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
216 u32 val = I915_READ(reg);
218 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
220 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
221 val |= g4x_infoframe_index(type);
223 /* The DIP control register spec says that we need to update the AVI
224 * infoframe without clearing its enable bit */
225 if (type != HDMI_INFOFRAME_TYPE_AVI)
226 val &= ~g4x_infoframe_enable(type);
228 I915_WRITE(reg, val);
230 mmiowb();
231 for (i = 0; i < len; i += 4) {
232 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
233 data++;
235 /* Write every possible data byte to force correct ECC calculation. */
236 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
237 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
238 mmiowb();
240 val |= g4x_infoframe_enable(type);
241 val &= ~VIDEO_DIP_FREQ_MASK;
242 val |= VIDEO_DIP_FREQ_VSYNC;
244 I915_WRITE(reg, val);
245 POSTING_READ(reg);
248 static void vlv_write_infoframe(struct drm_encoder *encoder,
249 enum hdmi_infoframe_type type,
250 const void *frame, ssize_t len)
252 const uint32_t *data = frame;
253 struct drm_device *dev = encoder->dev;
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
256 int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
257 u32 val = I915_READ(reg);
259 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
261 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
262 val |= g4x_infoframe_index(type);
264 val &= ~g4x_infoframe_enable(type);
266 I915_WRITE(reg, val);
268 mmiowb();
269 for (i = 0; i < len; i += 4) {
270 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
271 data++;
273 /* Write every possible data byte to force correct ECC calculation. */
274 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
275 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
276 mmiowb();
278 val |= g4x_infoframe_enable(type);
279 val &= ~VIDEO_DIP_FREQ_MASK;
280 val |= VIDEO_DIP_FREQ_VSYNC;
282 I915_WRITE(reg, val);
283 POSTING_READ(reg);
286 static void hsw_write_infoframe(struct drm_encoder *encoder,
287 enum hdmi_infoframe_type type,
288 const void *frame, ssize_t len)
290 const uint32_t *data = frame;
291 struct drm_device *dev = encoder->dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
294 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
295 u32 data_reg;
296 int i;
297 u32 val = I915_READ(ctl_reg);
299 data_reg = hsw_infoframe_data_reg(type,
300 intel_crtc->config.cpu_transcoder,
301 dev_priv);
302 if (data_reg == 0)
303 return;
305 val &= ~hsw_infoframe_enable(type);
306 I915_WRITE(ctl_reg, val);
308 mmiowb();
309 for (i = 0; i < len; i += 4) {
310 I915_WRITE(data_reg + i, *data);
311 data++;
313 /* Write every possible data byte to force correct ECC calculation. */
314 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
315 I915_WRITE(data_reg + i, 0);
316 mmiowb();
318 val |= hsw_infoframe_enable(type);
319 I915_WRITE(ctl_reg, val);
320 POSTING_READ(ctl_reg);
324 * The data we write to the DIP data buffer registers is 1 byte bigger than the
325 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
326 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
327 * used for both technologies.
329 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
330 * DW1: DB3 | DB2 | DB1 | DB0
331 * DW2: DB7 | DB6 | DB5 | DB4
332 * DW3: ...
334 * (HB is Header Byte, DB is Data Byte)
336 * The hdmi pack() functions don't know about that hardware specific hole so we
337 * trick them by giving an offset into the buffer and moving back the header
338 * bytes by one.
340 static void intel_write_infoframe(struct drm_encoder *encoder,
341 union hdmi_infoframe *frame)
343 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
344 uint8_t buffer[VIDEO_DIP_DATA_SIZE];
345 ssize_t len;
347 /* see comment above for the reason for this offset */
348 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
349 if (len < 0)
350 return;
352 /* Insert the 'hole' (see big comment above) at position 3 */
353 buffer[0] = buffer[1];
354 buffer[1] = buffer[2];
355 buffer[2] = buffer[3];
356 buffer[3] = 0;
357 len++;
359 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
362 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
363 struct drm_display_mode *adjusted_mode)
365 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
366 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
367 union hdmi_infoframe frame;
368 int ret;
370 /* Set user selected PAR to incoming mode's member */
371 adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
373 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
374 adjusted_mode);
375 if (ret < 0) {
376 DRM_ERROR("couldn't fill AVI infoframe\n");
377 return;
380 if (intel_hdmi->rgb_quant_range_selectable) {
381 if (intel_crtc->config.limited_color_range)
382 frame.avi.quantization_range =
383 HDMI_QUANTIZATION_RANGE_LIMITED;
384 else
385 frame.avi.quantization_range =
386 HDMI_QUANTIZATION_RANGE_FULL;
389 intel_write_infoframe(encoder, &frame);
392 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
394 union hdmi_infoframe frame;
395 int ret;
397 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
398 if (ret < 0) {
399 DRM_ERROR("couldn't fill SPD infoframe\n");
400 return;
403 frame.spd.sdi = HDMI_SPD_SDI_PC;
405 intel_write_infoframe(encoder, &frame);
408 static void
409 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
410 struct drm_display_mode *adjusted_mode)
