1 // SPDX-License-Identifier: GPL-2.0
3 * linux/arch/parisc/kernel/time.c
5 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
6 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
7 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
9 * 1994-07-02 Alan Modra
10 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
11 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
12 * "A Kernel Model for Precision Timekeeping" by Dave Mills
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/rtc.h>
17 #include <linux/sched.h>
18 #include <linux/sched/clock.h>
19 #include <linux/sched_clock.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/smp.h>
28 #include <linux/profile.h>
29 #include <linux/clocksource.h>
30 #include <linux/platform_device.h>
31 #include <linux/ftrace.h>
33 #include <linux/uaccess.h>
37 #include <asm/param.h>
41 #include <linux/timex.h>
43 static unsigned long clocktick __ro_after_init
; /* timer cycles per tick */
46 * We keep time on PA-RISC Linux by using the Interval Timer which is
47 * a pair of registers; one is read-only and one is write-only; both
48 * accessed through CR16. The read-only register is 32 or 64 bits wide,
49 * and increments by 1 every CPU clock tick. The architecture only
50 * guarantees us a rate between 0.5 and 2, but all implementations use a
51 * rate of 1. The write-only register is 32-bits wide. When the lowest
52 * 32 bits of the read-only register compare equal to the write-only
53 * register, it raises a maskable external interrupt. Each processor has
54 * an Interval Timer of its own and they are not synchronised.
56 * We want to generate an interrupt every 1/HZ seconds. So we program
57 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
58 * is programmed with the intended time of the next tick. We can be
59 * held off for an arbitrarily long period of time by interrupts being
60 * disabled, so we may miss one or more ticks.
62 irqreturn_t __irq_entry
timer_interrupt(int irq
, void *dev_id
)
65 unsigned long next_tick
;
66 unsigned long ticks_elapsed
= 0;
67 unsigned int cpu
= smp_processor_id();
68 struct cpuinfo_parisc
*cpuinfo
= &per_cpu(cpu_data
, cpu
);
70 /* gcc can optimize for "read-only" case with a local clocktick */
71 unsigned long cpt
= clocktick
;
73 /* Initialize next_tick to the old expected tick time. */
74 next_tick
= cpuinfo
->it_value
;
76 /* Calculate how many ticks have elapsed. */
81 } while (next_tick
- now
> cpt
);
83 /* Store (in CR16 cycles) up to when we are accounting right now. */
84 cpuinfo
->it_value
= next_tick
;
86 /* Go do system house keeping. */
89 legacy_timer_tick(ticks_elapsed
);
91 /* Skip clockticks on purpose if we know we would miss those.
92 * The new CR16 must be "later" than current CR16 otherwise
93 * itimer would not fire until CR16 wrapped - e.g 4 seconds
94 * later on a 1Ghz processor. We'll account for the missed
95 * ticks on the next timer interrupt.
96 * We want IT to fire modulo clocktick even if we miss/skip some.
97 * But those interrupts don't in fact get delivered that regularly.
99 * "next_tick - now" will always give the difference regardless
100 * if one or the other wrapped. If "now" is "bigger" we'll end up
101 * with a very large unsigned number.
104 while (next_tick
- now
> cpt
)
107 /* Program the IT when to deliver the next interrupt.
108 * Only bottom 32-bits of next_tick are writable in CR16!
109 * Timer interrupt will be delivered at least a few hundred cycles
110 * after the IT fires, so if we are too close (<= 8000 cycles) to the
111 * next cycle, simply skip it.
