1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
16 #include <linux/errno.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
42 #include <asm/tlbflush.h>
47 #define DO_NUMA(x) do { (x); } while (0)
50 #define DO_NUMA(x) do { } while (0)
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
77 * * the regular nodes that keep the reverse mapping structures in a
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
83 * Internally, the regular nodes, "dups" and "chains" are represented
84 * using the same struct stable_node structure.
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
93 * KSM solves this problem by several techniques:
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118 * @mm: the mm that this information is valid for
121 struct hlist_node link
;
122 struct list_head mm_list
;
123 struct rmap_item
*rmap_list
;
124 struct mm_struct
*mm
;
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
132 * @seqnr: count of completed full scans (needed when removing unstable node)
134 * There is only the one ksm_scan instance of this cursor structure.
137 struct mm_slot
*mm_slot
;
138 unsigned long address
;
139 struct rmap_item
**rmap_list
;
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148 * @list: linked into migrate_nodes, pending placement in the proper node tree
149 * @hlist: hlist head of rmap_items using this ksm page
150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
157 struct rb_node node
; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head
*head
;
161 struct hlist_node hlist_dup
;
162 struct list_head list
;
166 struct hlist_head hlist
;
169 unsigned long chain_prune_time
;
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
176 #define STABLE_NODE_CHAIN -1024
184 * struct rmap_item - reverse mapping item for virtual addresses
185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
196 struct rmap_item
*rmap_list
;
198 struct anon_vma
*anon_vma
; /* when stable */
200 int nid
; /* when node of unstable tree */
203 struct mm_struct
*mm
;
204 unsigned long address
; /* + low bits used for flags below */
205 unsigned int oldchecksum
; /* when unstable */
207 struct rb_node node
; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node
*head
;
210 struct hlist_node hlist
;
215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219 /* to mask all the flags */
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree
[1] = { RB_ROOT
};
223 static struct rb_root one_unstable_tree
[1] = { RB_ROOT
};
224 static struct rb_root
*root_stable_tree
= one_stable_tree
;
225 static struct rb_root
*root_unstable_tree
= one_unstable_tree
;
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes
);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
234 static struct mm_slot ksm_mm_head
= {
235 .mm_list
= LIST_HEAD_INIT(ksm_mm_head
.mm_list
),
237 static struct ksm_scan ksm_scan
= {
238 .mm_slot
= &ksm_mm_head
,
241 static struct kmem_cache
*rmap_item_cache
;
242 static struct kmem_cache
*stable_node_cache
;
243 static struct kmem_cache
*mm_slot_cache
;
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared
;
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing
;
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared
;
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items
;
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains
;
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups
;
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static int ksm_stable_node_chains_prune_millisecs
= 2000;
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing
= 256;
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan
= 100;
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs
= 20;
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly
;
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly
;
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes
= 1;
284 static int ksm_nr_node_ids
= 1;
286 #define ksm_merge_across_nodes 1U
287 #define ksm_nr_node_ids 1
290 #define KSM_RUN_STOP 0
291 #define KSM_RUN_MERGE 1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run
= KSM_RUN_STOP
;
295 static void wait_while_offlining(void);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait
);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait
);
299 static DEFINE_MUTEX(ksm_thread_mutex
);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock
);
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303 sizeof(struct __struct), __alignof__(struct __struct),\
306 static int __init
ksm_slab_init(void)
308 rmap_item_cache
= KSM_KMEM_CACHE(rmap_item
, 0);
309 if (!rmap_item_cache
)
312 stable_node_cache
= KSM_KMEM_CACHE(stable_node
, 0);
313 if (!stable_node_cache
)
316 mm_slot_cache
= KSM_KMEM_CACHE(mm_slot
, 0);
323 kmem_cache_destroy(stable_node_cache
);
325 kmem_cache_destroy(rmap_item_cache
);
330 static void __init
ksm_slab_free(void)
332 kmem_cache_destroy(mm_slot_cache
);
333 kmem_cache_destroy(stable_node_cache
);
334 kmem_cache_destroy(rmap_item_cache
);
335 mm_slot_cache
= NULL
;
338 static __always_inline
bool is_stable_node_chain(struct stable_node
*chain
)
340 return chain
->rmap_hlist_len
== STABLE_NODE_CHAIN
;
343 static __always_inline
bool is_stable_node_dup(struct stable_node
*dup
)
345 return dup
->head
== STABLE_NODE_DUP_HEAD
;
348 static inline void stable_node_chain_add_dup(struct stable_node
*dup
,
349 struct stable_node
*chain
)
351 VM_BUG_ON(is_stable_node_dup(dup
));
352 dup
->head
= STABLE_NODE_DUP_HEAD
;
353 VM_BUG_ON(!is_stable_node_chain(chain
));
354 hlist_add_head(&dup
->hlist_dup
, &chain
->hlist
);
355 ksm_stable_node_dups
++;
358 static inline void __stable_node_dup_del(struct stable_node
*dup
)
360 VM_BUG_ON(!is_stable_node_dup(dup
));
361 hlist_del(&dup
->hlist_dup
);
362 ksm_stable_node_dups
--;
365 static inline void stable_node_dup_del(struct stable_node
*dup
)
367 VM_BUG_ON(is_stable_node_chain(dup
));
368 if (is_stable_node_dup(dup
))
369 __stable_node_dup_del(dup
);
371 rb_erase(&dup
->node
, root_stable_tree
+ NUMA(dup
->nid
));
372 #ifdef CONFIG_DEBUG_VM
377 static inline struct rmap_item
*alloc_rmap_item(void)
379 struct rmap_item
*rmap_item
;
381 rmap_item
= kmem_cache_zalloc(rmap_item_cache
, GFP_KERNEL
|
382 __GFP_NORETRY
| __GFP_NOWARN
);
388 static inline void free_rmap_item(struct rmap_item
*rmap_item
)
391 rmap_item
->mm
= NULL
; /* debug safety */
392 kmem_cache_free(rmap_item_cache
, rmap_item
);
395 static inline struct stable_node
*alloc_stable_node(void)
398 * The allocation can take too long with GFP_KERNEL when memory is under
399 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
400 * grants access to memory reserves, helping to avoid this problem.
402 return kmem_cache_alloc(stable_node_cache
, GFP_KERNEL
| __GFP_HIGH
);
405 static inline void free_stable_node(struct stable_node
*stable_node
)
407 VM_BUG_ON(stable_node
->rmap_hlist_len
&&
408 !is_stable_node_chain(stable_node
));
409 kmem_cache_free(stable_node_cache
, stable_node
);
412 static inline struct mm_slot
*alloc_mm_slot(void)
414 if (!mm_slot_cache
) /* initialization failed */
416 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
419 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
421 kmem_cache_free(mm_slot_cache
, mm_slot
);
424 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
426 struct mm_slot
*slot
;
428 hash_for_each_possible(mm_slots_hash
, slot
, link
, (unsigned long)mm
)
435 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
436 struct mm_slot
*mm_slot
)
439 hash_add(mm_slots_hash
, &mm_slot
->link
, (unsigned long)mm
);
443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444 * page tables after it has passed through ksm_exit() - which, if necessary,
445 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
446 * a special flag: they can just back out as soon as mm_users goes to zero.
447 * ksm_test_exit() is used throughout to make this test for exit: in some
448 * places for correctness, in some places just to avoid unnecessary work.
450 static inline bool ksm_test_exit(struct mm_struct
*mm
)
452 return atomic_read(&mm
->mm_users
) == 0;
456 * We use break_ksm to break COW on a ksm page: it's a stripped down
458 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462 * in case the application has unmapped and remapped mm,addr meanwhile.
463 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467 * of the process that owns 'vma'. We also do not want to enforce
468 * protection keys here anyway.
470 static int break_ksm(struct vm_area_struct
*vma
, unsigned long addr
)
477 page
= follow_page(vma
, addr
,
478 FOLL_GET
| FOLL_MIGRATION
| FOLL_REMOTE
);
479 if (IS_ERR_OR_NULL(page
))
482 ret
= handle_mm_fault(vma
, addr
,
483 FAULT_FLAG_WRITE
| FAULT_FLAG_REMOTE
,
486 ret
= VM_FAULT_WRITE
;
488 } while (!(ret
& (VM_FAULT_WRITE
| VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
| VM_FAULT_OOM
)));
490 * We must loop because handle_mm_fault() may back out if there's
491 * any difficulty e.g. if pte accessed bit gets updated concurrently.
493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 * COW has been broken, even if the vma does not permit VM_WRITE;
495 * but note that a concurrent fault might break PageKsm for us.
497 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 * backing file, which also invalidates anonymous pages: that's
499 * okay, that truncation will have unmapped the PageKsm for us.
501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 * to user; and ksmd, having no mm, would never be chosen for that.
506 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 * even ksmd can fail in this way - though it's usually breaking ksm
509 * just to undo a merge it made a moment before, so unlikely to oom.
511 * That's a pity: we might therefore have more kernel pages allocated
512 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 * will retry to break_cow on each pass, so should recover the page
514 * in due course. The important thing is to not let VM_MERGEABLE
515 * be cleared while any such pages might remain in the area.
517 return (ret
& VM_FAULT_OOM
) ? -ENOMEM
: 0;
520 static struct vm_area_struct
*find_mergeable_vma(struct mm_struct
*mm
,
523 struct vm_area_struct
*vma
;
524 if (ksm_test_exit(mm
))
526 vma
= find_vma(mm
, addr
);
527 if (!vma
|| vma
->vm_start
> addr
)
529 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
534 static void break_cow(struct rmap_item
*rmap_item
)
536 struct mm_struct
*mm
= rmap_item
->mm
;
537 unsigned long addr
= rmap_item
->address
;
538 struct vm_area_struct
*vma
;
541 * It is not an accident that whenever we want to break COW
542 * to undo, we also need to drop a reference to the anon_vma.
544 put_anon_vma(rmap_item
->anon_vma
);
547 vma
= find_mergeable_vma(mm
, addr
);
549 break_ksm(vma
, addr
);
550 mmap_read_unlock(mm
);
553 static struct page
*get_mergeable_page(struct rmap_item
*rmap_item
)
555 struct mm_struct
*mm
= rmap_item
->mm
;
556 unsigned long addr
= rmap_item
->address
;
557 struct vm_area_struct
*vma
;
561 vma
= find_mergeable_vma(mm
, addr
);
565 page
= follow_page(vma
, addr
, FOLL_GET
);
566 if (IS_ERR_OR_NULL(page
))
568 if (PageAnon(page
)) {
569 flush_anon_page(vma
, page
, addr
);
570 flush_dcache_page(page
);
576 mmap_read_unlock(mm
);
581 * This helper is used for getting right index into array of tree roots.
582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584 * every node has its own stable and unstable tree.