412 union hdmi_infoframe frame;
413 int ret;
415 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
416 adjusted_mode);
417 if (ret < 0)
418 return;
420 intel_write_infoframe(encoder, &frame);
423 static void g4x_set_infoframes(struct drm_encoder *encoder,
424 bool enable,
425 struct drm_display_mode *adjusted_mode)
427 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
428 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
429 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
430 u32 reg = VIDEO_DIP_CTL;
431 u32 val = I915_READ(reg);
432 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
434 assert_hdmi_port_disabled(intel_hdmi);
436 /* If the registers were not initialized yet, they might be zeroes,
437 * which means we're selecting the AVI DIP and we're setting its
438 * frequency to once. This seems to really confuse the HW and make
439 * things stop working (the register spec says the AVI always needs to
440 * be sent every VSync). So here we avoid writing to the register more
441 * than we need and also explicitly select the AVI DIP and explicitly
442 * set its frequency to every VSync. Avoiding to write it twice seems to
443 * be enough to solve the problem, but being defensive shouldn't hurt us
444 * either. */
445 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
447 if (!enable) {
448 if (!(val & VIDEO_DIP_ENABLE))
449 return;
450 val &= ~VIDEO_DIP_ENABLE;
451 I915_WRITE(reg, val);
452 POSTING_READ(reg);
453 return;
456 if (port != (val & VIDEO_DIP_PORT_MASK)) {
457 if (val & VIDEO_DIP_ENABLE) {
458 val &= ~VIDEO_DIP_ENABLE;
459 I915_WRITE(reg, val);
460 POSTING_READ(reg);
462 val &= ~VIDEO_DIP_PORT_MASK;
463 val |= port;
466 val |= VIDEO_DIP_ENABLE;
467 val &= ~VIDEO_DIP_ENABLE_VENDOR;
469 I915_WRITE(reg, val);
470 POSTING_READ(reg);
472 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
473 intel_hdmi_set_spd_infoframe(encoder);
474 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
477 static void ibx_set_infoframes(struct drm_encoder *encoder,
478 bool enable,
479 struct drm_display_mode *adjusted_mode)
481 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
482 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
483 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
484 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
485 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
486 u32 val = I915_READ(reg);
487 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
489 assert_hdmi_port_disabled(intel_hdmi);
491 /* See the big comment in g4x_set_infoframes() */
492 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
494 if (!enable) {
495 if (!(val & VIDEO_DIP_ENABLE))
496 return;
497 val &= ~VIDEO_DIP_ENABLE;
498 I915_WRITE(reg, val);
499 POSTING_READ(reg);
500 return;
503 if (port != (val & VIDEO_DIP_PORT_MASK)) {
504 if (val & VIDEO_DIP_ENABLE) {
505 val &= ~VIDEO_DIP_ENABLE;
506 I915_WRITE(reg, val);
507 POSTING_READ(reg);
509 val &= ~VIDEO_DIP_PORT_MASK;
510 val |= port;
513 val |= VIDEO_DIP_ENABLE;
514 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
515 VIDEO_DIP_ENABLE_GCP);
517 I915_WRITE(reg, val);
518 POSTING_READ(reg);
520 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
521 intel_hdmi_set_spd_infoframe(encoder);
522 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
525 static void cpt_set_infoframes(struct drm_encoder *encoder,
526 bool enable,
527 struct drm_display_mode *adjusted_mode)
529 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
530 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
531 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
532 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
533 u32 val = I915_READ(reg);
535 assert_hdmi_port_disabled(intel_hdmi);
537 /* See the big comment in g4x_set_infoframes() */
538 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
540 if (!enable) {
541 if (!(val & VIDEO_DIP_ENABLE))
542 return;
543 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
544 I915_WRITE(reg, val);
545 POSTING_READ(reg);
546 return;
549 /* Set both together, unset both together: see the spec. */
550 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
551 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
552 VIDEO_DIP_ENABLE_GCP);
554 I915_WRITE(reg, val);
555 POSTING_READ(reg);
557 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
558 intel_hdmi_set_spd_infoframe(encoder);
559 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
562 static void vlv_set_infoframes(struct drm_encoder *encoder,
563 bool enable,
564 struct drm_display_mode *adjusted_mode)
566 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
567 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
568 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
569 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
570 u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
571 u32 val = I915_READ(reg);
572 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
574 assert_hdmi_port_disabled(intel_hdmi);
576 /* See the big comment in g4x_set_infoframes() */
577 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
579 if (!enable) {
580 if (!(val & VIDEO_DIP_ENABLE))
581 return;
582 val &= ~VIDEO_DIP_ENABLE;
583 I915_WRITE(reg, val);
584 POSTING_READ(reg);
585 return;
588 if (port != (val & VIDEO_DIP_PORT_MASK)) {
589 if (val & VIDEO_DIP_ENABLE) {
590 val &= ~VIDEO_DIP_ENABLE;
591 I915_WRITE(reg, val);
592 POSTING_READ(reg);
