Merge tag 'locking-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / mips / kernel / unaligned.c
blob126a5f3f4e4ce3a7444a2a5adcb762e26c33dbe4
1 /*
2 * Handle unaligned accesses by emulation.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
33 * #include <sys/sysmips.h>
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
41 * Below a little program to play around with this feature.
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
46 * struct foo {
47 * unsigned char bar[8];
48 * };
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
59 * printf("*p = %08lx\n", *p);
61 * *p = 0xdeadface;
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
76 #include <linux/context_tracking.h>
77 #include <linux/mm.h>
78 #include <linux/signal.h>
79 #include <linux/smp.h>
80 #include <linux/sched.h>
81 #include <linux/debugfs.h>
82 #include <linux/perf_event.h>
84 #include <asm/asm.h>
85 #include <asm/branch.h>
86 #include <asm/byteorder.h>
87 #include <asm/cop2.h>
88 #include <asm/debug.h>
89 #include <asm/fpu.h>
90 #include <asm/fpu_emulator.h>
91 #include <asm/inst.h>
92 #include <asm/unaligned-emul.h>
93 #include <asm/mmu_context.h>
94 #include <linux/uaccess.h>
96 enum {
97 UNALIGNED_ACTION_QUIET,
98 UNALIGNED_ACTION_SIGNAL,
99 UNALIGNED_ACTION_SHOW,
101 #ifdef CONFIG_DEBUG_FS
102 static u32 unaligned_instructions;
103 static u32 unaligned_action;
104 #else
105 #define unaligned_action UNALIGNED_ACTION_QUIET
106 #endif
107 extern void show_registers(struct pt_regs *regs);
109 static void emulate_load_store_insn(struct pt_regs *regs,
110 void __user *addr, unsigned int __user *pc)
112 unsigned long origpc, orig31, value;
113 union mips_instruction insn;
114 unsigned int res;
115 #ifdef CONFIG_EVA
116 mm_segment_t seg;
117 #endif
118 origpc = (unsigned long)pc;
119 orig31 = regs->regs[31];
121 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
124 * This load never faults.
126 __get_user(insn.word, pc);
128 switch (insn.i_format.opcode) {
130 * These are instructions that a compiler doesn't generate. We
131 * can assume therefore that the code is MIPS-aware and
132 * really buggy. Emulating these instructions would break the
133 * semantics anyway.
135 case ll_op:
136 case lld_op:
137 case sc_op:
138 case scd_op:
141 * For these instructions the only way to create an address
142 * error is an attempted access to kernel/supervisor address
143 * space.
145 case ldl_op:
146 case ldr_op:
147 case lwl_op:
148 case lwr_op:
149 case sdl_op:
150 case sdr_op:
151 case swl_op:
152 case swr_op:
153 case lb_op:
154 case lbu_op:
155 case sb_op:
156 goto sigbus;
159 * The remaining opcodes are the ones that are really of
160 * interest.
162 case spec3_op:
163 if (insn.dsp_format.func == lx_op) {
164 switch (insn.dsp_format.op) {
165 case lwx_op:
166 if (!access_ok(addr, 4))
167 goto sigbus;
168 LoadW(addr, value, res);
169 if (res)
170 goto fault;
171 compute_return_epc(regs);
172 regs->regs[insn.dsp_format.rd] = value;
173 break;
174 case lhx_op:
175 if (!access_ok(addr, 2))
176 goto sigbus;
177 LoadHW(addr, value, res);
178 if (res)
179 goto fault;
180 compute_return_epc(regs);
181 regs->regs[insn.dsp_format.rd] = value;
182 break;
183 default:
184 goto sigill;
187 #ifdef CONFIG_EVA
188 else {
190 * we can land here only from kernel accessing user
191 * memory, so we need to "switch" the address limit to
192 * user space, so that address check can work properly.
