1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/syscall_user_dispatch.h>
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
66 #include <linux/nospec.h>
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
72 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
85 # define SET_FPEMU_CTL(a, b) (-EINVAL)
88 # define GET_FPEMU_CTL(a, b) (-EINVAL)
91 # define SET_FPEXC_CTL(a, b) (-EINVAL)
94 # define GET_FPEXC_CTL(a, b) (-EINVAL)
97 # define GET_ENDIAN(a, b) (-EINVAL)
100 # define SET_ENDIAN(a, b) (-EINVAL)
103 # define GET_TSC_CTL(a) (-EINVAL)
106 # define SET_TSC_CTL(a) (-EINVAL)
109 # define GET_FP_MODE(a) (-EINVAL)
112 # define SET_FP_MODE(a,b) (-EINVAL)
115 # define SVE_SET_VL(a) (-EINVAL)
118 # define SVE_GET_VL() (-EINVAL)
120 #ifndef PAC_RESET_KEYS
121 # define PAC_RESET_KEYS(a, b) (-EINVAL)
123 #ifndef SET_TAGGED_ADDR_CTRL
124 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
126 #ifndef GET_TAGGED_ADDR_CTRL
127 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
131 * this is where the system-wide overflow UID and GID are defined, for
132 * architectures that now have 32-bit UID/GID but didn't in the past
135 int overflowuid
= DEFAULT_OVERFLOWUID
;
136 int overflowgid
= DEFAULT_OVERFLOWGID
;
138 EXPORT_SYMBOL(overflowuid
);
139 EXPORT_SYMBOL(overflowgid
);
142 * the same as above, but for filesystems which can only store a 16-bit
143 * UID and GID. as such, this is needed on all architectures
146 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
147 int fs_overflowgid
= DEFAULT_FS_OVERFLOWGID
;
149 EXPORT_SYMBOL(fs_overflowuid
);
150 EXPORT_SYMBOL(fs_overflowgid
);
153 * Returns true if current's euid is same as p's uid or euid,
154 * or has CAP_SYS_NICE to p's user_ns.
156 * Called with rcu_read_lock, creds are safe
158 static bool set_one_prio_perm(struct task_struct
*p
)
160 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
162 if (uid_eq(pcred
->uid
, cred
->euid
) ||
163 uid_eq(pcred
->euid
, cred
->euid
))
165 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
171 * set the priority of a task
172 * - the caller must hold the RCU read lock
174 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
178 if (!set_one_prio_perm(p
)) {
182 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
186 no_nice
= security_task_setnice(p
, niceval
);
193 set_user_nice(p
, niceval
);
198 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
200 struct task_struct
*g
, *p
;
201 struct user_struct
*user
;
202 const struct cred
*cred
= current_cred();
207 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
210 /* normalize: avoid signed division (rounding problems) */
212 if (niceval
< MIN_NICE
)
214 if (niceval
> MAX_NICE
)
218 read_lock(&tasklist_lock
);
222 p
= find_task_by_vpid(who
);
226 error
= set_one_prio(p
, niceval
, error
);
230 pgrp
= find_vpid(who
);
232 pgrp
= task_pgrp(current
);
233 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
234 error
= set_one_prio(p
, niceval
, error
);
235 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
238 uid
= make_kuid(cred
->user_ns
, who
);
242 else if (!uid_eq(uid
, cred
->uid
)) {
243 user
= find_user(uid
);
245 goto out_unlock
; /* No processes for this user */
247 do_each_thread(g
, p
) {
248 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
249 error
= set_one_prio(p
, niceval
, error
);
250 } while_each_thread(g
, p
);
251 if (!uid_eq(uid
, cred
->uid
))
252 free_uid(user
); /* For find_user() */
256 read_unlock(&tasklist_lock
);
263 * Ugh. To avoid negative return values, "getpriority()" will
264 * not return the normal nice-value, but a negated value that
265 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
266 * to stay compatible.
268 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
270 struct task_struct
*g
, *p
;
271 struct user_struct
*user
;
272 const struct cred
*cred
= current_cred();
273 long niceval
, retval
= -ESRCH
;
277 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
281 read_lock(&tasklist_lock
);
285 p
= find_task_by_vpid(who
);
289 niceval
= nice_to_rlimit(task_nice(p
));
290 if (niceval
> retval
)
296 pgrp
= find_vpid(who
);
298 pgrp
= task_pgrp(current
);
299 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
300 niceval
= nice_to_rlimit(task_nice(p
));
301 if (niceval
> retval
)
303 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
306 uid
= make_kuid(cred
->user_ns
, who
);
310 else if (!uid_eq(uid
, cred
->uid
)) {
311 user
= find_user(uid
);
313 goto out_unlock
; /* No processes for this user */
315 do_each_thread(g
, p
) {
316 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
317 niceval
= nice_to_rlimit(task_nice(p
));
318 if (niceval
> retval
)
321 } while_each_thread(g
, p
);
322 if (!uid_eq(uid
, cred
->uid
))
323 free_uid(user
); /* for find_user() */
327 read_unlock(&tasklist_lock
);
334 * Unprivileged users may change the real gid to the effective gid
335 * or vice versa. (BSD-style)
337 * If you set the real gid at all, or set the effective gid to a value not
338 * equal to the real gid, then the saved gid is set to the new effective gid.
340 * This makes it possible for a setgid program to completely drop its
341 * privileges, which is often a useful assertion to make when you are doing
342 * a security audit over a program.
344 * The general idea is that a program which uses just setregid() will be
345 * 100% compatible with BSD. A program which uses just setgid() will be
346 * 100% compatible with POSIX with saved IDs.
348 * SMP: There are not races, the GIDs are checked only by filesystem
349 * operations (as far as semantic preservation is concerned).
351 #ifdef CONFIG_MULTIUSER
352 long __sys_setregid(gid_t rgid
, gid_t egid
)
354 struct user_namespace
*ns
= current_user_ns();
355 const struct cred
*old
;
360 krgid
= make_kgid(ns
, rgid
);
361 kegid
= make_kgid(ns
, egid
);
363 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
365 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
368 new = prepare_creds();
371 old
= current_cred();
374 if (rgid
!= (gid_t
) -1) {
375 if (gid_eq(old
->gid
, krgid
) ||
376 gid_eq(old
->egid
, krgid
) ||
377 ns_capable_setid(old
->user_ns
, CAP_SETGID
))
382 if (egid
!= (gid_t
) -1) {
383 if (gid_eq(old
->gid
, kegid
) ||
384 gid_eq(old
->egid
, kegid
) ||
385 gid_eq(old
->sgid
, kegid
) ||
386 ns_capable_setid(old
->user_ns
, CAP_SETGID
))
392 if (rgid
!= (gid_t
) -1 ||
393 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
394 new->sgid
= new->egid
;
395 new->fsgid
= new->egid
;
397 retval
= security_task_fix_setgid(new, old
, LSM_SETID_RE
);
401 return commit_creds(new);
408 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
410 return __sys_setregid(rgid
, egid
);
414 * setgid() is implemented like SysV w/ SAVED_IDS
416 * SMP: Same implicit races as above.
