1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright 2017 Free Electrons
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
8 * Derived from the atmel_nand.c driver which contained the following
11 * Copyright 2003 Rick Bronson
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
33 * A few words about the naming convention in this file. This convention
34 * applies to structure and function names.
38 * - atmel_nand_: all generic structures/functions
39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40 * (at91sam9 and avr32 SoCs)
41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42 * (sama5 SoCs and later)
43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44 * that is available in the HSMC block
45 * - <soc>_nand_: all SoC specific structures/functions
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
69 #define ATMEL_HSMC_NFC_CFG 0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
81 #define ATMEL_HSMC_NFC_CTRL 0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
85 #define ATMEL_HSMC_NFC_SR 0x8
86 #define ATMEL_HSMC_NFC_IER 0xc
87 #define ATMEL_HSMC_NFC_IDR 0x10
88 #define ATMEL_HSMC_NFC_IMR 0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
102 ATMEL_HSMC_NFC_SR_UNDEF | \
103 ATMEL_HSMC_NFC_SR_AWB | \
104 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
107 #define ATMEL_HSMC_NFC_ADDR 0x18
108 #define ATMEL_HSMC_NFC_BANK 0x1c
110 #define ATMEL_NFC_MAX_RB_ID 7
112 #define ATMEL_NFC_SRAM_SIZE 0x2400
114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2 BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
118 #define ATMEL_NFC_DATAEN BIT(25)
119 #define ATMEL_NFC_NFCWR BIT(26)
121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
123 #define ATMEL_NAND_ALE_OFFSET BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET BIT(22)
126 #define DEFAULT_TIMEOUT_MS 1000
127 #define MIN_DMA_LEN 128
129 static bool atmel_nand_avoid_dma __read_mostly
;
131 MODULE_PARM_DESC(avoiddma
, "Avoid using DMA");
132 module_param_named(avoiddma
, atmel_nand_avoid_dma
, bool, 0400);
134 enum atmel_nand_rb_type
{
136 ATMEL_NAND_NATIVE_RB
,
140 struct atmel_nand_rb
{
141 enum atmel_nand_rb_type type
;
143 struct gpio_desc
*gpio
;
148 struct atmel_nand_cs
{
150 struct atmel_nand_rb rb
;
151 struct gpio_desc
*csgpio
;
157 struct atmel_smc_cs_conf smcconf
;
161 struct list_head node
;
163 struct nand_chip base
;
164 struct atmel_nand_cs
*activecs
;
165 struct atmel_pmecc_user
*pmecc
;
166 struct gpio_desc
*cdgpio
;
168 struct atmel_nand_cs cs
[];
171 static inline struct atmel_nand
*to_atmel_nand(struct nand_chip
*chip
)
173 return container_of(chip
, struct atmel_nand
, base
);
176 enum atmel_nfc_data_xfer
{
179 ATMEL_NFC_WRITE_DATA
,
182 struct atmel_nfc_op
{
188 enum atmel_nfc_data_xfer data
;
193 struct atmel_nand_controller
;
194 struct atmel_nand_controller_caps
;
196 struct atmel_nand_controller_ops
{
197 int (*probe
)(struct platform_device
*pdev
,
198 const struct atmel_nand_controller_caps
*caps
);
199 int (*remove
)(struct atmel_nand_controller
*nc
);
200 void (*nand_init
)(struct atmel_nand_controller
*nc
,
201 struct atmel_nand
*nand
);
202 int (*ecc_init
)(struct nand_chip
*chip
);
203 int (*setup_interface
)(struct atmel_nand
*nand
, int csline
,
204 const struct nand_interface_config
*conf
);
205 int (*exec_op
)(struct atmel_nand
*nand
,
206 const struct nand_operation
*op
, bool check_only
);
209 struct atmel_nand_controller_caps
{
211 bool legacy_of_bindings
;
214 const char *ebi_csa_regmap_name
;
215 const struct atmel_nand_controller_ops
*ops
;
218 struct atmel_nand_controller
{
219 struct nand_controller base
;
220 const struct atmel_nand_controller_caps
*caps
;
223 struct dma_chan
*dmac
;
224 struct atmel_pmecc
*pmecc
;
225 struct list_head chips
;
229 static inline struct atmel_nand_controller
*
230 to_nand_controller(struct nand_controller
*ctl
)
232 return container_of(ctl
, struct atmel_nand_controller
, base
);
235 struct atmel_smc_nand_ebi_csa_cfg
{
240 struct atmel_smc_nand_controller
{
241 struct atmel_nand_controller base
;
242 struct regmap
*ebi_csa_regmap
;
243 struct atmel_smc_nand_ebi_csa_cfg
*ebi_csa
;
246 static inline struct atmel_smc_nand_controller
*
247 to_smc_nand_controller(struct nand_controller
*ctl
)
249 return container_of(to_nand_controller(ctl
),
250 struct atmel_smc_nand_controller
, base
);
253 struct atmel_hsmc_nand_controller
{
254 struct atmel_nand_controller base
;
256 struct gen_pool
*pool
;
260 const struct atmel_hsmc_reg_layout
*hsmc_layout
;
262 struct atmel_nfc_op op
;
263 struct completion complete
;
267 /* Only used when instantiating from legacy DT bindings. */
271 static inline struct atmel_hsmc_nand_controller
*
272 to_hsmc_nand_controller(struct nand_controller
*ctl
)
274 return container_of(to_nand_controller(ctl
),
275 struct atmel_hsmc_nand_controller
, base
);
278 static bool atmel_nfc_op_done(struct atmel_nfc_op
*op
, u32 status
)
280 op
->errors
|= status
& ATMEL_HSMC_NFC_SR_ERRORS
;
281 op
->wait
^= status
& op
->wait
;
283 return !op
->wait
|| op
->errors
;
286 static irqreturn_t
atmel_nfc_interrupt(int irq
, void *data
)
288 struct atmel_hsmc_nand_controller
*nc
= data
;
292 regmap_read(nc
->base
.smc
, ATMEL_HSMC_NFC_SR
, &sr
);
294 rcvd
= sr
& (nc
->op
.wait
| ATMEL_HSMC_NFC_SR_ERRORS
);
295 done
= atmel_nfc_op_done(&nc
->op
, sr
);
298 regmap_write(nc
->base
.smc
, ATMEL_HSMC_NFC_IDR
, rcvd
);
301 complete(&nc
->complete
);
303 return rcvd
? IRQ_HANDLED
: IRQ_NONE
;
306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller
*nc
, bool poll
,
307 unsigned int timeout_ms
)
312 timeout_ms
= DEFAULT_TIMEOUT_MS
;
317 ret
= regmap_read_poll_timeout(nc
->base
.smc
,
318 ATMEL_HSMC_NFC_SR
, status
,
319 atmel_nfc_op_done(&nc
->op
,
321 0, timeout_ms
* 1000);
323 init_completion(&nc
->complete
);
324 regmap_write(nc
->base
.smc
, ATMEL_HSMC_NFC_IER
,
325 nc
->op
.wait
| ATMEL_HSMC_NFC_SR_ERRORS
);
326 ret
= wait_for_completion_timeout(&nc
->complete
,
327 msecs_to_jiffies(timeout_ms
));
333 regmap_write(nc
->base
.smc
, ATMEL_HSMC_NFC_IDR
, 0xffffffff);
336 if (nc
->op
.errors
& ATMEL_HSMC_NFC_SR_DTOE
) {
337 dev_err(nc
->base
.dev
, "Waiting NAND R/B Timeout\n");
341 if (nc
->op
.errors
& ATMEL_HSMC_NFC_SR_UNDEF
) {
342 dev_err(nc
->base
.dev
, "Access to an undefined area\n");
346 if (nc
->op
.errors
& ATMEL_HSMC_NFC_SR_AWB
) {
347 dev_err(nc
->base
.dev
, "Access while busy\n");
351 if (nc
->op
.errors
& ATMEL_HSMC_NFC_SR_NFCASE
) {
352 dev_err(nc
->base
.dev
, "Wrong access size\n");
359 static void atmel_nand_dma_transfer_finished(void *data
)
361 struct completion
*finished
= data
;
366 static int atmel_nand_dma_transfer(struct atmel_nand_controller
*nc
,
367 void *buf
, dma_addr_t dev_dma
, size_t len
,
368 enum dma_data_direction dir
)
370 DECLARE_COMPLETION_ONSTACK(finished
);
371 dma_addr_t src_dma
, dst_dma
, buf_dma
;
372 struct dma_async_tx_descriptor
*tx
;
375 buf_dma
= dma_map_single(nc
->dev
, buf
, len
, dir
);
376 if (dma_mapping_error(nc
->dev
, dev_dma
)) {
378 "Failed to prepare a buffer for DMA access\n");
382 if (dir
== DMA_FROM_DEVICE
) {
390 tx
= dmaengine_prep_dma_memcpy(nc
->dmac
, dst_dma
, src_dma
, len
,
391 DMA_CTRL_ACK
| DMA_PREP_INTERRUPT
);
393 dev_err(nc
->dev
, "Failed to prepare DMA memcpy\n");
397 tx
->callback
= atmel_nand_dma_transfer_finished
;
398 tx
->callback_param
= &finished
;
400 cookie
= dmaengine_submit(tx
);
401 if (dma_submit_error(cookie
)) {
402 dev_err(nc
->dev
, "Failed to do DMA tx_submit\n");
406 dma_async_issue_pending(nc
->dmac
);
407 wait_for_completion(&finished
);
412 dma_unmap_single(nc
->dev
, buf_dma
, len
, dir
);
415 dev_dbg(nc
->dev
, "Fall back to CPU I/O\n");
420 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller
*nc
, bool poll
)
422 u8
*addrs
= nc
->op
.addrs
;
427 nc
->op
.wait
= ATMEL_HSMC_NFC_SR_CMDDONE
;
429 for (i
= 0; i
< nc
->op
.ncmds
; i
++)
430 op
|= ATMEL_NFC_CMD(i
, nc
->op
.cmds
[i
]);
432 if (nc
->op
.naddrs
== ATMEL_NFC_MAX_ADDR_CYCLES
)
433 regmap_write(nc
->base
.smc
, ATMEL_HSMC_NFC_ADDR
, *addrs
++);
435 op
|= ATMEL_NFC_CSID(nc
->op
.cs
) |
436 ATMEL_NFC_ACYCLE(nc
->op
.naddrs
);
438 if (nc
->op
.ncmds
> 1)
439 op
|= ATMEL_NFC_VCMD2
;
441 addr
= addrs
[0] | (addrs
[1] << 8) | (addrs
[2] << 16) |
444 if (nc
->op
.data
!= ATMEL_NFC_NO_DATA
) {
445 op
|= ATMEL_NFC_DATAEN
;
446 nc
->op
.wait
|= ATMEL_HSMC_NFC_SR_XFRDONE
;
448 if (nc
->op
.data
== ATMEL_NFC_WRITE_DATA
)
449 op
|= ATMEL_NFC_NFCWR
;
452 /* Clear all flags. */
453 regmap_read(nc
->base
.smc
, ATMEL_HSMC_NFC_SR
, &val
);
455 /* Send the command. */
456 regmap_write(nc
->io
, op
, addr
);
458 ret
= atmel_nfc_wait(nc
, poll
, 0);
460 dev_err(nc
->base
.dev
,
461 "Failed to send NAND command (err = %d)!",
464 /* Reset the op state. */
465 memset(&nc
->op
, 0, sizeof(nc
->op
));
470 static void atmel_nand_data_in(struct atmel_nand
*nand
, void *buf
,
471 unsigned int len
, bool force_8bit
)
473 struct atmel_nand_controller
*nc
;
475 nc
= to_nand_controller(nand
->base
.controller
);
478 * If the controller supports DMA, the buffer address is DMA-able and
479 * len is long enough to make DMA transfers profitable, let's trigger
480 * a DMA transfer. If it fails, fallback to PIO mode.