194 seg = force_uaccess_begin();
195 switch (insn.spec3_format.func) {
196 case lhe_op:
197 if (!access_ok(addr, 2)) {
198 force_uaccess_end(seg);
199 goto sigbus;
201 LoadHWE(addr, value, res);
202 if (res) {
203 force_uaccess_end(seg);
204 goto fault;
206 compute_return_epc(regs);
207 regs->regs[insn.spec3_format.rt] = value;
208 break;
209 case lwe_op:
210 if (!access_ok(addr, 4)) {
211 force_uaccess_end(seg);
212 goto sigbus;
214 LoadWE(addr, value, res);
215 if (res) {
216 force_uaccess_end(seg);
217 goto fault;
219 compute_return_epc(regs);
220 regs->regs[insn.spec3_format.rt] = value;
221 break;
222 case lhue_op:
223 if (!access_ok(addr, 2)) {
224 force_uaccess_end(seg);
225 goto sigbus;
227 LoadHWUE(addr, value, res);
228 if (res) {
229 force_uaccess_end(seg);
230 goto fault;
232 compute_return_epc(regs);
233 regs->regs[insn.spec3_format.rt] = value;
234 break;
235 case she_op:
236 if (!access_ok(addr, 2)) {
237 force_uaccess_end(seg);
238 goto sigbus;
240 compute_return_epc(regs);
241 value = regs->regs[insn.spec3_format.rt];
242 StoreHWE(addr, value, res);
243 if (res) {
244 force_uaccess_end(seg);
245 goto fault;
247 break;
248 case swe_op:
249 if (!access_ok(addr, 4)) {
250 force_uaccess_end(seg);
251 goto sigbus;
253 compute_return_epc(regs);
254 value = regs->regs[insn.spec3_format.rt];
255 StoreWE(addr, value, res);
256 if (res) {
257 force_uaccess_end(seg);
258 goto fault;
260 break;
261 default:
262 force_uaccess_end(seg);
263 goto sigill;
265 force_uaccess_end(seg);
267 #endif
268 break;
269 case lh_op:
270 if (!access_ok(addr, 2))
271 goto sigbus;
273 if (IS_ENABLED(CONFIG_EVA)) {
274 if (uaccess_kernel())
275 LoadHW(addr, value, res);
276 else
277 LoadHWE(addr, value, res);
278 } else {
279 LoadHW(addr, value, res);
282 if (res)
283 goto fault;
284 compute_return_epc(regs);
285 regs->regs[insn.i_format.rt] = value;
286 break;
288 case lw_op:
289 if (!access_ok(addr, 4))
290 goto sigbus;
292 if (IS_ENABLED(CONFIG_EVA)) {
293 if (uaccess_kernel())
294 LoadW(addr, value, res);
295 else
296 LoadWE(addr, value, res);
297 } else {
298 LoadW(addr, value, res);
301 if (res)
302 goto fault;
303 compute_return_epc(regs);
304 regs->regs[insn.i_format.rt] = value;
305 break;
307 case lhu_op:
308 if (!access_ok(addr, 2))
309 goto sigbus;
311 if (IS_ENABLED(CONFIG_EVA)) {
312 if (uaccess_kernel())
313 LoadHWU(addr, value, res);
314 else
315 LoadHWUE(addr, value, res);
316 } else {
317 LoadHWU(addr, value, res);
320 if (res)
321 goto fault;
322 compute_return_epc(regs);
323 regs->regs[insn.i_format.rt] = value;
324 break;
326 case lwu_op:
327 #ifdef CONFIG_64BIT
329 * A 32-bit kernel might be running on a 64-bit processor. But
330 * if we're on a 32-bit processor and an i-cache incoherency
331 * or race makes us see a 64-bit instruction here the sdl/sdr
332 * would blow up, so for now we don't handle unaligned 64-bit
333 * instructions on 32-bit kernels.
335 if (!access_ok(addr, 4))
336 goto sigbus;
338 LoadWU(addr, value, res);
339 if (res)
340 goto fault;
341 compute_return_epc(regs);
342 regs->regs[insn.i_format.rt] = value;
343 break;
344 #endif /* CONFIG_64BIT */
346 /* Cannot handle 64-bit instructions in 32-bit kernel */
347 goto sigill;
349 case ld_op:
350 #ifdef CONFIG_64BIT
352 * A 32-bit kernel might be running on a 64-bit processor. But
353 * if we're on a 32-bit processor and an i-cache incoherency
354 * or race makes us see a 64-bit instruction here the sdl/sdr
355 * would blow up, so for now we don't handle unaligned 64-bit
356 * instructions on 32-bit kernels.
358 if (!access_ok(addr, 8))
359 goto sigbus;
361 LoadDW(addr, value, res);
362 if (res)
363 goto fault;
364 compute_return_epc(regs);
365 regs->regs[insn.i_format.rt] = value;
366 break;
367 #endif /* CONFIG_64BIT */
369 /* Cannot handle 64-bit instructions in 32-bit kernel */
370 goto sigill;
372 case sh_op:
373 if (!access_ok(addr, 2))
374 goto sigbus;
376 compute_return_epc(regs);
377 value = regs->regs[insn.i_format.rt];
379 if (IS_ENABLED(CONFIG_EVA)) {
380 if (uaccess_kernel())
381 StoreHW(addr, value, res);
382 else
383 StoreHWE(addr, value, res);
384 } else {
385 StoreHW(addr, value, res);
388 if (res)
389 goto fault;
390 break;
392 case sw_op:
393 if (!access_ok(addr, 4))
394 goto sigbus;
396 compute_return_epc(regs);
397 value = regs->regs[insn.i_format.rt];
399 if (IS_ENABLED(CONFIG_EVA)) {
400 if (uaccess_kernel())
401 StoreW(addr, value, res);
402 else
403 StoreWE(addr, value, res);
404 } else {
405 StoreW(addr, value, res);
408 if (res)
409 goto fault;
410 break;
412 case sd_op:
413 #ifdef CONFIG_64BIT
415 * A 32-bit kernel might be running on a 64-bit processor. But
416 * if we're on a 32-bit processor and an i-cache incoherency
417 * or race makes us see a 64-bit instruction here the sdl/sdr
418 * would blow up, so for now we don't handle unaligned 64-bit
419 * instructions on 32-bit kernels.