418 long __sys_setgid(gid_t gid
)
420 struct user_namespace
*ns
= current_user_ns();
421 const struct cred
*old
;
426 kgid
= make_kgid(ns
, gid
);
427 if (!gid_valid(kgid
))
430 new = prepare_creds();
433 old
= current_cred();
436 if (ns_capable_setid(old
->user_ns
, CAP_SETGID
))
437 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
438 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
439 new->egid
= new->fsgid
= kgid
;
443 retval
= security_task_fix_setgid(new, old
, LSM_SETID_ID
);
447 return commit_creds(new);
454 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
456 return __sys_setgid(gid
);
460 * change the user struct in a credentials set to match the new UID
462 static int set_user(struct cred
*new)
464 struct user_struct
*new_user
;
466 new_user
= alloc_uid(new->uid
);
471 * We don't fail in case of NPROC limit excess here because too many
472 * poorly written programs don't check set*uid() return code, assuming
473 * it never fails if called by root. We may still enforce NPROC limit
474 * for programs doing set*uid()+execve() by harmlessly deferring the
475 * failure to the execve() stage.
477 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
478 new_user
!= INIT_USER
)
479 current
->flags
|= PF_NPROC_EXCEEDED
;
481 current
->flags
&= ~PF_NPROC_EXCEEDED
;
484 new->user
= new_user
;
489 * Unprivileged users may change the real uid to the effective uid
490 * or vice versa. (BSD-style)
492 * If you set the real uid at all, or set the effective uid to a value not
493 * equal to the real uid, then the saved uid is set to the new effective uid.
495 * This makes it possible for a setuid program to completely drop its
496 * privileges, which is often a useful assertion to make when you are doing
497 * a security audit over a program.
499 * The general idea is that a program which uses just setreuid() will be
500 * 100% compatible with BSD. A program which uses just setuid() will be
501 * 100% compatible with POSIX with saved IDs.
503 long __sys_setreuid(uid_t ruid
, uid_t euid
)
505 struct user_namespace
*ns
= current_user_ns();
506 const struct cred
*old
;
511 kruid
= make_kuid(ns
, ruid
);
512 keuid
= make_kuid(ns
, euid
);
514 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
516 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
519 new = prepare_creds();
522 old
= current_cred();
525 if (ruid
!= (uid_t
) -1) {
527 if (!uid_eq(old
->uid
, kruid
) &&
528 !uid_eq(old
->euid
, kruid
) &&
529 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
533 if (euid
!= (uid_t
) -1) {
535 if (!uid_eq(old
->uid
, keuid
) &&
536 !uid_eq(old
->euid
, keuid
) &&
537 !uid_eq(old
->suid
, keuid
) &&
538 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
542 if (!uid_eq(new->uid
, old
->uid
)) {
543 retval
= set_user(new);
547 if (ruid
!= (uid_t
) -1 ||
548 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
549 new->suid
= new->euid
;
550 new->fsuid
= new->euid
;
552 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
556 return commit_creds(new);
563 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
565 return __sys_setreuid(ruid
, euid
);
569 * setuid() is implemented like SysV with SAVED_IDS
571 * Note that SAVED_ID's is deficient in that a setuid root program
572 * like sendmail, for example, cannot set its uid to be a normal
573 * user and then switch back, because if you're root, setuid() sets
574 * the saved uid too. If you don't like this, blame the bright people
575 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
576 * will allow a root program to temporarily drop privileges and be able to
577 * regain them by swapping the real and effective uid.
579 long __sys_setuid(uid_t uid
)
581 struct user_namespace
*ns
= current_user_ns();
582 const struct cred
*old
;
587 kuid
= make_kuid(ns
, uid
);
588 if (!uid_valid(kuid
))
591 new = prepare_creds();
594 old
= current_cred();
597 if (ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
598 new->suid
= new->uid
= kuid
;
599 if (!uid_eq(kuid
, old
->uid
)) {
600 retval
= set_user(new);
604 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
608 new->fsuid
= new->euid
= kuid
;
610 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
614 return commit_creds(new);
621 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
623 return __sys_setuid(uid
);
628 * This function implements a generic ability to update ruid, euid,
629 * and suid. This allows you to implement the 4.4 compatible seteuid().
631 long __sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
633 struct user_namespace
*ns
= current_user_ns();
634 const struct cred
*old
;
637 kuid_t kruid
, keuid
, ksuid
;
639 kruid
= make_kuid(ns
, ruid
);
640 keuid
= make_kuid(ns
, euid
);
641 ksuid
= make_kuid(ns
, suid
);
643 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
646 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
649 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
652 new = prepare_creds();
656 old
= current_cred();
659 if (!ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
660 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
661 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
663 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
664 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
666 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
667 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
671 if (ruid
!= (uid_t
) -1) {
673 if (!uid_eq(kruid
, old
->uid
)) {
674 retval
= set_user(new);
679 if (euid
!= (uid_t
) -1)
681 if (suid
!= (uid_t
) -1)
683 new->fsuid
= new->euid
;
685 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
689 return commit_creds(new);
696 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
698 return __sys_setresuid(ruid
, euid
, suid
);
701 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
703 const struct cred
*cred
= current_cred();
705 uid_t ruid
, euid
, suid
;
707 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
708 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
709 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
711 retval
= put_user(ruid
, ruidp
);
713 retval
= put_user(euid
, euidp
);
715 return put_user(suid
, suidp
);
721 * Same as above, but for rgid, egid, sgid.
723 long __sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
725 struct user_namespace
*ns
= current_user_ns();
726 const struct cred
*old
;
729 kgid_t krgid
, kegid
, ksgid
;
731 krgid
= make_kgid(ns
, rgid
);
732 kegid
= make_kgid(ns
, egid
);
733 ksgid
= make_kgid(ns
, sgid
);
735 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
737 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
739 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
742 new = prepare_creds();
745 old
= current_cred();
748 if (!ns_capable_setid(old
->user_ns
, CAP_SETGID
)) {
749 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
750 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
752 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
753 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
755 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
756 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
760 if (rgid
!= (gid_t
) -1)
762 if (egid
!= (gid_t
) -1)
764 if (sgid
!= (gid_t
) -1)
766 new->fsgid
= new->egid
;
768 retval
= security_task_fix_setgid(new, old
, LSM_SETID_RES
);
772 return commit_creds(new);
779 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
781 return __sys_setresgid(rgid
, egid
, sgid
);
784 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
786 const struct cred
*cred
= current_cred();
788 gid_t rgid
, egid
, sgid
;
790 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
791 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
792 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
794 retval
= put_user(rgid
, rgidp
);
796 retval
= put_user(egid
, egidp
);
798 retval
= put_user(sgid
, sgidp
);
806 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
807 * is used for "access()" and for the NFS daemon (letting nfsd stay at
808 * whatever uid it wants to). It normally shadows "euid", except when
809 * explicitly set by setfsuid() or for access..
