Merge tag 'locking-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / drivers / mtd / nand / raw / atmel / nand-controller.c
blobe6ceec8f50dcecb17d95959757f4c340e2350416
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2017 ATMEL
4 * Copyright 2017 Free Electrons
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
11 * Copyright 2003 Rick Bronson
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
33 * A few words about the naming convention in this file. This convention
34 * applies to structure and function names.
36 * Prefixes:
38 * - atmel_nand_: all generic structures/functions
39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40 * (at91sam9 and avr32 SoCs)
41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42 * (sama5 SoCs and later)
43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44 * that is available in the HSMC block
45 * - <soc>_nand_: all SoC specific structures/functions
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
67 #include "pmecc.h"
69 #define ATMEL_HSMC_NFC_CFG 0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
81 #define ATMEL_HSMC_NFC_CTRL 0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
85 #define ATMEL_HSMC_NFC_SR 0x8
86 #define ATMEL_HSMC_NFC_IER 0xc
87 #define ATMEL_HSMC_NFC_IDR 0x10
88 #define ATMEL_HSMC_NFC_IMR 0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
102 ATMEL_HSMC_NFC_SR_UNDEF | \
103 ATMEL_HSMC_NFC_SR_AWB | \
104 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
107 #define ATMEL_HSMC_NFC_ADDR 0x18
108 #define ATMEL_HSMC_NFC_BANK 0x1c
110 #define ATMEL_NFC_MAX_RB_ID 7
112 #define ATMEL_NFC_SRAM_SIZE 0x2400
114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2 BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
118 #define ATMEL_NFC_DATAEN BIT(25)
119 #define ATMEL_NFC_NFCWR BIT(26)
121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
123 #define ATMEL_NAND_ALE_OFFSET BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET BIT(22)
126 #define DEFAULT_TIMEOUT_MS 1000
127 #define MIN_DMA_LEN 128
129 static bool atmel_nand_avoid_dma __read_mostly;
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
134 enum atmel_nand_rb_type {
135 ATMEL_NAND_NO_RB,
136 ATMEL_NAND_NATIVE_RB,
137 ATMEL_NAND_GPIO_RB,
140 struct atmel_nand_rb {
141 enum atmel_nand_rb_type type;
142 union {
143 struct gpio_desc *gpio;
144 int id;
148 struct atmel_nand_cs {
149 int id;
150 struct atmel_nand_rb rb;
151 struct gpio_desc *csgpio;
152 struct {
153 void __iomem *virt;
154 dma_addr_t dma;
155 } io;
157 struct atmel_smc_cs_conf smcconf;
160 struct atmel_nand {
161 struct list_head node;
162 struct device *dev;
163 struct nand_chip base;
164 struct atmel_nand_cs *activecs;
165 struct atmel_pmecc_user *pmecc;
166 struct gpio_desc *cdgpio;
167 int numcs;
168 struct atmel_nand_cs cs[];
171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
173 return container_of(chip, struct atmel_nand, base);
176 enum atmel_nfc_data_xfer {
177 ATMEL_NFC_NO_DATA,
178 ATMEL_NFC_READ_DATA,
179 ATMEL_NFC_WRITE_DATA,
182 struct atmel_nfc_op {
183 u8 cs;
184 u8 ncmds;
185 u8 cmds[2];
186 u8 naddrs;
187 u8 addrs[5];
188 enum atmel_nfc_data_xfer data;
189 u32 wait;
190 u32 errors;
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
196 struct atmel_nand_controller_ops {
197 int (*probe)(struct platform_device *pdev,
198 const struct atmel_nand_controller_caps *caps);
199 int (*remove)(struct atmel_nand_controller *nc);
200 void (*nand_init)(struct atmel_nand_controller *nc,
201 struct atmel_nand *nand);
202 int (*ecc_init)(struct nand_chip *chip);
203 int (*setup_interface)(struct atmel_nand *nand, int csline,
204 const struct nand_interface_config *conf);
205 int (*exec_op)(struct atmel_nand *nand,
206 const struct nand_operation *op, bool check_only);
209 struct atmel_nand_controller_caps {
210 bool has_dma;
211 bool legacy_of_bindings;
212 u32 ale_offs;
213 u32 cle_offs;
214 const char *ebi_csa_regmap_name;
215 const struct atmel_nand_controller_ops *ops;
218 struct atmel_nand_controller {
219 struct nand_controller base;
220 const struct atmel_nand_controller_caps *caps;
221 struct device *dev;
222 struct regmap *smc;
223 struct dma_chan *dmac;
224 struct atmel_pmecc *pmecc;
225 struct list_head chips;
226 struct clk *mck;
229 static inline struct atmel_nand_controller *
230 to_nand_controller(struct nand_controller *ctl)
232 return container_of(ctl, struct atmel_nand_controller, base);
235 struct atmel_smc_nand_ebi_csa_cfg {
236 u32 offs;
237 u32 nfd0_on_d16;
240 struct atmel_smc_nand_controller {
241 struct atmel_nand_controller base;
242 struct regmap *ebi_csa_regmap;
243 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
246 static inline struct atmel_smc_nand_controller *
247 to_smc_nand_controller(struct nand_controller *ctl)
249 return container_of(to_nand_controller(ctl),
250 struct atmel_smc_nand_controller, base);
253 struct atmel_hsmc_nand_controller {
254 struct atmel_nand_controller base;
255 struct {
256 struct gen_pool *pool;
257 void __iomem *virt;
258 dma_addr_t dma;
259 } sram;
260 const struct atmel_hsmc_reg_layout *hsmc_layout;
261 struct regmap *io;
262 struct atmel_nfc_op op;
263 struct completion complete;
264 u32 cfg;
265 int irq;
267 /* Only used when instantiating from legacy DT bindings. */
268 struct clk *clk;
271 static inline struct atmel_hsmc_nand_controller *
272 to_hsmc_nand_controller(struct nand_controller *ctl)
274 return container_of(to_nand_controller(ctl),
275 struct atmel_hsmc_nand_controller, base);
278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
280 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281 op->wait ^= status & op->wait;
283 return !op->wait || op->errors;
286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
288 struct atmel_hsmc_nand_controller *nc = data;
289 u32 sr, rcvd;
290 bool done;
292 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
294 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295 done = atmel_nfc_op_done(&nc->op, sr);
297 if (rcvd)
298 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
300 if (done)
301 complete(&nc->complete);
303 return rcvd ? IRQ_HANDLED : IRQ_NONE;
306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307 unsigned int timeout_ms)
309 int ret;
311 if (!timeout_ms)
312 timeout_ms = DEFAULT_TIMEOUT_MS;
314 if (poll) {
315 u32 status;
317 ret = regmap_read_poll_timeout(nc->base.smc,
318 ATMEL_HSMC_NFC_SR, status,
319 atmel_nfc_op_done(&nc->op,
320 status),
321 0, timeout_ms * 1000);
322 } else {
323 init_completion(&nc->complete);
324 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326 ret = wait_for_completion_timeout(&nc->complete,
327 msecs_to_jiffies(timeout_ms));
328 if (!ret)
329 ret = -ETIMEDOUT;
330 else
331 ret = 0;
333 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338 ret = -ETIMEDOUT;
341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342 dev_err(nc->base.dev, "Access to an undefined area\n");
343 ret = -EIO;
346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347 dev_err(nc->base.dev, "Access while busy\n");
348 ret = -EIO;
351 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352 dev_err(nc->base.dev, "Wrong access size\n");
353 ret = -EIO;
356 return ret;
359 static void atmel_nand_dma_transfer_finished(void *data)
361 struct completion *finished = data;
363 complete(finished);
366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367 void *buf, dma_addr_t dev_dma, size_t len,
368 enum dma_data_direction dir)
370 DECLARE_COMPLETION_ONSTACK(finished);
371 dma_addr_t src_dma, dst_dma, buf_dma;
372 struct dma_async_tx_descriptor *tx;
373 dma_cookie_t cookie;
375 buf_dma = dma_map_single(nc->dev, buf, len, dir);
376 if (dma_mapping_error(nc->dev, dev_dma)) {
377 dev_err(nc->dev,
378 "Failed to prepare a buffer for DMA access\n");
379 goto err;
382 if (dir == DMA_FROM_DEVICE) {
383 src_dma = dev_dma;
384 dst_dma = buf_dma;
385 } else {
386 src_dma = buf_dma;
387 dst_dma = dev_dma;
390 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392 if (!tx) {
393 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394 goto err_unmap;
397 tx->callback = atmel_nand_dma_transfer_finished;
398 tx->callback_param = &finished;
400 cookie = dmaengine_submit(tx);
401 if (dma_submit_error(cookie)) {
402 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403 goto err_unmap;
406 dma_async_issue_pending(nc->dmac);
407 wait_for_completion(&finished);
409 return 0;
411 err_unmap:
412 dma_unmap_single(nc->dev, buf_dma, len, dir);
414 err:
415 dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417 return -EIO;
420 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422 u8 *addrs = nc->op.addrs;
423 unsigned int op = 0;
424 u32 addr, val;
425 int i, ret;
427 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429 for (i = 0; i < nc->op.ncmds; i++)
430 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
433 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435 op |= ATMEL_NFC_CSID(nc->op.cs) |
436 ATMEL_NFC_ACYCLE(nc->op.naddrs);
438 if (nc->op.ncmds > 1)
439 op |= ATMEL_NFC_VCMD2;
441 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
442 (addrs[3] << 24);
444 if (nc->op.data != ATMEL_NFC_NO_DATA) {
445 op |= ATMEL_NFC_DATAEN;
446 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
449 op |= ATMEL_NFC_NFCWR;
452 /* Clear all flags. */
453 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455 /* Send the command. */
456 regmap_write(nc->io, op, addr);
458 ret = atmel_nfc_wait(nc, poll, 0);
459 if (ret)
460 dev_err(nc->base.dev,
461 "Failed to send NAND command (err = %d)!",
462 ret);
464 /* Reset the op state. */
465 memset(&nc->op, 0, sizeof(nc->op));
467 return ret;
470 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
471 unsigned int len, bool force_8bit)
473 struct atmel_nand_controller *nc;
475 nc = to_nand_controller(nand->base.controller);
478 * If the controller supports DMA, the buffer address is DMA-able and
479 * len is long enough to make DMA transfers profitable, let's trigger
480 * a DMA transfer. If it fails, fallback to PIO mode.