421 if (!access_ok(addr, 8))
422 goto sigbus;
424 compute_return_epc(regs);
425 value = regs->regs[insn.i_format.rt];
426 StoreDW(addr, value, res);
427 if (res)
428 goto fault;
429 break;
430 #endif /* CONFIG_64BIT */
432 /* Cannot handle 64-bit instructions in 32-bit kernel */
433 goto sigill;
435 #ifdef CONFIG_MIPS_FP_SUPPORT
437 case lwc1_op:
438 case ldc1_op:
439 case swc1_op:
440 case sdc1_op:
441 case cop1x_op: {
442 void __user *fault_addr = NULL;
444 die_if_kernel("Unaligned FP access in kernel code", regs);
445 BUG_ON(!used_math());
447 res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
448 &fault_addr);
449 own_fpu(1); /* Restore FPU state. */
451 /* Signal if something went wrong. */
452 process_fpemu_return(res, fault_addr, 0);
454 if (res == 0)
455 break;
456 return;
458 #endif /* CONFIG_MIPS_FP_SUPPORT */
460 #ifdef CONFIG_CPU_HAS_MSA
462 case msa_op: {
463 unsigned int wd, preempted;
464 enum msa_2b_fmt df;
465 union fpureg *fpr;
467 if (!cpu_has_msa)
468 goto sigill;
471 * If we've reached this point then userland should have taken
472 * the MSA disabled exception & initialised vector context at
473 * some point in the past.
475 BUG_ON(!thread_msa_context_live());
477 df = insn.msa_mi10_format.df;
478 wd = insn.msa_mi10_format.wd;
479 fpr = &current->thread.fpu.fpr[wd];
481 switch (insn.msa_mi10_format.func) {
482 case msa_ld_op:
483 if (!access_ok(addr, sizeof(*fpr)))
484 goto sigbus;
486 do {
488 * If we have live MSA context keep track of
489 * whether we get preempted in order to avoid
490 * the register context we load being clobbered
491 * by the live context as it's saved during
492 * preemption. If we don't have live context
493 * then it can't be saved to clobber the value
494 * we load.
496 preempted = test_thread_flag(TIF_USEDMSA);
498 res = __copy_from_user_inatomic(fpr, addr,
499 sizeof(*fpr));
500 if (res)
501 goto fault;
504 * Update the hardware register if it is in use
505 * by the task in this quantum, in order to
506 * avoid having to save & restore the whole
507 * vector context.
509 preempt_disable();
510 if (test_thread_flag(TIF_USEDMSA)) {
511 write_msa_wr(wd, fpr, df);
512 preempted = 0;
514 preempt_enable();
515 } while (preempted);
516 break;
518 case msa_st_op:
519 if (!access_ok(addr, sizeof(*fpr)))
520 goto sigbus;
523 * Update from the hardware register if it is in use by
524 * the task in this quantum, in order to avoid having to
525 * save & restore the whole vector context.
527 preempt_disable();
528 if (test_thread_flag(TIF_USEDMSA))
529 read_msa_wr(wd, fpr, df);
530 preempt_enable();
532 res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
533 if (res)
534 goto fault;
535 break;
537 default:
538 goto sigbus;
541 compute_return_epc(regs);
542 break;
544 #endif /* CONFIG_CPU_HAS_MSA */
546 #ifndef CONFIG_CPU_MIPSR6
548 * COP2 is available to implementor for application specific use.
549 * It's up to applications to register a notifier chain and do
550 * whatever they have to do, including possible sending of signals.
552 * This instruction has been reallocated in Release 6
554 case lwc2_op:
555 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
556 break;
558 case ldc2_op:
559 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
560 break;
562 case swc2_op:
563 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
564 break;
566 case sdc2_op:
567 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
568 break;
569 #endif
570 default:
572 * Pheeee... We encountered an yet unknown instruction or
573 * cache coherence problem. Die sucker, die ...
575 goto sigill;
578 #ifdef CONFIG_DEBUG_FS
579 unaligned_instructions++;
580 #endif
582 return;
584 fault:
585 /* roll back jump/branch */
586 regs->cp0_epc = origpc;
587 regs->regs[31] = orig31;
588 /* Did we have an exception handler installed? */
589 if (fixup_exception(regs))
590 return;
592 die_if_kernel("Unhandled kernel unaligned access", regs);
593 force_sig(SIGSEGV);
595 return;
597 sigbus:
598 die_if_kernel("Unhandled kernel unaligned access", regs);
599 force_sig(SIGBUS);
601 return;
603 sigill:
604 die_if_kernel
605 ("Unhandled kernel unaligned access or invalid instruction", regs);
606 force_sig(SIGILL);
609 /* Recode table from 16-bit register notation to 32-bit GPR. */
610 const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
612 /* Recode table from 16-bit STORE register notation to 32-bit GPR. */
613 static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
615 static void emulate_load_store_microMIPS(struct pt_regs *regs,
616 void __user *addr)
618 unsigned long value;
619 unsigned int res;
620 int i;
621 unsigned int reg = 0, rvar;
622 unsigned long orig31;
623 u16 __user *pc16;
624 u16 halfword;
625 unsigned int word;
626 unsigned long origpc, contpc;
627 union mips_instruction insn;
628 struct mm_decoded_insn mminsn;
630 origpc = regs->cp0_epc;
631 orig31 = regs->regs[31];
633 mminsn.micro_mips_mode = 1;
636 * This load never faults.