586 static inline int get_kpfn_nid(unsigned long kpfn
)
588 return ksm_merge_across_nodes
? 0 : NUMA(pfn_to_nid(kpfn
));
591 static struct stable_node
*alloc_stable_node_chain(struct stable_node
*dup
,
592 struct rb_root
*root
)
594 struct stable_node
*chain
= alloc_stable_node();
595 VM_BUG_ON(is_stable_node_chain(dup
));
597 INIT_HLIST_HEAD(&chain
->hlist
);
598 chain
->chain_prune_time
= jiffies
;
599 chain
->rmap_hlist_len
= STABLE_NODE_CHAIN
;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 chain
->nid
= NUMA_NO_NODE
; /* debug */
603 ksm_stable_node_chains
++;
606 * Put the stable node chain in the first dimension of
607 * the stable tree and at the same time remove the old
610 rb_replace_node(&dup
->node
, &chain
->node
, root
);
613 * Move the old stable node to the second dimension
614 * queued in the hlist_dup. The invariant is that all
615 * dup stable_nodes in the chain->hlist point to pages
616 * that are write protected and have the exact same
619 stable_node_chain_add_dup(dup
, chain
);
624 static inline void free_stable_node_chain(struct stable_node
*chain
,
625 struct rb_root
*root
)
627 rb_erase(&chain
->node
, root
);
628 free_stable_node(chain
);
629 ksm_stable_node_chains
--;
632 static void remove_node_from_stable_tree(struct stable_node
*stable_node
)
634 struct rmap_item
*rmap_item
;
636 /* check it's not STABLE_NODE_CHAIN or negative */
637 BUG_ON(stable_node
->rmap_hlist_len
< 0);
639 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
640 if (rmap_item
->hlist
.next
)
644 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
645 stable_node
->rmap_hlist_len
--;
646 put_anon_vma(rmap_item
->anon_vma
);
647 rmap_item
->address
&= PAGE_MASK
;
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
<= &migrate_nodes
);
660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
>= &migrate_nodes
+ 1);
663 if (stable_node
->head
== &migrate_nodes
)
664 list_del(&stable_node
->list
);
666 stable_node_dup_del(stable_node
);
667 free_stable_node(stable_node
);
670 enum get_ksm_page_flags
{
677 * get_ksm_page: checks if the page indicated by the stable node
678 * is still its ksm page, despite having held no reference to it.
679 * In which case we can trust the content of the page, and it
680 * returns the gotten page; but if the page has now been zapped,
681 * remove the stale node from the stable tree and return NULL.
682 * But beware, the stable node's page might be being migrated.
684 * You would expect the stable_node to hold a reference to the ksm page.
685 * But if it increments the page's count, swapping out has to wait for
686 * ksmd to come around again before it can free the page, which may take
687 * seconds or even minutes: much too unresponsive. So instead we use a
688 * "keyhole reference": access to the ksm page from the stable node peeps
689 * out through its keyhole to see if that page still holds the right key,
690 * pointing back to this stable node. This relies on freeing a PageAnon
691 * page to reset its page->mapping to NULL, and relies on no other use of
692 * a page to put something that might look like our key in page->mapping.
693 * is on its way to being freed; but it is an anomaly to bear in mind.
695 static struct page
*get_ksm_page(struct stable_node
*stable_node
,
696 enum get_ksm_page_flags flags
)
699 void *expected_mapping
;
702 expected_mapping
= (void *)((unsigned long)stable_node
|
705 kpfn
= READ_ONCE(stable_node
->kpfn
); /* Address dependency. */
706 page
= pfn_to_page(kpfn
);
707 if (READ_ONCE(page
->mapping
) != expected_mapping
)
711 * We cannot do anything with the page while its refcount is 0.
712 * Usually 0 means free, or tail of a higher-order page: in which
713 * case this node is no longer referenced, and should be freed;
714 * however, it might mean that the page is under page_ref_freeze().
715 * The __remove_mapping() case is easy, again the node is now stale;
716 * the same is in reuse_ksm_page() case; but if page is swapcache
717 * in migrate_page_move_mapping(), it might still be our page,
718 * in which case it's essential to keep the node.
720 while (!get_page_unless_zero(page
)) {
722 * Another check for page->mapping != expected_mapping would
723 * work here too. We have chosen the !PageSwapCache test to
724 * optimize the common case, when the page is or is about to
725 * be freed: PageSwapCache is cleared (under spin_lock_irq)
726 * in the ref_freeze section of __remove_mapping(); but Anon
727 * page->mapping reset to NULL later, in free_pages_prepare().
729 if (!PageSwapCache(page
))
734 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
739 if (flags
== GET_KSM_PAGE_TRYLOCK
) {
740 if (!trylock_page(page
)) {
742 return ERR_PTR(-EBUSY
);
744 } else if (flags
== GET_KSM_PAGE_LOCK
)
747 if (flags
!= GET_KSM_PAGE_NOLOCK
) {
748 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
758 * We come here from above when page->mapping or !PageSwapCache
759 * suggests that the node is stale; but it might be under migration.
760 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761 * before checking whether node->kpfn has been changed.
764 if (READ_ONCE(stable_node
->kpfn
) != kpfn
)
766 remove_node_from_stable_tree(stable_node
);
771 * Removing rmap_item from stable or unstable tree.
772 * This function will clean the information from the stable/unstable tree.
774 static void remove_rmap_item_from_tree(struct rmap_item
*rmap_item
)
776 if (rmap_item
->address
& STABLE_FLAG
) {
777 struct stable_node
*stable_node
;
780 stable_node
= rmap_item
->head
;
781 page
= get_ksm_page(stable_node
, GET_KSM_PAGE_LOCK
);
785 hlist_del(&rmap_item
->hlist
);
789 if (!hlist_empty(&stable_node
->hlist
))
793 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
794 stable_node
->rmap_hlist_len
--;
796 put_anon_vma(rmap_item
->anon_vma
);
797 rmap_item
->address
&= PAGE_MASK
;
799 } else if (rmap_item
->address
& UNSTABLE_FLAG
) {
802 * Usually ksmd can and must skip the rb_erase, because
803 * root_unstable_tree was already reset to RB_ROOT.
804 * But be careful when an mm is exiting: do the rb_erase
805 * if this rmap_item was inserted by this scan, rather
806 * than left over from before.
808 age
= (unsigned char)(ksm_scan
.seqnr
- rmap_item
->address
);
811 rb_erase(&rmap_item
->node
,
812 root_unstable_tree
+ NUMA(rmap_item
->nid
));
813 ksm_pages_unshared
--;
814 rmap_item
->address
&= PAGE_MASK
;
817 cond_resched(); /* we're called from many long loops */
820 static void remove_trailing_rmap_items(struct mm_slot
*mm_slot
,
821 struct rmap_item
**rmap_list
)
824 struct rmap_item
*rmap_item
= *rmap_list
;
825 *rmap_list
= rmap_item
->rmap_list
;
826 remove_rmap_item_from_tree(rmap_item
);
827 free_rmap_item(rmap_item
);
832 * Though it's very tempting to unmerge rmap_items from stable tree rather
833 * than check every pte of a given vma, the locking doesn't quite work for
834 * that - an rmap_item is assigned to the stable tree after inserting ksm
835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
836 * rmap_items from parent to child at fork time (so as not to waste time
837 * if exit comes before the next scan reaches it).
839 * Similarly, although we'd like to remove rmap_items (so updating counts
840 * and freeing memory) when unmerging an area, it's easier to leave that
841 * to the next pass of ksmd - consider, for example, how ksmd might be
842 * in cmp_and_merge_page on one of the rmap_items we would be removing.
844 static int unmerge_ksm_pages(struct vm_area_struct
*vma
,
845 unsigned long start
, unsigned long end
)
850 for (addr
= start
; addr
< end
&& !err
; addr
+= PAGE_SIZE
) {
851 if (ksm_test_exit(vma
->vm_mm
))
853 if (signal_pending(current
))
856 err
= break_ksm(vma
, addr
);
861 static inline struct stable_node
*page_stable_node(struct page
*page
)
863 return PageKsm(page
) ? page_rmapping(page
) : NULL
;
866 static inline void set_page_stable_node(struct page
*page
,
867 struct stable_node
*stable_node
)
869 page
->mapping
= (void *)((unsigned long)stable_node
| PAGE_MAPPING_KSM
);
874 * Only called through the sysfs control interface:
876 static int remove_stable_node(struct stable_node
*stable_node
)
881 page
= get_ksm_page(stable_node
, GET_KSM_PAGE_LOCK
);
884 * get_ksm_page did remove_node_from_stable_tree itself.
890 * Page could be still mapped if this races with __mmput() running in
891 * between ksm_exit() and exit_mmap(). Just refuse to let
892 * merge_across_nodes/max_page_sharing be switched.
895 if (!page_mapped(page
)) {
897 * The stable node did not yet appear stale to get_ksm_page(),
898 * since that allows for an unmapped ksm page to be recognized
899 * right up until it is freed; but the node is safe to remove.
900 * This page might be in a pagevec waiting to be freed,
901 * or it might be PageSwapCache (perhaps under writeback),
902 * or it might have been removed from swapcache a moment ago.