482 if (nc->dmac && virt_addr_valid(buf) &&
483 len >= MIN_DMA_LEN && !force_8bit &&
484 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
485 DMA_FROM_DEVICE))
486 return;
488 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
489 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
490 else
491 ioread8_rep(nand->activecs->io.virt, buf, len);
494 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
495 unsigned int len, bool force_8bit)
497 struct atmel_nand_controller *nc;
499 nc = to_nand_controller(nand->base.controller);
502 * If the controller supports DMA, the buffer address is DMA-able and
503 * len is long enough to make DMA transfers profitable, let's trigger
504 * a DMA transfer. If it fails, fallback to PIO mode.
506 if (nc->dmac && virt_addr_valid(buf) &&
507 len >= MIN_DMA_LEN && !force_8bit &&
508 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
509 len, DMA_TO_DEVICE))
510 return;
512 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
513 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
514 else
515 iowrite8_rep(nand->activecs->io.virt, buf, len);
518 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520 if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
521 return nand_soft_waitrdy(&nand->base, timeout_ms);
523 return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
524 timeout_ms);
527 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
528 unsigned int timeout_ms)
530 struct atmel_hsmc_nand_controller *nc;
531 u32 status, mask;
533 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
534 return atmel_nand_waitrdy(nand, timeout_ms);
536 nc = to_hsmc_nand_controller(nand->base.controller);
537 mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
538 return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
539 status, status & mask,
540 10, timeout_ms * 1000);
543 static void atmel_nand_select_target(struct atmel_nand *nand,
544 unsigned int cs)
546 nand->activecs = &nand->cs[cs];
549 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
550 unsigned int cs)
552 struct mtd_info *mtd = nand_to_mtd(&nand->base);
553 struct atmel_hsmc_nand_controller *nc;
554 u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
555 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
556 ATMEL_HSMC_NFC_CFG_RSPARE;
558 nand->activecs = &nand->cs[cs];
559 nc = to_hsmc_nand_controller(nand->base.controller);
560 if (nc->cfg == cfg)
561 return;
563 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
564 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
565 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
566 ATMEL_HSMC_NFC_CFG_RSPARE |
567 ATMEL_HSMC_NFC_CFG_WSPARE,
568 cfg);
569 nc->cfg = cfg;
572 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
573 const struct nand_op_instr *instr)
575 struct atmel_nand_controller *nc;
576 unsigned int i;
578 nc = to_nand_controller(nand->base.controller);
579 switch (instr->type) {
580 case NAND_OP_CMD_INSTR:
581 writeb(instr->ctx.cmd.opcode,
582 nand->activecs->io.virt + nc->caps->cle_offs);
583 return 0;
584 case NAND_OP_ADDR_INSTR:
585 for (i = 0; i < instr->ctx.addr.naddrs; i++)
586 writeb(instr->ctx.addr.addrs[i],
587 nand->activecs->io.virt + nc->caps->ale_offs);
588 return 0;
589 case NAND_OP_DATA_IN_INSTR:
590 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
591 instr->ctx.data.len,
592 instr->ctx.data.force_8bit);
593 return 0;
594 case NAND_OP_DATA_OUT_INSTR:
595 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
596 instr->ctx.data.len,
597 instr->ctx.data.force_8bit);
598 return 0;
599 case NAND_OP_WAITRDY_INSTR:
600 return atmel_nand_waitrdy(nand,
601 instr->ctx.waitrdy.timeout_ms);
602 default:
603 break;
606 return -EINVAL;
609 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
610 const struct nand_operation *op,
611 bool check_only)
613 unsigned int i;
614 int ret = 0;
616 if (check_only)
617 return 0;
619 atmel_nand_select_target(nand, op->cs);
620 gpiod_set_value(nand->activecs->csgpio, 0);
621 for (i = 0; i < op->ninstrs; i++) {
622 ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
623 if (ret)
624 break;
626 gpiod_set_value(nand->activecs->csgpio, 1);
628 return ret;
631 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
632 const struct nand_subop *subop)
634 struct atmel_nand *nand = to_atmel_nand(chip);
635 struct atmel_hsmc_nand_controller *nc;
636 unsigned int i, j;
638 nc = to_hsmc_nand_controller(chip->controller);
640 nc->op.cs = nand->activecs->id;
641 for (i = 0; i < subop->ninstrs; i++) {
642 const struct nand_op_instr *instr = &subop->instrs[i];
644 if (instr->type == NAND_OP_CMD_INSTR) {
645 nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
646 continue;
649 for (j = nand_subop_get_addr_start_off(subop, i);
650 j < nand_subop_get_num_addr_cyc(subop, i); j++) {
651 nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
652 nc->op.naddrs++;
656 return atmel_nfc_exec_op(nc, true);
659 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
660 const struct nand_subop *subop)
662 const struct nand_op_instr *instr = subop->instrs;
663 struct atmel_nand *nand = to_atmel_nand(chip);
665 if (instr->type == NAND_OP_DATA_IN_INSTR)
666 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
667 instr->ctx.data.len,
668 instr->ctx.data.force_8bit);
669 else
670 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
671 instr->ctx.data.len,
672 instr->ctx.data.force_8bit);
674 return 0;
677 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
678 const struct nand_subop *subop)
680 const struct nand_op_instr *instr = subop->instrs;
681 struct atmel_nand *nand = to_atmel_nand(chip);
683 return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
686 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
687 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
688 NAND_OP_PARSER_PAT_CMD_ELEM(true),
689 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
690 NAND_OP_PARSER_PAT_CMD_ELEM(true)),
691 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
692 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
693 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
694 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
695 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
696 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
699 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
700 const struct nand_operation *op,
701 bool check_only)
703 int ret;
705 if (check_only)
706 return nand_op_parser_exec_op(&nand->base,
707 &atmel_hsmc_op_parser, op, true);
709 atmel_hsmc_nand_select_target(nand, op->cs);
710 ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
711 false);
713 return ret;
716 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
717 bool oob_required)
719 struct mtd_info *mtd = nand_to_mtd(chip);
720 struct atmel_hsmc_nand_controller *nc;
721 int ret = -EIO;
723 nc = to_hsmc_nand_controller(chip->controller);
725 if (nc->base.dmac)
726 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
727 nc->sram.dma, mtd->writesize,
728 DMA_TO_DEVICE);
730 /* Falling back to CPU copy. */
731 if (ret)
732 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734 if (oob_required)
735 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
736 mtd->oobsize);
739 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
740 bool oob_required)
742 struct mtd_info *mtd = nand_to_mtd(chip);
743 struct atmel_hsmc_nand_controller *nc;
744 int ret = -EIO;
746 nc = to_hsmc_nand_controller(chip->controller);
748 if (nc->base.dmac)
749 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
750 mtd->writesize, DMA_FROM_DEVICE);
752 /* Falling back to CPU copy. */
753 if (ret)
754 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756 if (oob_required)
757 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
758 mtd->oobsize);
761 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763 struct mtd_info *mtd = nand_to_mtd(chip);
764 struct atmel_hsmc_nand_controller *nc;
766 nc = to_hsmc_nand_controller(chip->controller);
768 if (column >= 0) {
769 nc->op.addrs[nc->op.naddrs++] = column;
772 * 2 address cycles for the column offset on large page NANDs.