638 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
639 __get_user(halfword, pc16);
640 pc16++;
641 contpc = regs->cp0_epc + 2;
642 word = ((unsigned int)halfword << 16);
643 mminsn.pc_inc = 2;
645 if (!mm_insn_16bit(halfword)) {
646 __get_user(halfword, pc16);
647 pc16++;
648 contpc = regs->cp0_epc + 4;
649 mminsn.pc_inc = 4;
650 word |= halfword;
652 mminsn.insn = word;
654 if (get_user(halfword, pc16))
655 goto fault;
656 mminsn.next_pc_inc = 2;
657 word = ((unsigned int)halfword << 16);
659 if (!mm_insn_16bit(halfword)) {
660 pc16++;
661 if (get_user(halfword, pc16))
662 goto fault;
663 mminsn.next_pc_inc = 4;
664 word |= halfword;
666 mminsn.next_insn = word;
668 insn = (union mips_instruction)(mminsn.insn);
669 if (mm_isBranchInstr(regs, mminsn, &contpc))
670 insn = (union mips_instruction)(mminsn.next_insn);
672 /* Parse instruction to find what to do */
674 switch (insn.mm_i_format.opcode) {
676 case mm_pool32a_op:
677 switch (insn.mm_x_format.func) {
678 case mm_lwxs_op:
679 reg = insn.mm_x_format.rd;
680 goto loadW;
683 goto sigbus;
685 case mm_pool32b_op:
686 switch (insn.mm_m_format.func) {
687 case mm_lwp_func:
688 reg = insn.mm_m_format.rd;
689 if (reg == 31)
690 goto sigbus;
692 if (!access_ok(addr, 8))
693 goto sigbus;
695 LoadW(addr, value, res);
696 if (res)
697 goto fault;
698 regs->regs[reg] = value;
699 addr += 4;
700 LoadW(addr, value, res);
701 if (res)
702 goto fault;
703 regs->regs[reg + 1] = value;
704 goto success;
706 case mm_swp_func:
707 reg = insn.mm_m_format.rd;
708 if (reg == 31)
709 goto sigbus;
711 if (!access_ok(addr, 8))
712 goto sigbus;
714 value = regs->regs[reg];
715 StoreW(addr, value, res);
716 if (res)
717 goto fault;
718 addr += 4;
719 value = regs->regs[reg + 1];
720 StoreW(addr, value, res);
721 if (res)
722 goto fault;
723 goto success;
725 case mm_ldp_func:
726 #ifdef CONFIG_64BIT
727 reg = insn.mm_m_format.rd;
728 if (reg == 31)
729 goto sigbus;
731 if (!access_ok(addr, 16))
732 goto sigbus;
734 LoadDW(addr, value, res);
735 if (res)
736 goto fault;
737 regs->regs[reg] = value;
738 addr += 8;
739 LoadDW(addr, value, res);
740 if (res)
741 goto fault;
742 regs->regs[reg + 1] = value;
743 goto success;
744 #endif /* CONFIG_64BIT */
746 goto sigill;
748 case mm_sdp_func:
749 #ifdef CONFIG_64BIT
750 reg = insn.mm_m_format.rd;
751 if (reg == 31)
752 goto sigbus;
754 if (!access_ok(addr, 16))
755 goto sigbus;
757 value = regs->regs[reg];
758 StoreDW(addr, value, res);
759 if (res)
760 goto fault;
761 addr += 8;
762 value = regs->regs[reg + 1];
763 StoreDW(addr, value, res);
764 if (res)
765 goto fault;
766 goto success;
767 #endif /* CONFIG_64BIT */
769 goto sigill;
771 case mm_lwm32_func:
772 reg = insn.mm_m_format.rd;
773 rvar = reg & 0xf;
774 if ((rvar > 9) || !reg)
775 goto sigill;
776 if (reg & 0x10) {
777 if (!access_ok(addr, 4 * (rvar + 1)))
778 goto sigbus;
779 } else {
780 if (!access_ok(addr, 4 * rvar))
781 goto sigbus;
783 if (rvar == 9)
784 rvar = 8;
785 for (i = 16; rvar; rvar--, i++) {
786 LoadW(addr, value, res);
787 if (res)
788 goto fault;
789 addr += 4;
790 regs->regs[i] = value;
792 if ((reg & 0xf) == 9) {
793 LoadW(addr, value, res);
794 if (res)
795 goto fault;
796 addr += 4;
797 regs->regs[30] = value;
799 if (reg & 0x10) {
800 LoadW(addr, value, res);
801 if (res)
802 goto fault;
803 regs->regs[31] = value;
805 goto success;
807 case mm_swm32_func:
808 reg = insn.mm_m_format.rd;
809 rvar = reg & 0xf;
810 if ((rvar > 9) || !reg)
811 goto sigill;
812 if (reg & 0x10) {
813 if (!access_ok(addr, 4 * (rvar + 1)))
814 goto sigbus;
815 } else {
816 if (!access_ok(addr, 4 * rvar))
817 goto sigbus;
819 if (rvar == 9)
820 rvar = 8;
821 for (i = 16; rvar; rvar--, i++) {
822 value = regs->regs[i];
823 StoreW(addr, value, res);
824 if (res)
825 goto fault;
826 addr += 4;
828 if ((reg & 0xf) == 9) {
829 value = regs->regs[30];
830 StoreW(addr, value, res);
831 if (res)
832 goto fault;
833 addr += 4;
835 if (reg & 0x10) {
836 value = regs->regs[31];
837 StoreW(addr, value, res);
838 if (res)
839 goto fault;
841 goto success;
843 case mm_ldm_func:
844 #ifdef CONFIG_64BIT
845 reg = insn.mm_m_format.rd;
846 rvar = reg & 0xf;
847 if ((rvar > 9) || !reg)