482 if (nc
->dmac
&& virt_addr_valid(buf
) &&
483 len
>= MIN_DMA_LEN
&& !force_8bit
&&
484 !atmel_nand_dma_transfer(nc
, buf
, nand
->activecs
->io
.dma
, len
,
488 if ((nand
->base
.options
& NAND_BUSWIDTH_16
) && !force_8bit
)
489 ioread16_rep(nand
->activecs
->io
.virt
, buf
, len
/ 2);
491 ioread8_rep(nand
->activecs
->io
.virt
, buf
, len
);
494 static void atmel_nand_data_out(struct atmel_nand
*nand
, const void *buf
,
495 unsigned int len
, bool force_8bit
)
497 struct atmel_nand_controller
*nc
;
499 nc
= to_nand_controller(nand
->base
.controller
);
502 * If the controller supports DMA, the buffer address is DMA-able and
503 * len is long enough to make DMA transfers profitable, let's trigger
504 * a DMA transfer. If it fails, fallback to PIO mode.
506 if (nc
->dmac
&& virt_addr_valid(buf
) &&
507 len
>= MIN_DMA_LEN
&& !force_8bit
&&
508 !atmel_nand_dma_transfer(nc
, (void *)buf
, nand
->activecs
->io
.dma
,
512 if ((nand
->base
.options
& NAND_BUSWIDTH_16
) && !force_8bit
)
513 iowrite16_rep(nand
->activecs
->io
.virt
, buf
, len
/ 2);
515 iowrite8_rep(nand
->activecs
->io
.virt
, buf
, len
);
518 static int atmel_nand_waitrdy(struct atmel_nand
*nand
, unsigned int timeout_ms
)
520 if (nand
->activecs
->rb
.type
== ATMEL_NAND_NO_RB
)
521 return nand_soft_waitrdy(&nand
->base
, timeout_ms
);
523 return nand_gpio_waitrdy(&nand
->base
, nand
->activecs
->rb
.gpio
,
527 static int atmel_hsmc_nand_waitrdy(struct atmel_nand
*nand
,
528 unsigned int timeout_ms
)
530 struct atmel_hsmc_nand_controller
*nc
;
533 if (nand
->activecs
->rb
.type
!= ATMEL_NAND_NATIVE_RB
)
534 return atmel_nand_waitrdy(nand
, timeout_ms
);
536 nc
= to_hsmc_nand_controller(nand
->base
.controller
);
537 mask
= ATMEL_HSMC_NFC_SR_RBEDGE(nand
->activecs
->rb
.id
);
538 return regmap_read_poll_timeout_atomic(nc
->base
.smc
, ATMEL_HSMC_NFC_SR
,
539 status
, status
& mask
,
540 10, timeout_ms
* 1000);
543 static void atmel_nand_select_target(struct atmel_nand
*nand
,
546 nand
->activecs
= &nand
->cs
[cs
];
549 static void atmel_hsmc_nand_select_target(struct atmel_nand
*nand
,
552 struct mtd_info
*mtd
= nand_to_mtd(&nand
->base
);
553 struct atmel_hsmc_nand_controller
*nc
;
554 u32 cfg
= ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd
->writesize
) |
555 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd
->oobsize
) |
556 ATMEL_HSMC_NFC_CFG_RSPARE
;
558 nand
->activecs
= &nand
->cs
[cs
];
559 nc
= to_hsmc_nand_controller(nand
->base
.controller
);
563 regmap_update_bits(nc
->base
.smc
, ATMEL_HSMC_NFC_CFG
,
564 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK
|
565 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK
|
566 ATMEL_HSMC_NFC_CFG_RSPARE
|
567 ATMEL_HSMC_NFC_CFG_WSPARE
,
572 static int atmel_smc_nand_exec_instr(struct atmel_nand
*nand
,
573 const struct nand_op_instr
*instr
)
575 struct atmel_nand_controller
*nc
;
578 nc
= to_nand_controller(nand
->base
.controller
);
579 switch (instr
->type
) {
580 case NAND_OP_CMD_INSTR
:
581 writeb(instr
->ctx
.cmd
.opcode
,
582 nand
->activecs
->io
.virt
+ nc
->caps
->cle_offs
);
584 case NAND_OP_ADDR_INSTR
:
585 for (i
= 0; i
< instr
->ctx
.addr
.naddrs
; i
++)
586 writeb(instr
->ctx
.addr
.addrs
[i
],
587 nand
->activecs
->io
.virt
+ nc
->caps
->ale_offs
);
589 case NAND_OP_DATA_IN_INSTR
:
590 atmel_nand_data_in(nand
, instr
->ctx
.data
.buf
.in
,
592 instr
->ctx
.data
.force_8bit
);
594 case NAND_OP_DATA_OUT_INSTR
:
595 atmel_nand_data_out(nand
, instr
->ctx
.data
.buf
.out
,
597 instr
->ctx
.data
.force_8bit
);
599 case NAND_OP_WAITRDY_INSTR
:
600 return atmel_nand_waitrdy(nand
,
601 instr
->ctx
.waitrdy
.timeout_ms
);
609 static int atmel_smc_nand_exec_op(struct atmel_nand
*nand
,
610 const struct nand_operation
*op
,
619 atmel_nand_select_target(nand
, op
->cs
);
620 gpiod_set_value(nand
->activecs
->csgpio
, 0);
621 for (i
= 0; i
< op
->ninstrs
; i
++) {
622 ret
= atmel_smc_nand_exec_instr(nand
, &op
->instrs
[i
]);
626 gpiod_set_value(nand
->activecs
->csgpio
, 1);
631 static int atmel_hsmc_exec_cmd_addr(struct nand_chip
*chip
,
632 const struct nand_subop
*subop
)
634 struct atmel_nand
*nand
= to_atmel_nand(chip
);
635 struct atmel_hsmc_nand_controller
*nc
;
638 nc
= to_hsmc_nand_controller(chip
->controller
);
640 nc
->op
.cs
= nand
->activecs
->id
;
641 for (i
= 0; i
< subop
->ninstrs
; i
++) {
642 const struct nand_op_instr
*instr
= &subop
->instrs
[i
];
644 if (instr
->type
== NAND_OP_CMD_INSTR
) {
645 nc
->op
.cmds
[nc
->op
.ncmds
++] = instr
->ctx
.cmd
.opcode
;
649 for (j
= nand_subop_get_addr_start_off(subop
, i
);
650 j
< nand_subop_get_num_addr_cyc(subop
, i
); j
++) {
651 nc
->op
.addrs
[nc
->op
.naddrs
] = instr
->ctx
.addr
.addrs
[j
];
656 return atmel_nfc_exec_op(nc
, true);
659 static int atmel_hsmc_exec_rw(struct nand_chip
*chip
,
660 const struct nand_subop
*subop
)
662 const struct nand_op_instr
*instr
= subop
->instrs
;
663 struct atmel_nand
*nand
= to_atmel_nand(chip
);
665 if (instr
->type
== NAND_OP_DATA_IN_INSTR
)
666 atmel_nand_data_in(nand
, instr
->ctx
.data
.buf
.in
,
668 instr
->ctx
.data
.force_8bit
);
670 atmel_nand_data_out(nand
, instr
->ctx
.data
.buf
.out
,
672 instr
->ctx
.data
.force_8bit
);
677 static int atmel_hsmc_exec_waitrdy(struct nand_chip
*chip
,
678 const struct nand_subop
*subop
)
680 const struct nand_op_instr
*instr
= subop
->instrs
;
681 struct atmel_nand
*nand
= to_atmel_nand(chip
);
683 return atmel_hsmc_nand_waitrdy(nand
, instr
->ctx
.waitrdy
.timeout_ms
);
686 static const struct nand_op_parser atmel_hsmc_op_parser
= NAND_OP_PARSER(
687 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr
,
688 NAND_OP_PARSER_PAT_CMD_ELEM(true),
689 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
690 NAND_OP_PARSER_PAT_CMD_ELEM(true)),
691 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw
,
692 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
693 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw
,
694 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
695 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy
,
696 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
699 static int atmel_hsmc_nand_exec_op(struct atmel_nand
*nand
,
700 const struct nand_operation
*op
,
706 return nand_op_parser_exec_op(&nand
->base
,
707 &atmel_hsmc_op_parser
, op
, true);
709 atmel_hsmc_nand_select_target(nand
, op
->cs
);
710 ret
= nand_op_parser_exec_op(&nand
->base
, &atmel_hsmc_op_parser
, op
,
716 static void atmel_nfc_copy_to_sram(struct nand_chip
*chip
, const u8
*buf
,
719 struct mtd_info
*mtd
= nand_to_mtd(chip
);
720 struct atmel_hsmc_nand_controller
*nc
;
723 nc
= to_hsmc_nand_controller(chip
->controller
);
726 ret
= atmel_nand_dma_transfer(&nc
->base
, (void *)buf
,
727 nc
->sram
.dma
, mtd
->writesize
,
730 /* Falling back to CPU copy. */
732 memcpy_toio(nc
->sram
.virt
, buf
, mtd
->writesize
);
735 memcpy_toio(nc
->sram
.virt
+ mtd
->writesize
, chip
->oob_poi
,
739 static void atmel_nfc_copy_from_sram(struct nand_chip
*chip
, u8
*buf
,
742 struct mtd_info
*mtd
= nand_to_mtd(chip
);
743 struct atmel_hsmc_nand_controller
*nc
;
746 nc
= to_hsmc_nand_controller(chip
->controller
);
749 ret
= atmel_nand_dma_transfer(&nc
->base
, buf
, nc
->sram
.dma
,
750 mtd
->writesize
, DMA_FROM_DEVICE
);
752 /* Falling back to CPU copy. */
754 memcpy_fromio(buf
, nc
->sram
.virt
, mtd
->writesize
);
757 memcpy_fromio(chip
->oob_poi
, nc
->sram
.virt
+ mtd
->writesize
,
761 static void atmel_nfc_set_op_addr(struct nand_chip
*chip
, int page
, int column
)
763 struct mtd_info
*mtd
= nand_to_mtd(chip
);
764 struct atmel_hsmc_nand_controller
*nc
;
766 nc
= to_hsmc_nand_controller(chip
->controller
);
769 nc
->op
.addrs
[nc
->op
.naddrs
++] = column
;
772 * 2 address cycles for the column offset on large page NANDs.