774 if (mtd->writesize > 512)
775 nc->op.addrs[nc->op.naddrs++] = column >> 8;
778 if (page >= 0) {
779 nc->op.addrs[nc->op.naddrs++] = page;
780 nc->op.addrs[nc->op.naddrs++] = page >> 8;
782 if (chip->options & NAND_ROW_ADDR_3)
783 nc->op.addrs[nc->op.naddrs++] = page >> 16;
787 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789 struct atmel_nand *nand = to_atmel_nand(chip);
790 struct atmel_nand_controller *nc;
791 int ret;
793 nc = to_nand_controller(chip->controller);
795 if (raw)
796 return 0;
798 ret = atmel_pmecc_enable(nand->pmecc, op);
799 if (ret)
800 dev_err(nc->dev,
801 "Failed to enable ECC engine (err = %d)\n", ret);
803 return ret;
806 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808 struct atmel_nand *nand = to_atmel_nand(chip);
810 if (!raw)
811 atmel_pmecc_disable(nand->pmecc);
814 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816 struct atmel_nand *nand = to_atmel_nand(chip);
817 struct mtd_info *mtd = nand_to_mtd(chip);
818 struct atmel_nand_controller *nc;
819 struct mtd_oob_region oobregion;
820 void *eccbuf;
821 int ret, i;
823 nc = to_nand_controller(chip->controller);
825 if (raw)
826 return 0;
828 ret = atmel_pmecc_wait_rdy(nand->pmecc);
829 if (ret) {
830 dev_err(nc->dev,
831 "Failed to transfer NAND page data (err = %d)\n",
832 ret);
833 return ret;
836 mtd_ooblayout_ecc(mtd, 0, &oobregion);
837 eccbuf = chip->oob_poi + oobregion.offset;
839 for (i = 0; i < chip->ecc.steps; i++) {
840 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
841 eccbuf);
842 eccbuf += chip->ecc.bytes;
845 return 0;
848 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
849 bool raw)
851 struct atmel_nand *nand = to_atmel_nand(chip);
852 struct mtd_info *mtd = nand_to_mtd(chip);
853 struct atmel_nand_controller *nc;
854 struct mtd_oob_region oobregion;
855 int ret, i, max_bitflips = 0;
856 void *databuf, *eccbuf;
858 nc = to_nand_controller(chip->controller);
860 if (raw)
861 return 0;
863 ret = atmel_pmecc_wait_rdy(nand->pmecc);
864 if (ret) {
865 dev_err(nc->dev,
866 "Failed to read NAND page data (err = %d)\n",
867 ret);
868 return ret;
871 mtd_ooblayout_ecc(mtd, 0, &oobregion);
872 eccbuf = chip->oob_poi + oobregion.offset;
873 databuf = buf;
875 for (i = 0; i < chip->ecc.steps; i++) {
876 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
877 eccbuf);
878 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
879 ret = nand_check_erased_ecc_chunk(databuf,
880 chip->ecc.size,
881 eccbuf,
882 chip->ecc.bytes,
883 NULL, 0,
884 chip->ecc.strength);
886 if (ret >= 0)
887 max_bitflips = max(ret, max_bitflips);
888 else
889 mtd->ecc_stats.failed++;
891 databuf += chip->ecc.size;
892 eccbuf += chip->ecc.bytes;
895 return max_bitflips;
898 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
899 bool oob_required, int page, bool raw)
901 struct mtd_info *mtd = nand_to_mtd(chip);
902 struct atmel_nand *nand = to_atmel_nand(chip);
903 int ret;
905 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
907 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
908 if (ret)
909 return ret;
911 nand_write_data_op(chip, buf, mtd->writesize, false);
913 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
914 if (ret) {
915 atmel_pmecc_disable(nand->pmecc);
916 return ret;
919 atmel_nand_pmecc_disable(chip, raw);
921 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
923 return nand_prog_page_end_op(chip);
926 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
927 int oob_required, int page)
929 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
932 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
933 const u8 *buf, int oob_required,
934 int page)
936 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
939 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
940 bool oob_required, int page, bool raw)
942 struct mtd_info *mtd = nand_to_mtd(chip);
943 int ret;
945 nand_read_page_op(chip, page, 0, NULL, 0);
947 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
948 if (ret)
949 return ret;
951 ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
952 if (ret)
953 goto out_disable;
955 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
956 if (ret)
957 goto out_disable;
959 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
961 out_disable:
962 atmel_nand_pmecc_disable(chip, raw);
964 return ret;
967 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
968 int oob_required, int page)
970 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
973 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
974 int oob_required, int page)
976 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
979 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
980 const u8 *buf, bool oob_required,
981 int page, bool raw)
983 struct mtd_info *mtd = nand_to_mtd(chip);
984 struct atmel_nand *nand = to_atmel_nand(chip);
985 struct atmel_hsmc_nand_controller *nc;
986 int ret;
988 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
989 nc = to_hsmc_nand_controller(chip->controller);
991 atmel_nfc_copy_to_sram(chip, buf, false);
993 nc->op.cmds[0] = NAND_CMD_SEQIN;
994 nc->op.ncmds = 1;
995 atmel_nfc_set_op_addr(chip, page, 0x0);
996 nc->op.cs = nand->activecs->id;
997 nc->op.data = ATMEL_NFC_WRITE_DATA;
999 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1000 if (ret)
1001 return ret;
1003 ret = atmel_nfc_exec_op(nc, false);
1004 if (ret) {
1005 atmel_nand_pmecc_disable(chip, raw);
1006 dev_err(nc->base.dev,
1007 "Failed to transfer NAND page data (err = %d)\n",
1008 ret);
1009 return ret;
1012 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1014 atmel_nand_pmecc_disable(chip, raw);
1016 if (ret)
1017 return ret;
1019 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1021 return nand_prog_page_end_op(chip);
1024 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1025 const u8 *buf, int oob_required,
1026 int page)
1028 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1029 false);
1032 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1033 const u8 *buf,
1034 int oob_required, int page)
1036 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1037 true);
1040 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1041 bool oob_required, int page,
1042 bool raw)
1044 struct mtd_info *mtd = nand_to_mtd(chip);
1045 struct atmel_nand *nand = to_atmel_nand(chip);
1046 struct atmel_hsmc_nand_controller *nc;
1047 int ret;
1049 atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1050 nc = to_hsmc_nand_controller(chip->controller);
1053 * Optimized read page accessors only work when the NAND R/B pin is
1054 * connected to a native SoC R/B pin. If that's not the case, fallback
1055 * to the non-optimized one.