811 long __sys_setfsuid(uid_t uid
)
813 const struct cred
*old
;
818 old
= current_cred();
819 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
821 kuid
= make_kuid(old
->user_ns
, uid
);
822 if (!uid_valid(kuid
))
825 new = prepare_creds();
829 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
830 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
831 ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
832 if (!uid_eq(kuid
, old
->fsuid
)) {
834 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
847 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
849 return __sys_setfsuid(uid
);
853 * Samma på svenska..
855 long __sys_setfsgid(gid_t gid
)
857 const struct cred
*old
;
862 old
= current_cred();
863 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
865 kgid
= make_kgid(old
->user_ns
, gid
);
866 if (!gid_valid(kgid
))
869 new = prepare_creds();
873 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
874 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
875 ns_capable_setid(old
->user_ns
, CAP_SETGID
)) {
876 if (!gid_eq(kgid
, old
->fsgid
)) {
878 if (security_task_fix_setgid(new,old
,LSM_SETID_FS
) == 0)
891 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
893 return __sys_setfsgid(gid
);
895 #endif /* CONFIG_MULTIUSER */
898 * sys_getpid - return the thread group id of the current process
900 * Note, despite the name, this returns the tgid not the pid. The tgid and
901 * the pid are identical unless CLONE_THREAD was specified on clone() in
902 * which case the tgid is the same in all threads of the same group.
904 * This is SMP safe as current->tgid does not change.
906 SYSCALL_DEFINE0(getpid
)
908 return task_tgid_vnr(current
);
911 /* Thread ID - the internal kernel "pid" */
912 SYSCALL_DEFINE0(gettid
)
914 return task_pid_vnr(current
);
918 * Accessing ->real_parent is not SMP-safe, it could
919 * change from under us. However, we can use a stale
920 * value of ->real_parent under rcu_read_lock(), see
921 * release_task()->call_rcu(delayed_put_task_struct).
923 SYSCALL_DEFINE0(getppid
)
928 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
934 SYSCALL_DEFINE0(getuid
)
936 /* Only we change this so SMP safe */
937 return from_kuid_munged(current_user_ns(), current_uid());
940 SYSCALL_DEFINE0(geteuid
)
942 /* Only we change this so SMP safe */
943 return from_kuid_munged(current_user_ns(), current_euid());
946 SYSCALL_DEFINE0(getgid
)
948 /* Only we change this so SMP safe */
949 return from_kgid_munged(current_user_ns(), current_gid());
952 SYSCALL_DEFINE0(getegid
)
954 /* Only we change this so SMP safe */
955 return from_kgid_munged(current_user_ns(), current_egid());
958 static void do_sys_times(struct tms
*tms
)
960 u64 tgutime
, tgstime
, cutime
, cstime
;
962 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
963 cutime
= current
->signal
->cutime
;
964 cstime
= current
->signal
->cstime
;
965 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
966 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
967 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
968 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
971 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
977 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
980 force_successful_syscall_return();
981 return (long) jiffies_64_to_clock_t(get_jiffies_64());
985 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
987 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
990 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
994 struct compat_tms tmp
;
997 /* Convert our struct tms to the compat version. */
998 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
999 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
1000 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
1001 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
1002 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
1005 force_successful_syscall_return();
1006 return compat_jiffies_to_clock_t(jiffies
);
1011 * This needs some heavy checking ...
1012 * I just haven't the stomach for it. I also don't fully
1013 * understand sessions/pgrp etc. Let somebody who does explain it.
1015 * OK, I think I have the protection semantics right.... this is really
1016 * only important on a multi-user system anyway, to make sure one user
1017 * can't send a signal to a process owned by another. -TYT, 12/12/91
1019 * !PF_FORKNOEXEC check to conform completely to POSIX.
1021 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1023 struct task_struct
*p
;
1024 struct task_struct
*group_leader
= current
->group_leader
;
1029 pid
= task_pid_vnr(group_leader
);
1036 /* From this point forward we keep holding onto the tasklist lock
1037 * so that our parent does not change from under us. -DaveM
1039 write_lock_irq(&tasklist_lock
);
1042 p
= find_task_by_vpid(pid
);
1047 if (!thread_group_leader(p
))
1050 if (same_thread_group(p
->real_parent
, group_leader
)) {
1052 if (task_session(p
) != task_session(group_leader
))
1055 if (!(p
->flags
& PF_FORKNOEXEC
))
1059 if (p
!= group_leader
)
1064 if (p
->signal
->leader
)
1069 struct task_struct
*g
;
1071 pgrp
= find_vpid(pgid
);
1072 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1073 if (!g
|| task_session(g
) != task_session(group_leader
))
1077 err
= security_task_setpgid(p
, pgid
);
1081 if (task_pgrp(p
) != pgrp
)
1082 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1086 /* All paths lead to here, thus we are safe. -DaveM */
1087 write_unlock_irq(&tasklist_lock
);
1092 static int do_getpgid(pid_t pid
)
1094 struct task_struct
*p
;
1100 grp
= task_pgrp(current
);
1103 p
= find_task_by_vpid(pid
);
1110 retval
= security_task_getpgid(p
);
1114 retval
= pid_vnr(grp
);
1120 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1122 return do_getpgid(pid
);
1125 #ifdef __ARCH_WANT_SYS_GETPGRP
1127 SYSCALL_DEFINE0(getpgrp
)
1129 return do_getpgid(0);
1134 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1136 struct task_struct
*p
;
1142 sid
= task_session(current
);
1145 p
= find_task_by_vpid(pid
);
1148 sid
= task_session(p
);
1152 retval
= security_task_getsid(p
);
1156 retval
= pid_vnr(sid
);
1162 static void set_special_pids(struct pid
*pid
)
1164 struct task_struct
*curr
= current
->group_leader
;
1166 if (task_session(curr
) != pid
)
1167 change_pid(curr
, PIDTYPE_SID
, pid
);
1169 if (task_pgrp(curr
) != pid
)
1170 change_pid(curr
, PIDTYPE_PGID
, pid
);
1173 int ksys_setsid(void)
1175 struct task_struct
*group_leader
= current
->group_leader
;
1176 struct pid
*sid
= task_pid(group_leader
);
1177 pid_t session
= pid_vnr(sid
);
1180 write_lock_irq(&tasklist_lock
);
1181 /* Fail if I am already a session leader */
1182 if (group_leader
->signal
->leader
)
1185 /* Fail if a process group id already exists that equals the
1186 * proposed session id.
1188 if (pid_task(sid
, PIDTYPE_PGID
))
1191 group_leader
->signal
->leader
= 1;
1192 set_special_pids(sid
);
1194 proc_clear_tty(group_leader
);
1198 write_unlock_irq(&tasklist_lock
);
1200 proc_sid_connector(group_leader
);
1201 sched_autogroup_create_attach(group_leader
);
1206 SYSCALL_DEFINE0(setsid
)
1208 return ksys_setsid();
1211 DECLARE_RWSEM(uts_sem
);
1213 #ifdef COMPAT_UTS_MACHINE
1214 #define override_architecture(name) \
1215 (personality(current->personality) == PER_LINUX32 && \
1216 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1217 sizeof(COMPAT_UTS_MACHINE)))
1219 #define override_architecture(name) 0
1223 * Work around broken programs that cannot handle "Linux 3.0".