904 set_page_stable_node(page
, NULL
);
905 remove_node_from_stable_tree(stable_node
);
914 static int remove_stable_node_chain(struct stable_node
*stable_node
,
915 struct rb_root
*root
)
917 struct stable_node
*dup
;
918 struct hlist_node
*hlist_safe
;
920 if (!is_stable_node_chain(stable_node
)) {
921 VM_BUG_ON(is_stable_node_dup(stable_node
));
922 if (remove_stable_node(stable_node
))
928 hlist_for_each_entry_safe(dup
, hlist_safe
,
929 &stable_node
->hlist
, hlist_dup
) {
930 VM_BUG_ON(!is_stable_node_dup(dup
));
931 if (remove_stable_node(dup
))
934 BUG_ON(!hlist_empty(&stable_node
->hlist
));
935 free_stable_node_chain(stable_node
, root
);
939 static int remove_all_stable_nodes(void)
941 struct stable_node
*stable_node
, *next
;
945 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
946 while (root_stable_tree
[nid
].rb_node
) {
947 stable_node
= rb_entry(root_stable_tree
[nid
].rb_node
,
948 struct stable_node
, node
);
949 if (remove_stable_node_chain(stable_node
,
950 root_stable_tree
+ nid
)) {
952 break; /* proceed to next nid */
957 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
958 if (remove_stable_node(stable_node
))
965 static int unmerge_and_remove_all_rmap_items(void)
967 struct mm_slot
*mm_slot
;
968 struct mm_struct
*mm
;
969 struct vm_area_struct
*vma
;
972 spin_lock(&ksm_mmlist_lock
);
973 ksm_scan
.mm_slot
= list_entry(ksm_mm_head
.mm_list
.next
,
974 struct mm_slot
, mm_list
);
975 spin_unlock(&ksm_mmlist_lock
);
977 for (mm_slot
= ksm_scan
.mm_slot
;
978 mm_slot
!= &ksm_mm_head
; mm_slot
= ksm_scan
.mm_slot
) {
981 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
982 if (ksm_test_exit(mm
))
984 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
986 err
= unmerge_ksm_pages(vma
,
987 vma
->vm_start
, vma
->vm_end
);
992 remove_trailing_rmap_items(mm_slot
, &mm_slot
->rmap_list
);
993 mmap_read_unlock(mm
);
995 spin_lock(&ksm_mmlist_lock
);
996 ksm_scan
.mm_slot
= list_entry(mm_slot
->mm_list
.next
,
997 struct mm_slot
, mm_list
);
998 if (ksm_test_exit(mm
)) {
999 hash_del(&mm_slot
->link
);
1000 list_del(&mm_slot
->mm_list
);
1001 spin_unlock(&ksm_mmlist_lock
);
1003 free_mm_slot(mm_slot
);
1004 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
1007 spin_unlock(&ksm_mmlist_lock
);
1010 /* Clean up stable nodes, but don't worry if some are still busy */
1011 remove_all_stable_nodes();
1016 mmap_read_unlock(mm
);
1017 spin_lock(&ksm_mmlist_lock
);
1018 ksm_scan
.mm_slot
= &ksm_mm_head
;
1019 spin_unlock(&ksm_mmlist_lock
);
1022 #endif /* CONFIG_SYSFS */
1024 static u32
calc_checksum(struct page
*page
)
1027 void *addr
= kmap_atomic(page
);
1028 checksum
= xxhash(addr
, PAGE_SIZE
, 0);
1029 kunmap_atomic(addr
);
1033 static int write_protect_page(struct vm_area_struct
*vma
, struct page
*page
,
1036 struct mm_struct
*mm
= vma
->vm_mm
;
1037 struct page_vma_mapped_walk pvmw
= {
1043 struct mmu_notifier_range range
;
1045 pvmw
.address
= page_address_in_vma(page
, vma
);
1046 if (pvmw
.address
== -EFAULT
)
1049 BUG_ON(PageTransCompound(page
));
1051 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
1053 pvmw
.address
+ PAGE_SIZE
);
1054 mmu_notifier_invalidate_range_start(&range
);
1056 if (!page_vma_mapped_walk(&pvmw
))
1058 if (WARN_ONCE(!pvmw
.pte
, "Unexpected PMD mapping?"))
1061 if (pte_write(*pvmw
.pte
) || pte_dirty(*pvmw
.pte
) ||
1062 (pte_protnone(*pvmw
.pte
) && pte_savedwrite(*pvmw
.pte
)) ||
1063 mm_tlb_flush_pending(mm
)) {
1066 swapped
= PageSwapCache(page
);
1067 flush_cache_page(vma
, pvmw
.address
, page_to_pfn(page
));
1069 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1070 * take any lock, therefore the check that we are going to make
1071 * with the pagecount against the mapcount is racey and
1072 * O_DIRECT can happen right after the check.
1073 * So we clear the pte and flush the tlb before the check
1074 * this assure us that no O_DIRECT can happen after the check
1075 * or in the middle of the check.
1077 * No need to notify as we are downgrading page table to read
1078 * only not changing it to point to a new page.
1080 * See Documentation/vm/mmu_notifier.rst
1082 entry
= ptep_clear_flush(vma
, pvmw
.address
, pvmw
.pte
);
1084 * Check that no O_DIRECT or similar I/O is in progress on the
1087 if (page_mapcount(page
) + 1 + swapped
!= page_count(page
)) {
1088 set_pte_at(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1091 if (pte_dirty(entry
))
1092 set_page_dirty(page
);
1094 if (pte_protnone(entry
))
1095 entry
= pte_mkclean(pte_clear_savedwrite(entry
));
1097 entry
= pte_mkclean(pte_wrprotect(entry
));
1098 set_pte_at_notify(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1100 *orig_pte
= *pvmw
.pte
;
1104 page_vma_mapped_walk_done(&pvmw
);
1106 mmu_notifier_invalidate_range_end(&range
);
1112 * replace_page - replace page in vma by new ksm page
1113 * @vma: vma that holds the pte pointing to page
1114 * @page: the page we are replacing by kpage
1115 * @kpage: the ksm page we replace page by
1116 * @orig_pte: the original value of the pte
1118 * Returns 0 on success, -EFAULT on failure.
1120 static int replace_page(struct vm_area_struct
*vma
, struct page
*page
,
1121 struct page
*kpage
, pte_t orig_pte
)
1123 struct mm_struct
*mm
= vma
->vm_mm
;
1130 struct mmu_notifier_range range
;
1132 addr
= page_address_in_vma(page
, vma
);
1133 if (addr
== -EFAULT
)
1136 pmd
= mm_find_pmd(mm
, addr
);
1140 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, addr
,
1142 mmu_notifier_invalidate_range_start(&range
);
1144 ptep
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1145 if (!pte_same(*ptep
, orig_pte
)) {
1146 pte_unmap_unlock(ptep
, ptl
);
1151 * No need to check ksm_use_zero_pages here: we can only have a
1152 * zero_page here if ksm_use_zero_pages was enabled already.
1154 if (!is_zero_pfn(page_to_pfn(kpage
))) {
1156 page_add_anon_rmap(kpage
, vma
, addr
, false);
1157 newpte
= mk_pte(kpage
, vma
->vm_page_prot
);
1159 newpte
= pte_mkspecial(pfn_pte(page_to_pfn(kpage
),
1160 vma
->vm_page_prot
));
1162 * We're replacing an anonymous page with a zero page, which is
1163 * not anonymous. We need to do proper accounting otherwise we
1164 * will get wrong values in /proc, and a BUG message in dmesg
1165 * when tearing down the mm.
1167 dec_mm_counter(mm
, MM_ANONPAGES
);
1170 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
1172 * No need to notify as we are replacing a read only page with another
1173 * read only page with the same content.
1175 * See Documentation/vm/mmu_notifier.rst
1177 ptep_clear_flush(vma
, addr
, ptep
);
1178 set_pte_at_notify(mm
, addr
, ptep
, newpte
);
1180 page_remove_rmap(page
, false);
1181 if (!page_mapped(page
))
1182 try_to_free_swap(page
);
1185 pte_unmap_unlock(ptep
, ptl
);
1188 mmu_notifier_invalidate_range_end(&range
);
1194 * try_to_merge_one_page - take two pages and merge them into one
1195 * @vma: the vma that holds the pte pointing to page
1196 * @page: the PageAnon page that we want to replace with kpage
1197 * @kpage: the PageKsm page that we want to map instead of page,
1198 * or NULL the first time when we want to use page as kpage.
1200 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1202 static int try_to_merge_one_page(struct vm_area_struct
*vma
,
1203 struct page
*page
, struct page
*kpage
)
1205 pte_t orig_pte
= __pte(0);
1208 if (page
== kpage
) /* ksm page forked */
1211 if (!PageAnon(page
))
1215 * We need the page lock to read a stable PageSwapCache in
1216 * write_protect_page(). We use trylock_page() instead of
1217 * lock_page() because we don't want to wait here - we
1218 * prefer to continue scanning and merging different pages,
1219 * then come back to this page when it is unlocked.
1221 if (!trylock_page(page
))
1224 if (PageTransCompound(page
)) {
1225 if (split_huge_page(page
))
1230 * If this anonymous page is mapped only here, its pte may need
1231 * to be write-protected. If it's mapped elsewhere, all of its
1232 * ptes are necessarily already write-protected. But in either
1233 * case, we need to lock and check page_count is not raised.
1235 if (write_protect_page(vma
, page
, &orig_pte
) == 0) {
1238 * While we hold page lock, upgrade page from
1239 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1240 * stable_tree_insert() will update stable_node.
1242 set_page_stable_node(page
, NULL
);
1243 mark_page_accessed(page
);
1245 * Page reclaim just frees a clean page with no dirty
1246 * ptes: make sure that the ksm page would be swapped.
1248 if (!PageDirty(page
))
1251 } else if (pages_identical(page
, kpage
))
1252 err
= replace_page(vma
, page
, kpage
, orig_pte
);
1255 if ((vma
->vm_flags
& VM_LOCKED
) && kpage
&& !err
) {
1256 munlock_vma_page(page
);
1257 if (!PageMlocked(kpage
)) {
1260 mlock_vma_page(kpage
);
1261 page
= kpage
; /* for final unlock */
1272 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1273 * but no new kernel page is allocated: kpage must already be a ksm page.
1275 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1277 static int try_to_merge_with_ksm_page(struct rmap_item
*rmap_item
,
1278 struct page
*page
, struct page
*kpage
)
1280 struct mm_struct
*mm
= rmap_item
->mm
;
1281 struct vm_area_struct
*vma
;
1285 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
1289 err
= try_to_merge_one_page(vma
, page
, kpage
);
1293 /* Unstable nid is in union with stable anon_vma: remove first */
1294 remove_rmap_item_from_tree(rmap_item
);
1296 /* Must get reference to anon_vma while still holding mmap_lock */
1297 rmap_item
->anon_vma
= vma
->anon_vma
;
1298 get_anon_vma(vma
->anon_vma
);
1300 mmap_read_unlock(mm
);
1305 * try_to_merge_two_pages - take two identical pages and prepare them
1306 * to be merged into one page.
1308 * This function returns the kpage if we successfully merged two identical
1309 * pages into one ksm page, NULL otherwise.
1311 * Note that this function upgrades page to ksm page: if one of the pages
1312 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1314 static struct page
*try_to_merge_two_pages(struct rmap_item
*rmap_item
,
1316 struct rmap_item
*tree_rmap_item
,
1317 struct page
*tree_page
)
1321 err
= try_to_merge_with_ksm_page(rmap_item
, page
, NULL
);
1323 err
= try_to_merge_with_ksm_page(tree_rmap_item
,
1326 * If that fails, we have a ksm page with only one pte
1327 * pointing to it: so break it.
1330 break_cow(rmap_item
);
1332 return err
? NULL
: page
;
1335 static __always_inline
1336 bool __is_page_sharing_candidate(struct stable_node
*stable_node
, int offset
)
1338 VM_BUG_ON(stable_node
->rmap_hlist_len
< 0);
1340 * Check that at least one mapping still exists, otherwise
1341 * there's no much point to merge and share with this
1342 * stable_node, as the underlying tree_page of the other
1343 * sharer is going to be freed soon.