594 val &= ~VIDEO_DIP_PORT_MASK;
595 val |= port;
598 val |= VIDEO_DIP_ENABLE;
599 val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
600 VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
602 I915_WRITE(reg, val);
603 POSTING_READ(reg);
605 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
606 intel_hdmi_set_spd_infoframe(encoder);
607 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
610 static void hsw_set_infoframes(struct drm_encoder *encoder,
611 bool enable,
612 struct drm_display_mode *adjusted_mode)
614 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
615 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
616 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
617 u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
618 u32 val = I915_READ(reg);
620 assert_hdmi_port_disabled(intel_hdmi);
622 if (!enable) {
623 I915_WRITE(reg, 0);
624 POSTING_READ(reg);
625 return;
628 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
629 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
631 I915_WRITE(reg, val);
632 POSTING_READ(reg);
634 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
635 intel_hdmi_set_spd_infoframe(encoder);
636 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
639 static void intel_hdmi_prepare(struct intel_encoder *encoder)
641 struct drm_device *dev = encoder->base.dev;
642 struct drm_i915_private *dev_priv = dev->dev_private;
643 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
644 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
645 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
646 u32 hdmi_val;
648 hdmi_val = SDVO_ENCODING_HDMI;
649 if (!HAS_PCH_SPLIT(dev))
650 hdmi_val |= intel_hdmi->color_range;
651 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
652 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
653 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
654 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
656 if (crtc->config.pipe_bpp > 24)
657 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
658 else
659 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
661 if (crtc->config.has_hdmi_sink)
662 hdmi_val |= HDMI_MODE_SELECT_HDMI;
664 if (crtc->config.has_audio) {
665 WARN_ON(!crtc->config.has_hdmi_sink);
666 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
667 pipe_name(crtc->pipe));
668 hdmi_val |= SDVO_AUDIO_ENABLE;
669 intel_write_eld(&encoder->base, adjusted_mode);
672 if (HAS_PCH_CPT(dev))
673 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
674 else if (IS_CHERRYVIEW(dev))
675 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
676 else
677 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
679 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
680 POSTING_READ(intel_hdmi->hdmi_reg);
683 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
684 enum pipe *pipe)
686 struct drm_device *dev = encoder->base.dev;
687 struct drm_i915_private *dev_priv = dev->dev_private;
688 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
689 enum intel_display_power_domain power_domain;
690 u32 tmp;
692 power_domain = intel_display_port_power_domain(encoder);
693 if (!intel_display_power_enabled(dev_priv, power_domain))
694 return false;
696 tmp = I915_READ(intel_hdmi->hdmi_reg);
698 if (!(tmp & SDVO_ENABLE))
699 return false;
701 if (HAS_PCH_CPT(dev))
702 *pipe = PORT_TO_PIPE_CPT(tmp);
703 else if (IS_CHERRYVIEW(dev))
704 *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
705 else
706 *pipe = PORT_TO_PIPE(tmp);
708 return true;
711 static void intel_hdmi_get_config(struct intel_encoder *encoder,
712 struct intel_crtc_config *pipe_config)
714 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
715 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
716 u32 tmp, flags = 0;
717 int dotclock;
719 tmp = I915_READ(intel_hdmi->hdmi_reg);
721 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
722 flags |= DRM_MODE_FLAG_PHSYNC;
723 else
724 flags |= DRM_MODE_FLAG_NHSYNC;
726 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
727 flags |= DRM_MODE_FLAG_PVSYNC;
728 else
729 flags |= DRM_MODE_FLAG_NVSYNC;
731 if (tmp & HDMI_MODE_SELECT_HDMI)
732 pipe_config->has_hdmi_sink = true;
734 if (tmp & HDMI_MODE_SELECT_HDMI)
735 pipe_config->has_audio = true;
737 pipe_config->adjusted_mode.flags |= flags;
739 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
740 dotclock = pipe_config->port_clock * 2 / 3;
741 else
742 dotclock = pipe_config->port_clock;
744 if (HAS_PCH_SPLIT(dev_priv->dev))
745 ironlake_check_encoder_dotclock(pipe_config, dotclock);
747 pipe_config->adjusted_mode.crtc_clock = dotclock;
750 static void intel_enable_hdmi(struct intel_encoder *encoder)
752 struct drm_device *dev = encoder->base.dev;
753 struct drm_i915_private *dev_priv = dev->dev_private;
754 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
755 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
756 u32 temp;
757 u32 enable_bits = SDVO_ENABLE;
759 if (intel_crtc->config.has_audio)
760 enable_bits |= SDVO_AUDIO_ENABLE;
762 temp = I915_READ(intel_hdmi->hdmi_reg);
764 /* HW workaround for IBX, we need to move the port to transcoder A
765 * before disabling it, so restore the transcoder select bit here. */
766 if (HAS_PCH_IBX(dev))
767 enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
769 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
770 * we do this anyway which shows more stable in testing.