1224 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1225 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1228 static int override_release(char __user
*release
, size_t len
)
1232 if (current
->personality
& UNAME26
) {
1233 const char *rest
= UTS_RELEASE
;
1234 char buf
[65] = { 0 };
1240 if (*rest
== '.' && ++ndots
>= 3)
1242 if (!isdigit(*rest
) && *rest
!= '.')
1246 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1247 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1248 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1249 ret
= copy_to_user(release
, buf
, copy
+ 1);
1254 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1256 struct new_utsname tmp
;
1258 down_read(&uts_sem
);
1259 memcpy(&tmp
, utsname(), sizeof(tmp
));
1261 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1264 if (override_release(name
->release
, sizeof(name
->release
)))
1266 if (override_architecture(name
))
1271 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1275 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1277 struct old_utsname tmp
;
1282 down_read(&uts_sem
);
1283 memcpy(&tmp
, utsname(), sizeof(tmp
));
1285 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1288 if (override_release(name
->release
, sizeof(name
->release
)))
1290 if (override_architecture(name
))
1295 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1297 struct oldold_utsname tmp
;
1302 memset(&tmp
, 0, sizeof(tmp
));
1304 down_read(&uts_sem
);
1305 memcpy(&tmp
.sysname
, &utsname()->sysname
, __OLD_UTS_LEN
);
1306 memcpy(&tmp
.nodename
, &utsname()->nodename
, __OLD_UTS_LEN
);
1307 memcpy(&tmp
.release
, &utsname()->release
, __OLD_UTS_LEN
);
1308 memcpy(&tmp
.version
, &utsname()->version
, __OLD_UTS_LEN
);
1309 memcpy(&tmp
.machine
, &utsname()->machine
, __OLD_UTS_LEN
);
1311 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1314 if (override_architecture(name
))
1316 if (override_release(name
->release
, sizeof(name
->release
)))
1322 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1325 char tmp
[__NEW_UTS_LEN
];
1327 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1330 if (len
< 0 || len
> __NEW_UTS_LEN
)
1333 if (!copy_from_user(tmp
, name
, len
)) {
1334 struct new_utsname
*u
;
1336 down_write(&uts_sem
);
1338 memcpy(u
->nodename
, tmp
, len
);
1339 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1341 uts_proc_notify(UTS_PROC_HOSTNAME
);
1347 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1349 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1352 struct new_utsname
*u
;
1353 char tmp
[__NEW_UTS_LEN
+ 1];
1357 down_read(&uts_sem
);
1359 i
= 1 + strlen(u
->nodename
);
1362 memcpy(tmp
, u
->nodename
, i
);
1364 if (copy_to_user(name
, tmp
, i
))
1372 * Only setdomainname; getdomainname can be implemented by calling
1375 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1378 char tmp
[__NEW_UTS_LEN
];
1380 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1382 if (len
< 0 || len
> __NEW_UTS_LEN
)
1386 if (!copy_from_user(tmp
, name
, len
)) {
1387 struct new_utsname
*u
;
1389 down_write(&uts_sem
);
1391 memcpy(u
->domainname
, tmp
, len
);
1392 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1394 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1400 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1402 struct rlimit value
;
1405 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1407 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1412 #ifdef CONFIG_COMPAT
1414 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1415 struct compat_rlimit __user
*, rlim
)
1418 struct compat_rlimit r32
;
1420 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1423 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1424 r
.rlim_cur
= RLIM_INFINITY
;
1426 r
.rlim_cur
= r32
.rlim_cur
;
1427 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1428 r
.rlim_max
= RLIM_INFINITY
;
1430 r
.rlim_max
= r32
.rlim_max
;
1431 return do_prlimit(current
, resource
, &r
, NULL
);
1434 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1435 struct compat_rlimit __user
*, rlim
)
1440 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1442 struct compat_rlimit r32
;
1443 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1444 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1446 r32
.rlim_cur
= r
.rlim_cur
;
1447 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1448 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1450 r32
.rlim_max
= r
.rlim_max
;
1452 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1460 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1463 * Back compatibility for getrlimit. Needed for some apps.
1465 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1466 struct rlimit __user
*, rlim
)
1469 if (resource
>= RLIM_NLIMITS
)
1472 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1473 task_lock(current
->group_leader
);
1474 x
= current
->signal
->rlim
[resource
];
1475 task_unlock(current
->group_leader
);
1476 if (x
.rlim_cur
> 0x7FFFFFFF)
1477 x
.rlim_cur
= 0x7FFFFFFF;
1478 if (x
.rlim_max
> 0x7FFFFFFF)
1479 x
.rlim_max
= 0x7FFFFFFF;
1480 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1483 #ifdef CONFIG_COMPAT
1484 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1485 struct compat_rlimit __user
*, rlim
)
1489 if (resource
>= RLIM_NLIMITS
)
1492 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1493 task_lock(current
->group_leader
);
1494 r
= current
->signal
->rlim
[resource
];
1495 task_unlock(current
->group_leader
);
1496 if (r
.rlim_cur
> 0x7FFFFFFF)
1497 r
.rlim_cur
= 0x7FFFFFFF;
1498 if (r
.rlim_max
> 0x7FFFFFFF)
1499 r
.rlim_max
= 0x7FFFFFFF;
1501 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1502 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1510 static inline bool rlim64_is_infinity(__u64 rlim64
)
1512 #if BITS_PER_LONG < 64
1513 return rlim64
>= ULONG_MAX
;
1515 return rlim64
== RLIM64_INFINITY
;
1519 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1521 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1522 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1524 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1525 if (rlim
->rlim_max
== RLIM_INFINITY
)
1526 rlim64
->rlim_max
= RLIM64_INFINITY
;
1528 rlim64
->rlim_max
= rlim
->rlim_max
;
1531 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1533 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1534 rlim
->rlim_cur
= RLIM_INFINITY
;
1536 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1537 if (rlim64_is_infinity(rlim64
->rlim_max
))
1538 rlim
->rlim_max
= RLIM_INFINITY
;
1540 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1543 /* make sure you are allowed to change @tsk limits before calling this */
1544 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1545 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1547 struct rlimit
*rlim
;
1550 if (resource
>= RLIM_NLIMITS
)
1553 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1555 if (resource
== RLIMIT_NOFILE
&&
1556 new_rlim
->rlim_max
> sysctl_nr_open
)
1560 /* protect tsk->signal and tsk->sighand from disappearing */
1561 read_lock(&tasklist_lock
);
1562 if (!tsk
->sighand
) {
1567 rlim
= tsk
->signal
->rlim
+ resource
;
1568 task_lock(tsk
->group_leader
);
1570 /* Keep the capable check against init_user_ns until
1571 cgroups can contain all limits */
1572 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1573 !capable(CAP_SYS_RESOURCE
))
1576 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1584 task_unlock(tsk
->group_leader
);
1587 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1588 * infite. In case of RLIM_INFINITY the posix CPU timer code
1589 * ignores the rlimit.