1345 return stable_node
->rmap_hlist_len
&&
1346 stable_node
->rmap_hlist_len
+ offset
< ksm_max_page_sharing
;
1349 static __always_inline
1350 bool is_page_sharing_candidate(struct stable_node
*stable_node
)
1352 return __is_page_sharing_candidate(stable_node
, 0);
1355 static struct page
*stable_node_dup(struct stable_node
**_stable_node_dup
,
1356 struct stable_node
**_stable_node
,
1357 struct rb_root
*root
,
1358 bool prune_stale_stable_nodes
)
1360 struct stable_node
*dup
, *found
= NULL
, *stable_node
= *_stable_node
;
1361 struct hlist_node
*hlist_safe
;
1362 struct page
*_tree_page
, *tree_page
= NULL
;
1364 int found_rmap_hlist_len
;
1366 if (!prune_stale_stable_nodes
||
1367 time_before(jiffies
, stable_node
->chain_prune_time
+
1369 ksm_stable_node_chains_prune_millisecs
)))
1370 prune_stale_stable_nodes
= false;
1372 stable_node
->chain_prune_time
= jiffies
;
1374 hlist_for_each_entry_safe(dup
, hlist_safe
,
1375 &stable_node
->hlist
, hlist_dup
) {
1378 * We must walk all stable_node_dup to prune the stale
1379 * stable nodes during lookup.
1381 * get_ksm_page can drop the nodes from the
1382 * stable_node->hlist if they point to freed pages
1383 * (that's why we do a _safe walk). The "dup"
1384 * stable_node parameter itself will be freed from
1385 * under us if it returns NULL.
1387 _tree_page
= get_ksm_page(dup
, GET_KSM_PAGE_NOLOCK
);
1391 if (is_page_sharing_candidate(dup
)) {
1393 dup
->rmap_hlist_len
> found_rmap_hlist_len
) {
1395 put_page(tree_page
);
1397 found_rmap_hlist_len
= found
->rmap_hlist_len
;
1398 tree_page
= _tree_page
;
1400 /* skip put_page for found dup */
1401 if (!prune_stale_stable_nodes
)
1406 put_page(_tree_page
);
1411 * nr is counting all dups in the chain only if
1412 * prune_stale_stable_nodes is true, otherwise we may
1413 * break the loop at nr == 1 even if there are
1416 if (prune_stale_stable_nodes
&& nr
== 1) {
1418 * If there's not just one entry it would
1419 * corrupt memory, better BUG_ON. In KSM
1420 * context with no lock held it's not even
1423 BUG_ON(stable_node
->hlist
.first
->next
);
1426 * There's just one entry and it is below the
1427 * deduplication limit so drop the chain.
1429 rb_replace_node(&stable_node
->node
, &found
->node
,
1431 free_stable_node(stable_node
);
1432 ksm_stable_node_chains
--;
1433 ksm_stable_node_dups
--;
1435 * NOTE: the caller depends on the stable_node
1436 * to be equal to stable_node_dup if the chain
1439 *_stable_node
= found
;
1441 * Just for robustneess as stable_node is
1442 * otherwise left as a stable pointer, the
1443 * compiler shall optimize it away at build
1447 } else if (stable_node
->hlist
.first
!= &found
->hlist_dup
&&
1448 __is_page_sharing_candidate(found
, 1)) {
1450 * If the found stable_node dup can accept one
1451 * more future merge (in addition to the one
1452 * that is underway) and is not at the head of
1453 * the chain, put it there so next search will
1454 * be quicker in the !prune_stale_stable_nodes
1457 * NOTE: it would be inaccurate to use nr > 1
1458 * instead of checking the hlist.first pointer
1459 * directly, because in the
1460 * prune_stale_stable_nodes case "nr" isn't
1461 * the position of the found dup in the chain,
1462 * but the total number of dups in the chain.
1464 hlist_del(&found
->hlist_dup
);
1465 hlist_add_head(&found
->hlist_dup
,
1466 &stable_node
->hlist
);
1470 *_stable_node_dup
= found
;
1474 static struct stable_node
*stable_node_dup_any(struct stable_node
*stable_node
,
1475 struct rb_root
*root
)
1477 if (!is_stable_node_chain(stable_node
))
1479 if (hlist_empty(&stable_node
->hlist
)) {
1480 free_stable_node_chain(stable_node
, root
);
1483 return hlist_entry(stable_node
->hlist
.first
,
1484 typeof(*stable_node
), hlist_dup
);
1488 * Like for get_ksm_page, this function can free the *_stable_node and
1489 * *_stable_node_dup if the returned tree_page is NULL.
1491 * It can also free and overwrite *_stable_node with the found
1492 * stable_node_dup if the chain is collapsed (in which case
1493 * *_stable_node will be equal to *_stable_node_dup like if the chain
1494 * never existed). It's up to the caller to verify tree_page is not
1495 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1497 * *_stable_node_dup is really a second output parameter of this
1498 * function and will be overwritten in all cases, the caller doesn't
1499 * need to initialize it.
1501 static struct page
*__stable_node_chain(struct stable_node
**_stable_node_dup
,
1502 struct stable_node
**_stable_node
,
1503 struct rb_root
*root
,
1504 bool prune_stale_stable_nodes
)
1506 struct stable_node
*stable_node
= *_stable_node
;
1507 if (!is_stable_node_chain(stable_node
)) {
1508 if (is_page_sharing_candidate(stable_node
)) {
1509 *_stable_node_dup
= stable_node
;
1510 return get_ksm_page(stable_node
, GET_KSM_PAGE_NOLOCK
);
1513 * _stable_node_dup set to NULL means the stable_node
1514 * reached the ksm_max_page_sharing limit.
1516 *_stable_node_dup
= NULL
;
1519 return stable_node_dup(_stable_node_dup
, _stable_node
, root
,
1520 prune_stale_stable_nodes
);
1523 static __always_inline
struct page
*chain_prune(struct stable_node
**s_n_d
,
1524 struct stable_node
**s_n
,
1525 struct rb_root
*root
)
1527 return __stable_node_chain(s_n_d
, s_n
, root
, true);
1530 static __always_inline
struct page
*chain(struct stable_node
**s_n_d
,
1531 struct stable_node
*s_n
,
1532 struct rb_root
*root
)
1534 struct stable_node
*old_stable_node
= s_n
;
1535 struct page
*tree_page
;
1537 tree_page
= __stable_node_chain(s_n_d
, &s_n
, root
, false);
1538 /* not pruning dups so s_n cannot have changed */
1539 VM_BUG_ON(s_n
!= old_stable_node
);
1544 * stable_tree_search - search for page inside the stable tree
1546 * This function checks if there is a page inside the stable tree
1547 * with identical content to the page that we are scanning right now.
1549 * This function returns the stable tree node of identical content if found,
1552 static struct page
*stable_tree_search(struct page
*page
)
1555 struct rb_root
*root
;
1556 struct rb_node
**new;
1557 struct rb_node
*parent
;
1558 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1559 struct stable_node
*page_node
;
1561 page_node
= page_stable_node(page
);
1562 if (page_node
&& page_node
->head
!= &migrate_nodes
) {
1563 /* ksm page forked */
1568 nid
= get_kpfn_nid(page_to_pfn(page
));
1569 root
= root_stable_tree
+ nid
;
1571 new = &root
->rb_node
;
1575 struct page
*tree_page
;
1579 stable_node
= rb_entry(*new, struct stable_node
, node
);
1580 stable_node_any
= NULL
;
1581 tree_page
= chain_prune(&stable_node_dup
, &stable_node
, root
);
1583 * NOTE: stable_node may have been freed by
1584 * chain_prune() if the returned stable_node_dup is
1585 * not NULL. stable_node_dup may have been inserted in
1586 * the rbtree instead as a regular stable_node (in
1587 * order to collapse the stable_node chain if a single
1588 * stable_node dup was found in it). In such case the
1589 * stable_node is overwritten by the calleee to point
1590 * to the stable_node_dup that was collapsed in the
1591 * stable rbtree and stable_node will be equal to
1592 * stable_node_dup like if the chain never existed.
1594 if (!stable_node_dup
) {
1596 * Either all stable_node dups were full in
1597 * this stable_node chain, or this chain was
1598 * empty and should be rb_erased.
1600 stable_node_any
= stable_node_dup_any(stable_node
,
1602 if (!stable_node_any
) {
1603 /* rb_erase just run */
1607 * Take any of the stable_node dups page of
1608 * this stable_node chain to let the tree walk
1609 * continue. All KSM pages belonging to the
1610 * stable_node dups in a stable_node chain
1611 * have the same content and they're
1612 * write protected at all times. Any will work
1613 * fine to continue the walk.
1615 tree_page
= get_ksm_page(stable_node_any
,
1616 GET_KSM_PAGE_NOLOCK
);
1618 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1621 * If we walked over a stale stable_node,
1622 * get_ksm_page() will call rb_erase() and it
1623 * may rebalance the tree from under us. So
1624 * restart the search from scratch. Returning
1625 * NULL would be safe too, but we'd generate
1626 * false negative insertions just because some
1627 * stable_node was stale.
1632 ret
= memcmp_pages(page
, tree_page
);
1633 put_page(tree_page
);
1637 new = &parent
->rb_left
;
1639 new = &parent
->rb_right
;
1642 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1644 * Test if the migrated page should be merged
1645 * into a stable node dup. If the mapcount is
1646 * 1 we can migrate it with another KSM page
1647 * without adding it to the chain.
1649 if (page_mapcount(page
) > 1)
1653 if (!stable_node_dup
) {
1655 * If the stable_node is a chain and
1656 * we got a payload match in memcmp
1657 * but we cannot merge the scanned
1658 * page in any of the existing
1659 * stable_node dups because they're
1660 * all full, we need to wait the
1661 * scanned page to find itself a match
1662 * in the unstable tree to create a
1663 * brand new KSM page to add later to
1664 * the dups of this stable_node.
1670 * Lock and unlock the stable_node's page (which
1671 * might already have been migrated) so that page
1672 * migration is sure to notice its raised count.
1673 * It would be more elegant to return stable_node
1674 * than kpage, but that involves more changes.
1676 tree_page
= get_ksm_page(stable_node_dup
,
1677 GET_KSM_PAGE_TRYLOCK
);
1679 if (PTR_ERR(tree_page
) == -EBUSY
)
1680 return ERR_PTR(-EBUSY
);
1682 if (unlikely(!tree_page
))
1684 * The tree may have been rebalanced,
1685 * so re-evaluate parent and new.
1688 unlock_page(tree_page
);
1690 if (get_kpfn_nid(stable_node_dup
->kpfn
) !=
1691 NUMA(stable_node_dup
->nid
)) {
1692 put_page(tree_page
);
1702 list_del(&page_node
->list
);
1703 DO_NUMA(page_node
->nid
= nid
);
1704 rb_link_node(&page_node
->node
, parent
, new);
1705 rb_insert_color(&page_node
->node
, root
);
1707 if (is_page_sharing_candidate(page_node
)) {
1715 * If stable_node was a chain and chain_prune collapsed it,
1716 * stable_node has been updated to be the new regular
1717 * stable_node. A collapse of the chain is indistinguishable
1718 * from the case there was no chain in the stable
1719 * rbtree. Otherwise stable_node is the chain and
1720 * stable_node_dup is the dup to replace.