772 if (HAS_PCH_SPLIT(dev)) {
773 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
774 POSTING_READ(intel_hdmi->hdmi_reg);
777 temp |= enable_bits;
779 I915_WRITE(intel_hdmi->hdmi_reg, temp);
780 POSTING_READ(intel_hdmi->hdmi_reg);
782 /* HW workaround, need to write this twice for issue that may result
783 * in first write getting masked.
785 if (HAS_PCH_SPLIT(dev)) {
786 I915_WRITE(intel_hdmi->hdmi_reg, temp);
787 POSTING_READ(intel_hdmi->hdmi_reg);
791 static void vlv_enable_hdmi(struct intel_encoder *encoder)
795 static void intel_disable_hdmi(struct intel_encoder *encoder)
797 struct drm_device *dev = encoder->base.dev;
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
800 u32 temp;
801 u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
803 temp = I915_READ(intel_hdmi->hdmi_reg);
805 /* HW workaround for IBX, we need to move the port to transcoder A
806 * before disabling it. */
807 if (HAS_PCH_IBX(dev)) {
808 struct drm_crtc *crtc = encoder->base.crtc;
809 int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
811 if (temp & SDVO_PIPE_B_SELECT) {
812 temp &= ~SDVO_PIPE_B_SELECT;
813 I915_WRITE(intel_hdmi->hdmi_reg, temp);
814 POSTING_READ(intel_hdmi->hdmi_reg);
816 /* Again we need to write this twice. */
817 I915_WRITE(intel_hdmi->hdmi_reg, temp);
818 POSTING_READ(intel_hdmi->hdmi_reg);
820 /* Transcoder selection bits only update
821 * effectively on vblank. */
822 if (crtc)
823 intel_wait_for_vblank(dev, pipe);
824 else
825 msleep(50);
829 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
830 * we do this anyway which shows more stable in testing.
832 if (HAS_PCH_SPLIT(dev)) {
833 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
834 POSTING_READ(intel_hdmi->hdmi_reg);
837 temp &= ~enable_bits;
839 I915_WRITE(intel_hdmi->hdmi_reg, temp);
840 POSTING_READ(intel_hdmi->hdmi_reg);
842 /* HW workaround, need to write this twice for issue that may result
843 * in first write getting masked.
845 if (HAS_PCH_SPLIT(dev)) {
846 I915_WRITE(intel_hdmi->hdmi_reg, temp);
847 POSTING_READ(intel_hdmi->hdmi_reg);
851 static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
853 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
855 if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
856 return 165000;
857 else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
858 return 300000;
859 else
860 return 225000;
863 static enum drm_mode_status
864 intel_hdmi_mode_valid(struct drm_connector *connector,
865 struct drm_display_mode *mode)
867 int clock = mode->clock;
869 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
870 clock *= 2;
872 if (clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
873 true))
874 return MODE_CLOCK_HIGH;
875 if (clock < 20000)
876 return MODE_CLOCK_LOW;
878 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
879 return MODE_NO_DBLESCAN;
881 return MODE_OK;
884 static bool hdmi_12bpc_possible(struct intel_crtc *crtc)
886 struct drm_device *dev = crtc->base.dev;
887 struct intel_encoder *encoder;
888 int count = 0, count_hdmi = 0;
890 if (HAS_GMCH_DISPLAY(dev))
891 return false;
893 for_each_intel_encoder(dev, encoder) {
894 if (encoder->new_crtc != crtc)
895 continue;
897 count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
898 count++;
902 * HDMI 12bpc affects the clocks, so it's only possible
903 * when not cloning with other encoder types.
905 return count_hdmi > 0 && count_hdmi == count;
908 bool intel_hdmi_compute_config(struct intel_encoder *encoder,
909 struct intel_crtc_config *pipe_config)
911 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
912 struct drm_device *dev = encoder->base.dev;
913 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
914 int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
915 int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
916 int desired_bpp;
918 pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
920 if (intel_hdmi->color_range_auto) {
921 /* See CEA-861-E - 5.1 Default Encoding Parameters */
922 if (pipe_config->has_hdmi_sink &&
923 drm_match_cea_mode(adjusted_mode) > 1)
924 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
925 else
926 intel_hdmi->color_range = 0;
929 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
930 pipe_config->pixel_multiplier = 2;
933 if (intel_hdmi->color_range)
934 pipe_config->limited_color_range = true;
936 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
937 pipe_config->has_pch_encoder = true;
939 if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
940 pipe_config->has_audio = true;
943 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
944 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
945 * outputs. We also need to check that the higher clock still fits
946 * within limits.