774 if (mtd
->writesize
> 512)
775 nc
->op
.addrs
[nc
->op
.naddrs
++] = column
>> 8;
779 nc
->op
.addrs
[nc
->op
.naddrs
++] = page
;
780 nc
->op
.addrs
[nc
->op
.naddrs
++] = page
>> 8;
782 if (chip
->options
& NAND_ROW_ADDR_3
)
783 nc
->op
.addrs
[nc
->op
.naddrs
++] = page
>> 16;
787 static int atmel_nand_pmecc_enable(struct nand_chip
*chip
, int op
, bool raw
)
789 struct atmel_nand
*nand
= to_atmel_nand(chip
);
790 struct atmel_nand_controller
*nc
;
793 nc
= to_nand_controller(chip
->controller
);
798 ret
= atmel_pmecc_enable(nand
->pmecc
, op
);
801 "Failed to enable ECC engine (err = %d)\n", ret
);
806 static void atmel_nand_pmecc_disable(struct nand_chip
*chip
, bool raw
)
808 struct atmel_nand
*nand
= to_atmel_nand(chip
);
811 atmel_pmecc_disable(nand
->pmecc
);
814 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip
*chip
, bool raw
)
816 struct atmel_nand
*nand
= to_atmel_nand(chip
);
817 struct mtd_info
*mtd
= nand_to_mtd(chip
);
818 struct atmel_nand_controller
*nc
;
819 struct mtd_oob_region oobregion
;
823 nc
= to_nand_controller(chip
->controller
);
828 ret
= atmel_pmecc_wait_rdy(nand
->pmecc
);
831 "Failed to transfer NAND page data (err = %d)\n",
836 mtd_ooblayout_ecc(mtd
, 0, &oobregion
);
837 eccbuf
= chip
->oob_poi
+ oobregion
.offset
;
839 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
840 atmel_pmecc_get_generated_eccbytes(nand
->pmecc
, i
,
842 eccbuf
+= chip
->ecc
.bytes
;
848 static int atmel_nand_pmecc_correct_data(struct nand_chip
*chip
, void *buf
,
851 struct atmel_nand
*nand
= to_atmel_nand(chip
);
852 struct mtd_info
*mtd
= nand_to_mtd(chip
);
853 struct atmel_nand_controller
*nc
;
854 struct mtd_oob_region oobregion
;
855 int ret
, i
, max_bitflips
= 0;
856 void *databuf
, *eccbuf
;
858 nc
= to_nand_controller(chip
->controller
);
863 ret
= atmel_pmecc_wait_rdy(nand
->pmecc
);
866 "Failed to read NAND page data (err = %d)\n",
871 mtd_ooblayout_ecc(mtd
, 0, &oobregion
);
872 eccbuf
= chip
->oob_poi
+ oobregion
.offset
;
875 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
876 ret
= atmel_pmecc_correct_sector(nand
->pmecc
, i
, databuf
,
878 if (ret
< 0 && !atmel_pmecc_correct_erased_chunks(nand
->pmecc
))
879 ret
= nand_check_erased_ecc_chunk(databuf
,
887 max_bitflips
= max(ret
, max_bitflips
);
889 mtd
->ecc_stats
.failed
++;
891 databuf
+= chip
->ecc
.size
;
892 eccbuf
+= chip
->ecc
.bytes
;
898 static int atmel_nand_pmecc_write_pg(struct nand_chip
*chip
, const u8
*buf
,
899 bool oob_required
, int page
, bool raw
)
901 struct mtd_info
*mtd
= nand_to_mtd(chip
);
902 struct atmel_nand
*nand
= to_atmel_nand(chip
);
905 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
907 ret
= atmel_nand_pmecc_enable(chip
, NAND_ECC_WRITE
, raw
);
911 nand_write_data_op(chip
, buf
, mtd
->writesize
, false);
913 ret
= atmel_nand_pmecc_generate_eccbytes(chip
, raw
);
915 atmel_pmecc_disable(nand
->pmecc
);
919 atmel_nand_pmecc_disable(chip
, raw
);
921 nand_write_data_op(chip
, chip
->oob_poi
, mtd
->oobsize
, false);
923 return nand_prog_page_end_op(chip
);
926 static int atmel_nand_pmecc_write_page(struct nand_chip
*chip
, const u8
*buf
,
927 int oob_required
, int page
)
929 return atmel_nand_pmecc_write_pg(chip
, buf
, oob_required
, page
, false);
932 static int atmel_nand_pmecc_write_page_raw(struct nand_chip
*chip
,
933 const u8
*buf
, int oob_required
,
936 return atmel_nand_pmecc_write_pg(chip
, buf
, oob_required
, page
, true);
939 static int atmel_nand_pmecc_read_pg(struct nand_chip
*chip
, u8
*buf
,
940 bool oob_required
, int page
, bool raw
)
942 struct mtd_info
*mtd
= nand_to_mtd(chip
);
945 nand_read_page_op(chip
, page
, 0, NULL
, 0);
947 ret
= atmel_nand_pmecc_enable(chip
, NAND_ECC_READ
, raw
);
951 ret
= nand_read_data_op(chip
, buf
, mtd
->writesize
, false, false);
955 ret
= nand_read_data_op(chip
, chip
->oob_poi
, mtd
->oobsize
, false, false);
959 ret
= atmel_nand_pmecc_correct_data(chip
, buf
, raw
);
962 atmel_nand_pmecc_disable(chip
, raw
);
967 static int atmel_nand_pmecc_read_page(struct nand_chip
*chip
, u8
*buf
,
968 int oob_required
, int page
)
970 return atmel_nand_pmecc_read_pg(chip
, buf
, oob_required
, page
, false);
973 static int atmel_nand_pmecc_read_page_raw(struct nand_chip
*chip
, u8
*buf
,
974 int oob_required
, int page
)
976 return atmel_nand_pmecc_read_pg(chip
, buf
, oob_required
, page
, true);
979 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip
*chip
,
980 const u8
*buf
, bool oob_required
,
983 struct mtd_info
*mtd
= nand_to_mtd(chip
);
984 struct atmel_nand
*nand
= to_atmel_nand(chip
);
985 struct atmel_hsmc_nand_controller
*nc
;
988 atmel_hsmc_nand_select_target(nand
, chip
->cur_cs
);
989 nc
= to_hsmc_nand_controller(chip
->controller
);
991 atmel_nfc_copy_to_sram(chip
, buf
, false);
993 nc
->op
.cmds
[0] = NAND_CMD_SEQIN
;
995 atmel_nfc_set_op_addr(chip
, page
, 0x0);
996 nc
->op
.cs
= nand
->activecs
->id
;
997 nc
->op
.data
= ATMEL_NFC_WRITE_DATA
;
999 ret
= atmel_nand_pmecc_enable(chip
, NAND_ECC_WRITE
, raw
);
1003 ret
= atmel_nfc_exec_op(nc
, false);
1005 atmel_nand_pmecc_disable(chip
, raw
);
1006 dev_err(nc
->base
.dev
,
1007 "Failed to transfer NAND page data (err = %d)\n",
1012 ret
= atmel_nand_pmecc_generate_eccbytes(chip
, raw
);
1014 atmel_nand_pmecc_disable(chip
, raw
);
1019 nand_write_data_op(chip
, chip
->oob_poi
, mtd
->oobsize
, false);
1021 return nand_prog_page_end_op(chip
);
1024 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip
*chip
,
1025 const u8
*buf
, int oob_required
,
1028 return atmel_hsmc_nand_pmecc_write_pg(chip
, buf
, oob_required
, page
,
1032 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip
*chip
,
1034 int oob_required
, int page
)
1036 return atmel_hsmc_nand_pmecc_write_pg(chip
, buf
, oob_required
, page
,
1040 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip
*chip
, u8
*buf
,
1041 bool oob_required
, int page
,
1044 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1045 struct atmel_nand
*nand
= to_atmel_nand(chip
);
1046 struct atmel_hsmc_nand_controller
*nc
;
1049 atmel_hsmc_nand_select_target(nand
, chip
->cur_cs
);
1050 nc
= to_hsmc_nand_controller(chip
->controller
);
1053 * Optimized read page accessors only work when the NAND R/B pin is
1054 * connected to a native SoC R/B pin. If that's not the case, fallback
1055 * to the non-optimized one.