1722 if (stable_node_dup
== stable_node
) {
1723 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1724 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1725 /* there is no chain */
1727 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1728 list_del(&page_node
->list
);
1729 DO_NUMA(page_node
->nid
= nid
);
1730 rb_replace_node(&stable_node_dup
->node
,
1733 if (is_page_sharing_candidate(page_node
))
1738 rb_erase(&stable_node_dup
->node
, root
);
1742 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1743 __stable_node_dup_del(stable_node_dup
);
1745 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1746 list_del(&page_node
->list
);
1747 DO_NUMA(page_node
->nid
= nid
);
1748 stable_node_chain_add_dup(page_node
, stable_node
);
1749 if (is_page_sharing_candidate(page_node
))
1757 stable_node_dup
->head
= &migrate_nodes
;
1758 list_add(&stable_node_dup
->list
, stable_node_dup
->head
);
1762 /* stable_node_dup could be null if it reached the limit */
1763 if (!stable_node_dup
)
1764 stable_node_dup
= stable_node_any
;
1766 * If stable_node was a chain and chain_prune collapsed it,
1767 * stable_node has been updated to be the new regular
1768 * stable_node. A collapse of the chain is indistinguishable
1769 * from the case there was no chain in the stable
1770 * rbtree. Otherwise stable_node is the chain and
1771 * stable_node_dup is the dup to replace.
1773 if (stable_node_dup
== stable_node
) {
1774 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1775 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1776 /* chain is missing so create it */
1777 stable_node
= alloc_stable_node_chain(stable_node_dup
,
1783 * Add this stable_node dup that was
1784 * migrated to the stable_node chain
1785 * of the current nid for this page
1788 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1789 VM_BUG_ON(!is_stable_node_dup(stable_node_dup
));
1790 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1791 list_del(&page_node
->list
);
1792 DO_NUMA(page_node
->nid
= nid
);
1793 stable_node_chain_add_dup(page_node
, stable_node
);
1798 * stable_tree_insert - insert stable tree node pointing to new ksm page
1799 * into the stable tree.
1801 * This function returns the stable tree node just allocated on success,
1804 static struct stable_node
*stable_tree_insert(struct page
*kpage
)
1808 struct rb_root
*root
;
1809 struct rb_node
**new;
1810 struct rb_node
*parent
;
1811 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1812 bool need_chain
= false;
1814 kpfn
= page_to_pfn(kpage
);
1815 nid
= get_kpfn_nid(kpfn
);
1816 root
= root_stable_tree
+ nid
;
1819 new = &root
->rb_node
;
1822 struct page
*tree_page
;
1826 stable_node
= rb_entry(*new, struct stable_node
, node
);
1827 stable_node_any
= NULL
;
1828 tree_page
= chain(&stable_node_dup
, stable_node
, root
);
1829 if (!stable_node_dup
) {
1831 * Either all stable_node dups were full in
1832 * this stable_node chain, or this chain was
1833 * empty and should be rb_erased.
1835 stable_node_any
= stable_node_dup_any(stable_node
,
1837 if (!stable_node_any
) {
1838 /* rb_erase just run */
1842 * Take any of the stable_node dups page of
1843 * this stable_node chain to let the tree walk
1844 * continue. All KSM pages belonging to the
1845 * stable_node dups in a stable_node chain
1846 * have the same content and they're
1847 * write protected at all times. Any will work
1848 * fine to continue the walk.
1850 tree_page
= get_ksm_page(stable_node_any
,
1851 GET_KSM_PAGE_NOLOCK
);
1853 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1856 * If we walked over a stale stable_node,
1857 * get_ksm_page() will call rb_erase() and it
1858 * may rebalance the tree from under us. So
1859 * restart the search from scratch. Returning
1860 * NULL would be safe too, but we'd generate
1861 * false negative insertions just because some
1862 * stable_node was stale.
1867 ret
= memcmp_pages(kpage
, tree_page
);
1868 put_page(tree_page
);
1872 new = &parent
->rb_left
;
1874 new = &parent
->rb_right
;
1881 stable_node_dup
= alloc_stable_node();
1882 if (!stable_node_dup
)
1885 INIT_HLIST_HEAD(&stable_node_dup
->hlist
);
1886 stable_node_dup
->kpfn
= kpfn
;
1887 set_page_stable_node(kpage
, stable_node_dup
);
1888 stable_node_dup
->rmap_hlist_len
= 0;
1889 DO_NUMA(stable_node_dup
->nid
= nid
);
1891 rb_link_node(&stable_node_dup
->node
, parent
, new);
1892 rb_insert_color(&stable_node_dup
->node
, root
);
1894 if (!is_stable_node_chain(stable_node
)) {
1895 struct stable_node
*orig
= stable_node
;
1896 /* chain is missing so create it */
1897 stable_node
= alloc_stable_node_chain(orig
, root
);
1899 free_stable_node(stable_node_dup
);
1903 stable_node_chain_add_dup(stable_node_dup
, stable_node
);
1906 return stable_node_dup
;
1910 * unstable_tree_search_insert - search for identical page,
1911 * else insert rmap_item into the unstable tree.
1913 * This function searches for a page in the unstable tree identical to the
1914 * page currently being scanned; and if no identical page is found in the
1915 * tree, we insert rmap_item as a new object into the unstable tree.
1917 * This function returns pointer to rmap_item found to be identical
1918 * to the currently scanned page, NULL otherwise.
1920 * This function does both searching and inserting, because they share
1921 * the same walking algorithm in an rbtree.
1924 struct rmap_item
*unstable_tree_search_insert(struct rmap_item
*rmap_item
,
1926 struct page
**tree_pagep
)
1928 struct rb_node
**new;
1929 struct rb_root
*root
;
1930 struct rb_node
*parent
= NULL
;
1933 nid
= get_kpfn_nid(page_to_pfn(page
));
1934 root
= root_unstable_tree
+ nid
;
1935 new = &root
->rb_node
;
1938 struct rmap_item
*tree_rmap_item
;
1939 struct page
*tree_page
;
1943 tree_rmap_item
= rb_entry(*new, struct rmap_item
, node
);
1944 tree_page
= get_mergeable_page(tree_rmap_item
);
1949 * Don't substitute a ksm page for a forked page.
1951 if (page
== tree_page
) {
1952 put_page(tree_page
);
1956 ret
= memcmp_pages(page
, tree_page
);
1960 put_page(tree_page
);
1961 new = &parent
->rb_left
;
1962 } else if (ret
> 0) {
1963 put_page(tree_page
);
1964 new = &parent
->rb_right
;
1965 } else if (!ksm_merge_across_nodes
&&
1966 page_to_nid(tree_page
) != nid
) {
1968 * If tree_page has been migrated to another NUMA node,
1969 * it will be flushed out and put in the right unstable
1970 * tree next time: only merge with it when across_nodes.
1972 put_page(tree_page
);
1975 *tree_pagep
= tree_page
;
1976 return tree_rmap_item
;
1980 rmap_item
->address
|= UNSTABLE_FLAG
;
1981 rmap_item
->address
|= (ksm_scan
.seqnr
& SEQNR_MASK
);
1982 DO_NUMA(rmap_item
->nid
= nid
);
1983 rb_link_node(&rmap_item
->node
, parent
, new);
1984 rb_insert_color(&rmap_item
->node
, root
);
1986 ksm_pages_unshared
++;
1991 * stable_tree_append - add another rmap_item to the linked list of
1992 * rmap_items hanging off a given node of the stable tree, all sharing
1993 * the same ksm page.
1995 static void stable_tree_append(struct rmap_item
*rmap_item
,
1996 struct stable_node
*stable_node
,
1997 bool max_page_sharing_bypass
)
2000 * rmap won't find this mapping if we don't insert the
2001 * rmap_item in the right stable_node
2002 * duplicate. page_migration could break later if rmap breaks,
2003 * so we can as well crash here. We really need to check for
2004 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2005 * for other negative values as an underflow if detected here
2006 * for the first time (and not when decreasing rmap_hlist_len)
2007 * would be sign of memory corruption in the stable_node.
2009 BUG_ON(stable_node
->rmap_hlist_len
< 0);
2011 stable_node
->rmap_hlist_len
++;
2012 if (!max_page_sharing_bypass
)
2013 /* possibly non fatal but unexpected overflow, only warn */
2014 WARN_ON_ONCE(stable_node
->rmap_hlist_len
>
2015 ksm_max_page_sharing
);
2017 rmap_item
->head
= stable_node
;
2018 rmap_item
->address
|= STABLE_FLAG
;
2019 hlist_add_head(&rmap_item
->hlist
, &stable_node
->hlist
);
2021 if (rmap_item
->hlist
.next
)
2022 ksm_pages_sharing
++;
2028 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2029 * if not, compare checksum to previous and if it's the same, see if page can
2030 * be inserted into the unstable tree, or merged with a page already there and
2031 * both transferred to the stable tree.
2033 * @page: the page that we are searching identical page to.
2034 * @rmap_item: the reverse mapping into the virtual address of this page
2036 static void cmp_and_merge_page(struct page
*page
, struct rmap_item
*rmap_item
)
2038 struct mm_struct
*mm
= rmap_item
->mm
;
2039 struct rmap_item
*tree_rmap_item
;
2040 struct page
*tree_page
= NULL
;
2041 struct stable_node
*stable_node
;
2043 unsigned int checksum
;
2045 bool max_page_sharing_bypass
= false;
2047 stable_node
= page_stable_node(page
);
2049 if (stable_node
->head
!= &migrate_nodes
&&
2050 get_kpfn_nid(READ_ONCE(stable_node
->kpfn
)) !=
2051 NUMA(stable_node
->nid
)) {
2052 stable_node_dup_del(stable_node
);
2053 stable_node
->head
= &migrate_nodes
;
2054 list_add(&stable_node
->list
, stable_node
->head
);
2056 if (stable_node
->head
!= &migrate_nodes
&&
2057 rmap_item
->head
== stable_node
)
2060 * If it's a KSM fork, allow it to go over the sharing limit
2063 if (!is_page_sharing_candidate(stable_node
))
2064 max_page_sharing_bypass
= true;
2067 /* We first start with searching the page inside the stable tree */
2068 kpage
= stable_tree_search(page
);
2069 if (kpage
== page
&& rmap_item
->head
== stable_node
) {
2074 remove_rmap_item_from_tree(rmap_item
);
2077 if (PTR_ERR(kpage
) == -EBUSY
)
2080 err
= try_to_merge_with_ksm_page(rmap_item
, page
, kpage
);
2083 * The page was successfully merged:
2084 * add its rmap_item to the stable tree.
2087 stable_tree_append(rmap_item
, page_stable_node(kpage
),
2088 max_page_sharing_bypass
);
2096 * If the hash value of the page has changed from the last time
2097 * we calculated it, this page is changing frequently: therefore we
2098 * don't want to insert it in the unstable tree, and we don't want
2099 * to waste our time searching for something identical to it there.