1591 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1592 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1593 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1594 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1596 read_unlock(&tasklist_lock
);
1600 /* rcu lock must be held */
1601 static int check_prlimit_permission(struct task_struct
*task
,
1604 const struct cred
*cred
= current_cred(), *tcred
;
1607 if (current
== task
)
1610 tcred
= __task_cred(task
);
1611 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1612 uid_eq(cred
->uid
, tcred
->suid
) &&
1613 uid_eq(cred
->uid
, tcred
->uid
) &&
1614 gid_eq(cred
->gid
, tcred
->egid
) &&
1615 gid_eq(cred
->gid
, tcred
->sgid
) &&
1616 gid_eq(cred
->gid
, tcred
->gid
));
1617 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1620 return security_task_prlimit(cred
, tcred
, flags
);
1623 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1624 const struct rlimit64 __user
*, new_rlim
,
1625 struct rlimit64 __user
*, old_rlim
)
1627 struct rlimit64 old64
, new64
;
1628 struct rlimit old
, new;
1629 struct task_struct
*tsk
;
1630 unsigned int checkflags
= 0;
1634 checkflags
|= LSM_PRLIMIT_READ
;
1637 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1639 rlim64_to_rlim(&new64
, &new);
1640 checkflags
|= LSM_PRLIMIT_WRITE
;
1644 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1649 ret
= check_prlimit_permission(tsk
, checkflags
);
1654 get_task_struct(tsk
);
1657 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1658 old_rlim
? &old
: NULL
);
1660 if (!ret
&& old_rlim
) {
1661 rlim_to_rlim64(&old
, &old64
);
1662 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1666 put_task_struct(tsk
);
1670 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1672 struct rlimit new_rlim
;
1674 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1676 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1680 * It would make sense to put struct rusage in the task_struct,
1681 * except that would make the task_struct be *really big*. After
1682 * task_struct gets moved into malloc'ed memory, it would
1683 * make sense to do this. It will make moving the rest of the information
1684 * a lot simpler! (Which we're not doing right now because we're not
1685 * measuring them yet).
1687 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1688 * races with threads incrementing their own counters. But since word
1689 * reads are atomic, we either get new values or old values and we don't
1690 * care which for the sums. We always take the siglock to protect reading
1691 * the c* fields from p->signal from races with exit.c updating those
1692 * fields when reaping, so a sample either gets all the additions of a
1693 * given child after it's reaped, or none so this sample is before reaping.
1696 * We need to take the siglock for CHILDEREN, SELF and BOTH
1697 * for the cases current multithreaded, non-current single threaded
1698 * non-current multithreaded. Thread traversal is now safe with
1700 * Strictly speaking, we donot need to take the siglock if we are current and
1701 * single threaded, as no one else can take our signal_struct away, no one
1702 * else can reap the children to update signal->c* counters, and no one else
1703 * can race with the signal-> fields. If we do not take any lock, the
1704 * signal-> fields could be read out of order while another thread was just
1705 * exiting. So we should place a read memory barrier when we avoid the lock.
1706 * On the writer side, write memory barrier is implied in __exit_signal
1707 * as __exit_signal releases the siglock spinlock after updating the signal->
1708 * fields. But we don't do this yet to keep things simple.
1712 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1714 r
->ru_nvcsw
+= t
->nvcsw
;
1715 r
->ru_nivcsw
+= t
->nivcsw
;
1716 r
->ru_minflt
+= t
->min_flt
;
1717 r
->ru_majflt
+= t
->maj_flt
;
1718 r
->ru_inblock
+= task_io_get_inblock(t
);
1719 r
->ru_oublock
+= task_io_get_oublock(t
);
1722 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1724 struct task_struct
*t
;
1725 unsigned long flags
;
1726 u64 tgutime
, tgstime
, utime
, stime
;
1727 unsigned long maxrss
= 0;
1729 memset((char *)r
, 0, sizeof (*r
));
1732 if (who
== RUSAGE_THREAD
) {
1733 task_cputime_adjusted(current
, &utime
, &stime
);
1734 accumulate_thread_rusage(p
, r
);
1735 maxrss
= p
->signal
->maxrss
;
1739 if (!lock_task_sighand(p
, &flags
))
1744 case RUSAGE_CHILDREN
:
1745 utime
= p
->signal
->cutime
;
1746 stime
= p
->signal
->cstime
;
1747 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1748 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1749 r
->ru_minflt
= p
->signal
->cmin_flt
;
1750 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1751 r
->ru_inblock
= p
->signal
->cinblock
;
1752 r
->ru_oublock
= p
->signal
->coublock
;
1753 maxrss
= p
->signal
->cmaxrss
;
1755 if (who
== RUSAGE_CHILDREN
)
1760 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1763 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1764 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1765 r
->ru_minflt
+= p
->signal
->min_flt
;
1766 r
->ru_majflt
+= p
->signal
->maj_flt
;
1767 r
->ru_inblock
+= p
->signal
->inblock
;
1768 r
->ru_oublock
+= p
->signal
->oublock
;
1769 if (maxrss
< p
->signal
->maxrss
)
1770 maxrss
= p
->signal
->maxrss
;
1773 accumulate_thread_rusage(t
, r
);
1774 } while_each_thread(p
, t
);
1780 unlock_task_sighand(p
, &flags
);
1783 r
->ru_utime
= ns_to_kernel_old_timeval(utime
);
1784 r
->ru_stime
= ns_to_kernel_old_timeval(stime
);
1786 if (who
!= RUSAGE_CHILDREN
) {
1787 struct mm_struct
*mm
= get_task_mm(p
);
1790 setmax_mm_hiwater_rss(&maxrss
, mm
);
1794 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1797 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1801 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1802 who
!= RUSAGE_THREAD
)
1805 getrusage(current
, who
, &r
);
1806 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1809 #ifdef CONFIG_COMPAT
1810 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1814 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1815 who
!= RUSAGE_THREAD
)
1818 getrusage(current
, who
, &r
);
1819 return put_compat_rusage(&r
, ru
);
1823 SYSCALL_DEFINE1(umask
, int, mask
)
1825 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1829 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1832 struct file
*old_exe
, *exe_file
;
1833 struct inode
*inode
;
1840 inode
= file_inode(exe
.file
);
1843 * Because the original mm->exe_file points to executable file, make
1844 * sure that this one is executable as well, to avoid breaking an
1848 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1851 err
= inode_permission(inode
, MAY_EXEC
);
1856 * Forbid mm->exe_file change if old file still mapped.
1858 exe_file
= get_mm_exe_file(mm
);
1861 struct vm_area_struct
*vma
;
1864 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1867 if (path_equal(&vma
->vm_file
->f_path
,
1872 mmap_read_unlock(mm
);
1877 /* set the new file, lockless */
1879 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1886 mmap_read_unlock(mm
);
1892 * Check arithmetic relations of passed addresses.
1894 * WARNING: we don't require any capability here so be very careful
1895 * in what is allowed for modification from userspace.