848 goto sigill;
849 if (reg & 0x10) {
850 if (!access_ok(addr, 8 * (rvar + 1)))
851 goto sigbus;
852 } else {
853 if (!access_ok(addr, 8 * rvar))
854 goto sigbus;
856 if (rvar == 9)
857 rvar = 8;
859 for (i = 16; rvar; rvar--, i++) {
860 LoadDW(addr, value, res);
861 if (res)
862 goto fault;
863 addr += 4;
864 regs->regs[i] = value;
866 if ((reg & 0xf) == 9) {
867 LoadDW(addr, value, res);
868 if (res)
869 goto fault;
870 addr += 8;
871 regs->regs[30] = value;
873 if (reg & 0x10) {
874 LoadDW(addr, value, res);
875 if (res)
876 goto fault;
877 regs->regs[31] = value;
879 goto success;
880 #endif /* CONFIG_64BIT */
882 goto sigill;
884 case mm_sdm_func:
885 #ifdef CONFIG_64BIT
886 reg = insn.mm_m_format.rd;
887 rvar = reg & 0xf;
888 if ((rvar > 9) || !reg)
889 goto sigill;
890 if (reg & 0x10) {
891 if (!access_ok(addr, 8 * (rvar + 1)))
892 goto sigbus;
893 } else {
894 if (!access_ok(addr, 8 * rvar))
895 goto sigbus;
897 if (rvar == 9)
898 rvar = 8;
900 for (i = 16; rvar; rvar--, i++) {
901 value = regs->regs[i];
902 StoreDW(addr, value, res);
903 if (res)
904 goto fault;
905 addr += 8;
907 if ((reg & 0xf) == 9) {
908 value = regs->regs[30];
909 StoreDW(addr, value, res);
910 if (res)
911 goto fault;
912 addr += 8;
914 if (reg & 0x10) {
915 value = regs->regs[31];
916 StoreDW(addr, value, res);
917 if (res)
918 goto fault;
920 goto success;
921 #endif /* CONFIG_64BIT */
923 goto sigill;
925 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
928 goto sigbus;
930 case mm_pool32c_op:
931 switch (insn.mm_m_format.func) {
932 case mm_lwu_func:
933 reg = insn.mm_m_format.rd;
934 goto loadWU;
937 /* LL,SC,LLD,SCD are not serviced */
938 goto sigbus;
940 #ifdef CONFIG_MIPS_FP_SUPPORT
941 case mm_pool32f_op:
942 switch (insn.mm_x_format.func) {
943 case mm_lwxc1_func:
944 case mm_swxc1_func:
945 case mm_ldxc1_func:
946 case mm_sdxc1_func:
947 goto fpu_emul;
950 goto sigbus;
952 case mm_ldc132_op:
953 case mm_sdc132_op:
954 case mm_lwc132_op:
955 case mm_swc132_op: {
956 void __user *fault_addr = NULL;
958 fpu_emul:
959 /* roll back jump/branch */
960 regs->cp0_epc = origpc;
961 regs->regs[31] = orig31;
963 die_if_kernel("Unaligned FP access in kernel code", regs);
964 BUG_ON(!used_math());
965 BUG_ON(!is_fpu_owner());
967 res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
968 &fault_addr);
969 own_fpu(1); /* restore FPU state */
971 /* If something went wrong, signal */
972 process_fpemu_return(res, fault_addr, 0);
974 if (res == 0)
975 goto success;
976 return;
978 #endif /* CONFIG_MIPS_FP_SUPPORT */
980 case mm_lh32_op:
981 reg = insn.mm_i_format.rt;
982 goto loadHW;
984 case mm_lhu32_op:
985 reg = insn.mm_i_format.rt;
986 goto loadHWU;
988 case mm_lw32_op:
989 reg = insn.mm_i_format.rt;
990 goto loadW;
992 case mm_sh32_op:
993 reg = insn.mm_i_format.rt;
994 goto storeHW;
996 case mm_sw32_op:
997 reg = insn.mm_i_format.rt;
998 goto storeW;
1000 case mm_ld32_op:
1001 reg = insn.mm_i_format.rt;
1002 goto loadDW;
1004 case mm_sd32_op:
1005 reg = insn.mm_i_format.rt;
1006 goto storeDW;
1008 case mm_pool16c_op:
1009 switch (insn.mm16_m_format.func) {
1010 case mm_lwm16_op:
1011 reg = insn.mm16_m_format.rlist;
1012 rvar = reg + 1;
1013 if (!access_ok(addr, 4 * rvar))
1014 goto sigbus;
1016 for (i = 16; rvar; rvar--, i++) {
1017 LoadW(addr, value, res);
1018 if (res)
1019 goto fault;
1020 addr += 4;
1021 regs->regs[i] = value;
1023 LoadW(addr, value, res);
1024 if (res)
1025 goto fault;
1026 regs->regs[31] = value;
1028 goto success;
1030 case mm_swm16_op:
1031 reg = insn.mm16_m_format.rlist;
1032 rvar = reg + 1;
1033 if (!access_ok(addr, 4 * rvar))
1034 goto sigbus;
1036 for (i = 16; rvar; rvar--, i++) {
1037 value = regs->regs[i];
1038 StoreW(addr, value, res);
1039 if (res)
1040 goto fault;
1041 addr += 4;
1043 value = regs->regs[31];
1044 StoreW(addr, value, res);
1045 if (res)
1046 goto fault;
1048 goto success;
1052 goto sigbus;
1054 case mm_lhu16_op:
1055 reg = reg16to32[insn.mm16_rb_format.rt];
1056 goto loadHWU;
1058 case mm_lw16_op:
1059 reg = reg16to32[insn.mm16_rb_format.rt];
1060 goto loadW;
1062 case mm_sh16_op:
1063 reg = reg16to32st[insn.mm16_rb_format.rt];
1064 goto storeHW;
1066 case mm_sw16_op:
1067 reg = reg16to32st[insn.mm16_rb_format.rt];
1068 goto storeW;
1070 case mm_lwsp16_op:
1071 reg = insn.mm16_r5_format.rt;
1072 goto loadW;
1074 case mm_swsp16_op:
1075 reg = insn.mm16_r5_format.rt;
1076 goto storeW;
1078 case mm_lwgp16_op:
1079 reg = reg16to32[insn.mm16_r3_format.rt];
1080 goto loadW;
1082 default:
1083 goto sigill;
1086 loadHW:
1087 if (!access_ok(addr, 2))
1088 goto sigbus;
1090 LoadHW(addr, value, res);
1091 if (res)
1092 goto fault;
1093 regs->regs[reg] = value;
1094 goto success;
1096 loadHWU:
1097 if (!access_ok(addr, 2))
1098 goto sigbus;
1100 LoadHWU(addr, value, res);
1101 if (res)
1102 goto fault;
1103 regs->regs[reg] = value;
1104 goto success;
1106 loadW:
1107 if (!access_ok(addr, 4))
1108 goto sigbus;
1110 LoadW(addr, value, res);
1111 if (res)
1112 goto fault;
1113 regs->regs[reg] = value;
1114 goto success;
1116 loadWU:
1117 #ifdef CONFIG_64BIT
1119 * A 32-bit kernel might be running on a 64-bit processor. But
1120 * if we're on a 32-bit processor and an i-cache incoherency
1121 * or race makes us see a 64-bit instruction here the sdl/sdr
1122 * would blow up, so for now we don't handle unaligned 64-bit
1123 * instructions on 32-bit kernels.
1125 if (!access_ok(addr, 4))
1126 goto sigbus;
1128 LoadWU(addr, value, res);
1129 if (res)
1130 goto fault;
1131 regs->regs[reg] = value;
1132 goto success;
1133 #endif /* CONFIG_64BIT */
1135 /* Cannot handle 64-bit instructions in 32-bit kernel */
1136 goto sigill;
1138 loadDW:
1139 #ifdef CONFIG_64BIT
1141 * A 32-bit kernel might be running on a 64-bit processor. But
1142 * if we're on a 32-bit processor and an i-cache incoherency
1143 * or race makes us see a 64-bit instruction here the sdl/sdr
1144 * would blow up, so for now we don't handle unaligned 64-bit
1145 * instructions on 32-bit kernels.
1147 if (!access_ok(addr, 8))
1148 goto sigbus;
1150 LoadDW(addr, value, res);
1151 if (res)
1152 goto fault;
1153 regs->regs[reg] = value;
1154 goto success;
1155 #endif /* CONFIG_64BIT */
1157 /* Cannot handle 64-bit instructions in 32-bit kernel */
1158 goto sigill;
1160 storeHW:
1161 if (!access_ok(addr, 2))
1162 goto sigbus;
1164 value = regs->regs[reg];
1165 StoreHW(addr, value, res);
1166 if (res)
1167 goto fault;
1168 goto success;
1170 storeW:
1171 if (!access_ok(addr, 4))
1172 goto sigbus;
1174 value = regs->regs[reg];
1175 StoreW(addr, value, res);
1176 if (res)
1177 goto fault;
1178 goto success;
1180 storeDW:
1181 #ifdef CONFIG_64BIT
1183 * A 32-bit kernel might be running on a 64-bit processor. But
1184 * if we're on a 32-bit processor and an i-cache incoherency
1185 * or race makes us see a 64-bit instruction here the sdl/sdr
1186 * would blow up, so for now we don't handle unaligned 64-bit
1187 * instructions on 32-bit kernels.
1189 if (!access_ok(addr, 8))
1190 goto sigbus;
1192 value = regs->regs[reg];
1193 StoreDW(addr, value, res);
1194 if (res)
1195 goto fault;
1196 goto success;
1197 #endif /* CONFIG_64BIT */
1199 /* Cannot handle 64-bit instructions in 32-bit kernel */
1200 goto sigill;
1202 success:
1203 regs->cp0_epc = contpc; /* advance or branch */
1205 #ifdef CONFIG_DEBUG_FS
1206 unaligned_instructions++;
1207 #endif
1208 return;
1210 fault:
1211 /* roll back jump/branch */
1212 regs->cp0_epc = origpc;
1213 regs->regs[31] = orig31;
1214 /* Did we have an exception handler installed? */
1215 if (fixup_exception(regs))
1216 return;
1218 die_if_kernel("Unhandled kernel unaligned access", regs);
1219 force_sig(SIGSEGV);
1221 return;
1223 sigbus:
1224 die_if_kernel("Unhandled kernel unaligned access", regs);
1225 force_sig(SIGBUS);
1227 return;
1229 sigill:
1230 die_if_kernel
1231 ("Unhandled kernel unaligned access or invalid instruction", regs);
1232 force_sig(SIGILL);
1235 static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1237 unsigned long value;
1238 unsigned int res;
1239 int reg;
1240 unsigned long orig31;
1241 u16 __user *pc16;
1242 unsigned long origpc;
1243 union mips16e_instruction mips16inst, oldinst;
1244 unsigned int opcode;
1245 int extended = 0;
1247 origpc = regs->cp0_epc;
1248 orig31 = regs->regs[31];
1249 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1251 * This load never faults.