948 if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
949 clock_12bpc <= portclock_limit &&
950 hdmi_12bpc_possible(encoder->new_crtc)) {
951 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
952 desired_bpp = 12*3;
954 /* Need to adjust the port link by 1.5x for 12bpc. */
955 pipe_config->port_clock = clock_12bpc;
956 } else {
957 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
958 desired_bpp = 8*3;
961 if (!pipe_config->bw_constrained) {
962 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
963 pipe_config->pipe_bpp = desired_bpp;
966 if (adjusted_mode->crtc_clock > portclock_limit) {
967 DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
968 return false;
971 return true;
974 static void
975 intel_hdmi_unset_edid(struct drm_connector *connector)
977 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
979 intel_hdmi->has_hdmi_sink = false;
980 intel_hdmi->has_audio = false;
981 intel_hdmi->rgb_quant_range_selectable = false;
983 kfree(to_intel_connector(connector)->detect_edid);
984 to_intel_connector(connector)->detect_edid = NULL;
987 static bool
988 intel_hdmi_set_edid(struct drm_connector *connector)
990 struct drm_i915_private *dev_priv = to_i915(connector->dev);
991 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
992 struct intel_encoder *intel_encoder =
993 &hdmi_to_dig_port(intel_hdmi)->base;
994 enum intel_display_power_domain power_domain;
995 struct edid *edid;
996 bool connected = false;
998 power_domain = intel_display_port_power_domain(intel_encoder);
999 intel_display_power_get(dev_priv, power_domain);
1001 edid = drm_get_edid(connector,
1002 intel_gmbus_get_adapter(dev_priv,
1003 intel_hdmi->ddc_bus));
1005 intel_display_power_put(dev_priv, power_domain);
1007 to_intel_connector(connector)->detect_edid = edid;
1008 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1009 intel_hdmi->rgb_quant_range_selectable =
1010 drm_rgb_quant_range_selectable(edid);
1012 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1013 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1014 intel_hdmi->has_audio =
1015 intel_hdmi->force_audio == HDMI_AUDIO_ON;
1017 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1018 intel_hdmi->has_hdmi_sink =
1019 drm_detect_hdmi_monitor(edid);
1021 connected = true;
1024 return connected;
1027 static enum drm_connector_status
1028 intel_hdmi_detect(struct drm_connector *connector, bool force)
1030 enum drm_connector_status status;
1032 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1033 connector->base.id, connector->name);
1035 intel_hdmi_unset_edid(connector);
1037 if (intel_hdmi_set_edid(connector)) {
1038 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1040 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1041 status = connector_status_connected;
1042 } else
1043 status = connector_status_disconnected;
1045 return status;
1048 static void
1049 intel_hdmi_force(struct drm_connector *connector)
1051 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1053 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1054 connector->base.id, connector->name);
1056 intel_hdmi_unset_edid(connector);
1058 if (connector->status != connector_status_connected)
1059 return;
1061 intel_hdmi_set_edid(connector);
1062 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1065 static int intel_hdmi_get_modes(struct drm_connector *connector)
1067 struct edid *edid;
1069 edid = to_intel_connector(connector)->detect_edid;
1070 if (edid == NULL)
1071 return 0;
1073 return intel_connector_update_modes(connector, edid);
1076 static bool
1077 intel_hdmi_detect_audio(struct drm_connector *connector)
1079 bool has_audio = false;
1080 struct edid *edid;
1082 edid = to_intel_connector(connector)->detect_edid;
1083 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1084 has_audio = drm_detect_monitor_audio(edid);
1086 return has_audio;
1089 static int
1090 intel_hdmi_set_property(struct drm_connector *connector,
1091 struct drm_property *property,
1092 uint64_t val)
1094 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1095 struct intel_digital_port *intel_dig_port =
1096 hdmi_to_dig_port(intel_hdmi);
1097 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1098 int ret;
1100 ret = drm_object_property_set_value(&connector->base, property, val);
1101 if (ret)
1102 return ret;
1104 if (property == dev_priv->force_audio_property) {
1105 enum hdmi_force_audio i = val;
1106 bool has_audio;
1108 if (i == intel_hdmi->force_audio)
1109 return 0;
1111 intel_hdmi->force_audio = i;
1113 if (i == HDMI_AUDIO_AUTO)
1114 has_audio = intel_hdmi_detect_audio(connector);
1115 else
1116 has_audio = (i == HDMI_AUDIO_ON);
1118 if (i == HDMI_AUDIO_OFF_DVI)
1119 intel_hdmi->has_hdmi_sink = 0;
1121 intel_hdmi->has_audio = has_audio;
1122 goto done;
1125 if (property == dev_priv->broadcast_rgb_property) {
1126 bool old_auto = intel_hdmi->color_range_auto;
1127 uint32_t old_range = intel_hdmi->color_range;
1129 switch (val) {
1130 case INTEL_BROADCAST_RGB_AUTO:
1131 intel_hdmi->color_range_auto = true;
1132 break;
1133 case INTEL_BROADCAST_RGB_FULL:
1134 intel_hdmi->color_range_auto = false;
1135 intel_hdmi->color_range = 0;
1136 break;
1137 case INTEL_BROADCAST_RGB_LIMITED:
1138 intel_hdmi->color_range_auto = false;
1139 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
1140 break;
1141 default:
1142 return -EINVAL;
1145 if (old_auto == intel_hdmi->color_range_auto &&
1146 old_range == intel_hdmi->color_range)
1147 return 0;
1149 goto done;
1152 if (property == connector->dev->mode_config.aspect_ratio_property) {
1153 switch (val) {
1154 case DRM_MODE_PICTURE_ASPECT_NONE:
1155 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1156 break;