1897 static int validate_prctl_map_addr(struct prctl_mm_map
*prctl_map
)
1899 unsigned long mmap_max_addr
= TASK_SIZE
;
1900 int error
= -EINVAL
, i
;
1902 static const unsigned char offsets
[] = {
1903 offsetof(struct prctl_mm_map
, start_code
),
1904 offsetof(struct prctl_mm_map
, end_code
),
1905 offsetof(struct prctl_mm_map
, start_data
),
1906 offsetof(struct prctl_mm_map
, end_data
),
1907 offsetof(struct prctl_mm_map
, start_brk
),
1908 offsetof(struct prctl_mm_map
, brk
),
1909 offsetof(struct prctl_mm_map
, start_stack
),
1910 offsetof(struct prctl_mm_map
, arg_start
),
1911 offsetof(struct prctl_mm_map
, arg_end
),
1912 offsetof(struct prctl_mm_map
, env_start
),
1913 offsetof(struct prctl_mm_map
, env_end
),
1917 * Make sure the members are not somewhere outside
1918 * of allowed address space.
1920 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1921 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1923 if ((unsigned long)val
>= mmap_max_addr
||
1924 (unsigned long)val
< mmap_min_addr
)
1929 * Make sure the pairs are ordered.
1931 #define __prctl_check_order(__m1, __op, __m2) \
1932 ((unsigned long)prctl_map->__m1 __op \
1933 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1934 error
= __prctl_check_order(start_code
, <, end_code
);
1935 error
|= __prctl_check_order(start_data
,<=, end_data
);
1936 error
|= __prctl_check_order(start_brk
, <=, brk
);
1937 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1938 error
|= __prctl_check_order(env_start
, <=, env_end
);
1941 #undef __prctl_check_order
1946 * @brk should be after @end_data in traditional maps.
1948 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1949 prctl_map
->brk
<= prctl_map
->end_data
)
1953 * Neither we should allow to override limits if they set.
1955 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1956 prctl_map
->start_brk
, prctl_map
->end_data
,
1957 prctl_map
->start_data
))
1965 #ifdef CONFIG_CHECKPOINT_RESTORE
1966 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1968 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1969 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1970 struct mm_struct
*mm
= current
->mm
;
1973 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1974 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1976 if (opt
== PR_SET_MM_MAP_SIZE
)
1977 return put_user((unsigned int)sizeof(prctl_map
),
1978 (unsigned int __user
*)addr
);
1980 if (data_size
!= sizeof(prctl_map
))
1983 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1986 error
= validate_prctl_map_addr(&prctl_map
);
1990 if (prctl_map
.auxv_size
) {
1992 * Someone is trying to cheat the auxv vector.
1994 if (!prctl_map
.auxv
||
1995 prctl_map
.auxv_size
> sizeof(mm
->saved_auxv
))
1998 memset(user_auxv
, 0, sizeof(user_auxv
));
1999 if (copy_from_user(user_auxv
,
2000 (const void __user
*)prctl_map
.auxv
,
2001 prctl_map
.auxv_size
))
2004 /* Last entry must be AT_NULL as specification requires */
2005 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
2006 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
2009 if (prctl_map
.exe_fd
!= (u32
)-1) {
2011 * Check if the current user is checkpoint/restore capable.
2012 * At the time of this writing, it checks for CAP_SYS_ADMIN
2013 * or CAP_CHECKPOINT_RESTORE.
2014 * Note that a user with access to ptrace can masquerade an
2015 * arbitrary program as any executable, even setuid ones.
2016 * This may have implications in the tomoyo subsystem.
2018 if (!checkpoint_restore_ns_capable(current_user_ns()))
2021 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
2027 * arg_lock protects concurent updates but we still need mmap_lock for
2028 * read to exclude races with sys_brk.
2033 * We don't validate if these members are pointing to
2034 * real present VMAs because application may have correspond
2035 * VMAs already unmapped and kernel uses these members for statistics
2036 * output in procfs mostly, except
2038 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2039 * for VMAs when updating these memvers so anything wrong written
2040 * here cause kernel to swear at userspace program but won't lead
2041 * to any problem in kernel itself
2044 spin_lock(&mm
->arg_lock
);
2045 mm
->start_code
= prctl_map
.start_code
;
2046 mm
->end_code
= prctl_map
.end_code
;
2047 mm
->start_data
= prctl_map
.start_data
;
2048 mm
->end_data
= prctl_map
.end_data
;
2049 mm
->start_brk
= prctl_map
.start_brk
;
2050 mm
->brk
= prctl_map
.brk
;
2051 mm
->start_stack
= prctl_map
.start_stack
;
2052 mm
->arg_start
= prctl_map
.arg_start
;
2053 mm
->arg_end
= prctl_map
.arg_end
;
2054 mm
->env_start
= prctl_map
.env_start
;
2055 mm
->env_end
= prctl_map
.env_end
;
2056 spin_unlock(&mm
->arg_lock
);
2059 * Note this update of @saved_auxv is lockless thus
2060 * if someone reads this member in procfs while we're
2061 * updating -- it may get partly updated results. It's
2062 * known and acceptable trade off: we leave it as is to
2063 * not introduce additional locks here making the kernel
2066 if (prctl_map
.auxv_size
)
2067 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
2069 mmap_read_unlock(mm
);
2072 #endif /* CONFIG_CHECKPOINT_RESTORE */
2074 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2078 * This doesn't move the auxiliary vector itself since it's pinned to
2079 * mm_struct, but it permits filling the vector with new values. It's
2080 * up to the caller to provide sane values here, otherwise userspace
2081 * tools which use this vector might be unhappy.