1253 __get_user(mips16inst.full, pc16);
1254 oldinst = mips16inst;
1256 /* skip EXTEND instruction */
1257 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1258 extended = 1;
1259 pc16++;
1260 __get_user(mips16inst.full, pc16);
1261 } else if (delay_slot(regs)) {
1262 /* skip jump instructions */
1263 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1264 if (mips16inst.ri.opcode == MIPS16e_jal_op)
1265 pc16++;
1266 pc16++;
1267 if (get_user(mips16inst.full, pc16))
1268 goto sigbus;
1271 opcode = mips16inst.ri.opcode;
1272 switch (opcode) {
1273 case MIPS16e_i64_op: /* I64 or RI64 instruction */
1274 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
1275 case MIPS16e_ldpc_func:
1276 case MIPS16e_ldsp_func:
1277 reg = reg16to32[mips16inst.ri64.ry];
1278 goto loadDW;
1280 case MIPS16e_sdsp_func:
1281 reg = reg16to32[mips16inst.ri64.ry];
1282 goto writeDW;
1284 case MIPS16e_sdrasp_func:
1285 reg = 29; /* GPRSP */
1286 goto writeDW;
1289 goto sigbus;
1291 case MIPS16e_swsp_op:
1292 reg = reg16to32[mips16inst.ri.rx];
1293 if (extended && cpu_has_mips16e2)
1294 switch (mips16inst.ri.imm >> 5) {
1295 case 0: /* SWSP */
1296 case 1: /* SWGP */
1297 break;
1298 case 2: /* SHGP */
1299 opcode = MIPS16e_sh_op;
1300 break;
1301 default:
1302 goto sigbus;
1304 break;
1306 case MIPS16e_lwpc_op:
1307 reg = reg16to32[mips16inst.ri.rx];
1308 break;
1310 case MIPS16e_lwsp_op:
1311 reg = reg16to32[mips16inst.ri.rx];
1312 if (extended && cpu_has_mips16e2)
1313 switch (mips16inst.ri.imm >> 5) {
1314 case 0: /* LWSP */
1315 case 1: /* LWGP */
1316 break;
1317 case 2: /* LHGP */
1318 opcode = MIPS16e_lh_op;
1319 break;
1320 case 4: /* LHUGP */
1321 opcode = MIPS16e_lhu_op;
1322 break;
1323 default:
1324 goto sigbus;
1326 break;
1328 case MIPS16e_i8_op:
1329 if (mips16inst.i8.func != MIPS16e_swrasp_func)
1330 goto sigbus;
1331 reg = 29; /* GPRSP */
1332 break;
1334 default:
1335 reg = reg16to32[mips16inst.rri.ry];
1336 break;
1339 switch (opcode) {
1341 case MIPS16e_lb_op:
1342 case MIPS16e_lbu_op:
1343 case MIPS16e_sb_op:
1344 goto sigbus;
1346 case MIPS16e_lh_op:
1347 if (!access_ok(addr, 2))
1348 goto sigbus;
1350 LoadHW(addr, value, res);
1351 if (res)
1352 goto fault;
1353 MIPS16e_compute_return_epc(regs, &oldinst);
1354 regs->regs[reg] = value;
1355 break;
1357 case MIPS16e_lhu_op:
1358 if (!access_ok(addr, 2))
1359 goto sigbus;
1361 LoadHWU(addr, value, res);
1362 if (res)
1363 goto fault;
1364 MIPS16e_compute_return_epc(regs, &oldinst);
1365 regs->regs[reg] = value;
1366 break;
1368 case MIPS16e_lw_op:
1369 case MIPS16e_lwpc_op:
1370 case MIPS16e_lwsp_op:
1371 if (!access_ok(addr, 4))
1372 goto sigbus;
1374 LoadW(addr, value, res);
1375 if (res)
1376 goto fault;
1377 MIPS16e_compute_return_epc(regs, &oldinst);
1378 regs->regs[reg] = value;
1379 break;
1381 case MIPS16e_lwu_op:
1382 #ifdef CONFIG_64BIT
1384 * A 32-bit kernel might be running on a 64-bit processor. But
1385 * if we're on a 32-bit processor and an i-cache incoherency
1386 * or race makes us see a 64-bit instruction here the sdl/sdr
1387 * would blow up, so for now we don't handle unaligned 64-bit
1388 * instructions on 32-bit kernels.
1390 if (!access_ok(addr, 4))
1391 goto sigbus;
1393 LoadWU(addr, value, res);
1394 if (res)
1395 goto fault;
1396 MIPS16e_compute_return_epc(regs, &oldinst);
1397 regs->regs[reg] = value;
1398 break;
1399 #endif /* CONFIG_64BIT */
1401 /* Cannot handle 64-bit instructions in 32-bit kernel */
1402 goto sigill;
1404 case MIPS16e_ld_op:
1405 loadDW:
1406 #ifdef CONFIG_64BIT
1408 * A 32-bit kernel might be running on a 64-bit processor. But
1409 * if we're on a 32-bit processor and an i-cache incoherency
1410 * or race makes us see a 64-bit instruction here the sdl/sdr
1411 * would blow up, so for now we don't handle unaligned 64-bit
1412 * instructions on 32-bit kernels.