113 if (next_tick
- now
<= 8000)
115 mtctl(next_tick
, 16);
121 unsigned long profile_pc(struct pt_regs
*regs
)
123 unsigned long pc
= instruction_pointer(regs
);
125 if (regs
->gr
[0] & PSW_N
)
129 if (in_lock_functions(pc
))
135 EXPORT_SYMBOL(profile_pc
);
138 /* clock source code */
140 static u64 notrace
read_cr16(struct clocksource
*cs
)
145 static struct clocksource clocksource_cr16
= {
149 .mask
= CLOCKSOURCE_MASK(BITS_PER_LONG
),
150 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
153 void __init
start_cpu_itimer(void)
155 unsigned int cpu
= smp_processor_id();
156 unsigned long next_tick
= mfctl(16) + clocktick
;
158 mtctl(next_tick
, 16); /* kick off Interval Timer (CR16) */
160 per_cpu(cpu_data
, cpu
).it_value
= next_tick
;
163 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
164 static int rtc_generic_get_time(struct device
*dev
, struct rtc_time
*tm
)
166 struct pdc_tod tod_data
;
168 memset(tm
, 0, sizeof(*tm
));
169 if (pdc_tod_read(&tod_data
) < 0)
172 /* we treat tod_sec as unsigned, so this can work until year 2106 */
173 rtc_time64_to_tm(tod_data
.tod_sec
, tm
);
177 static int rtc_generic_set_time(struct device
*dev
, struct rtc_time
*tm
)
179 time64_t secs
= rtc_tm_to_time64(tm
);
182 /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
183 ret
= pdc_tod_set(secs
, 0);
185 pr_warn("pdc_tod_set(%lld) returned error %d\n", secs
, ret
);
186 if (ret
== PDC_INVALID_ARG
)
194 static const struct rtc_class_ops rtc_generic_ops
= {
195 .read_time
= rtc_generic_get_time
,
196 .set_time
= rtc_generic_set_time
,
199 static int __init
rtc_init(void)
201 struct platform_device
*pdev
;
203 pdev
= platform_device_register_data(NULL
, "rtc-generic", -1,
205 sizeof(rtc_generic_ops
));
207 return PTR_ERR_OR_ZERO(pdev
);
209 device_initcall(rtc_init
);
212 void read_persistent_clock64(struct timespec64
*ts
)
214 static struct pdc_tod tod_data
;
215 if (pdc_tod_read(&tod_data
) == 0) {
216 ts
->tv_sec
= tod_data
.tod_sec
;
217 ts
->tv_nsec
= tod_data
.tod_usec
* 1000;
219 printk(KERN_ERR
"Error reading tod clock\n");
226 static u64 notrace
read_cr16_sched_clock(void)
233 * timer interrupt and sched_clock() initialization
236 void __init
time_init(void)
238 unsigned long cr16_hz
;
240 clocktick
= (100 * PAGE0
->mem_10msec
) / HZ
;
241 start_cpu_itimer(); /* get CPU 0 started */
243 cr16_hz
= 100 * PAGE0
->mem_10msec
; /* Hz */
245 /* register as sched_clock source */
246 sched_clock_register(read_cr16_sched_clock
, BITS_PER_LONG
, cr16_hz
);
249 static int __init
init_cr16_clocksource(void)
252 * The cr16 interval timers are not syncronized across CPUs on
253 * different sockets, so mark them unstable and lower rating on
254 * multi-socket SMP systems.
256 if (num_online_cpus() > 1 && !running_on_qemu
) {
258 unsigned long cpu0_loc
;
259 cpu0_loc
= per_cpu(cpu_data
, 0).cpu_loc
;
261 for_each_online_cpu(cpu
) {
264 if ((cpu0_loc
!= 0) &&
265 (cpu0_loc
== per_cpu(cpu_data
, cpu
).cpu_loc
))
268 clocksource_cr16
.name
= "cr16_unstable";
269 clocksource_cr16
.flags
= CLOCK_SOURCE_UNSTABLE
;
270 clocksource_cr16
.rating
= 0;
275 /* XXX: We may want to mark sched_clock stable here if cr16 clocks are
277 * (clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */
279 /* register at clocksource framework */
280 clocksource_register_hz(&clocksource_cr16
,
281 100 * PAGE0
->mem_10msec
);
286 device_initcall(init_cr16_clocksource
);