1057 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1058 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1059 raw);
1061 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1063 if (mtd->writesize > 512)
1064 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1066 atmel_nfc_set_op_addr(chip, page, 0x0);
1067 nc->op.cs = nand->activecs->id;
1068 nc->op.data = ATMEL_NFC_READ_DATA;
1070 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1071 if (ret)
1072 return ret;
1074 ret = atmel_nfc_exec_op(nc, false);
1075 if (ret) {
1076 atmel_nand_pmecc_disable(chip, raw);
1077 dev_err(nc->base.dev,
1078 "Failed to load NAND page data (err = %d)\n",
1079 ret);
1080 return ret;
1083 atmel_nfc_copy_from_sram(chip, buf, true);
1085 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1087 atmel_nand_pmecc_disable(chip, raw);
1089 return ret;
1092 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1093 int oob_required, int page)
1095 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1096 false);
1099 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1100 u8 *buf, int oob_required,
1101 int page)
1103 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1104 true);
1107 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1109 const struct nand_ecc_props *requirements =
1110 nanddev_get_ecc_requirements(&chip->base);
1111 struct mtd_info *mtd = nand_to_mtd(chip);
1112 struct nand_device *nanddev = mtd_to_nanddev(mtd);
1113 struct atmel_nand *nand = to_atmel_nand(chip);
1114 struct atmel_nand_controller *nc;
1115 struct atmel_pmecc_user_req req;
1117 nc = to_nand_controller(chip->controller);
1119 if (!nc->pmecc) {
1120 dev_err(nc->dev, "HW ECC not supported\n");
1121 return -ENOTSUPP;
1124 if (nc->caps->legacy_of_bindings) {
1125 u32 val;
1127 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1128 &val))
1129 chip->ecc.strength = val;
1131 if (!of_property_read_u32(nc->dev->of_node,
1132 "atmel,pmecc-sector-size",
1133 &val))
1134 chip->ecc.size = val;
1137 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1138 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1139 else if (chip->ecc.strength)
1140 req.ecc.strength = chip->ecc.strength;
1141 else if (requirements->strength)
1142 req.ecc.strength = requirements->strength;
1143 else
1144 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1146 if (chip->ecc.size)
1147 req.ecc.sectorsize = chip->ecc.size;
1148 else if (requirements->step_size)
1149 req.ecc.sectorsize = requirements->step_size;
1150 else
1151 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1153 req.pagesize = mtd->writesize;
1154 req.oobsize = mtd->oobsize;
1156 if (mtd->writesize <= 512) {
1157 req.ecc.bytes = 4;
1158 req.ecc.ooboffset = 0;
1159 } else {
1160 req.ecc.bytes = mtd->oobsize - 2;
1161 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1164 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1165 if (IS_ERR(nand->pmecc))
1166 return PTR_ERR(nand->pmecc);
1168 chip->ecc.algo = NAND_ECC_ALGO_BCH;
1169 chip->ecc.size = req.ecc.sectorsize;
1170 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1171 chip->ecc.strength = req.ecc.strength;
1173 chip->options |= NAND_NO_SUBPAGE_WRITE;
1175 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1177 return 0;
1180 static int atmel_nand_ecc_init(struct nand_chip *chip)
1182 struct atmel_nand_controller *nc;
1183 int ret;
1185 nc = to_nand_controller(chip->controller);
1187 switch (chip->ecc.engine_type) {
1188 case NAND_ECC_ENGINE_TYPE_NONE:
1189 case NAND_ECC_ENGINE_TYPE_SOFT:
1191 * Nothing to do, the core will initialize everything for us.
1193 break;
1195 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1196 ret = atmel_nand_pmecc_init(chip);
1197 if (ret)
1198 return ret;
1200 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1201 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1202 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1203 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1204 break;
1206 default:
1207 /* Other modes are not supported. */
1208 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1209 chip->ecc.engine_type);
1210 return -ENOTSUPP;
1213 return 0;
1216 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1218 int ret;
1220 ret = atmel_nand_ecc_init(chip);
1221 if (ret)
1222 return ret;
1224 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1225 return 0;
1227 /* Adjust the ECC operations for the HSMC IP. */
1228 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1229 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1230 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1231 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1233 return 0;
1236 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1237 const struct nand_interface_config *conf,
1238 struct atmel_smc_cs_conf *smcconf)
1240 u32 ncycles, totalcycles, timeps, mckperiodps;
1241 struct atmel_nand_controller *nc;
1242 int ret;
1244 nc = to_nand_controller(nand->base.controller);
1246 /* DDR interface not supported. */
1247 if (conf->type != NAND_SDR_IFACE)
1248 return -ENOTSUPP;
1251 * tRC < 30ns implies EDO mode. This controller does not support this
1252 * mode.
1254 if (conf->timings.sdr.tRC_min < 30000)
1255 return -ENOTSUPP;
1257 atmel_smc_cs_conf_init(smcconf);
1259 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1260 mckperiodps *= 1000;
1263 * Set write pulse timing. This one is easy to extract:
1265 * NWE_PULSE = tWP
1267 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1268 totalcycles = ncycles;
1269 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1270 ncycles);
1271 if (ret)
1272 return ret;
1275 * The write setup timing depends on the operation done on the NAND.
1276 * All operations goes through the same data bus, but the operation
1277 * type depends on the address we are writing to (ALE/CLE address
1278 * lines).
1279 * Since we have no way to differentiate the different operations at
1280 * the SMC level, we must consider the worst case (the biggest setup
1281 * time among all operation types):
1283 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1285 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1286 conf->timings.sdr.tALS_min);
1287 timeps = max(timeps, conf->timings.sdr.tDS_min);
1288 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1289 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1290 totalcycles += ncycles;
1291 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1292 ncycles);
1293 if (ret)
1294 return ret;
1297 * As for the write setup timing, the write hold timing depends on the
1298 * operation done on the NAND:
1300 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1302 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1303 conf->timings.sdr.tALH_min);
1304 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1305 conf->timings.sdr.tWH_min);
1306 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1307 totalcycles += ncycles;
1310 * The write cycle timing is directly matching tWC, but is also
1311 * dependent on the other timings on the setup and hold timings we
1312 * calculated earlier, which gives:
1314 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1316 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1317 ncycles = max(totalcycles, ncycles);
1318 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1319 ncycles);
1320 if (ret)
1321 return ret;
1324 * We don't want the CS line to be toggled between each byte/word
1325 * transfer to the NAND. The only way to guarantee that is to have the
1326 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1328 * NCS_WR_PULSE = NWE_CYCLE
1330 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1331 ncycles);
1332 if (ret)
1333 return ret;
1336 * As for the write setup timing, the read hold timing depends on the
1337 * operation done on the NAND:
1339 * NRD_HOLD = max(tREH, tRHOH)
1341 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1342 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1343 totalcycles = ncycles;
1346 * TDF = tRHZ - NRD_HOLD
1348 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1349 ncycles -= totalcycles;
1352 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1353 * we might end up with a config that does not fit in the TDF field.
1354 * Just take the max value in this case and hope that the NAND is more
1355 * tolerant than advertised.
1357 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1358 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1359 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1360 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1362 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1363 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1366 * Read pulse timing directly matches tRP:
1368 * NRD_PULSE = tRP
1370 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1371 totalcycles += ncycles;
1372 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1373 ncycles);
1374 if (ret)
1375 return ret;
1378 * The write cycle timing is directly matching tWC, but is also
1379 * dependent on the setup and hold timings we calculated earlier,
1380 * which gives:
1382 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1384 * NRD_SETUP is always 0.
1386 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1387 ncycles = max(totalcycles, ncycles);
1388 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1389 ncycles);
1390 if (ret)
1391 return ret;
1394 * We don't want the CS line to be toggled between each byte/word
1395 * transfer from the NAND. The only way to guarantee that is to have
1396 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1398 * NCS_RD_PULSE = NRD_CYCLE
1400 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1401 ncycles);
1402 if (ret)
1403 return ret;
1405 /* Txxx timings are directly matching tXXX ones. */
1406 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1407 ret = atmel_smc_cs_conf_set_timing(smcconf,
1408 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1409 ncycles);
1410 if (ret)
1411 return ret;
1413 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1414 ret = atmel_smc_cs_conf_set_timing(smcconf,
1415 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1416 ncycles);
1418 * Version 4 of the ONFI spec mandates that tADL be at least 400
1419 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1420 * fit in the tADL field of the SMC reg. We need to relax the check and
1421 * accept the -ERANGE return code.