1157 case DRM_MODE_PICTURE_ASPECT_4_3:
1158 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1159 break;
1160 case DRM_MODE_PICTURE_ASPECT_16_9:
1161 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1162 break;
1163 default:
1164 return -EINVAL;
1166 goto done;
1169 return -EINVAL;
1171 done:
1172 if (intel_dig_port->base.base.crtc)
1173 intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1175 return 0;
1178 static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1180 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1181 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1182 struct drm_display_mode *adjusted_mode =
1183 &intel_crtc->config.adjusted_mode;
1185 intel_hdmi_prepare(encoder);
1187 intel_hdmi->set_infoframes(&encoder->base,
1188 intel_crtc->config.has_hdmi_sink,
1189 adjusted_mode);
1192 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1194 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1195 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1196 struct drm_device *dev = encoder->base.dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 struct intel_crtc *intel_crtc =
1199 to_intel_crtc(encoder->base.crtc);
1200 struct drm_display_mode *adjusted_mode =
1201 &intel_crtc->config.adjusted_mode;
1202 enum dpio_channel port = vlv_dport_to_channel(dport);
1203 int pipe = intel_crtc->pipe;
1204 u32 val;
1206 /* Enable clock channels for this port */
1207 mutex_lock(&dev_priv->dpio_lock);
1208 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1209 val = 0;
1210 if (pipe)
1211 val |= (1<<21);
1212 else
1213 val &= ~(1<<21);
1214 val |= 0x001000c4;
1215 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1217 /* HDMI 1.0V-2dB */
1218 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1219 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1220 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1221 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1222 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1223 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1224 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1225 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1227 /* Program lane clock */
1228 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1229 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1230 mutex_unlock(&dev_priv->dpio_lock);
1232 intel_hdmi->set_infoframes(&encoder->base,
1233 intel_crtc->config.has_hdmi_sink,
1234 adjusted_mode);
1236 intel_enable_hdmi(encoder);
1238 vlv_wait_port_ready(dev_priv, dport);
1241 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1243 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1244 struct drm_device *dev = encoder->base.dev;
1245 struct drm_i915_private *dev_priv = dev->dev_private;
1246 struct intel_crtc *intel_crtc =
1247 to_intel_crtc(encoder->base.crtc);
1248 enum dpio_channel port = vlv_dport_to_channel(dport);
1249 int pipe = intel_crtc->pipe;
1251 intel_hdmi_prepare(encoder);
1253 /* Program Tx lane resets to default */
1254 mutex_lock(&dev_priv->dpio_lock);
1255 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1256 DPIO_PCS_TX_LANE2_RESET |
1257 DPIO_PCS_TX_LANE1_RESET);
1258 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1259 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1260 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1261 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1262 DPIO_PCS_CLK_SOFT_RESET);
1264 /* Fix up inter-pair skew failure */
1265 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1266 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1267 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1269 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1270 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1271 mutex_unlock(&dev_priv->dpio_lock);
1274 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1276 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1277 struct drm_device *dev = encoder->base.dev;
1278 struct drm_i915_private *dev_priv = dev->dev_private;
1279 struct intel_crtc *intel_crtc =
1280 to_intel_crtc(encoder->base.crtc);
1281 enum dpio_channel ch = vlv_dport_to_channel(dport);
1282 enum pipe pipe = intel_crtc->pipe;
1283 u32 val;
1285 intel_hdmi_prepare(encoder);
1287 mutex_lock(&dev_priv->dpio_lock);
1289 /* program left/right clock distribution */
1290 if (pipe != PIPE_B) {
1291 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1292 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1293 if (ch == DPIO_CH0)
1294 val |= CHV_BUFLEFTENA1_FORCE;
1295 if (ch == DPIO_CH1)
1296 val |= CHV_BUFRIGHTENA1_FORCE;
1297 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1298 } else {
1299 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1300 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1301 if (ch == DPIO_CH0)
1302 val |= CHV_BUFLEFTENA2_FORCE;
1303 if (ch == DPIO_CH1)
1304 val |= CHV_BUFRIGHTENA2_FORCE;
1305 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1308 /* program clock channel usage */
1309 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1310 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1311 if (pipe != PIPE_B)
1312 val &= ~CHV_PCS_USEDCLKCHANNEL;
1313 else
1314 val |= CHV_PCS_USEDCLKCHANNEL;
1315 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1317 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1318 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1319 if (pipe != PIPE_B)
1320 val &= ~CHV_PCS_USEDCLKCHANNEL;
1321 else
1322 val |= CHV_PCS_USEDCLKCHANNEL;
1323 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1326 * This a a bit weird since generally CL
1327 * matches the pipe, but here we need to
1328 * pick the CL based on the port.