1057 if (nand
->activecs
->rb
.type
!= ATMEL_NAND_NATIVE_RB
)
1058 return atmel_nand_pmecc_read_pg(chip
, buf
, oob_required
, page
,
1061 nc
->op
.cmds
[nc
->op
.ncmds
++] = NAND_CMD_READ0
;
1063 if (mtd
->writesize
> 512)
1064 nc
->op
.cmds
[nc
->op
.ncmds
++] = NAND_CMD_READSTART
;
1066 atmel_nfc_set_op_addr(chip
, page
, 0x0);
1067 nc
->op
.cs
= nand
->activecs
->id
;
1068 nc
->op
.data
= ATMEL_NFC_READ_DATA
;
1070 ret
= atmel_nand_pmecc_enable(chip
, NAND_ECC_READ
, raw
);
1074 ret
= atmel_nfc_exec_op(nc
, false);
1076 atmel_nand_pmecc_disable(chip
, raw
);
1077 dev_err(nc
->base
.dev
,
1078 "Failed to load NAND page data (err = %d)\n",
1083 atmel_nfc_copy_from_sram(chip
, buf
, true);
1085 ret
= atmel_nand_pmecc_correct_data(chip
, buf
, raw
);
1087 atmel_nand_pmecc_disable(chip
, raw
);
1092 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip
*chip
, u8
*buf
,
1093 int oob_required
, int page
)
1095 return atmel_hsmc_nand_pmecc_read_pg(chip
, buf
, oob_required
, page
,
1099 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip
*chip
,
1100 u8
*buf
, int oob_required
,
1103 return atmel_hsmc_nand_pmecc_read_pg(chip
, buf
, oob_required
, page
,
1107 static int atmel_nand_pmecc_init(struct nand_chip
*chip
)
1109 const struct nand_ecc_props
*requirements
=
1110 nanddev_get_ecc_requirements(&chip
->base
);
1111 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1112 struct nand_device
*nanddev
= mtd_to_nanddev(mtd
);
1113 struct atmel_nand
*nand
= to_atmel_nand(chip
);
1114 struct atmel_nand_controller
*nc
;
1115 struct atmel_pmecc_user_req req
;
1117 nc
= to_nand_controller(chip
->controller
);
1120 dev_err(nc
->dev
, "HW ECC not supported\n");
1124 if (nc
->caps
->legacy_of_bindings
) {
1127 if (!of_property_read_u32(nc
->dev
->of_node
, "atmel,pmecc-cap",
1129 chip
->ecc
.strength
= val
;
1131 if (!of_property_read_u32(nc
->dev
->of_node
,
1132 "atmel,pmecc-sector-size",
1134 chip
->ecc
.size
= val
;
1137 if (nanddev
->ecc
.user_conf
.flags
& NAND_ECC_MAXIMIZE_STRENGTH
)
1138 req
.ecc
.strength
= ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH
;
1139 else if (chip
->ecc
.strength
)
1140 req
.ecc
.strength
= chip
->ecc
.strength
;
1141 else if (requirements
->strength
)
1142 req
.ecc
.strength
= requirements
->strength
;
1144 req
.ecc
.strength
= ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH
;
1147 req
.ecc
.sectorsize
= chip
->ecc
.size
;
1148 else if (requirements
->step_size
)
1149 req
.ecc
.sectorsize
= requirements
->step_size
;
1151 req
.ecc
.sectorsize
= ATMEL_PMECC_SECTOR_SIZE_AUTO
;
1153 req
.pagesize
= mtd
->writesize
;
1154 req
.oobsize
= mtd
->oobsize
;
1156 if (mtd
->writesize
<= 512) {
1158 req
.ecc
.ooboffset
= 0;
1160 req
.ecc
.bytes
= mtd
->oobsize
- 2;
1161 req
.ecc
.ooboffset
= ATMEL_PMECC_OOBOFFSET_AUTO
;
1164 nand
->pmecc
= atmel_pmecc_create_user(nc
->pmecc
, &req
);
1165 if (IS_ERR(nand
->pmecc
))
1166 return PTR_ERR(nand
->pmecc
);
1168 chip
->ecc
.algo
= NAND_ECC_ALGO_BCH
;
1169 chip
->ecc
.size
= req
.ecc
.sectorsize
;
1170 chip
->ecc
.bytes
= req
.ecc
.bytes
/ req
.ecc
.nsectors
;
1171 chip
->ecc
.strength
= req
.ecc
.strength
;
1173 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1175 mtd_set_ooblayout(mtd
, nand_get_large_page_ooblayout());
1180 static int atmel_nand_ecc_init(struct nand_chip
*chip
)
1182 struct atmel_nand_controller
*nc
;
1185 nc
= to_nand_controller(chip
->controller
);
1187 switch (chip
->ecc
.engine_type
) {
1188 case NAND_ECC_ENGINE_TYPE_NONE
:
1189 case NAND_ECC_ENGINE_TYPE_SOFT
:
1191 * Nothing to do, the core will initialize everything for us.
1195 case NAND_ECC_ENGINE_TYPE_ON_HOST
:
1196 ret
= atmel_nand_pmecc_init(chip
);
1200 chip
->ecc
.read_page
= atmel_nand_pmecc_read_page
;
1201 chip
->ecc
.write_page
= atmel_nand_pmecc_write_page
;
1202 chip
->ecc
.read_page_raw
= atmel_nand_pmecc_read_page_raw
;
1203 chip
->ecc
.write_page_raw
= atmel_nand_pmecc_write_page_raw
;
1207 /* Other modes are not supported. */
1208 dev_err(nc
->dev
, "Unsupported ECC mode: %d\n",
1209 chip
->ecc
.engine_type
);
1216 static int atmel_hsmc_nand_ecc_init(struct nand_chip
*chip
)
1220 ret
= atmel_nand_ecc_init(chip
);
1224 if (chip
->ecc
.engine_type
!= NAND_ECC_ENGINE_TYPE_ON_HOST
)
1227 /* Adjust the ECC operations for the HSMC IP. */
1228 chip
->ecc
.read_page
= atmel_hsmc_nand_pmecc_read_page
;
1229 chip
->ecc
.write_page
= atmel_hsmc_nand_pmecc_write_page
;
1230 chip
->ecc
.read_page_raw
= atmel_hsmc_nand_pmecc_read_page_raw
;
1231 chip
->ecc
.write_page_raw
= atmel_hsmc_nand_pmecc_write_page_raw
;
1236 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand
*nand
,
1237 const struct nand_interface_config
*conf
,
1238 struct atmel_smc_cs_conf
*smcconf
)
1240 u32 ncycles
, totalcycles
, timeps
, mckperiodps
;
1241 struct atmel_nand_controller
*nc
;
1244 nc
= to_nand_controller(nand
->base
.controller
);
1246 /* DDR interface not supported. */
1247 if (conf
->type
!= NAND_SDR_IFACE
)
1251 * tRC < 30ns implies EDO mode. This controller does not support this
1254 if (conf
->timings
.sdr
.tRC_min
< 30000)
1257 atmel_smc_cs_conf_init(smcconf
);
1259 mckperiodps
= NSEC_PER_SEC
/ clk_get_rate(nc
->mck
);
1260 mckperiodps
*= 1000;
1263 * Set write pulse timing. This one is easy to extract:
1267 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tWP_min
, mckperiodps
);
1268 totalcycles
= ncycles
;
1269 ret
= atmel_smc_cs_conf_set_pulse(smcconf
, ATMEL_SMC_NWE_SHIFT
,
1275 * The write setup timing depends on the operation done on the NAND.
1276 * All operations goes through the same data bus, but the operation
1277 * type depends on the address we are writing to (ALE/CLE address
1279 * Since we have no way to differentiate the different operations at
1280 * the SMC level, we must consider the worst case (the biggest setup
1281 * time among all operation types):
1283 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1285 timeps
= max3(conf
->timings
.sdr
.tCLS_min
, conf
->timings
.sdr
.tCS_min
,
1286 conf
->timings
.sdr
.tALS_min
);
1287 timeps
= max(timeps
, conf
->timings
.sdr
.tDS_min
);
1288 ncycles
= DIV_ROUND_UP(timeps
, mckperiodps
);
1289 ncycles
= ncycles
> totalcycles
? ncycles
- totalcycles
: 0;
1290 totalcycles
+= ncycles
;
1291 ret
= atmel_smc_cs_conf_set_setup(smcconf
, ATMEL_SMC_NWE_SHIFT
,
1297 * As for the write setup timing, the write hold timing depends on the
1298 * operation done on the NAND:
1300 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1302 timeps
= max3(conf
->timings
.sdr
.tCLH_min
, conf
->timings
.sdr
.tCH_min
,
1303 conf
->timings
.sdr
.tALH_min
);
1304 timeps
= max3(timeps
, conf
->timings
.sdr
.tDH_min
,
1305 conf
->timings
.sdr
.tWH_min
);
1306 ncycles
= DIV_ROUND_UP(timeps
, mckperiodps
);
1307 totalcycles
+= ncycles
;
1310 * The write cycle timing is directly matching tWC, but is also
1311 * dependent on the other timings on the setup and hold timings we
1312 * calculated earlier, which gives:
1314 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1316 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tWC_min
, mckperiodps
);
1317 ncycles
= max(totalcycles
, ncycles
);
1318 ret
= atmel_smc_cs_conf_set_cycle(smcconf
, ATMEL_SMC_NWE_SHIFT
,
1324 * We don't want the CS line to be toggled between each byte/word
1325 * transfer to the NAND. The only way to guarantee that is to have the
1326 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1328 * NCS_WR_PULSE = NWE_CYCLE
1330 ret
= atmel_smc_cs_conf_set_pulse(smcconf
, ATMEL_SMC_NCS_WR_SHIFT
,
1336 * As for the write setup timing, the read hold timing depends on the
1337 * operation done on the NAND:
1339 * NRD_HOLD = max(tREH, tRHOH)
1341 timeps
= max(conf
->timings
.sdr
.tREH_min
, conf
->timings
.sdr
.tRHOH_min
);
1342 ncycles
= DIV_ROUND_UP(timeps
, mckperiodps
);
1343 totalcycles
= ncycles
;
1346 * TDF = tRHZ - NRD_HOLD
1348 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tRHZ_max
, mckperiodps
);
1349 ncycles
-= totalcycles
;
1352 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1353 * we might end up with a config that does not fit in the TDF field.