1423 * Note that previous versions of the ONFI spec had a lower tADL_min
1424 * (100 or 200 ns). It's not clear why this timing constraint got
1425 * increased but it seems most NANDs are fine with values lower than
1426 * 400ns, so we should be safe.
1428 if (ret && ret != -ERANGE)
1429 return ret;
1431 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1432 ret = atmel_smc_cs_conf_set_timing(smcconf,
1433 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1434 ncycles);
1435 if (ret)
1436 return ret;
1438 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1439 ret = atmel_smc_cs_conf_set_timing(smcconf,
1440 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1441 ncycles);
1442 if (ret)
1443 return ret;
1445 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1446 ret = atmel_smc_cs_conf_set_timing(smcconf,
1447 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1448 ncycles);
1449 if (ret)
1450 return ret;
1452 /* Attach the CS line to the NFC logic. */
1453 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1455 /* Set the appropriate data bus width. */
1456 if (nand->base.options & NAND_BUSWIDTH_16)
1457 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1459 /* Operate in NRD/NWE READ/WRITEMODE. */
1460 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1461 ATMEL_SMC_MODE_WRITEMODE_NWE;
1463 return 0;
1466 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1467 int csline,
1468 const struct nand_interface_config *conf)
1470 struct atmel_nand_controller *nc;
1471 struct atmel_smc_cs_conf smcconf;
1472 struct atmel_nand_cs *cs;
1473 int ret;
1475 nc = to_nand_controller(nand->base.controller);
1477 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1478 if (ret)
1479 return ret;
1481 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1482 return 0;
1484 cs = &nand->cs[csline];
1485 cs->smcconf = smcconf;
1486 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1488 return 0;
1491 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1492 int csline,
1493 const struct nand_interface_config *conf)
1495 struct atmel_hsmc_nand_controller *nc;
1496 struct atmel_smc_cs_conf smcconf;
1497 struct atmel_nand_cs *cs;
1498 int ret;
1500 nc = to_hsmc_nand_controller(nand->base.controller);
1502 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1503 if (ret)
1504 return ret;
1506 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1507 return 0;
1509 cs = &nand->cs[csline];
1510 cs->smcconf = smcconf;
1512 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1513 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1515 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1516 &cs->smcconf);
1518 return 0;
1521 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1522 const struct nand_interface_config *conf)
1524 struct atmel_nand *nand = to_atmel_nand(chip);
1525 struct atmel_nand_controller *nc;
1527 nc = to_nand_controller(nand->base.controller);
1529 if (csline >= nand->numcs ||
1530 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1531 return -EINVAL;
1533 return nc->caps->ops->setup_interface(nand, csline, conf);
1536 static int atmel_nand_exec_op(struct nand_chip *chip,
1537 const struct nand_operation *op,
1538 bool check_only)
1540 struct atmel_nand *nand = to_atmel_nand(chip);
1541 struct atmel_nand_controller *nc;
1543 nc = to_nand_controller(nand->base.controller);
1545 return nc->caps->ops->exec_op(nand, op, check_only);
1548 static void atmel_nand_init(struct atmel_nand_controller *nc,
1549 struct atmel_nand *nand)
1551 struct nand_chip *chip = &nand->base;
1552 struct mtd_info *mtd = nand_to_mtd(chip);
1554 mtd->dev.parent = nc->dev;
1555 nand->base.controller = &nc->base;
1557 if (!nc->mck || !nc->caps->ops->setup_interface)
1558 chip->options |= NAND_KEEP_TIMINGS;
1561 * Use a bounce buffer when the buffer passed by the MTD user is not
1562 * suitable for DMA.
1564 if (nc->dmac)
1565 chip->options |= NAND_USES_DMA;
1567 /* Default to HW ECC if pmecc is available. */
1568 if (nc->pmecc)
1569 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1572 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1573 struct atmel_nand *nand)
1575 struct nand_chip *chip = &nand->base;
1576 struct atmel_smc_nand_controller *smc_nc;
1577 int i;
1579 atmel_nand_init(nc, nand);
1581 smc_nc = to_smc_nand_controller(chip->controller);
1582 if (!smc_nc->ebi_csa_regmap)
1583 return;
1585 /* Attach the CS to the NAND Flash logic. */
1586 for (i = 0; i < nand->numcs; i++)
1587 regmap_update_bits(smc_nc->ebi_csa_regmap,
1588 smc_nc->ebi_csa->offs,
1589 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1591 if (smc_nc->ebi_csa->nfd0_on_d16)
1592 regmap_update_bits(smc_nc->ebi_csa_regmap,
1593 smc_nc->ebi_csa->offs,
1594 smc_nc->ebi_csa->nfd0_on_d16,
1595 smc_nc->ebi_csa->nfd0_on_d16);
1598 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1600 struct nand_chip *chip = &nand->base;
1601 struct mtd_info *mtd = nand_to_mtd(chip);
1602 int ret;
1604 ret = mtd_device_unregister(mtd);
1605 if (ret)
1606 return ret;
1608 nand_cleanup(chip);
1609 list_del(&nand->node);
1611 return 0;
1614 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1615 struct device_node *np,
1616 int reg_cells)
1618 struct atmel_nand *nand;
1619 struct gpio_desc *gpio;
1620 int numcs, ret, i;
1622 numcs = of_property_count_elems_of_size(np, "reg",
1623 reg_cells * sizeof(u32));
1624 if (numcs < 1) {
1625 dev_err(nc->dev, "Missing or invalid reg property\n");
1626 return ERR_PTR(-EINVAL);
1629 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1630 if (!nand) {
1631 dev_err(nc->dev, "Failed to allocate NAND object\n");
1632 return ERR_PTR(-ENOMEM);
1635 nand->numcs = numcs;
1637 gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1638 "det", GPIOD_IN, "nand-det");
1639 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1640 dev_err(nc->dev,
1641 "Failed to get detect gpio (err = %ld)\n",
1642 PTR_ERR(gpio));
1643 return ERR_CAST(gpio);
1646 if (!IS_ERR(gpio))
1647 nand->cdgpio = gpio;
1649 for (i = 0; i < numcs; i++) {
1650 struct resource res;
1651 u32 val;
1653 ret = of_address_to_resource(np, 0, &res);
1654 if (ret) {
1655 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1656 ret);
1657 return ERR_PTR(ret);
1660 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1661 &val);
1662 if (ret) {
1663 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1664 ret);
1665 return ERR_PTR(ret);
1668 nand->cs[i].id = val;
1670 nand->cs[i].io.dma = res.start;
1671 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1672 if (IS_ERR(nand->cs[i].io.virt))
1673 return ERR_CAST(nand->cs[i].io.virt);
1675 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1676 if (val > ATMEL_NFC_MAX_RB_ID)
1677 return ERR_PTR(-EINVAL);
1679 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1680 nand->cs[i].rb.id = val;
1681 } else {
1682 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1683 of_fwnode_handle(np),
1684 "rb", i, GPIOD_IN,
1685 "nand-rb");
1686 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1687 dev_err(nc->dev,
1688 "Failed to get R/B gpio (err = %ld)\n",
1689 PTR_ERR(gpio));
1690 return ERR_CAST(gpio);
1693 if (!IS_ERR(gpio)) {
1694 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1695 nand->cs[i].rb.gpio = gpio;
1699 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1700 of_fwnode_handle(np),
1701 "cs", i, GPIOD_OUT_HIGH,
1702 "nand-cs");
1703 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1704 dev_err(nc->dev,
1705 "Failed to get CS gpio (err = %ld)\n",
1706 PTR_ERR(gpio));
1707 return ERR_CAST(gpio);
1710 if (!IS_ERR(gpio))
1711 nand->cs[i].csgpio = gpio;
1714 nand_set_flash_node(&nand->base, np);
1716 return nand;
1719 static int
1720 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1721 struct atmel_nand *nand)
1723 struct nand_chip *chip = &nand->base;
1724 struct mtd_info *mtd = nand_to_mtd(chip);
1725 int ret;
1727 /* No card inserted, skip this NAND. */
1728 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1729 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1730 return 0;
1733 nc->caps->ops->nand_init(nc, nand);
1735 ret = nand_scan(chip, nand->numcs);
1736 if (ret) {
1737 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1738 return ret;
1741 ret = mtd_device_register(mtd, NULL, 0);
1742 if (ret) {
1743 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1744 nand_cleanup(chip);
1745 return ret;
1748 list_add_tail(&nand->node, &nc->chips);
1750 return 0;
1753 static int
1754 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1756 struct atmel_nand *nand, *tmp;
1757 int ret;
1759 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1760 ret = atmel_nand_controller_remove_nand(nand);
1761 if (ret)
1762 return ret;
1765 return 0;
1768 static int
1769 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1771 struct device *dev = nc->dev;
1772 struct platform_device *pdev = to_platform_device(dev);
1773 struct atmel_nand *nand;
1774 struct gpio_desc *gpio;
1775 struct resource *res;
1778 * Legacy bindings only allow connecting a single NAND with a unique CS
1779 * line to the controller.