1330 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1331 if (pipe != PIPE_B)
1332 val &= ~CHV_CMN_USEDCLKCHANNEL;
1333 else
1334 val |= CHV_CMN_USEDCLKCHANNEL;
1335 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1337 mutex_unlock(&dev_priv->dpio_lock);
1340 static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1342 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1343 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1344 struct intel_crtc *intel_crtc =
1345 to_intel_crtc(encoder->base.crtc);
1346 enum dpio_channel port = vlv_dport_to_channel(dport);
1347 int pipe = intel_crtc->pipe;
1349 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1350 mutex_lock(&dev_priv->dpio_lock);
1351 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1352 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1353 mutex_unlock(&dev_priv->dpio_lock);
1356 static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1358 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1359 struct drm_device *dev = encoder->base.dev;
1360 struct drm_i915_private *dev_priv = dev->dev_private;
1361 struct intel_crtc *intel_crtc =
1362 to_intel_crtc(encoder->base.crtc);
1363 enum dpio_channel ch = vlv_dport_to_channel(dport);
1364 enum pipe pipe = intel_crtc->pipe;
1365 u32 val;
1367 mutex_lock(&dev_priv->dpio_lock);
1369 /* Propagate soft reset to data lane reset */
1370 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1371 val |= CHV_PCS_REQ_SOFTRESET_EN;
1372 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1374 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1375 val |= CHV_PCS_REQ_SOFTRESET_EN;
1376 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1378 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1379 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1380 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1382 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1383 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1384 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1386 mutex_unlock(&dev_priv->dpio_lock);
1389 static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1391 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1392 struct drm_device *dev = encoder->base.dev;
1393 struct drm_i915_private *dev_priv = dev->dev_private;
1394 struct intel_crtc *intel_crtc =
1395 to_intel_crtc(encoder->base.crtc);
1396 enum dpio_channel ch = vlv_dport_to_channel(dport);
1397 int pipe = intel_crtc->pipe;
1398 int data, i;
1399 u32 val;
1401 mutex_lock(&dev_priv->dpio_lock);
1403 /* Deassert soft data lane reset*/
1404 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1405 val |= CHV_PCS_REQ_SOFTRESET_EN;
1406 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1408 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1409 val |= CHV_PCS_REQ_SOFTRESET_EN;
1410 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1412 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1413 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1414 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1416 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1417 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1418 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1420 /* Program Tx latency optimal setting */
1421 for (i = 0; i < 4; i++) {
1422 /* Set the latency optimal bit */
1423 data = (i == 1) ? 0x0 : 0x6;
1424 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
1425 data << DPIO_FRC_LATENCY_SHFIT);
1427 /* Set the upar bit */
1428 data = (i == 1) ? 0x0 : 0x1;
1429 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1430 data << DPIO_UPAR_SHIFT);
1433 /* Data lane stagger programming */
1434 /* FIXME: Fix up value only after power analysis */
1436 /* Clear calc init */
1437 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1438 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1439 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1441 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1442 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1443 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1445 /* FIXME: Program the support xxx V-dB */
1446 /* Use 800mV-0dB */
1447 for (i = 0; i < 4; i++) {
1448 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1449 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1450 val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1451 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1454 for (i = 0; i < 4; i++) {
1455 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1456 val &= ~DPIO_SWING_MARGIN000_MASK;
1457 val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1458 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1461 /* Disable unique transition scale */
1462 for (i = 0; i < 4; i++) {
1463 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1464 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1465 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1468 /* Additional steps for 1200mV-0dB */
1469 #if 0
1470 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
1471 if (ch)
1472 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
1473 else
1474 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
1475 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
1477 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
1478 vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
1479 (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
1480 #endif
1481 /* Start swing calculation */
1482 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1483 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1484 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1486 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1487 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1488 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1490 /* LRC Bypass */
1491 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1492 val |= DPIO_LRC_BYPASS;
1493 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
1495 mutex_unlock(&dev_priv->dpio_lock);
1497 intel_enable_hdmi(encoder);
1499 vlv_wait_port_ready(dev_priv, dport);
1502 static void intel_hdmi_destroy(struct drm_connector *connector)
1504 intel_hdmi_unset_edid(connector);