1354 * Just take the max value in this case and hope that the NAND is more
1355 * tolerant than advertised.
1357 if (ncycles
> ATMEL_SMC_MODE_TDF_MAX
)
1358 ncycles
= ATMEL_SMC_MODE_TDF_MAX
;
1359 else if (ncycles
< ATMEL_SMC_MODE_TDF_MIN
)
1360 ncycles
= ATMEL_SMC_MODE_TDF_MIN
;
1362 smcconf
->mode
|= ATMEL_SMC_MODE_TDF(ncycles
) |
1363 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED
;
1366 * Read pulse timing directly matches tRP:
1370 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tRP_min
, mckperiodps
);
1371 totalcycles
+= ncycles
;
1372 ret
= atmel_smc_cs_conf_set_pulse(smcconf
, ATMEL_SMC_NRD_SHIFT
,
1378 * The write cycle timing is directly matching tWC, but is also
1379 * dependent on the setup and hold timings we calculated earlier,
1382 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1384 * NRD_SETUP is always 0.
1386 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tRC_min
, mckperiodps
);
1387 ncycles
= max(totalcycles
, ncycles
);
1388 ret
= atmel_smc_cs_conf_set_cycle(smcconf
, ATMEL_SMC_NRD_SHIFT
,
1394 * We don't want the CS line to be toggled between each byte/word
1395 * transfer from the NAND. The only way to guarantee that is to have
1396 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1398 * NCS_RD_PULSE = NRD_CYCLE
1400 ret
= atmel_smc_cs_conf_set_pulse(smcconf
, ATMEL_SMC_NCS_RD_SHIFT
,
1405 /* Txxx timings are directly matching tXXX ones. */
1406 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tCLR_min
, mckperiodps
);
1407 ret
= atmel_smc_cs_conf_set_timing(smcconf
,
1408 ATMEL_HSMC_TIMINGS_TCLR_SHIFT
,
1413 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tADL_min
, mckperiodps
);
1414 ret
= atmel_smc_cs_conf_set_timing(smcconf
,
1415 ATMEL_HSMC_TIMINGS_TADL_SHIFT
,
1418 * Version 4 of the ONFI spec mandates that tADL be at least 400
1419 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1420 * fit in the tADL field of the SMC reg. We need to relax the check and
1421 * accept the -ERANGE return code.
1423 * Note that previous versions of the ONFI spec had a lower tADL_min
1424 * (100 or 200 ns). It's not clear why this timing constraint got
1425 * increased but it seems most NANDs are fine with values lower than
1426 * 400ns, so we should be safe.
1428 if (ret
&& ret
!= -ERANGE
)
1431 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tAR_min
, mckperiodps
);
1432 ret
= atmel_smc_cs_conf_set_timing(smcconf
,
1433 ATMEL_HSMC_TIMINGS_TAR_SHIFT
,
1438 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tRR_min
, mckperiodps
);
1439 ret
= atmel_smc_cs_conf_set_timing(smcconf
,
1440 ATMEL_HSMC_TIMINGS_TRR_SHIFT
,
1445 ncycles
= DIV_ROUND_UP(conf
->timings
.sdr
.tWB_max
, mckperiodps
);
1446 ret
= atmel_smc_cs_conf_set_timing(smcconf
,
1447 ATMEL_HSMC_TIMINGS_TWB_SHIFT
,
1452 /* Attach the CS line to the NFC logic. */
1453 smcconf
->timings
|= ATMEL_HSMC_TIMINGS_NFSEL
;
1455 /* Set the appropriate data bus width. */
1456 if (nand
->base
.options
& NAND_BUSWIDTH_16
)
1457 smcconf
->mode
|= ATMEL_SMC_MODE_DBW_16
;
1459 /* Operate in NRD/NWE READ/WRITEMODE. */
1460 smcconf
->mode
|= ATMEL_SMC_MODE_READMODE_NRD
|
1461 ATMEL_SMC_MODE_WRITEMODE_NWE
;
1466 static int atmel_smc_nand_setup_interface(struct atmel_nand
*nand
,
1468 const struct nand_interface_config
*conf
)
1470 struct atmel_nand_controller
*nc
;
1471 struct atmel_smc_cs_conf smcconf
;
1472 struct atmel_nand_cs
*cs
;
1475 nc
= to_nand_controller(nand
->base
.controller
);
1477 ret
= atmel_smc_nand_prepare_smcconf(nand
, conf
, &smcconf
);
1481 if (csline
== NAND_DATA_IFACE_CHECK_ONLY
)
1484 cs
= &nand
->cs
[csline
];
1485 cs
->smcconf
= smcconf
;
1486 atmel_smc_cs_conf_apply(nc
->smc
, cs
->id
, &cs
->smcconf
);
1491 static int atmel_hsmc_nand_setup_interface(struct atmel_nand
*nand
,
1493 const struct nand_interface_config
*conf
)
1495 struct atmel_hsmc_nand_controller
*nc
;
1496 struct atmel_smc_cs_conf smcconf
;
1497 struct atmel_nand_cs
*cs
;
1500 nc
= to_hsmc_nand_controller(nand
->base
.controller
);
1502 ret
= atmel_smc_nand_prepare_smcconf(nand
, conf
, &smcconf
);
1506 if (csline
== NAND_DATA_IFACE_CHECK_ONLY
)
1509 cs
= &nand
->cs
[csline
];
1510 cs
->smcconf
= smcconf
;
1512 if (cs
->rb
.type
== ATMEL_NAND_NATIVE_RB
)
1513 cs
->smcconf
.timings
|= ATMEL_HSMC_TIMINGS_RBNSEL(cs
->rb
.id
);
1515 atmel_hsmc_cs_conf_apply(nc
->base
.smc
, nc
->hsmc_layout
, cs
->id
,
1521 static int atmel_nand_setup_interface(struct nand_chip
*chip
, int csline
,
1522 const struct nand_interface_config
*conf
)
1524 struct atmel_nand
*nand
= to_atmel_nand(chip
);
1525 struct atmel_nand_controller
*nc
;
1527 nc
= to_nand_controller(nand
->base
.controller
);
1529 if (csline
>= nand
->numcs
||
1530 (csline
< 0 && csline
!= NAND_DATA_IFACE_CHECK_ONLY
))
1533 return nc
->caps
->ops
->setup_interface(nand
, csline
, conf
);
1536 static int atmel_nand_exec_op(struct nand_chip
*chip
,
1537 const struct nand_operation
*op
,
1540 struct atmel_nand
*nand
= to_atmel_nand(chip
);
1541 struct atmel_nand_controller
*nc
;
1543 nc
= to_nand_controller(nand
->base
.controller
);
1545 return nc
->caps
->ops
->exec_op(nand
, op
, check_only
);
1548 static void atmel_nand_init(struct atmel_nand_controller
*nc
,
1549 struct atmel_nand
*nand
)
1551 struct nand_chip
*chip
= &nand
->base
;
1552 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1554 mtd
->dev
.parent
= nc
->dev
;
1555 nand
->base
.controller
= &nc
->base
;
1557 if (!nc
->mck
|| !nc
->caps
->ops
->setup_interface
)
1558 chip
->options
|= NAND_KEEP_TIMINGS
;
1561 * Use a bounce buffer when the buffer passed by the MTD user is not
1565 chip
->options
|= NAND_USES_DMA
;
1567 /* Default to HW ECC if pmecc is available. */
1569 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
1572 static void atmel_smc_nand_init(struct atmel_nand_controller
*nc
,
1573 struct atmel_nand
*nand
)
1575 struct nand_chip
*chip
= &nand
->base
;
1576 struct atmel_smc_nand_controller
*smc_nc
;
1579 atmel_nand_init(nc
, nand
);
1581 smc_nc
= to_smc_nand_controller(chip
->controller
);
1582 if (!smc_nc
->ebi_csa_regmap
)
1585 /* Attach the CS to the NAND Flash logic. */
1586 for (i
= 0; i
< nand
->numcs
; i
++)
1587 regmap_update_bits(smc_nc
->ebi_csa_regmap
,
1588 smc_nc
->ebi_csa
->offs
,
1589 BIT(nand
->cs
[i
].id
), BIT(nand
->cs
[i
].id
));
1591 if (smc_nc
->ebi_csa
->nfd0_on_d16
)
1592 regmap_update_bits(smc_nc
->ebi_csa_regmap
,
1593 smc_nc
->ebi_csa
->offs
,
1594 smc_nc
->ebi_csa
->nfd0_on_d16
,
1595 smc_nc
->ebi_csa
->nfd0_on_d16
);
1598 static int atmel_nand_controller_remove_nand(struct atmel_nand
*nand
)
1600 struct nand_chip
*chip
= &nand
->base
;
1601 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1604 ret
= mtd_device_unregister(mtd
);
1609 list_del(&nand
->node
);
1614 static struct atmel_nand
*atmel_nand_create(struct atmel_nand_controller
*nc
,
1615 struct device_node
*np
,
1618 struct atmel_nand
*nand
;
1619 struct gpio_desc
*gpio
;
1622 numcs
= of_property_count_elems_of_size(np
, "reg",
1623 reg_cells
* sizeof(u32
));
1625 dev_err(nc
->dev
, "Missing or invalid reg property\n");
1626 return ERR_PTR(-EINVAL
);
1629 nand
= devm_kzalloc(nc
->dev
, struct_size(nand
, cs
, numcs
), GFP_KERNEL
);
1631 dev_err(nc
->dev
, "Failed to allocate NAND object\n");
1632 return ERR_PTR(-ENOMEM
);
1635 nand
->numcs
= numcs
;
1637 gpio
= devm_fwnode_gpiod_get(nc
->dev
, of_fwnode_handle(np
),
1638 "det", GPIOD_IN
, "nand-det");
1639 if (IS_ERR(gpio
) && PTR_ERR(gpio
) != -ENOENT
) {
1641 "Failed to get detect gpio (err = %ld)\n",
1643 return ERR_CAST(gpio
);
1647 nand
->cdgpio
= gpio
;
1649 for (i
= 0; i
< numcs
; i
++) {