1781 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1782 GFP_KERNEL);
1783 if (!nand)
1784 return -ENOMEM;
1786 nand->numcs = 1;
1788 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1789 nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1790 if (IS_ERR(nand->cs[0].io.virt))
1791 return PTR_ERR(nand->cs[0].io.virt);
1793 nand->cs[0].io.dma = res->start;
1796 * The old driver was hardcoding the CS id to 3 for all sama5
1797 * controllers. Since this id is only meaningful for the sama5
1798 * controller we can safely assign this id to 3 no matter the
1799 * controller.
1800 * If one wants to connect a NAND to a different CS line, he will
1801 * have to use the new bindings.
1803 nand->cs[0].id = 3;
1805 /* R/B GPIO. */
1806 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
1807 if (IS_ERR(gpio)) {
1808 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1809 PTR_ERR(gpio));
1810 return PTR_ERR(gpio);
1813 if (gpio) {
1814 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1815 nand->cs[0].rb.gpio = gpio;
1818 /* CS GPIO. */
1819 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1820 if (IS_ERR(gpio)) {
1821 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1822 PTR_ERR(gpio));
1823 return PTR_ERR(gpio);
1826 nand->cs[0].csgpio = gpio;
1828 /* Card detect GPIO. */
1829 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1830 if (IS_ERR(gpio)) {
1831 dev_err(dev,
1832 "Failed to get detect gpio (err = %ld)\n",
1833 PTR_ERR(gpio));
1834 return PTR_ERR(gpio);
1837 nand->cdgpio = gpio;
1839 nand_set_flash_node(&nand->base, nc->dev->of_node);
1841 return atmel_nand_controller_add_nand(nc, nand);
1844 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1846 struct device_node *np, *nand_np;
1847 struct device *dev = nc->dev;
1848 int ret, reg_cells;
1849 u32 val;
1851 /* We do not retrieve the SMC syscon when parsing old DTs. */
1852 if (nc->caps->legacy_of_bindings)
1853 return atmel_nand_controller_legacy_add_nands(nc);
1855 np = dev->of_node;
1857 ret = of_property_read_u32(np, "#address-cells", &val);
1858 if (ret) {
1859 dev_err(dev, "missing #address-cells property\n");
1860 return ret;
1863 reg_cells = val;
1865 ret = of_property_read_u32(np, "#size-cells", &val);
1866 if (ret) {
1867 dev_err(dev, "missing #size-cells property\n");
1868 return ret;
1871 reg_cells += val;
1873 for_each_child_of_node(np, nand_np) {
1874 struct atmel_nand *nand;
1876 nand = atmel_nand_create(nc, nand_np, reg_cells);
1877 if (IS_ERR(nand)) {
1878 ret = PTR_ERR(nand);
1879 goto err;
1882 ret = atmel_nand_controller_add_nand(nc, nand);
1883 if (ret)
1884 goto err;
1887 return 0;
1889 err:
1890 atmel_nand_controller_remove_nands(nc);
1892 return ret;
1895 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1897 if (nc->dmac)
1898 dma_release_channel(nc->dmac);
1900 clk_put(nc->mck);
1903 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1904 .offs = AT91SAM9260_MATRIX_EBICSA,
1907 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1908 .offs = AT91SAM9261_MATRIX_EBICSA,
1911 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1912 .offs = AT91SAM9263_MATRIX_EBI0CSA,
1915 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1916 .offs = AT91SAM9RL_MATRIX_EBICSA,
1919 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1920 .offs = AT91SAM9G45_MATRIX_EBICSA,
1923 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1924 .offs = AT91SAM9N12_MATRIX_EBICSA,
1927 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1928 .offs = AT91SAM9X5_MATRIX_EBICSA,
1931 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1932 .offs = AT91_SFR_CCFG_EBICSA,
1933 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1936 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = {
1938 .compatible = "atmel,at91sam9260-matrix",
1939 .data = &at91sam9260_ebi_csa,
1942 .compatible = "atmel,at91sam9261-matrix",
1943 .data = &at91sam9261_ebi_csa,
1946 .compatible = "atmel,at91sam9263-matrix",
1947 .data = &at91sam9263_ebi_csa,
1950 .compatible = "atmel,at91sam9rl-matrix",
1951 .data = &at91sam9rl_ebi_csa,
1954 .compatible = "atmel,at91sam9g45-matrix",
1955 .data = &at91sam9g45_ebi_csa,
1958 .compatible = "atmel,at91sam9n12-matrix",
1959 .data = &at91sam9n12_ebi_csa,
1962 .compatible = "atmel,at91sam9x5-matrix",
1963 .data = &at91sam9x5_ebi_csa,
1966 .compatible = "microchip,sam9x60-sfr",
1967 .data = &sam9x60_ebi_csa,
1969 { /* sentinel */ },
1972 static int atmel_nand_attach_chip(struct nand_chip *chip)
1974 struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1975 struct atmel_nand *nand = to_atmel_nand(chip);
1976 struct mtd_info *mtd = nand_to_mtd(chip);
1977 int ret;
1979 ret = nc->caps->ops->ecc_init(chip);
1980 if (ret)
1981 return ret;
1983 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1985 * We keep the MTD name unchanged to avoid breaking platforms
1986 * where the MTD cmdline parser is used and the bootloader
1987 * has not been updated to use the new naming scheme.
1989 mtd->name = "atmel_nand";
1990 } else if (!mtd->name) {
1992 * If the new bindings are used and the bootloader has not been
1993 * updated to pass a new mtdparts parameter on the cmdline, you
1994 * should define the following property in your nand node:
1996 * label = "atmel_nand";
1998 * This way, mtd->name will be set by the core when
1999 * nand_set_flash_node() is called.