2083 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2085 if (len
> sizeof(user_auxv
))
2088 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2091 /* Make sure the last entry is always AT_NULL */
2092 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2093 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2095 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2098 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2099 task_unlock(current
);
2104 static int prctl_set_mm(int opt
, unsigned long addr
,
2105 unsigned long arg4
, unsigned long arg5
)
2107 struct mm_struct
*mm
= current
->mm
;
2108 struct prctl_mm_map prctl_map
= {
2113 struct vm_area_struct
*vma
;
2116 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2117 opt
!= PR_SET_MM_MAP
&&
2118 opt
!= PR_SET_MM_MAP_SIZE
)))
2121 #ifdef CONFIG_CHECKPOINT_RESTORE
2122 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2123 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2126 if (!capable(CAP_SYS_RESOURCE
))
2129 if (opt
== PR_SET_MM_EXE_FILE
)
2130 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2132 if (opt
== PR_SET_MM_AUXV
)
2133 return prctl_set_auxv(mm
, addr
, arg4
);
2135 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2141 * arg_lock protects concurent updates of arg boundaries, we need
2142 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2146 vma
= find_vma(mm
, addr
);
2148 spin_lock(&mm
->arg_lock
);
2149 prctl_map
.start_code
= mm
->start_code
;
2150 prctl_map
.end_code
= mm
->end_code
;
2151 prctl_map
.start_data
= mm
->start_data
;
2152 prctl_map
.end_data
= mm
->end_data
;
2153 prctl_map
.start_brk
= mm
->start_brk
;
2154 prctl_map
.brk
= mm
->brk
;
2155 prctl_map
.start_stack
= mm
->start_stack
;
2156 prctl_map
.arg_start
= mm
->arg_start
;
2157 prctl_map
.arg_end
= mm
->arg_end
;
2158 prctl_map
.env_start
= mm
->env_start
;
2159 prctl_map
.env_end
= mm
->env_end
;
2162 case PR_SET_MM_START_CODE
:
2163 prctl_map
.start_code
= addr
;
2165 case PR_SET_MM_END_CODE
:
2166 prctl_map
.end_code
= addr
;
2168 case PR_SET_MM_START_DATA
:
2169 prctl_map
.start_data
= addr
;
2171 case PR_SET_MM_END_DATA
:
2172 prctl_map
.end_data
= addr
;
2174 case PR_SET_MM_START_STACK
:
2175 prctl_map
.start_stack
= addr
;
2177 case PR_SET_MM_START_BRK
:
2178 prctl_map
.start_brk
= addr
;
2181 prctl_map
.brk
= addr
;
2183 case PR_SET_MM_ARG_START
:
2184 prctl_map
.arg_start
= addr
;
2186 case PR_SET_MM_ARG_END
:
2187 prctl_map
.arg_end
= addr
;
2189 case PR_SET_MM_ENV_START
:
2190 prctl_map
.env_start
= addr
;
2192 case PR_SET_MM_ENV_END
:
2193 prctl_map
.env_end
= addr
;
2199 error
= validate_prctl_map_addr(&prctl_map
);
2205 * If command line arguments and environment
2206 * are placed somewhere else on stack, we can
2207 * set them up here, ARG_START/END to setup
2208 * command line argumets and ENV_START/END
2211 case PR_SET_MM_START_STACK
:
2212 case PR_SET_MM_ARG_START
:
2213 case PR_SET_MM_ARG_END
:
2214 case PR_SET_MM_ENV_START
:
2215 case PR_SET_MM_ENV_END
:
2222 mm
->start_code
= prctl_map
.start_code
;
2223 mm
->end_code
= prctl_map
.end_code
;
2224 mm
->start_data
= prctl_map
.start_data
;
2225 mm
->end_data
= prctl_map
.end_data
;
2226 mm
->start_brk
= prctl_map
.start_brk
;
2227 mm
->brk
= prctl_map
.brk
;
2228 mm
->start_stack
= prctl_map
.start_stack
;
2229 mm
->arg_start
= prctl_map
.arg_start
;
2230 mm
->arg_end
= prctl_map
.arg_end
;
2231 mm
->env_start
= prctl_map
.env_start
;
2232 mm
->env_end
= prctl_map
.env_end
;
2236 spin_unlock(&mm
->arg_lock
);
2237 mmap_read_unlock(mm
);
2241 #ifdef CONFIG_CHECKPOINT_RESTORE
2242 static int prctl_get_tid_address(struct task_struct
*me
, int __user
* __user
*tid_addr
)
2244 return put_user(me
->clear_child_tid
, tid_addr
);
2247 static int prctl_get_tid_address(struct task_struct
*me
, int __user
* __user
*tid_addr
)
2253 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2256 * If task has has_child_subreaper - all its decendants
2257 * already have these flag too and new decendants will
2258 * inherit it on fork, skip them.
2260 * If we've found child_reaper - skip descendants in
2261 * it's subtree as they will never get out pidns.
2263 if (p
->signal
->has_child_subreaper
||
2264 is_child_reaper(task_pid(p
)))
2267 p
->signal
->has_child_subreaper
= 1;
2271 int __weak
arch_prctl_spec_ctrl_get(struct task_struct
*t
, unsigned long which
)
2276 int __weak
arch_prctl_spec_ctrl_set(struct task_struct
*t
, unsigned long which
,
2282 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2284 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2285 unsigned long, arg4
, unsigned long, arg5
)
2287 struct task_struct
*me
= current
;
2288 unsigned char comm
[sizeof(me
->comm
)];
2291 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2292 if (error
!= -ENOSYS
)
2297 case PR_SET_PDEATHSIG
:
2298 if (!valid_signal(arg2
)) {
2302 me
->pdeath_signal
= arg2
;
2304 case PR_GET_PDEATHSIG
:
2305 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2307 case PR_GET_DUMPABLE
:
2308 error
= get_dumpable(me
->mm
);
2310 case PR_SET_DUMPABLE
:
2311 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2315 set_dumpable(me
->mm
, arg2
);
2318 case PR_SET_UNALIGN
:
2319 error
= SET_UNALIGN_CTL(me
, arg2
);
2321 case PR_GET_UNALIGN
:
2322 error
= GET_UNALIGN_CTL(me
, arg2
);
2325 error
= SET_FPEMU_CTL(me
, arg2
);
2328 error
= GET_FPEMU_CTL(me
, arg2
);
2331 error
= SET_FPEXC_CTL(me
, arg2
);
2334 error
= GET_FPEXC_CTL(me
, arg2
);
2337 error
= PR_TIMING_STATISTICAL
;
2340 if (arg2
!= PR_TIMING_STATISTICAL
)
2344 comm
[sizeof(me
->comm
) - 1] = 0;
2345 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2346 sizeof(me
->comm
) - 1) < 0)
2348 set_task_comm(me
, comm
);
2349 proc_comm_connector(me
);
2352 get_task_comm(comm
, me
);
2353 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2357 error
= GET_ENDIAN(me
, arg2
);
2360 error
= SET_ENDIAN(me
, arg2
);
2362 case PR_GET_SECCOMP
:
2363 error
= prctl_get_seccomp();
2365 case PR_SET_SECCOMP
:
2366 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2369 error
= GET_TSC_CTL(arg2
);
2372 error
= SET_TSC_CTL(arg2
);
2374 case PR_TASK_PERF_EVENTS_DISABLE
:
2375 error
= perf_event_task_disable();
2377 case PR_TASK_PERF_EVENTS_ENABLE
:
2378 error
= perf_event_task_enable();
2380 case PR_GET_TIMERSLACK
:
2381 if (current
->timer_slack_ns
> ULONG_MAX
)
2384 error
= current
->timer_slack_ns
;
2386 case PR_SET_TIMERSLACK
:
2388 current
->timer_slack_ns
=
2389 current
->default_timer_slack_ns
;
2391 current
->timer_slack_ns
= arg2
;
2397 case PR_MCE_KILL_CLEAR
:
2400 current
->flags
&= ~PF_MCE_PROCESS
;
2402 case PR_MCE_KILL_SET
:
2403 current
->flags
|= PF_MCE_PROCESS
;
2404 if (arg3
== PR_MCE_KILL_EARLY
)
2405 current
->flags
|= PF_MCE_EARLY
;
2406 else if (arg3
== PR_MCE_KILL_LATE
)
2407 current
->flags
&= ~PF_MCE_EARLY
;
2408 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2410 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2418 case PR_MCE_KILL_GET
:
2419 if (arg2
| arg3
| arg4
| arg5
)
2421 if (current
->flags
& PF_MCE_PROCESS
)
2422 error
= (current
->flags
& PF_MCE_EARLY
) ?