1650 struct resource res
;
1653 ret
= of_address_to_resource(np
, 0, &res
);
1655 dev_err(nc
->dev
, "Invalid reg property (err = %d)\n",
1657 return ERR_PTR(ret
);
1660 ret
= of_property_read_u32_index(np
, "reg", i
* reg_cells
,
1663 dev_err(nc
->dev
, "Invalid reg property (err = %d)\n",
1665 return ERR_PTR(ret
);
1668 nand
->cs
[i
].id
= val
;
1670 nand
->cs
[i
].io
.dma
= res
.start
;
1671 nand
->cs
[i
].io
.virt
= devm_ioremap_resource(nc
->dev
, &res
);
1672 if (IS_ERR(nand
->cs
[i
].io
.virt
))
1673 return ERR_CAST(nand
->cs
[i
].io
.virt
);
1675 if (!of_property_read_u32(np
, "atmel,rb", &val
)) {
1676 if (val
> ATMEL_NFC_MAX_RB_ID
)
1677 return ERR_PTR(-EINVAL
);
1679 nand
->cs
[i
].rb
.type
= ATMEL_NAND_NATIVE_RB
;
1680 nand
->cs
[i
].rb
.id
= val
;
1682 gpio
= devm_fwnode_gpiod_get_index(nc
->dev
,
1683 of_fwnode_handle(np
),
1686 if (IS_ERR(gpio
) && PTR_ERR(gpio
) != -ENOENT
) {
1688 "Failed to get R/B gpio (err = %ld)\n",
1690 return ERR_CAST(gpio
);
1693 if (!IS_ERR(gpio
)) {
1694 nand
->cs
[i
].rb
.type
= ATMEL_NAND_GPIO_RB
;
1695 nand
->cs
[i
].rb
.gpio
= gpio
;
1699 gpio
= devm_fwnode_gpiod_get_index(nc
->dev
,
1700 of_fwnode_handle(np
),
1701 "cs", i
, GPIOD_OUT_HIGH
,
1703 if (IS_ERR(gpio
) && PTR_ERR(gpio
) != -ENOENT
) {
1705 "Failed to get CS gpio (err = %ld)\n",
1707 return ERR_CAST(gpio
);
1711 nand
->cs
[i
].csgpio
= gpio
;
1714 nand_set_flash_node(&nand
->base
, np
);
1720 atmel_nand_controller_add_nand(struct atmel_nand_controller
*nc
,
1721 struct atmel_nand
*nand
)
1723 struct nand_chip
*chip
= &nand
->base
;
1724 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1727 /* No card inserted, skip this NAND. */
1728 if (nand
->cdgpio
&& gpiod_get_value(nand
->cdgpio
)) {
1729 dev_info(nc
->dev
, "No SmartMedia card inserted.\n");
1733 nc
->caps
->ops
->nand_init(nc
, nand
);
1735 ret
= nand_scan(chip
, nand
->numcs
);
1737 dev_err(nc
->dev
, "NAND scan failed: %d\n", ret
);
1741 ret
= mtd_device_register(mtd
, NULL
, 0);
1743 dev_err(nc
->dev
, "Failed to register mtd device: %d\n", ret
);
1748 list_add_tail(&nand
->node
, &nc
->chips
);
1754 atmel_nand_controller_remove_nands(struct atmel_nand_controller
*nc
)
1756 struct atmel_nand
*nand
, *tmp
;
1759 list_for_each_entry_safe(nand
, tmp
, &nc
->chips
, node
) {
1760 ret
= atmel_nand_controller_remove_nand(nand
);
1769 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller
*nc
)
1771 struct device
*dev
= nc
->dev
;
1772 struct platform_device
*pdev
= to_platform_device(dev
);
1773 struct atmel_nand
*nand
;
1774 struct gpio_desc
*gpio
;
1775 struct resource
*res
;
1778 * Legacy bindings only allow connecting a single NAND with a unique CS
1779 * line to the controller.
1781 nand
= devm_kzalloc(nc
->dev
, sizeof(*nand
) + sizeof(*nand
->cs
),
1788 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1789 nand
->cs
[0].io
.virt
= devm_ioremap_resource(dev
, res
);
1790 if (IS_ERR(nand
->cs
[0].io
.virt
))
1791 return PTR_ERR(nand
->cs
[0].io
.virt
);
1793 nand
->cs
[0].io
.dma
= res
->start
;
1796 * The old driver was hardcoding the CS id to 3 for all sama5
1797 * controllers. Since this id is only meaningful for the sama5
1798 * controller we can safely assign this id to 3 no matter the
1800 * If one wants to connect a NAND to a different CS line, he will
1801 * have to use the new bindings.
1806 gpio
= devm_gpiod_get_index_optional(dev
, NULL
, 0, GPIOD_IN
);
1808 dev_err(dev
, "Failed to get R/B gpio (err = %ld)\n",
1810 return PTR_ERR(gpio
);
1814 nand
->cs
[0].rb
.type
= ATMEL_NAND_GPIO_RB
;
1815 nand
->cs
[0].rb
.gpio
= gpio
;
1819 gpio
= devm_gpiod_get_index_optional(dev
, NULL
, 1, GPIOD_OUT_HIGH
);
1821 dev_err(dev
, "Failed to get CS gpio (err = %ld)\n",
1823 return PTR_ERR(gpio
);
1826 nand
->cs
[0].csgpio
= gpio
;
1828 /* Card detect GPIO. */
1829 gpio
= devm_gpiod_get_index_optional(nc
->dev
, NULL
, 2, GPIOD_IN
);
1832 "Failed to get detect gpio (err = %ld)\n",
1834 return PTR_ERR(gpio
);
1837 nand
->cdgpio
= gpio
;
1839 nand_set_flash_node(&nand
->base
, nc
->dev
->of_node
);
1841 return atmel_nand_controller_add_nand(nc
, nand
);
1844 static int atmel_nand_controller_add_nands(struct atmel_nand_controller
*nc
)
1846 struct device_node
*np
, *nand_np
;
1847 struct device
*dev
= nc
->dev
;
1851 /* We do not retrieve the SMC syscon when parsing old DTs. */
1852 if (nc
->caps
->legacy_of_bindings
)
1853 return atmel_nand_controller_legacy_add_nands(nc
);
1857 ret
= of_property_read_u32(np
, "#address-cells", &val
);
1859 dev_err(dev
, "missing #address-cells property\n");
1865 ret
= of_property_read_u32(np
, "#size-cells", &val
);
1867 dev_err(dev
, "missing #size-cells property\n");
1873 for_each_child_of_node(np
, nand_np
) {
1874 struct atmel_nand
*nand
;
1876 nand
= atmel_nand_create(nc
, nand_np
, reg_cells
);
1878 ret
= PTR_ERR(nand
);
1882 ret
= atmel_nand_controller_add_nand(nc
, nand
);
1890 atmel_nand_controller_remove_nands(nc
);
1895 static void atmel_nand_controller_cleanup(struct atmel_nand_controller
*nc
)
1898 dma_release_channel(nc
->dmac
);
1903 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa
= {
1904 .offs
= AT91SAM9260_MATRIX_EBICSA
,
1907 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa
= {
1908 .offs
= AT91SAM9261_MATRIX_EBICSA
,
1911 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa
= {
1912 .offs
= AT91SAM9263_MATRIX_EBI0CSA
,
1915 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa
= {
1916 .offs
= AT91SAM9RL_MATRIX_EBICSA
,
1919 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa
= {
1920 .offs
= AT91SAM9G45_MATRIX_EBICSA
,
1923 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa
= {
1924 .offs
= AT91SAM9N12_MATRIX_EBICSA
,
1927 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa
= {
1928 .offs
= AT91SAM9X5_MATRIX_EBICSA
,
1931 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa
= {
1932 .offs
= AT91_SFR_CCFG_EBICSA
,
1933 .nfd0_on_d16
= AT91_SFR_CCFG_NFD0_ON_D16
,
1936 static const struct of_device_id atmel_ebi_csa_regmap_of_ids
[] = {
1938 .compatible
= "atmel,at91sam9260-matrix",
1939 .data
= &at91sam9260_ebi_csa
,
1942 .compatible
= "atmel,at91sam9261-matrix",
1943 .data
= &at91sam9261_ebi_csa
,
1946 .compatible
= "atmel,at91sam9263-matrix",
1947 .data
= &at91sam9263_ebi_csa
,
1950 .compatible
= "atmel,at91sam9rl-matrix",
1951 .data
= &at91sam9rl_ebi_csa
,
1954 .compatible
= "atmel,at91sam9g45-matrix",
1955 .data
= &at91sam9g45_ebi_csa
,
1958 .compatible
= "atmel,at91sam9n12-matrix",
1959 .data
= &at91sam9n12_ebi_csa
,
1962 .compatible
= "atmel,at91sam9x5-matrix",
1963 .data
= &at91sam9x5_ebi_csa
,
1966 .compatible
= "microchip,sam9x60-sfr",
1967 .data
= &sam9x60_ebi_csa
,
1972 static int atmel_nand_attach_chip(struct nand_chip
*chip
)
1974 struct atmel_nand_controller
*nc
= to_nand_controller(chip
->controller
);
1975 struct atmel_nand
*nand
= to_atmel_nand(chip
);
1976 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1979 ret
= nc
->caps
->ops
->ecc_init(chip
);
1983 if (nc
->caps
->legacy_of_bindings
|| !nc
->dev
->of_node
) {
1985 * We keep the MTD name unchanged to avoid breaking platforms
1986 * where the MTD cmdline parser is used and the bootloader
1987 * has not been updated to use the new naming scheme.
1989 mtd
->name
= "atmel_nand";
1990 } else if (!mtd
->name
) {
1992 * If the new bindings are used and the bootloader has not been
1993 * updated to pass a new mtdparts parameter on the cmdline, you
1994 * should define the following property in your nand node:
1996 * label = "atmel_nand";
1998 * This way, mtd->name will be set by the core when
1999 * nand_set_flash_node() is called.