2001 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2002 "%s:nand.%d", dev_name(nc->dev),
2003 nand->cs[0].id);
2004 if (!mtd->name) {
2005 dev_err(nc->dev, "Failed to allocate mtd->name\n");
2006 return -ENOMEM;
2010 return 0;
2013 static const struct nand_controller_ops atmel_nand_controller_ops = {
2014 .attach_chip = atmel_nand_attach_chip,
2015 .setup_interface = atmel_nand_setup_interface,
2016 .exec_op = atmel_nand_exec_op,
2019 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2020 struct platform_device *pdev,
2021 const struct atmel_nand_controller_caps *caps)
2023 struct device *dev = &pdev->dev;
2024 struct device_node *np = dev->of_node;
2025 int ret;
2027 nand_controller_init(&nc->base);
2028 nc->base.ops = &atmel_nand_controller_ops;
2029 INIT_LIST_HEAD(&nc->chips);
2030 nc->dev = dev;
2031 nc->caps = caps;
2033 platform_set_drvdata(pdev, nc);
2035 nc->pmecc = devm_atmel_pmecc_get(dev);
2036 if (IS_ERR(nc->pmecc))
2037 return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2038 "Could not get PMECC object\n");
2040 if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2041 dma_cap_mask_t mask;
2043 dma_cap_zero(mask);
2044 dma_cap_set(DMA_MEMCPY, mask);
2046 nc->dmac = dma_request_channel(mask, NULL, NULL);
2047 if (!nc->dmac)
2048 dev_err(nc->dev, "Failed to request DMA channel\n");
2051 /* We do not retrieve the SMC syscon when parsing old DTs. */
2052 if (nc->caps->legacy_of_bindings)
2053 return 0;
2055 nc->mck = of_clk_get(dev->parent->of_node, 0);
2056 if (IS_ERR(nc->mck)) {
2057 dev_err(dev, "Failed to retrieve MCK clk\n");
2058 return PTR_ERR(nc->mck);
2061 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2062 if (!np) {
2063 dev_err(dev, "Missing or invalid atmel,smc property\n");
2064 return -EINVAL;
2067 nc->smc = syscon_node_to_regmap(np);
2068 of_node_put(np);
2069 if (IS_ERR(nc->smc)) {
2070 ret = PTR_ERR(nc->smc);
2071 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2072 return ret;
2075 return 0;
2078 static int
2079 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2081 struct device *dev = nc->base.dev;
2082 const struct of_device_id *match;
2083 struct device_node *np;
2084 int ret;
2086 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
2087 if (nc->base.caps->legacy_of_bindings)
2088 return 0;
2090 np = of_parse_phandle(dev->parent->of_node,
2091 nc->base.caps->ebi_csa_regmap_name, 0);
2092 if (!np)
2093 return 0;
2095 match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2096 if (!match) {
2097 of_node_put(np);
2098 return 0;
2101 nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2102 of_node_put(np);
2103 if (IS_ERR(nc->ebi_csa_regmap)) {
2104 ret = PTR_ERR(nc->ebi_csa_regmap);
2105 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2106 return ret;
2109 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2112 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2113 * add 4 to ->ebi_csa->offs.
2115 if (of_device_is_compatible(dev->parent->of_node,
2116 "atmel,at91sam9263-ebi1"))
2117 nc->ebi_csa->offs += 4;
2119 return 0;
2122 static int
2123 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2125 struct regmap_config regmap_conf = {
2126 .reg_bits = 32,
2127 .val_bits = 32,
2128 .reg_stride = 4,
2131 struct device *dev = nc->base.dev;
2132 struct device_node *nand_np, *nfc_np;
2133 void __iomem *iomem;
2134 struct resource res;
2135 int ret;
2137 nand_np = dev->of_node;
2138 nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2139 if (!nfc_np) {
2140 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2141 return -ENODEV;
2144 nc->clk = of_clk_get(nfc_np, 0);
2145 if (IS_ERR(nc->clk)) {
2146 ret = PTR_ERR(nc->clk);
2147 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2148 ret);
2149 goto out;
2152 ret = clk_prepare_enable(nc->clk);
2153 if (ret) {
2154 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2155 ret);
2156 goto out;
2159 nc->irq = of_irq_get(nand_np, 0);
2160 if (nc->irq <= 0) {
2161 ret = nc->irq ?: -ENXIO;
2162 if (ret != -EPROBE_DEFER)
2163 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2164 ret);
2165 goto out;
2168 ret = of_address_to_resource(nfc_np, 0, &res);
2169 if (ret) {
2170 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2171 ret);
2172 goto out;
2175 iomem = devm_ioremap_resource(dev, &res);
2176 if (IS_ERR(iomem)) {
2177 ret = PTR_ERR(iomem);
2178 goto out;
2181 regmap_conf.name = "nfc-io";
2182 regmap_conf.max_register = resource_size(&res) - 4;
2183 nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2184 if (IS_ERR(nc->io)) {
2185 ret = PTR_ERR(nc->io);
2186 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2187 ret);
2188 goto out;
2191 ret = of_address_to_resource(nfc_np, 1, &res);
2192 if (ret) {
2193 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2194 ret);
2195 goto out;
2198 iomem = devm_ioremap_resource(dev, &res);
2199 if (IS_ERR(iomem)) {
2200 ret = PTR_ERR(iomem);
2201 goto out;
2204 regmap_conf.name = "smc";
2205 regmap_conf.max_register = resource_size(&res) - 4;
2206 nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2207 if (IS_ERR(nc->base.smc)) {
2208 ret = PTR_ERR(nc->base.smc);
2209 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2210 ret);
2211 goto out;
2214 ret = of_address_to_resource(nfc_np, 2, &res);
2215 if (ret) {
2216 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2217 ret);
2218 goto out;
2221 nc->sram.virt = devm_ioremap_resource(dev, &res);
2222 if (IS_ERR(nc->sram.virt)) {
2223 ret = PTR_ERR(nc->sram.virt);
2224 goto out;
2227 nc->sram.dma = res.start;
2229 out:
2230 of_node_put(nfc_np);
2232 return ret;
2235 static int
2236 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2238 struct device *dev = nc->base.dev;
2239 struct device_node *np;
2240 int ret;
2242 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2243 if (!np) {
2244 dev_err(dev, "Missing or invalid atmel,smc property\n");
2245 return -EINVAL;
2248 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2250 nc->irq = of_irq_get(np, 0);
2251 of_node_put(np);
2252 if (nc->irq <= 0) {
2253 ret = nc->irq ?: -ENXIO;
2254 if (ret != -EPROBE_DEFER)
2255 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2256 ret);
2257 return ret;
2260 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2261 if (!np) {
2262 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2263 return -EINVAL;
2266 nc->io = syscon_node_to_regmap(np);
2267 of_node_put(np);
2268 if (IS_ERR(nc->io)) {
2269 ret = PTR_ERR(nc->io);
2270 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2271 return ret;
2274 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2275 "atmel,nfc-sram", 0);
2276 if (!nc->sram.pool) {
2277 dev_err(nc->base.dev, "Missing SRAM\n");
2278 return -ENOMEM;
2281 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2282 ATMEL_NFC_SRAM_SIZE,
2283 &nc->sram.dma);
2284 if (!nc->sram.virt) {
2285 dev_err(nc->base.dev,
2286 "Could not allocate memory from the NFC SRAM pool\n");
2287 return -ENOMEM;
2290 return 0;
2293 static int
2294 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2296 struct atmel_hsmc_nand_controller *hsmc_nc;
2297 int ret;
2299 ret = atmel_nand_controller_remove_nands(nc);
2300 if (ret)
2301 return ret;
2303 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2304 regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2305 ATMEL_HSMC_NFC_CTRL_DIS);
2307 if (hsmc_nc->sram.pool)
2308 gen_pool_free(hsmc_nc->sram.pool,
2309 (unsigned long)hsmc_nc->sram.virt,
2310 ATMEL_NFC_SRAM_SIZE);
2312 if (hsmc_nc->clk) {
2313 clk_disable_unprepare(hsmc_nc->clk);
2314 clk_put(hsmc_nc->clk);
2317 atmel_nand_controller_cleanup(nc);
2319 return 0;
2322 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2323 const struct atmel_nand_controller_caps *caps)
2325 struct device *dev = &pdev->dev;
2326 struct atmel_hsmc_nand_controller *nc;
2327 int ret;
2329 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2330 if (!nc)
2331 return -ENOMEM;
2333 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2334 if (ret)
2335 return ret;
2337 if (caps->legacy_of_bindings)
2338 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2339 else
2340 ret = atmel_hsmc_nand_controller_init(nc);
2342 if (ret)
2343 return ret;
2345 /* Make sure all irqs are masked before registering our IRQ handler. */
2346 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2347 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2348 IRQF_SHARED, "nfc", nc);
2349 if (ret) {
2350 dev_err(dev,
2351 "Could not get register NFC interrupt handler (err = %d)\n",
2352 ret);
2353 goto err;
2356 /* Initial NFC configuration. */
2357 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2358 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2359 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2360 ATMEL_HSMC_NFC_CTRL_EN);
2362 ret = atmel_nand_controller_add_nands(&nc->base);
2363 if (ret)
2364 goto err;
2366 return 0;
2368 err:
2369 atmel_hsmc_nand_controller_remove(&nc->base);
2371 return ret;
2374 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2375 .probe = atmel_hsmc_nand_controller_probe,
2376 .remove = atmel_hsmc_nand_controller_remove,
2377 .ecc_init = atmel_hsmc_nand_ecc_init,
2378 .nand_init = atmel_nand_init,
2379 .setup_interface = atmel_hsmc_nand_setup_interface,
2380 .exec_op = atmel_hsmc_nand_exec_op,
2383 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2384 .has_dma = true,
2385 .ale_offs = BIT(21),
2386 .cle_offs = BIT(22),
2387 .ops = &atmel_hsmc_nc_ops,
2390 /* Only used to parse old bindings. */
2391 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2392 .has_dma = true,
2393 .ale_offs = BIT(21),
2394 .cle_offs = BIT(22),
2395 .ops = &atmel_hsmc_nc_ops,
2396 .legacy_of_bindings = true,
2399 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2400 const struct atmel_nand_controller_caps *caps)
2402 struct device *dev = &pdev->dev;
2403 struct atmel_smc_nand_controller *nc;
2404 int ret;
2406 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2407 if (!nc)
2408 return -ENOMEM;
2410 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2411 if (ret)
2412 return ret;
2414 ret = atmel_smc_nand_controller_init(nc);
2415 if (ret)
2416 return ret;
2418 return atmel_nand_controller_add_nands(&nc->base);
2421 static int
2422 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2424 int ret;
2426 ret = atmel_nand_controller_remove_nands(nc);
2427 if (ret)
2428 return ret;
2430 atmel_nand_controller_cleanup(nc);
2432 return 0;
2436 * The SMC reg layout of at91rm9200 is completely different which prevents us
2437 * from re-using atmel_smc_nand_setup_interface() for the
2438 * ->setup_interface() hook.