2101 checksum
= calc_checksum(page
);
2102 if (rmap_item
->oldchecksum
!= checksum
) {
2103 rmap_item
->oldchecksum
= checksum
;
2108 * Same checksum as an empty page. We attempt to merge it with the
2109 * appropriate zero page if the user enabled this via sysfs.
2111 if (ksm_use_zero_pages
&& (checksum
== zero_checksum
)) {
2112 struct vm_area_struct
*vma
;
2115 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
2117 err
= try_to_merge_one_page(vma
, page
,
2118 ZERO_PAGE(rmap_item
->address
));
2121 * If the vma is out of date, we do not need to
2126 mmap_read_unlock(mm
);
2128 * In case of failure, the page was not really empty, so we
2129 * need to continue. Otherwise we're done.
2135 unstable_tree_search_insert(rmap_item
, page
, &tree_page
);
2136 if (tree_rmap_item
) {
2139 kpage
= try_to_merge_two_pages(rmap_item
, page
,
2140 tree_rmap_item
, tree_page
);
2142 * If both pages we tried to merge belong to the same compound
2143 * page, then we actually ended up increasing the reference
2144 * count of the same compound page twice, and split_huge_page
2146 * Here we set a flag if that happened, and we use it later to
2147 * try split_huge_page again. Since we call put_page right
2148 * afterwards, the reference count will be correct and
2149 * split_huge_page should succeed.
2151 split
= PageTransCompound(page
)
2152 && compound_head(page
) == compound_head(tree_page
);
2153 put_page(tree_page
);
2156 * The pages were successfully merged: insert new
2157 * node in the stable tree and add both rmap_items.
2160 stable_node
= stable_tree_insert(kpage
);
2162 stable_tree_append(tree_rmap_item
, stable_node
,
2164 stable_tree_append(rmap_item
, stable_node
,
2170 * If we fail to insert the page into the stable tree,
2171 * we will have 2 virtual addresses that are pointing
2172 * to a ksm page left outside the stable tree,
2173 * in which case we need to break_cow on both.
2176 break_cow(tree_rmap_item
);
2177 break_cow(rmap_item
);
2181 * We are here if we tried to merge two pages and
2182 * failed because they both belonged to the same
2183 * compound page. We will split the page now, but no
2184 * merging will take place.
2185 * We do not want to add the cost of a full lock; if
2186 * the page is locked, it is better to skip it and
2187 * perhaps try again later.
2189 if (!trylock_page(page
))
2191 split_huge_page(page
);
2197 static struct rmap_item
*get_next_rmap_item(struct mm_slot
*mm_slot
,
2198 struct rmap_item
**rmap_list
,
2201 struct rmap_item
*rmap_item
;
2203 while (*rmap_list
) {
2204 rmap_item
= *rmap_list
;
2205 if ((rmap_item
->address
& PAGE_MASK
) == addr
)
2207 if (rmap_item
->address
> addr
)
2209 *rmap_list
= rmap_item
->rmap_list
;
2210 remove_rmap_item_from_tree(rmap_item
);
2211 free_rmap_item(rmap_item
);
2214 rmap_item
= alloc_rmap_item();
2216 /* It has already been zeroed */
2217 rmap_item
->mm
= mm_slot
->mm
;
2218 rmap_item
->address
= addr
;
2219 rmap_item
->rmap_list
= *rmap_list
;
2220 *rmap_list
= rmap_item
;
2225 static struct rmap_item
*scan_get_next_rmap_item(struct page
**page
)
2227 struct mm_struct
*mm
;
2228 struct mm_slot
*slot
;
2229 struct vm_area_struct
*vma
;
2230 struct rmap_item
*rmap_item
;
2233 if (list_empty(&ksm_mm_head
.mm_list
))
2236 slot
= ksm_scan
.mm_slot
;
2237 if (slot
== &ksm_mm_head
) {
2239 * A number of pages can hang around indefinitely on per-cpu
2240 * pagevecs, raised page count preventing write_protect_page
2241 * from merging them. Though it doesn't really matter much,
2242 * it is puzzling to see some stuck in pages_volatile until
2243 * other activity jostles them out, and they also prevented
2244 * LTP's KSM test from succeeding deterministically; so drain
2245 * them here (here rather than on entry to ksm_do_scan(),
2246 * so we don't IPI too often when pages_to_scan is set low).
2248 lru_add_drain_all();
2251 * Whereas stale stable_nodes on the stable_tree itself
2252 * get pruned in the regular course of stable_tree_search(),
2253 * those moved out to the migrate_nodes list can accumulate:
2254 * so prune them once before each full scan.
2256 if (!ksm_merge_across_nodes
) {
2257 struct stable_node
*stable_node
, *next
;
2260 list_for_each_entry_safe(stable_node
, next
,
2261 &migrate_nodes
, list
) {
2262 page
= get_ksm_page(stable_node
,
2263 GET_KSM_PAGE_NOLOCK
);
2270 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++)
2271 root_unstable_tree
[nid
] = RB_ROOT
;
2273 spin_lock(&ksm_mmlist_lock
);
2274 slot
= list_entry(slot
->mm_list
.next
, struct mm_slot
, mm_list
);
2275 ksm_scan
.mm_slot
= slot
;
2276 spin_unlock(&ksm_mmlist_lock
);
2278 * Although we tested list_empty() above, a racing __ksm_exit
2279 * of the last mm on the list may have removed it since then.
2281 if (slot
== &ksm_mm_head
)
2284 ksm_scan
.address
= 0;
2285 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2290 if (ksm_test_exit(mm
))
2293 vma
= find_vma(mm
, ksm_scan
.address
);
2295 for (; vma
; vma
= vma
->vm_next
) {
2296 if (!(vma
->vm_flags
& VM_MERGEABLE
))
2298 if (ksm_scan
.address
< vma
->vm_start
)
2299 ksm_scan
.address
= vma
->vm_start
;
2301 ksm_scan
.address
= vma
->vm_end
;
2303 while (ksm_scan
.address
< vma
->vm_end
) {
2304 if (ksm_test_exit(mm
))
2306 *page
= follow_page(vma
, ksm_scan
.address
, FOLL_GET
);
2307 if (IS_ERR_OR_NULL(*page
)) {
2308 ksm_scan
.address
+= PAGE_SIZE
;
2312 if (PageAnon(*page
)) {
2313 flush_anon_page(vma
, *page
, ksm_scan
.address
);
2314 flush_dcache_page(*page
);
2315 rmap_item
= get_next_rmap_item(slot
,
2316 ksm_scan
.rmap_list
, ksm_scan
.address
);
2318 ksm_scan
.rmap_list
=
2319 &rmap_item
->rmap_list
;
2320 ksm_scan
.address
+= PAGE_SIZE
;
2323 mmap_read_unlock(mm
);
2327 ksm_scan
.address
+= PAGE_SIZE
;
2332 if (ksm_test_exit(mm
)) {
2333 ksm_scan
.address
= 0;
2334 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2337 * Nuke all the rmap_items that are above this current rmap:
2338 * because there were no VM_MERGEABLE vmas with such addresses.
2340 remove_trailing_rmap_items(slot
, ksm_scan
.rmap_list
);
2342 spin_lock(&ksm_mmlist_lock
);
2343 ksm_scan
.mm_slot
= list_entry(slot
->mm_list
.next
,
2344 struct mm_slot
, mm_list
);
2345 if (ksm_scan
.address
== 0) {
2347 * We've completed a full scan of all vmas, holding mmap_lock
2348 * throughout, and found no VM_MERGEABLE: so do the same as
2349 * __ksm_exit does to remove this mm from all our lists now.
2350 * This applies either when cleaning up after __ksm_exit
2351 * (but beware: we can reach here even before __ksm_exit),
2352 * or when all VM_MERGEABLE areas have been unmapped (and
2353 * mmap_lock then protects against race with MADV_MERGEABLE).
2355 hash_del(&slot
->link
);
2356 list_del(&slot
->mm_list
);
2357 spin_unlock(&ksm_mmlist_lock
);
2360 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2361 mmap_read_unlock(mm
);
2364 mmap_read_unlock(mm
);
2366 * mmap_read_unlock(mm) first because after
2367 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2368 * already have been freed under us by __ksm_exit()
2369 * because the "mm_slot" is still hashed and
2370 * ksm_scan.mm_slot doesn't point to it anymore.
2372 spin_unlock(&ksm_mmlist_lock
);
2375 /* Repeat until we've completed scanning the whole list */
2376 slot
= ksm_scan
.mm_slot
;
2377 if (slot
!= &ksm_mm_head
)
2385 * ksm_do_scan - the ksm scanner main worker function.
2386 * @scan_npages: number of pages we want to scan before we return.
2388 static void ksm_do_scan(unsigned int scan_npages
)
2390 struct rmap_item
*rmap_item
;
2393 while (scan_npages
-- && likely(!freezing(current
))) {
2395 rmap_item
= scan_get_next_rmap_item(&page
);
2398 cmp_and_merge_page(page
, rmap_item
);
2403 static int ksmd_should_run(void)
2405 return (ksm_run
& KSM_RUN_MERGE
) && !list_empty(&ksm_mm_head
.mm_list
);
2408 static int ksm_scan_thread(void *nothing
)
2410 unsigned int sleep_ms
;
2413 set_user_nice(current
, 5);
2415 while (!kthread_should_stop()) {
2416 mutex_lock(&ksm_thread_mutex
);
2417 wait_while_offlining();
2418 if (ksmd_should_run())
2419 ksm_do_scan(ksm_thread_pages_to_scan
);
2420 mutex_unlock(&ksm_thread_mutex
);
2424 if (ksmd_should_run()) {
2425 sleep_ms
= READ_ONCE(ksm_thread_sleep_millisecs
);
2426 wait_event_interruptible_timeout(ksm_iter_wait
,
2427 sleep_ms
!= READ_ONCE(ksm_thread_sleep_millisecs
),
2428 msecs_to_jiffies(sleep_ms
));
2430 wait_event_freezable(ksm_thread_wait
,
2431 ksmd_should_run() || kthread_should_stop());
2437 int ksm_madvise(struct vm_area_struct
*vma
, unsigned long start
,
2438 unsigned long end
, int advice
, unsigned long *vm_flags
)
2440 struct mm_struct
*mm
= vma
->vm_mm
;
2444 case MADV_MERGEABLE
:
2446 * Be somewhat over-protective for now!