1414 if (!access_ok(addr, 8))
1415 goto sigbus;
1417 LoadDW(addr, value, res);
1418 if (res)
1419 goto fault;
1420 MIPS16e_compute_return_epc(regs, &oldinst);
1421 regs->regs[reg] = value;
1422 break;
1423 #endif /* CONFIG_64BIT */
1425 /* Cannot handle 64-bit instructions in 32-bit kernel */
1426 goto sigill;
1428 case MIPS16e_sh_op:
1429 if (!access_ok(addr, 2))
1430 goto sigbus;
1432 MIPS16e_compute_return_epc(regs, &oldinst);
1433 value = regs->regs[reg];
1434 StoreHW(addr, value, res);
1435 if (res)
1436 goto fault;
1437 break;
1439 case MIPS16e_sw_op:
1440 case MIPS16e_swsp_op:
1441 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
1442 if (!access_ok(addr, 4))
1443 goto sigbus;
1445 MIPS16e_compute_return_epc(regs, &oldinst);
1446 value = regs->regs[reg];
1447 StoreW(addr, value, res);
1448 if (res)
1449 goto fault;
1450 break;
1452 case MIPS16e_sd_op:
1453 writeDW:
1454 #ifdef CONFIG_64BIT
1456 * A 32-bit kernel might be running on a 64-bit processor. But
1457 * if we're on a 32-bit processor and an i-cache incoherency
1458 * or race makes us see a 64-bit instruction here the sdl/sdr
1459 * would blow up, so for now we don't handle unaligned 64-bit
1460 * instructions on 32-bit kernels.
1462 if (!access_ok(addr, 8))
1463 goto sigbus;
1465 MIPS16e_compute_return_epc(regs, &oldinst);
1466 value = regs->regs[reg];
1467 StoreDW(addr, value, res);
1468 if (res)
1469 goto fault;
1470 break;
1471 #endif /* CONFIG_64BIT */
1473 /* Cannot handle 64-bit instructions in 32-bit kernel */
1474 goto sigill;
1476 default:
1478 * Pheeee... We encountered an yet unknown instruction or
1479 * cache coherence problem. Die sucker, die ...
1481 goto sigill;
1484 #ifdef CONFIG_DEBUG_FS
1485 unaligned_instructions++;
1486 #endif
1488 return;
1490 fault:
1491 /* roll back jump/branch */
1492 regs->cp0_epc = origpc;
1493 regs->regs[31] = orig31;
1494 /* Did we have an exception handler installed? */
1495 if (fixup_exception(regs))
1496 return;
1498 die_if_kernel("Unhandled kernel unaligned access", regs);
1499 force_sig(SIGSEGV);
1501 return;
1503 sigbus:
1504 die_if_kernel("Unhandled kernel unaligned access", regs);
1505 force_sig(SIGBUS);
1507 return;
1509 sigill:
1510 die_if_kernel
1511 ("Unhandled kernel unaligned access or invalid instruction", regs);
1512 force_sig(SIGILL);
1515 asmlinkage void do_ade(struct pt_regs *regs)
1517 enum ctx_state prev_state;
1518 unsigned int __user *pc;
1519 mm_segment_t seg;
1521 prev_state = exception_enter();
1522 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1523 1, regs, regs->cp0_badvaddr);
1525 * Did we catch a fault trying to load an instruction?
1527 if (regs->cp0_badvaddr == regs->cp0_epc)
1528 goto sigbus;
1530 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1531 goto sigbus;
1532 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1533 goto sigbus;
1536 * Do branch emulation only if we didn't forward the exception.
1537 * This is all so but ugly ...
1541 * Are we running in microMIPS mode?
1543 if (get_isa16_mode(regs->cp0_epc)) {
1545 * Did we catch a fault trying to load an instruction in
1546 * 16-bit mode?
1548 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1549 goto sigbus;
1550 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1551 show_registers(regs);
1553 if (cpu_has_mmips) {
1554 seg = get_fs();
1555 if (!user_mode(regs))
1556 set_fs(KERNEL_DS);
1557 emulate_load_store_microMIPS(regs,
1558 (void __user *)regs->cp0_badvaddr);
1559 set_fs(seg);
1561 return;
1564 if (cpu_has_mips16) {
1565 seg = get_fs();
1566 if (!user_mode(regs))
1567 set_fs(KERNEL_DS);
1568 emulate_load_store_MIPS16e(regs,
1569 (void __user *)regs->cp0_badvaddr);
1570 set_fs(seg);
1572 return;
1575 goto sigbus;
1578 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1579 show_registers(regs);
1580 pc = (unsigned int __user *)exception_epc(regs);
1582 seg = get_fs();
1583 if (!user_mode(regs))
1584 set_fs(KERNEL_DS);
1585 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1586 set_fs(seg);
1588 return;
1590 sigbus:
1591 die_if_kernel("Kernel unaligned instruction access", regs);
1592 force_sig(SIGBUS);
1595 * XXX On return from the signal handler we should advance the epc
1597 exception_exit(prev_state);
1600 #ifdef CONFIG_DEBUG_FS
1601 static int __init debugfs_unaligned(void)
1603 debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1604 &unaligned_instructions);
1605 debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1606 mips_debugfs_dir, &unaligned_action);
1607 return 0;
1609 arch_initcall(debugfs_unaligned);
1610 #endif