2439 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2440 * ->setup_interface() unassigned.
2442 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2443 .probe = atmel_smc_nand_controller_probe,
2444 .remove = atmel_smc_nand_controller_remove,
2445 .ecc_init = atmel_nand_ecc_init,
2446 .nand_init = atmel_smc_nand_init,
2447 .exec_op = atmel_smc_nand_exec_op,
2450 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2451 .ale_offs = BIT(21),
2452 .cle_offs = BIT(22),
2453 .ebi_csa_regmap_name = "atmel,matrix",
2454 .ops = &at91rm9200_nc_ops,
2457 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2458 .probe = atmel_smc_nand_controller_probe,
2459 .remove = atmel_smc_nand_controller_remove,
2460 .ecc_init = atmel_nand_ecc_init,
2461 .nand_init = atmel_smc_nand_init,
2462 .setup_interface = atmel_smc_nand_setup_interface,
2463 .exec_op = atmel_smc_nand_exec_op,
2466 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2467 .ale_offs = BIT(21),
2468 .cle_offs = BIT(22),
2469 .ebi_csa_regmap_name = "atmel,matrix",
2470 .ops = &atmel_smc_nc_ops,
2473 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2474 .ale_offs = BIT(22),
2475 .cle_offs = BIT(21),
2476 .ebi_csa_regmap_name = "atmel,matrix",
2477 .ops = &atmel_smc_nc_ops,
2480 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2481 .has_dma = true,
2482 .ale_offs = BIT(21),
2483 .cle_offs = BIT(22),
2484 .ebi_csa_regmap_name = "atmel,matrix",
2485 .ops = &atmel_smc_nc_ops,
2488 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2489 .has_dma = true,
2490 .ale_offs = BIT(21),
2491 .cle_offs = BIT(22),
2492 .ebi_csa_regmap_name = "microchip,sfr",
2493 .ops = &atmel_smc_nc_ops,
2496 /* Only used to parse old bindings. */
2497 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2498 .ale_offs = BIT(21),
2499 .cle_offs = BIT(22),
2500 .ops = &atmel_smc_nc_ops,
2501 .legacy_of_bindings = true,
2504 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2505 .ale_offs = BIT(22),
2506 .cle_offs = BIT(21),
2507 .ops = &atmel_smc_nc_ops,
2508 .legacy_of_bindings = true,
2511 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2512 .has_dma = true,
2513 .ale_offs = BIT(21),
2514 .cle_offs = BIT(22),
2515 .ops = &atmel_smc_nc_ops,
2516 .legacy_of_bindings = true,
2519 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2521 .compatible = "atmel,at91rm9200-nand-controller",
2522 .data = &atmel_rm9200_nc_caps,
2525 .compatible = "atmel,at91sam9260-nand-controller",
2526 .data = &atmel_sam9260_nc_caps,
2529 .compatible = "atmel,at91sam9261-nand-controller",
2530 .data = &atmel_sam9261_nc_caps,
2533 .compatible = "atmel,at91sam9g45-nand-controller",
2534 .data = &atmel_sam9g45_nc_caps,
2537 .compatible = "atmel,sama5d3-nand-controller",
2538 .data = &atmel_sama5_nc_caps,
2541 .compatible = "microchip,sam9x60-nand-controller",
2542 .data = &microchip_sam9x60_nc_caps,
2544 /* Support for old/deprecated bindings: */
2546 .compatible = "atmel,at91rm9200-nand",
2547 .data = &atmel_rm9200_nand_caps,
2550 .compatible = "atmel,sama5d4-nand",
2551 .data = &atmel_rm9200_nand_caps,
2554 .compatible = "atmel,sama5d2-nand",
2555 .data = &atmel_rm9200_nand_caps,
2557 { /* sentinel */ },
2559 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2561 static int atmel_nand_controller_probe(struct platform_device *pdev)
2563 const struct atmel_nand_controller_caps *caps;
2565 if (pdev->id_entry)
2566 caps = (void *)pdev->id_entry->driver_data;
2567 else
2568 caps = of_device_get_match_data(&pdev->dev);
2570 if (!caps) {
2571 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2572 return -EINVAL;
2575 if (caps->legacy_of_bindings) {
2576 struct device_node *nfc_node;
2577 u32 ale_offs = 21;
2580 * If we are parsing legacy DT props and the DT contains a
2581 * valid NFC node, forward the request to the sama5 logic.
2583 nfc_node = of_get_compatible_child(pdev->dev.of_node,
2584 "atmel,sama5d3-nfc");
2585 if (nfc_node) {
2586 caps = &atmel_sama5_nand_caps;
2587 of_node_put(nfc_node);
2591 * Even if the compatible says we are dealing with an
2592 * at91rm9200 controller, the atmel,nand-has-dma specify that
2593 * this controller supports DMA, which means we are in fact
2594 * dealing with an at91sam9g45+ controller.
2596 if (!caps->has_dma &&
2597 of_property_read_bool(pdev->dev.of_node,
2598 "atmel,nand-has-dma"))
2599 caps = &atmel_sam9g45_nand_caps;
2602 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2603 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2604 * actually dealing with an at91sam9261 controller.
2606 of_property_read_u32(pdev->dev.of_node,
2607 "atmel,nand-addr-offset", &ale_offs);
2608 if (ale_offs != 21)
2609 caps = &atmel_sam9261_nand_caps;
2612 return caps->ops->probe(pdev, caps);
2615 static int atmel_nand_controller_remove(struct platform_device *pdev)
2617 struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2619 return nc->caps->ops->remove(nc);
2622 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2624 struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2625 struct atmel_nand *nand;
2627 if (nc->pmecc)
2628 atmel_pmecc_reset(nc->pmecc);
2630 list_for_each_entry(nand, &nc->chips, node) {
2631 int i;
2633 for (i = 0; i < nand->numcs; i++)
2634 nand_reset(&nand->base, i);
2637 return 0;
2640 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2641 atmel_nand_controller_resume);
2643 static struct platform_driver atmel_nand_controller_driver = {
2644 .driver = {
2645 .name = "atmel-nand-controller",
2646 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2647 .pm = &atmel_nand_controller_pm_ops,
2649 .probe = atmel_nand_controller_probe,
2650 .remove = atmel_nand_controller_remove,
2652 module_platform_driver(atmel_nand_controller_driver);
2654 MODULE_LICENSE("GPL");
2655 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2656 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2657 MODULE_ALIAS("platform:atmel-nand-controller");