2001 mtd
->name
= devm_kasprintf(nc
->dev
, GFP_KERNEL
,
2002 "%s:nand.%d", dev_name(nc
->dev
),
2005 dev_err(nc
->dev
, "Failed to allocate mtd->name\n");
2013 static const struct nand_controller_ops atmel_nand_controller_ops
= {
2014 .attach_chip
= atmel_nand_attach_chip
,
2015 .setup_interface
= atmel_nand_setup_interface
,
2016 .exec_op
= atmel_nand_exec_op
,
2019 static int atmel_nand_controller_init(struct atmel_nand_controller
*nc
,
2020 struct platform_device
*pdev
,
2021 const struct atmel_nand_controller_caps
*caps
)
2023 struct device
*dev
= &pdev
->dev
;
2024 struct device_node
*np
= dev
->of_node
;
2027 nand_controller_init(&nc
->base
);
2028 nc
->base
.ops
= &atmel_nand_controller_ops
;
2029 INIT_LIST_HEAD(&nc
->chips
);
2033 platform_set_drvdata(pdev
, nc
);
2035 nc
->pmecc
= devm_atmel_pmecc_get(dev
);
2036 if (IS_ERR(nc
->pmecc
))
2037 return dev_err_probe(dev
, PTR_ERR(nc
->pmecc
),
2038 "Could not get PMECC object\n");
2040 if (nc
->caps
->has_dma
&& !atmel_nand_avoid_dma
) {
2041 dma_cap_mask_t mask
;
2044 dma_cap_set(DMA_MEMCPY
, mask
);
2046 nc
->dmac
= dma_request_channel(mask
, NULL
, NULL
);
2048 dev_err(nc
->dev
, "Failed to request DMA channel\n");
2051 /* We do not retrieve the SMC syscon when parsing old DTs. */
2052 if (nc
->caps
->legacy_of_bindings
)
2055 nc
->mck
= of_clk_get(dev
->parent
->of_node
, 0);
2056 if (IS_ERR(nc
->mck
)) {
2057 dev_err(dev
, "Failed to retrieve MCK clk\n");
2058 return PTR_ERR(nc
->mck
);
2061 np
= of_parse_phandle(dev
->parent
->of_node
, "atmel,smc", 0);
2063 dev_err(dev
, "Missing or invalid atmel,smc property\n");
2067 nc
->smc
= syscon_node_to_regmap(np
);
2069 if (IS_ERR(nc
->smc
)) {
2070 ret
= PTR_ERR(nc
->smc
);
2071 dev_err(dev
, "Could not get SMC regmap (err = %d)\n", ret
);
2079 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller
*nc
)
2081 struct device
*dev
= nc
->base
.dev
;
2082 const struct of_device_id
*match
;
2083 struct device_node
*np
;
2086 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
2087 if (nc
->base
.caps
->legacy_of_bindings
)
2090 np
= of_parse_phandle(dev
->parent
->of_node
,
2091 nc
->base
.caps
->ebi_csa_regmap_name
, 0);
2095 match
= of_match_node(atmel_ebi_csa_regmap_of_ids
, np
);
2101 nc
->ebi_csa_regmap
= syscon_node_to_regmap(np
);
2103 if (IS_ERR(nc
->ebi_csa_regmap
)) {
2104 ret
= PTR_ERR(nc
->ebi_csa_regmap
);
2105 dev_err(dev
, "Could not get EBICSA regmap (err = %d)\n", ret
);
2109 nc
->ebi_csa
= (struct atmel_smc_nand_ebi_csa_cfg
*)match
->data
;
2112 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2113 * add 4 to ->ebi_csa->offs.
2115 if (of_device_is_compatible(dev
->parent
->of_node
,
2116 "atmel,at91sam9263-ebi1"))
2117 nc
->ebi_csa
->offs
+= 4;
2123 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller
*nc
)
2125 struct regmap_config regmap_conf
= {
2131 struct device
*dev
= nc
->base
.dev
;
2132 struct device_node
*nand_np
, *nfc_np
;
2133 void __iomem
*iomem
;
2134 struct resource res
;
2137 nand_np
= dev
->of_node
;
2138 nfc_np
= of_get_compatible_child(dev
->of_node
, "atmel,sama5d3-nfc");
2140 dev_err(dev
, "Could not find device node for sama5d3-nfc\n");
2144 nc
->clk
= of_clk_get(nfc_np
, 0);
2145 if (IS_ERR(nc
->clk
)) {
2146 ret
= PTR_ERR(nc
->clk
);
2147 dev_err(dev
, "Failed to retrieve HSMC clock (err = %d)\n",
2152 ret
= clk_prepare_enable(nc
->clk
);
2154 dev_err(dev
, "Failed to enable the HSMC clock (err = %d)\n",
2159 nc
->irq
= of_irq_get(nand_np
, 0);
2161 ret
= nc
->irq
?: -ENXIO
;
2162 if (ret
!= -EPROBE_DEFER
)
2163 dev_err(dev
, "Failed to get IRQ number (err = %d)\n",
2168 ret
= of_address_to_resource(nfc_np
, 0, &res
);
2170 dev_err(dev
, "Invalid or missing NFC IO resource (err = %d)\n",
2175 iomem
= devm_ioremap_resource(dev
, &res
);
2176 if (IS_ERR(iomem
)) {
2177 ret
= PTR_ERR(iomem
);
2181 regmap_conf
.name
= "nfc-io";
2182 regmap_conf
.max_register
= resource_size(&res
) - 4;
2183 nc
->io
= devm_regmap_init_mmio(dev
, iomem
, ®map_conf
);
2184 if (IS_ERR(nc
->io
)) {
2185 ret
= PTR_ERR(nc
->io
);
2186 dev_err(dev
, "Could not create NFC IO regmap (err = %d)\n",
2191 ret
= of_address_to_resource(nfc_np
, 1, &res
);
2193 dev_err(dev
, "Invalid or missing HSMC resource (err = %d)\n",
2198 iomem
= devm_ioremap_resource(dev
, &res
);
2199 if (IS_ERR(iomem
)) {
2200 ret
= PTR_ERR(iomem
);
2204 regmap_conf
.name
= "smc";
2205 regmap_conf
.max_register
= resource_size(&res
) - 4;
2206 nc
->base
.smc
= devm_regmap_init_mmio(dev
, iomem
, ®map_conf
);
2207 if (IS_ERR(nc
->base
.smc
)) {
2208 ret
= PTR_ERR(nc
->base
.smc
);
2209 dev_err(dev
, "Could not create NFC IO regmap (err = %d)\n",
2214 ret
= of_address_to_resource(nfc_np
, 2, &res
);
2216 dev_err(dev
, "Invalid or missing SRAM resource (err = %d)\n",
2221 nc
->sram
.virt
= devm_ioremap_resource(dev
, &res
);
2222 if (IS_ERR(nc
->sram
.virt
)) {
2223 ret
= PTR_ERR(nc
->sram
.virt
);
2227 nc
->sram
.dma
= res
.start
;
2230 of_node_put(nfc_np
);
2236 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller
*nc
)
2238 struct device
*dev
= nc
->base
.dev
;
2239 struct device_node
*np
;
2242 np
= of_parse_phandle(dev
->parent
->of_node
, "atmel,smc", 0);
2244 dev_err(dev
, "Missing or invalid atmel,smc property\n");
2248 nc
->hsmc_layout
= atmel_hsmc_get_reg_layout(np
);
2250 nc
->irq
= of_irq_get(np
, 0);
2253 ret
= nc
->irq
?: -ENXIO
;
2254 if (ret
!= -EPROBE_DEFER
)
2255 dev_err(dev
, "Failed to get IRQ number (err = %d)\n",
2260 np
= of_parse_phandle(dev
->of_node
, "atmel,nfc-io", 0);
2262 dev_err(dev
, "Missing or invalid atmel,nfc-io property\n");
2266 nc
->io
= syscon_node_to_regmap(np
);
2268 if (IS_ERR(nc
->io
)) {
2269 ret
= PTR_ERR(nc
->io
);
2270 dev_err(dev
, "Could not get NFC IO regmap (err = %d)\n", ret
);
2274 nc
->sram
.pool
= of_gen_pool_get(nc
->base
.dev
->of_node
,
2275 "atmel,nfc-sram", 0);
2276 if (!nc
->sram
.pool
) {
2277 dev_err(nc
->base
.dev
, "Missing SRAM\n");
2281 nc
->sram
.virt
= (void __iomem
*)gen_pool_dma_alloc(nc
->sram
.pool
,
2282 ATMEL_NFC_SRAM_SIZE
,
2284 if (!nc
->sram
.virt
) {
2285 dev_err(nc
->base
.dev
,
2286 "Could not allocate memory from the NFC SRAM pool\n");
2294 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller
*nc
)
2296 struct atmel_hsmc_nand_controller
*hsmc_nc
;
2299 ret
= atmel_nand_controller_remove_nands(nc
);
2303 hsmc_nc
= container_of(nc
, struct atmel_hsmc_nand_controller
, base
);
2304 regmap_write(hsmc_nc
->base
.smc
, ATMEL_HSMC_NFC_CTRL
,
2305 ATMEL_HSMC_NFC_CTRL_DIS
);
2307 if (hsmc_nc
->sram
.pool
)
2308 gen_pool_free(hsmc_nc
->sram
.pool
,
2309 (unsigned long)hsmc_nc
->sram
.virt
,
2310 ATMEL_NFC_SRAM_SIZE
);
2313 clk_disable_unprepare(hsmc_nc
->clk
);
2314 clk_put(hsmc_nc
->clk
);
2317 atmel_nand_controller_cleanup(nc
);
2322 static int atmel_hsmc_nand_controller_probe(struct platform_device
*pdev
,
2323 const struct atmel_nand_controller_caps
*caps
)
2325 struct device
*dev
= &pdev
->dev
;
2326 struct atmel_hsmc_nand_controller
*nc
;
2329 nc
= devm_kzalloc(dev
, sizeof(*nc
), GFP_KERNEL
);
2333 ret
= atmel_nand_controller_init(&nc
->base
, pdev
, caps
);
2337 if (caps
->legacy_of_bindings
)
2338 ret
= atmel_hsmc_nand_controller_legacy_init(nc
);
2340 ret
= atmel_hsmc_nand_controller_init(nc
);
2345 /* Make sure all irqs are masked before registering our IRQ handler. */
2346 regmap_write(nc
->base
.smc
, ATMEL_HSMC_NFC_IDR
, 0xffffffff);
2347 ret
= devm_request_irq(dev
, nc
->irq
, atmel_nfc_interrupt
,
2348 IRQF_SHARED
, "nfc", nc
);
2351 "Could not get register NFC interrupt handler (err = %d)\n",
2356 /* Initial NFC configuration. */
2357 regmap_write(nc
->base
.smc
, ATMEL_HSMC_NFC_CFG
,
2358 ATMEL_HSMC_NFC_CFG_DTO_MAX
);
2359 regmap_write(nc
->base
.smc
, ATMEL_HSMC_NFC_CTRL
,
2360 ATMEL_HSMC_NFC_CTRL_EN
);
2362 ret
= atmel_nand_controller_add_nands(&nc
->base
);
2369 atmel_hsmc_nand_controller_remove(&nc
->base
);
2374 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops
= {
2375 .probe
= atmel_hsmc_nand_controller_probe
,
2376 .remove
= atmel_hsmc_nand_controller_remove
,
2377 .ecc_init
= atmel_hsmc_nand_ecc_init
,
2378 .nand_init
= atmel_nand_init
,
2379 .setup_interface
= atmel_hsmc_nand_setup_interface
,
2380 .exec_op
= atmel_hsmc_nand_exec_op
,
2383 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps
= {
2385 .ale_offs
= BIT(21),
2386 .cle_offs
= BIT(22),
2387 .ops
= &atmel_hsmc_nc_ops
,
2390 /* Only used to parse old bindings. */
2391 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps
= {
2393 .ale_offs
= BIT(21),
2394 .cle_offs
= BIT(22),
2395 .ops
= &atmel_hsmc_nc_ops
,
2396 .legacy_of_bindings
= true,
2399 static int atmel_smc_nand_controller_probe(struct platform_device
*pdev
,
2400 const struct atmel_nand_controller_caps
*caps
)
2402 struct device
*dev
= &pdev
->dev
;
2403 struct atmel_smc_nand_controller
*nc
;
2406 nc
= devm_kzalloc(dev
, sizeof(*nc
), GFP_KERNEL
);
2410 ret
= atmel_nand_controller_init(&nc
->base
, pdev
, caps
);
2414 ret
= atmel_smc_nand_controller_init(nc
);
2418 return atmel_nand_controller_add_nands(&nc
->base
);
2422 atmel_smc_nand_controller_remove(struct atmel_nand_controller
*nc
)
2426 ret
= atmel_nand_controller_remove_nands(nc
);
2430 atmel_nand_controller_cleanup(nc
);
2436 * The SMC reg layout of at91rm9200 is completely different which prevents us
2437 * from re-using atmel_smc_nand_setup_interface() for the
2438 * ->setup_interface() hook.