1505 drm_connector_cleanup(connector);
1506 kfree(connector);
1509 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1510 .dpms = intel_connector_dpms,
1511 .detect = intel_hdmi_detect,
1512 .force = intel_hdmi_force,
1513 .fill_modes = drm_helper_probe_single_connector_modes,
1514 .set_property = intel_hdmi_set_property,
1515 .destroy = intel_hdmi_destroy,
1518 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
1519 .get_modes = intel_hdmi_get_modes,
1520 .mode_valid = intel_hdmi_mode_valid,
1521 .best_encoder = intel_best_encoder,
1524 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
1525 .destroy = intel_encoder_destroy,
1528 static void
1529 intel_attach_aspect_ratio_property(struct drm_connector *connector)
1531 if (!drm_mode_create_aspect_ratio_property(connector->dev))
1532 drm_object_attach_property(&connector->base,
1533 connector->dev->mode_config.aspect_ratio_property,
1534 DRM_MODE_PICTURE_ASPECT_NONE);
1537 static void
1538 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
1540 intel_attach_force_audio_property(connector);
1541 intel_attach_broadcast_rgb_property(connector);
1542 intel_hdmi->color_range_auto = true;
1543 intel_attach_aspect_ratio_property(connector);
1544 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1547 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
1548 struct intel_connector *intel_connector)
1550 struct drm_connector *connector = &intel_connector->base;
1551 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
1552 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1553 struct drm_device *dev = intel_encoder->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 enum port port = intel_dig_port->port;
1557 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
1558 DRM_MODE_CONNECTOR_HDMIA);
1559 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
1561 connector->interlace_allowed = 1;
1562 connector->doublescan_allowed = 0;
1563 connector->stereo_allowed = 1;
1565 switch (port) {
1566 case PORT_B:
1567 intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
1568 intel_encoder->hpd_pin = HPD_PORT_B;
1569 break;
1570 case PORT_C:
1571 intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
1572 intel_encoder->hpd_pin = HPD_PORT_C;
1573 break;
1574 case PORT_D:
1575 if (IS_CHERRYVIEW(dev))
1576 intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV;
1577 else
1578 intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
1579 intel_encoder->hpd_pin = HPD_PORT_D;
1580 break;
1581 case PORT_A:
1582 intel_encoder->hpd_pin = HPD_PORT_A;
1583 /* Internal port only for eDP. */
1584 default:
1585 BUG();
1588 if (IS_VALLEYVIEW(dev)) {
1589 intel_hdmi->write_infoframe = vlv_write_infoframe;
1590 intel_hdmi->set_infoframes = vlv_set_infoframes;
1591 } else if (IS_G4X(dev)) {
1592 intel_hdmi->write_infoframe = g4x_write_infoframe;
1593 intel_hdmi->set_infoframes = g4x_set_infoframes;
1594 } else if (HAS_DDI(dev)) {
1595 intel_hdmi->write_infoframe = hsw_write_infoframe;
1596 intel_hdmi->set_infoframes = hsw_set_infoframes;
1597 } else if (HAS_PCH_IBX(dev)) {
1598 intel_hdmi->write_infoframe = ibx_write_infoframe;
1599 intel_hdmi->set_infoframes = ibx_set_infoframes;
1600 } else {
1601 intel_hdmi->write_infoframe = cpt_write_infoframe;
1602 intel_hdmi->set_infoframes = cpt_set_infoframes;
1605 if (HAS_DDI(dev))
1606 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
1607 else
1608 intel_connector->get_hw_state = intel_connector_get_hw_state;
1609 intel_connector->unregister = intel_connector_unregister;
1611 intel_hdmi_add_properties(intel_hdmi, connector);
1613 intel_connector_attach_encoder(intel_connector, intel_encoder);
1614 drm_connector_register(connector);
1616 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1617 * 0xd. Failure to do so will result in spurious interrupts being
1618 * generated on the port when a cable is not attached.
1620 if (IS_G4X(dev) && !IS_GM45(dev)) {
1621 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1622 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1626 void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
1628 struct intel_digital_port *intel_dig_port;
1629 struct intel_encoder *intel_encoder;
1630 struct intel_connector *intel_connector;
1632 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
1633 if (!intel_dig_port)
1634 return;
1636 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
1637 if (!intel_connector) {
1638 kfree(intel_dig_port);
1639 return;
1642 intel_encoder = &intel_dig_port->base;
1644 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
1645 DRM_MODE_ENCODER_TMDS);
1647 intel_encoder->compute_config = intel_hdmi_compute_config;
1648 intel_encoder->disable = intel_disable_hdmi;
1649 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
1650 intel_encoder->get_config = intel_hdmi_get_config;
1651 if (IS_CHERRYVIEW(dev)) {
1652 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
1653 intel_encoder->pre_enable = chv_hdmi_pre_enable;
1654 intel_encoder->enable = vlv_enable_hdmi;
1655 intel_encoder->post_disable = chv_hdmi_post_disable;
1656 } else if (IS_VALLEYVIEW(dev)) {
1657 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
1658 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
1659 intel_encoder->enable = vlv_enable_hdmi;
1660 intel_encoder->post_disable = vlv_hdmi_post_disable;
1661 } else {
1662 intel_encoder->pre_enable = intel_hdmi_pre_enable;
1663 intel_encoder->enable = intel_enable_hdmi;
1666 intel_encoder->type = INTEL_OUTPUT_HDMI;
1667 if (IS_CHERRYVIEW(dev)) {
1668 if (port == PORT_D)
1669 intel_encoder->crtc_mask = 1 << 2;
1670 else
1671 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1672 } else {
1673 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
1675 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
1677 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
1678 * to work on real hardware. And since g4x can send infoframes to
1679 * only one port anyway, nothing is lost by allowing it.
1681 if (IS_G4X(dev))
1682 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
1684 intel_dig_port->port = port;
1685 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
1686 intel_dig_port->dp.output_reg = 0;
1688 intel_hdmi_init_connector(intel_dig_port, intel_connector);