2448 if (*vm_flags
& (VM_MERGEABLE
| VM_SHARED
| VM_MAYSHARE
|
2449 VM_PFNMAP
| VM_IO
| VM_DONTEXPAND
|
2450 VM_HUGETLB
| VM_MIXEDMAP
))
2451 return 0; /* just ignore the advice */
2453 if (vma_is_dax(vma
))
2457 if (*vm_flags
& VM_SAO
)
2461 if (*vm_flags
& VM_SPARC_ADI
)
2465 if (!test_bit(MMF_VM_MERGEABLE
, &mm
->flags
)) {
2466 err
= __ksm_enter(mm
);
2471 *vm_flags
|= VM_MERGEABLE
;
2474 case MADV_UNMERGEABLE
:
2475 if (!(*vm_flags
& VM_MERGEABLE
))
2476 return 0; /* just ignore the advice */
2478 if (vma
->anon_vma
) {
2479 err
= unmerge_ksm_pages(vma
, start
, end
);
2484 *vm_flags
&= ~VM_MERGEABLE
;
2490 EXPORT_SYMBOL_GPL(ksm_madvise
);
2492 int __ksm_enter(struct mm_struct
*mm
)
2494 struct mm_slot
*mm_slot
;
2497 mm_slot
= alloc_mm_slot();
2501 /* Check ksm_run too? Would need tighter locking */
2502 needs_wakeup
= list_empty(&ksm_mm_head
.mm_list
);
2504 spin_lock(&ksm_mmlist_lock
);
2505 insert_to_mm_slots_hash(mm
, mm_slot
);
2507 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2508 * insert just behind the scanning cursor, to let the area settle
2509 * down a little; when fork is followed by immediate exec, we don't
2510 * want ksmd to waste time setting up and tearing down an rmap_list.
2512 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2513 * scanning cursor, otherwise KSM pages in newly forked mms will be
2514 * missed: then we might as well insert at the end of the list.
2516 if (ksm_run
& KSM_RUN_UNMERGE
)
2517 list_add_tail(&mm_slot
->mm_list
, &ksm_mm_head
.mm_list
);
2519 list_add_tail(&mm_slot
->mm_list
, &ksm_scan
.mm_slot
->mm_list
);
2520 spin_unlock(&ksm_mmlist_lock
);
2522 set_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2526 wake_up_interruptible(&ksm_thread_wait
);
2531 void __ksm_exit(struct mm_struct
*mm
)
2533 struct mm_slot
*mm_slot
;
2534 int easy_to_free
= 0;
2537 * This process is exiting: if it's straightforward (as is the
2538 * case when ksmd was never running), free mm_slot immediately.
2539 * But if it's at the cursor or has rmap_items linked to it, use
2540 * mmap_lock to synchronize with any break_cows before pagetables
2541 * are freed, and leave the mm_slot on the list for ksmd to free.
2542 * Beware: ksm may already have noticed it exiting and freed the slot.
2545 spin_lock(&ksm_mmlist_lock
);
2546 mm_slot
= get_mm_slot(mm
);
2547 if (mm_slot
&& ksm_scan
.mm_slot
!= mm_slot
) {
2548 if (!mm_slot
->rmap_list
) {
2549 hash_del(&mm_slot
->link
);
2550 list_del(&mm_slot
->mm_list
);
2553 list_move(&mm_slot
->mm_list
,
2554 &ksm_scan
.mm_slot
->mm_list
);
2557 spin_unlock(&ksm_mmlist_lock
);
2560 free_mm_slot(mm_slot
);
2561 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2563 } else if (mm_slot
) {
2564 mmap_write_lock(mm
);
2565 mmap_write_unlock(mm
);
2569 struct page
*ksm_might_need_to_copy(struct page
*page
,
2570 struct vm_area_struct
*vma
, unsigned long address
)
2572 struct anon_vma
*anon_vma
= page_anon_vma(page
);
2573 struct page
*new_page
;
2575 if (PageKsm(page
)) {
2576 if (page_stable_node(page
) &&
2577 !(ksm_run
& KSM_RUN_UNMERGE
))
2578 return page
; /* no need to copy it */
2579 } else if (!anon_vma
) {
2580 return page
; /* no need to copy it */
2581 } else if (anon_vma
->root
== vma
->anon_vma
->root
&&
2582 page
->index
== linear_page_index(vma
, address
)) {
2583 return page
; /* still no need to copy it */
2585 if (!PageUptodate(page
))
2586 return page
; /* let do_swap_page report the error */
2588 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2589 if (new_page
&& mem_cgroup_charge(new_page
, vma
->vm_mm
, GFP_KERNEL
)) {
2594 copy_user_highpage(new_page
, page
, address
, vma
);
2596 SetPageDirty(new_page
);
2597 __SetPageUptodate(new_page
);
2598 __SetPageLocked(new_page
);
2604 void rmap_walk_ksm(struct page
*page
, struct rmap_walk_control
*rwc
)
2606 struct stable_node
*stable_node
;
2607 struct rmap_item
*rmap_item
;
2608 int search_new_forks
= 0;
2610 VM_BUG_ON_PAGE(!PageKsm(page
), page
);
2613 * Rely on the page lock to protect against concurrent modifications
2614 * to that page's node of the stable tree.
2616 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2618 stable_node
= page_stable_node(page
);
2622 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
2623 struct anon_vma
*anon_vma
= rmap_item
->anon_vma
;
2624 struct anon_vma_chain
*vmac
;
2625 struct vm_area_struct
*vma
;
2628 anon_vma_lock_read(anon_vma
);
2629 anon_vma_interval_tree_foreach(vmac
, &anon_vma
->rb_root
,
2636 /* Ignore the stable/unstable/sqnr flags */
2637 addr
= rmap_item
->address
& ~KSM_FLAG_MASK
;
2639 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2642 * Initially we examine only the vma which covers this
2643 * rmap_item; but later, if there is still work to do,
2644 * we examine covering vmas in other mms: in case they
2645 * were forked from the original since ksmd passed.
2647 if ((rmap_item
->mm
== vma
->vm_mm
) == search_new_forks
)
2650 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
2653 if (!rwc
->rmap_one(page
, vma
, addr
, rwc
->arg
)) {
2654 anon_vma_unlock_read(anon_vma
);
2657 if (rwc
->done
&& rwc
->done(page
)) {
2658 anon_vma_unlock_read(anon_vma
);
2662 anon_vma_unlock_read(anon_vma
);
2664 if (!search_new_forks
++)
2668 #ifdef CONFIG_MIGRATION
2669 void ksm_migrate_page(struct page
*newpage
, struct page
*oldpage
)
2671 struct stable_node
*stable_node
;
2673 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
2674 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
2675 VM_BUG_ON_PAGE(newpage
->mapping
!= oldpage
->mapping
, newpage
);
2677 stable_node
= page_stable_node(newpage
);
2679 VM_BUG_ON_PAGE(stable_node
->kpfn
!= page_to_pfn(oldpage
), oldpage
);
2680 stable_node
->kpfn
= page_to_pfn(newpage
);
2682 * newpage->mapping was set in advance; now we need smp_wmb()
2683 * to make sure that the new stable_node->kpfn is visible
2684 * to get_ksm_page() before it can see that oldpage->mapping
2685 * has gone stale (or that PageSwapCache has been cleared).
2688 set_page_stable_node(oldpage
, NULL
);
2691 #endif /* CONFIG_MIGRATION */
2693 #ifdef CONFIG_MEMORY_HOTREMOVE
2694 static void wait_while_offlining(void)
2696 while (ksm_run
& KSM_RUN_OFFLINE
) {
2697 mutex_unlock(&ksm_thread_mutex
);
2698 wait_on_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
),
2699 TASK_UNINTERRUPTIBLE
);
2700 mutex_lock(&ksm_thread_mutex
);
2704 static bool stable_node_dup_remove_range(struct stable_node
*stable_node
,
2705 unsigned long start_pfn
,
2706 unsigned long end_pfn
)
2708 if (stable_node
->kpfn
>= start_pfn
&&
2709 stable_node
->kpfn
< end_pfn
) {
2711 * Don't get_ksm_page, page has already gone:
2712 * which is why we keep kpfn instead of page*
2714 remove_node_from_stable_tree(stable_node
);
2720 static bool stable_node_chain_remove_range(struct stable_node
*stable_node
,
2721 unsigned long start_pfn
,
2722 unsigned long end_pfn
,
2723 struct rb_root
*root
)
2725 struct stable_node
*dup
;
2726 struct hlist_node
*hlist_safe
;
2728 if (!is_stable_node_chain(stable_node
)) {
2729 VM_BUG_ON(is_stable_node_dup(stable_node
));
2730 return stable_node_dup_remove_range(stable_node
, start_pfn
,
2734 hlist_for_each_entry_safe(dup
, hlist_safe
,
2735 &stable_node
->hlist
, hlist_dup
) {
2736 VM_BUG_ON(!is_stable_node_dup(dup
));
2737 stable_node_dup_remove_range(dup
, start_pfn
, end_pfn
);
2739 if (hlist_empty(&stable_node
->hlist
)) {
2740 free_stable_node_chain(stable_node
, root
);
2741 return true; /* notify caller that tree was rebalanced */
2746 static void ksm_check_stable_tree(unsigned long start_pfn
,
2747 unsigned long end_pfn
)
2749 struct stable_node
*stable_node
, *next
;
2750 struct rb_node
*node
;
2753 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
2754 node
= rb_first(root_stable_tree
+ nid
);
2756 stable_node
= rb_entry(node
, struct stable_node
, node
);
2757 if (stable_node_chain_remove_range(stable_node
,
2761 node
= rb_first(root_stable_tree
+ nid
);
2763 node
= rb_next(node
);
2767 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
2768 if (stable_node
->kpfn
>= start_pfn
&&
2769 stable_node
->kpfn
< end_pfn
)
2770 remove_node_from_stable_tree(stable_node
);
2775 static int ksm_memory_callback(struct notifier_block
*self
,
2776 unsigned long action
, void *arg
)
2778 struct memory_notify
*mn
= arg
;
2781 case MEM_GOING_OFFLINE
:
2783 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2784 * and remove_all_stable_nodes() while memory is going offline:
2785 * it is unsafe for them to touch the stable tree at this time.
2786 * But unmerge_ksm_pages(), rmap lookups and other entry points
2787 * which do not need the ksm_thread_mutex are all safe.
2789 mutex_lock(&ksm_thread_mutex
);
2790 ksm_run
|= KSM_RUN_OFFLINE
;
2791 mutex_unlock(&ksm_thread_mutex
);
2796 * Most of the work is done by page migration; but there might
2797 * be a few stable_nodes left over, still pointing to struct
2798 * pages which have been offlined: prune those from the tree,
2799 * otherwise get_ksm_page() might later try to access a
2800 * non-existent struct page.