2439 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2440 * ->setup_interface() unassigned.
2442 static const struct atmel_nand_controller_ops at91rm9200_nc_ops
= {
2443 .probe
= atmel_smc_nand_controller_probe
,
2444 .remove
= atmel_smc_nand_controller_remove
,
2445 .ecc_init
= atmel_nand_ecc_init
,
2446 .nand_init
= atmel_smc_nand_init
,
2447 .exec_op
= atmel_smc_nand_exec_op
,
2450 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps
= {
2451 .ale_offs
= BIT(21),
2452 .cle_offs
= BIT(22),
2453 .ebi_csa_regmap_name
= "atmel,matrix",
2454 .ops
= &at91rm9200_nc_ops
,
2457 static const struct atmel_nand_controller_ops atmel_smc_nc_ops
= {
2458 .probe
= atmel_smc_nand_controller_probe
,
2459 .remove
= atmel_smc_nand_controller_remove
,
2460 .ecc_init
= atmel_nand_ecc_init
,
2461 .nand_init
= atmel_smc_nand_init
,
2462 .setup_interface
= atmel_smc_nand_setup_interface
,
2463 .exec_op
= atmel_smc_nand_exec_op
,
2466 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps
= {
2467 .ale_offs
= BIT(21),
2468 .cle_offs
= BIT(22),
2469 .ebi_csa_regmap_name
= "atmel,matrix",
2470 .ops
= &atmel_smc_nc_ops
,
2473 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps
= {
2474 .ale_offs
= BIT(22),
2475 .cle_offs
= BIT(21),
2476 .ebi_csa_regmap_name
= "atmel,matrix",
2477 .ops
= &atmel_smc_nc_ops
,
2480 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps
= {
2482 .ale_offs
= BIT(21),
2483 .cle_offs
= BIT(22),
2484 .ebi_csa_regmap_name
= "atmel,matrix",
2485 .ops
= &atmel_smc_nc_ops
,
2488 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps
= {
2490 .ale_offs
= BIT(21),
2491 .cle_offs
= BIT(22),
2492 .ebi_csa_regmap_name
= "microchip,sfr",
2493 .ops
= &atmel_smc_nc_ops
,
2496 /* Only used to parse old bindings. */
2497 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps
= {
2498 .ale_offs
= BIT(21),
2499 .cle_offs
= BIT(22),
2500 .ops
= &atmel_smc_nc_ops
,
2501 .legacy_of_bindings
= true,
2504 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps
= {
2505 .ale_offs
= BIT(22),
2506 .cle_offs
= BIT(21),
2507 .ops
= &atmel_smc_nc_ops
,
2508 .legacy_of_bindings
= true,
2511 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps
= {
2513 .ale_offs
= BIT(21),
2514 .cle_offs
= BIT(22),
2515 .ops
= &atmel_smc_nc_ops
,
2516 .legacy_of_bindings
= true,
2519 static const struct of_device_id atmel_nand_controller_of_ids
[] = {
2521 .compatible
= "atmel,at91rm9200-nand-controller",
2522 .data
= &atmel_rm9200_nc_caps
,
2525 .compatible
= "atmel,at91sam9260-nand-controller",
2526 .data
= &atmel_sam9260_nc_caps
,
2529 .compatible
= "atmel,at91sam9261-nand-controller",
2530 .data
= &atmel_sam9261_nc_caps
,
2533 .compatible
= "atmel,at91sam9g45-nand-controller",
2534 .data
= &atmel_sam9g45_nc_caps
,
2537 .compatible
= "atmel,sama5d3-nand-controller",
2538 .data
= &atmel_sama5_nc_caps
,
2541 .compatible
= "microchip,sam9x60-nand-controller",
2542 .data
= µchip_sam9x60_nc_caps
,
2544 /* Support for old/deprecated bindings: */
2546 .compatible
= "atmel,at91rm9200-nand",
2547 .data
= &atmel_rm9200_nand_caps
,
2550 .compatible
= "atmel,sama5d4-nand",
2551 .data
= &atmel_rm9200_nand_caps
,
2554 .compatible
= "atmel,sama5d2-nand",
2555 .data
= &atmel_rm9200_nand_caps
,
2559 MODULE_DEVICE_TABLE(of
, atmel_nand_controller_of_ids
);
2561 static int atmel_nand_controller_probe(struct platform_device
*pdev
)
2563 const struct atmel_nand_controller_caps
*caps
;
2566 caps
= (void *)pdev
->id_entry
->driver_data
;
2568 caps
= of_device_get_match_data(&pdev
->dev
);
2571 dev_err(&pdev
->dev
, "Could not retrieve NFC caps\n");
2575 if (caps
->legacy_of_bindings
) {
2576 struct device_node
*nfc_node
;
2580 * If we are parsing legacy DT props and the DT contains a
2581 * valid NFC node, forward the request to the sama5 logic.
2583 nfc_node
= of_get_compatible_child(pdev
->dev
.of_node
,
2584 "atmel,sama5d3-nfc");
2586 caps
= &atmel_sama5_nand_caps
;
2587 of_node_put(nfc_node
);
2591 * Even if the compatible says we are dealing with an
2592 * at91rm9200 controller, the atmel,nand-has-dma specify that
2593 * this controller supports DMA, which means we are in fact
2594 * dealing with an at91sam9g45+ controller.
2596 if (!caps
->has_dma
&&
2597 of_property_read_bool(pdev
->dev
.of_node
,
2598 "atmel,nand-has-dma"))
2599 caps
= &atmel_sam9g45_nand_caps
;
2602 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2603 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2604 * actually dealing with an at91sam9261 controller.
2606 of_property_read_u32(pdev
->dev
.of_node
,
2607 "atmel,nand-addr-offset", &ale_offs
);
2609 caps
= &atmel_sam9261_nand_caps
;
2612 return caps
->ops
->probe(pdev
, caps
);
2615 static int atmel_nand_controller_remove(struct platform_device
*pdev
)
2617 struct atmel_nand_controller
*nc
= platform_get_drvdata(pdev
);
2619 return nc
->caps
->ops
->remove(nc
);
2622 static __maybe_unused
int atmel_nand_controller_resume(struct device
*dev
)
2624 struct atmel_nand_controller
*nc
= dev_get_drvdata(dev
);
2625 struct atmel_nand
*nand
;
2628 atmel_pmecc_reset(nc
->pmecc
);
2630 list_for_each_entry(nand
, &nc
->chips
, node
) {
2633 for (i
= 0; i
< nand
->numcs
; i
++)
2634 nand_reset(&nand
->base
, i
);
2640 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops
, NULL
,
2641 atmel_nand_controller_resume
);
2643 static struct platform_driver atmel_nand_controller_driver
= {
2645 .name
= "atmel-nand-controller",
2646 .of_match_table
= of_match_ptr(atmel_nand_controller_of_ids
),
2647 .pm
= &atmel_nand_controller_pm_ops
,
2649 .probe
= atmel_nand_controller_probe
,
2650 .remove
= atmel_nand_controller_remove
,
2652 module_platform_driver(atmel_nand_controller_driver
);
2654 MODULE_LICENSE("GPL");
2655 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2656 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2657 MODULE_ALIAS("platform:atmel-nand-controller");