2423 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2425 error
= PR_MCE_KILL_DEFAULT
;
2428 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2430 case PR_GET_TID_ADDRESS
:
2431 error
= prctl_get_tid_address(me
, (int __user
* __user
*)arg2
);
2433 case PR_SET_CHILD_SUBREAPER
:
2434 me
->signal
->is_child_subreaper
= !!arg2
;
2438 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2440 case PR_GET_CHILD_SUBREAPER
:
2441 error
= put_user(me
->signal
->is_child_subreaper
,
2442 (int __user
*)arg2
);
2444 case PR_SET_NO_NEW_PRIVS
:
2445 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2448 task_set_no_new_privs(current
);
2450 case PR_GET_NO_NEW_PRIVS
:
2451 if (arg2
|| arg3
|| arg4
|| arg5
)
2453 return task_no_new_privs(current
) ? 1 : 0;
2454 case PR_GET_THP_DISABLE
:
2455 if (arg2
|| arg3
|| arg4
|| arg5
)
2457 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2459 case PR_SET_THP_DISABLE
:
2460 if (arg3
|| arg4
|| arg5
)
2462 if (mmap_write_lock_killable(me
->mm
))
2465 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2467 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2468 mmap_write_unlock(me
->mm
);
2470 case PR_MPX_ENABLE_MANAGEMENT
:
2471 case PR_MPX_DISABLE_MANAGEMENT
:
2472 /* No longer implemented: */
2474 case PR_SET_FP_MODE
:
2475 error
= SET_FP_MODE(me
, arg2
);
2477 case PR_GET_FP_MODE
:
2478 error
= GET_FP_MODE(me
);
2481 error
= SVE_SET_VL(arg2
);
2484 error
= SVE_GET_VL();
2486 case PR_GET_SPECULATION_CTRL
:
2487 if (arg3
|| arg4
|| arg5
)
2489 error
= arch_prctl_spec_ctrl_get(me
, arg2
);
2491 case PR_SET_SPECULATION_CTRL
:
2494 error
= arch_prctl_spec_ctrl_set(me
, arg2
, arg3
);
2496 case PR_PAC_RESET_KEYS
:
2497 if (arg3
|| arg4
|| arg5
)
2499 error
= PAC_RESET_KEYS(me
, arg2
);
2501 case PR_SET_TAGGED_ADDR_CTRL
:
2502 if (arg3
|| arg4
|| arg5
)
2504 error
= SET_TAGGED_ADDR_CTRL(arg2
);
2506 case PR_GET_TAGGED_ADDR_CTRL
:
2507 if (arg2
|| arg3
|| arg4
|| arg5
)
2509 error
= GET_TAGGED_ADDR_CTRL();
2511 case PR_SET_IO_FLUSHER
:
2512 if (!capable(CAP_SYS_RESOURCE
))
2515 if (arg3
|| arg4
|| arg5
)
2519 current
->flags
|= PR_IO_FLUSHER
;
2521 current
->flags
&= ~PR_IO_FLUSHER
;
2525 case PR_GET_IO_FLUSHER
:
2526 if (!capable(CAP_SYS_RESOURCE
))
2529 if (arg2
|| arg3
|| arg4
|| arg5
)
2532 error
= (current
->flags
& PR_IO_FLUSHER
) == PR_IO_FLUSHER
;
2534 case PR_SET_SYSCALL_USER_DISPATCH
:
2535 error
= set_syscall_user_dispatch(arg2
, arg3
, arg4
,
2536 (char __user
*) arg5
);
2545 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2546 struct getcpu_cache __user
*, unused
)
2549 int cpu
= raw_smp_processor_id();
2552 err
|= put_user(cpu
, cpup
);
2554 err
|= put_user(cpu_to_node(cpu
), nodep
);
2555 return err
? -EFAULT
: 0;
2559 * do_sysinfo - fill in sysinfo struct
2560 * @info: pointer to buffer to fill
2562 static int do_sysinfo(struct sysinfo
*info
)
2564 unsigned long mem_total
, sav_total
;
2565 unsigned int mem_unit
, bitcount
;
2566 struct timespec64 tp
;
2568 memset(info
, 0, sizeof(struct sysinfo
));
2570 ktime_get_boottime_ts64(&tp
);
2571 timens_add_boottime(&tp
);
2572 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2574 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2576 info
->procs
= nr_threads
;
2582 * If the sum of all the available memory (i.e. ram + swap)
2583 * is less than can be stored in a 32 bit unsigned long then
2584 * we can be binary compatible with 2.2.x kernels. If not,
2585 * well, in that case 2.2.x was broken anyways...
2587 * -Erik Andersen <andersee@debian.org>
2590 mem_total
= info
->totalram
+ info
->totalswap
;
2591 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2594 mem_unit
= info
->mem_unit
;
2595 while (mem_unit
> 1) {
2598 sav_total
= mem_total
;
2600 if (mem_total
< sav_total
)
2605 * If mem_total did not overflow, multiply all memory values by
2606 * info->mem_unit and set it to 1. This leaves things compatible
2607 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2612 info
->totalram
<<= bitcount
;
2613 info
->freeram
<<= bitcount
;
2614 info
->sharedram
<<= bitcount
;
2615 info
->bufferram
<<= bitcount
;
2616 info
->totalswap
<<= bitcount
;
2617 info
->freeswap
<<= bitcount
;
2618 info
->totalhigh
<<= bitcount
;
2619 info
->freehigh
<<= bitcount
;
2625 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2631 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2637 #ifdef CONFIG_COMPAT
2638 struct compat_sysinfo
{
2652 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2655 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2658 struct compat_sysinfo s_32
;
2662 /* Check to see if any memory value is too large for 32-bit and scale
2665 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2668 while (s
.mem_unit
< PAGE_SIZE
) {
2673 s
.totalram
>>= bitcount
;
2674 s
.freeram
>>= bitcount
;
2675 s
.sharedram
>>= bitcount
;
2676 s
.bufferram
>>= bitcount
;
2677 s
.totalswap
>>= bitcount
;
2678 s
.freeswap
>>= bitcount
;
2679 s
.totalhigh
>>= bitcount
;
2680 s
.freehigh
>>= bitcount
;
2683 memset(&s_32
, 0, sizeof(s_32
));
2684 s_32
.uptime
= s
.uptime
;
2685 s_32
.loads
[0] = s
.loads
[0];
2686 s_32
.loads
[1] = s
.loads
[1];
2687 s_32
.loads
[2] = s
.loads
[2];
2688 s_32
.totalram
= s
.totalram
;
2689 s_32
.freeram
= s
.freeram
;
2690 s_32
.sharedram
= s
.sharedram
;
2691 s_32
.bufferram
= s
.bufferram
;
2692 s_32
.totalswap
= s
.totalswap
;
2693 s_32
.freeswap
= s
.freeswap
;
2694 s_32
.procs
= s
.procs
;
2695 s_32
.totalhigh
= s
.totalhigh
;
2696 s_32
.freehigh
= s
.freehigh
;
2697 s_32
.mem_unit
= s
.mem_unit
;
2698 if (copy_to_user(info
, &s_32
, sizeof(s_32
)))
2702 #endif /* CONFIG_COMPAT */