2802 ksm_check_stable_tree(mn
->start_pfn
,
2803 mn
->start_pfn
+ mn
->nr_pages
);
2805 case MEM_CANCEL_OFFLINE
:
2806 mutex_lock(&ksm_thread_mutex
);
2807 ksm_run
&= ~KSM_RUN_OFFLINE
;
2808 mutex_unlock(&ksm_thread_mutex
);
2810 smp_mb(); /* wake_up_bit advises this */
2811 wake_up_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
));
2817 static void wait_while_offlining(void)
2820 #endif /* CONFIG_MEMORY_HOTREMOVE */
2824 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2827 #define KSM_ATTR_RO(_name) \
2828 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2829 #define KSM_ATTR(_name) \
2830 static struct kobj_attribute _name##_attr = \
2831 __ATTR(_name, 0644, _name##_show, _name##_store)
2833 static ssize_t
sleep_millisecs_show(struct kobject
*kobj
,
2834 struct kobj_attribute
*attr
, char *buf
)
2836 return sysfs_emit(buf
, "%u\n", ksm_thread_sleep_millisecs
);
2839 static ssize_t
sleep_millisecs_store(struct kobject
*kobj
,
2840 struct kobj_attribute
*attr
,
2841 const char *buf
, size_t count
)
2846 err
= kstrtouint(buf
, 10, &msecs
);
2850 ksm_thread_sleep_millisecs
= msecs
;
2851 wake_up_interruptible(&ksm_iter_wait
);
2855 KSM_ATTR(sleep_millisecs
);
2857 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
2858 struct kobj_attribute
*attr
, char *buf
)
2860 return sysfs_emit(buf
, "%u\n", ksm_thread_pages_to_scan
);
2863 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
2864 struct kobj_attribute
*attr
,
2865 const char *buf
, size_t count
)
2867 unsigned int nr_pages
;
2870 err
= kstrtouint(buf
, 10, &nr_pages
);
2874 ksm_thread_pages_to_scan
= nr_pages
;
2878 KSM_ATTR(pages_to_scan
);
2880 static ssize_t
run_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2883 return sysfs_emit(buf
, "%lu\n", ksm_run
);
2886 static ssize_t
run_store(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2887 const char *buf
, size_t count
)
2892 err
= kstrtouint(buf
, 10, &flags
);
2895 if (flags
> KSM_RUN_UNMERGE
)
2899 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2900 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2901 * breaking COW to free the pages_shared (but leaves mm_slots
2902 * on the list for when ksmd may be set running again).
2905 mutex_lock(&ksm_thread_mutex
);
2906 wait_while_offlining();
2907 if (ksm_run
!= flags
) {
2909 if (flags
& KSM_RUN_UNMERGE
) {
2910 set_current_oom_origin();
2911 err
= unmerge_and_remove_all_rmap_items();
2912 clear_current_oom_origin();
2914 ksm_run
= KSM_RUN_STOP
;
2919 mutex_unlock(&ksm_thread_mutex
);
2921 if (flags
& KSM_RUN_MERGE
)
2922 wake_up_interruptible(&ksm_thread_wait
);
2929 static ssize_t
merge_across_nodes_show(struct kobject
*kobj
,
2930 struct kobj_attribute
*attr
, char *buf
)
2932 return sysfs_emit(buf
, "%u\n", ksm_merge_across_nodes
);
2935 static ssize_t
merge_across_nodes_store(struct kobject
*kobj
,
2936 struct kobj_attribute
*attr
,
2937 const char *buf
, size_t count
)
2942 err
= kstrtoul(buf
, 10, &knob
);
2948 mutex_lock(&ksm_thread_mutex
);
2949 wait_while_offlining();
2950 if (ksm_merge_across_nodes
!= knob
) {
2951 if (ksm_pages_shared
|| remove_all_stable_nodes())
2953 else if (root_stable_tree
== one_stable_tree
) {
2954 struct rb_root
*buf
;
2956 * This is the first time that we switch away from the
2957 * default of merging across nodes: must now allocate
2958 * a buffer to hold as many roots as may be needed.
2959 * Allocate stable and unstable together:
2960 * MAXSMP NODES_SHIFT 10 will use 16kB.
2962 buf
= kcalloc(nr_node_ids
+ nr_node_ids
, sizeof(*buf
),
2964 /* Let us assume that RB_ROOT is NULL is zero */
2968 root_stable_tree
= buf
;
2969 root_unstable_tree
= buf
+ nr_node_ids
;
2970 /* Stable tree is empty but not the unstable */
2971 root_unstable_tree
[0] = one_unstable_tree
[0];
2975 ksm_merge_across_nodes
= knob
;
2976 ksm_nr_node_ids
= knob
? 1 : nr_node_ids
;
2979 mutex_unlock(&ksm_thread_mutex
);
2981 return err
? err
: count
;
2983 KSM_ATTR(merge_across_nodes
);
2986 static ssize_t
use_zero_pages_show(struct kobject
*kobj
,
2987 struct kobj_attribute
*attr
, char *buf
)
2989 return sysfs_emit(buf
, "%u\n", ksm_use_zero_pages
);
2991 static ssize_t
use_zero_pages_store(struct kobject
*kobj
,
2992 struct kobj_attribute
*attr
,
2993 const char *buf
, size_t count
)
2998 err
= kstrtobool(buf
, &value
);
3002 ksm_use_zero_pages
= value
;
3006 KSM_ATTR(use_zero_pages
);
3008 static ssize_t
max_page_sharing_show(struct kobject
*kobj
,
3009 struct kobj_attribute
*attr
, char *buf
)
3011 return sysfs_emit(buf
, "%u\n", ksm_max_page_sharing
);
3014 static ssize_t
max_page_sharing_store(struct kobject
*kobj
,
3015 struct kobj_attribute
*attr
,
3016 const char *buf
, size_t count
)
3021 err
= kstrtoint(buf
, 10, &knob
);
3025 * When a KSM page is created it is shared by 2 mappings. This
3026 * being a signed comparison, it implicitly verifies it's not
3032 if (READ_ONCE(ksm_max_page_sharing
) == knob
)
3035 mutex_lock(&ksm_thread_mutex
);
3036 wait_while_offlining();
3037 if (ksm_max_page_sharing
!= knob
) {
3038 if (ksm_pages_shared
|| remove_all_stable_nodes())
3041 ksm_max_page_sharing
= knob
;
3043 mutex_unlock(&ksm_thread_mutex
);
3045 return err
? err
: count
;
3047 KSM_ATTR(max_page_sharing
);
3049 static ssize_t
pages_shared_show(struct kobject
*kobj
,
3050 struct kobj_attribute
*attr
, char *buf
)
3052 return sysfs_emit(buf
, "%lu\n", ksm_pages_shared
);
3054 KSM_ATTR_RO(pages_shared
);
3056 static ssize_t
pages_sharing_show(struct kobject
*kobj
,
3057 struct kobj_attribute
*attr
, char *buf
)
3059 return sysfs_emit(buf
, "%lu\n", ksm_pages_sharing
);
3061 KSM_ATTR_RO(pages_sharing
);
3063 static ssize_t
pages_unshared_show(struct kobject
*kobj
,
3064 struct kobj_attribute
*attr
, char *buf
)
3066 return sysfs_emit(buf
, "%lu\n", ksm_pages_unshared
);
3068 KSM_ATTR_RO(pages_unshared
);
3070 static ssize_t
pages_volatile_show(struct kobject
*kobj
,
3071 struct kobj_attribute
*attr
, char *buf
)
3073 long ksm_pages_volatile
;
3075 ksm_pages_volatile
= ksm_rmap_items
- ksm_pages_shared
3076 - ksm_pages_sharing
- ksm_pages_unshared
;
3078 * It was not worth any locking to calculate that statistic,
3079 * but it might therefore sometimes be negative: conceal that.
3081 if (ksm_pages_volatile
< 0)
3082 ksm_pages_volatile
= 0;
3083 return sysfs_emit(buf
, "%ld\n", ksm_pages_volatile
);
3085 KSM_ATTR_RO(pages_volatile
);
3087 static ssize_t
stable_node_dups_show(struct kobject
*kobj
,
3088 struct kobj_attribute
*attr
, char *buf
)
3090 return sysfs_emit(buf
, "%lu\n", ksm_stable_node_dups
);
3092 KSM_ATTR_RO(stable_node_dups
);
3094 static ssize_t
stable_node_chains_show(struct kobject
*kobj
,
3095 struct kobj_attribute
*attr
, char *buf
)
3097 return sysfs_emit(buf
, "%lu\n", ksm_stable_node_chains
);
3099 KSM_ATTR_RO(stable_node_chains
);
3102 stable_node_chains_prune_millisecs_show(struct kobject
*kobj
,
3103 struct kobj_attribute
*attr
,
3106 return sysfs_emit(buf
, "%u\n", ksm_stable_node_chains_prune_millisecs
);
3110 stable_node_chains_prune_millisecs_store(struct kobject
*kobj
,
3111 struct kobj_attribute
*attr
,
3112 const char *buf
, size_t count
)
3114 unsigned long msecs
;
3117 err
= kstrtoul(buf
, 10, &msecs
);
3118 if (err
|| msecs
> UINT_MAX
)
3121 ksm_stable_node_chains_prune_millisecs
= msecs
;
3125 KSM_ATTR(stable_node_chains_prune_millisecs
);
3127 static ssize_t
full_scans_show(struct kobject
*kobj
,
3128 struct kobj_attribute
*attr
, char *buf
)
3130 return sysfs_emit(buf
, "%lu\n", ksm_scan
.seqnr
);
3132 KSM_ATTR_RO(full_scans
);
3134 static struct attribute
*ksm_attrs
[] = {
3135 &sleep_millisecs_attr
.attr
,
3136 &pages_to_scan_attr
.attr
,
3138 &pages_shared_attr
.attr
,
3139 &pages_sharing_attr
.attr
,
3140 &pages_unshared_attr
.attr
,
3141 &pages_volatile_attr
.attr
,
3142 &full_scans_attr
.attr
,
3144 &merge_across_nodes_attr
.attr
,
3146 &max_page_sharing_attr
.attr
,
3147 &stable_node_chains_attr
.attr
,
3148 &stable_node_dups_attr
.attr
,
3149 &stable_node_chains_prune_millisecs_attr
.attr
,
3150 &use_zero_pages_attr
.attr
,
3154 static const struct attribute_group ksm_attr_group
= {
3158 #endif /* CONFIG_SYSFS */
3160 static int __init
ksm_init(void)
3162 struct task_struct
*ksm_thread
;
3165 /* The correct value depends on page size and endianness */
3166 zero_checksum
= calc_checksum(ZERO_PAGE(0));
3167 /* Default to false for backwards compatibility */
3168 ksm_use_zero_pages
= false;
3170 err
= ksm_slab_init();
3174 ksm_thread
= kthread_run(ksm_scan_thread
, NULL
, "ksmd");
3175 if (IS_ERR(ksm_thread
)) {
3176 pr_err("ksm: creating kthread failed\n");
3177 err
= PTR_ERR(ksm_thread
);
3182 err
= sysfs_create_group(mm_kobj
, &ksm_attr_group
);
3184 pr_err("ksm: register sysfs failed\n");
3185 kthread_stop(ksm_thread
);
3189 ksm_run
= KSM_RUN_MERGE
; /* no way for user to start it */
3191 #endif /* CONFIG_SYSFS */
3193 #ifdef CONFIG_MEMORY_HOTREMOVE
3194 /* There is no significance to this priority 100 */
3195 hotplug_memory_notifier(ksm_memory_callback
, 100);
3204 subsys_initcall(ksm_init
);