1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache
*policy_cache
;
113 static struct kmem_cache
*sn_cache
;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone
= 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy
= {
123 .refcnt
= ATOMIC_INIT(1), /* never free it */
124 .mode
= MPOL_PREFERRED
,
125 .flags
= MPOL_F_LOCAL
,
128 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
131 * numa_map_to_online_node - Find closest online node
132 * @node: Node id to start the search
134 * Lookup the next closest node by distance if @nid is not online.
136 int numa_map_to_online_node(int node
)
138 int min_dist
= INT_MAX
, dist
, n
, min_node
;
140 if (node
== NUMA_NO_NODE
|| node_online(node
))
144 for_each_online_node(n
) {
145 dist
= node_distance(node
, n
);
146 if (dist
< min_dist
) {
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node
);
156 struct mempolicy
*get_task_policy(struct task_struct
*p
)
158 struct mempolicy
*pol
= p
->mempolicy
;
164 node
= numa_node_id();
165 if (node
!= NUMA_NO_NODE
) {
166 pol
= &preferred_node_policy
[node
];
167 /* preferred_node_policy is not initialised early in boot */
172 return &default_policy
;
175 static const struct mempolicy_operations
{
176 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
177 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
178 } mpol_ops
[MPOL_MAX
];
180 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
182 return pol
->flags
& MPOL_MODE_FLAGS
;
185 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
186 const nodemask_t
*rel
)
189 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
190 nodes_onto(*ret
, tmp
, *rel
);
193 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
195 if (nodes_empty(*nodes
))
197 pol
->v
.nodes
= *nodes
;
201 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
204 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
205 else if (nodes_empty(*nodes
))
206 return -EINVAL
; /* no allowed nodes */
208 pol
->v
.preferred_node
= first_node(*nodes
);
212 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
214 if (nodes_empty(*nodes
))
216 pol
->v
.nodes
= *nodes
;
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags. But, we need to
224 * handle an empty nodemask with MPOL_PREFERRED here.
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
229 static int mpol_set_nodemask(struct mempolicy
*pol
,
230 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
238 nodes_and(nsc
->mask1
,
239 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
242 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
243 nodes
= NULL
; /* explicit local allocation */
245 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
246 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
248 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
250 if (mpol_store_user_nodemask(pol
))
251 pol
->w
.user_nodemask
= *nodes
;
253 pol
->w
.cpuset_mems_allowed
=
254 cpuset_current_mems_allowed
;
258 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
260 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
265 * This function just creates a new policy, does some check and simple
266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
268 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
271 struct mempolicy
*policy
;
273 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
276 if (mode
== MPOL_DEFAULT
) {
277 if (nodes
&& !nodes_empty(*nodes
))
278 return ERR_PTR(-EINVAL
);
284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 * All other modes require a valid pointer to a non-empty nodemask.
288 if (mode
== MPOL_PREFERRED
) {
289 if (nodes_empty(*nodes
)) {
290 if (((flags
& MPOL_F_STATIC_NODES
) ||
291 (flags
& MPOL_F_RELATIVE_NODES
)))
292 return ERR_PTR(-EINVAL
);
294 } else if (mode
== MPOL_LOCAL
) {
295 if (!nodes_empty(*nodes
) ||
296 (flags
& MPOL_F_STATIC_NODES
) ||
297 (flags
& MPOL_F_RELATIVE_NODES
))
298 return ERR_PTR(-EINVAL
);
299 mode
= MPOL_PREFERRED
;
300 } else if (nodes_empty(*nodes
))
301 return ERR_PTR(-EINVAL
);
302 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
304 return ERR_PTR(-ENOMEM
);
305 atomic_set(&policy
->refcnt
, 1);
307 policy
->flags
= flags
;
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy
*p
)
315 if (!atomic_dec_and_test(&p
->refcnt
))
317 kmem_cache_free(policy_cache
, p
);
320 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
)
324 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
)
328 if (pol
->flags
& MPOL_F_STATIC_NODES
)
329 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
330 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
331 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
333 nodes_remap(tmp
, pol
->v
.nodes
,pol
->w
.cpuset_mems_allowed
,
335 pol
->w
.cpuset_mems_allowed
= *nodes
;
338 if (nodes_empty(tmp
))
344 static void mpol_rebind_preferred(struct mempolicy
*pol
,
345 const nodemask_t
*nodes
)
349 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
350 int node
= first_node(pol
->w
.user_nodemask
);
352 if (node_isset(node
, *nodes
)) {
353 pol
->v
.preferred_node
= node
;
354 pol
->flags
&= ~MPOL_F_LOCAL
;
356 pol
->flags
|= MPOL_F_LOCAL
;
357 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
358 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
359 pol
->v
.preferred_node
= first_node(tmp
);
360 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
361 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
362 pol
->w
.cpuset_mems_allowed
,
364 pol
->w
.cpuset_mems_allowed
= *nodes
;
369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
372 * policies are protected by task->mems_allowed_seq to prevent a premature
373 * OOM/allocation failure due to parallel nodemask modification.
375 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
379 if (!mpol_store_user_nodemask(pol
) && !(pol
->flags
& MPOL_F_LOCAL
) &&
380 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
383 mpol_ops
[pol
->mode
].rebind(pol
, newmask
);
387 * Wrapper for mpol_rebind_policy() that just requires task
388 * pointer, and updates task mempolicy.
390 * Called with task's alloc_lock held.
393 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
395 mpol_rebind_policy(tsk
->mempolicy
, new);
399 * Rebind each vma in mm to new nodemask.
401 * Call holding a reference to mm. Takes mm->mmap_lock during call.
404 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
406 struct vm_area_struct
*vma
;
409 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
410 mpol_rebind_policy(vma
->vm_policy
, new);
411 mmap_write_unlock(mm
);
414 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
416 .rebind
= mpol_rebind_default
,
418 [MPOL_INTERLEAVE
] = {
419 .create
= mpol_new_interleave
,
420 .rebind
= mpol_rebind_nodemask
,
423 .create
= mpol_new_preferred
,
424 .rebind
= mpol_rebind_preferred
,
427 .create
= mpol_new_bind
,
428 .rebind
= mpol_rebind_nodemask
,
432 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
433 unsigned long flags
);
436 struct list_head
*pagelist
;
441 struct vm_area_struct
*first
;
445 * Check if the page's nid is in qp->nmask.
447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448 * in the invert of qp->nmask.
450 static inline bool queue_pages_required(struct page
*page
,
451 struct queue_pages
*qp
)
453 int nid
= page_to_nid(page
);
454 unsigned long flags
= qp
->flags
;
456 return node_isset(nid
, *qp
->nmask
) == !(flags
& MPOL_MF_INVERT
);
460 * queue_pages_pmd() has four possible return values:
461 * 0 - pages are placed on the right node or queued successfully.
462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466 * existing page was already on a node that does not follow the
469 static int queue_pages_pmd(pmd_t
*pmd
, spinlock_t
*ptl
, unsigned long addr
,
470 unsigned long end
, struct mm_walk
*walk
)
475 struct queue_pages
*qp
= walk
->private;
478 if (unlikely(is_pmd_migration_entry(*pmd
))) {
482 page
= pmd_page(*pmd
);
483 if (is_huge_zero_page(page
)) {
485 __split_huge_pmd(walk
->vma
, pmd
, addr
, false, NULL
);
489 if (!queue_pages_required(page
, qp
))
493 /* go to thp migration */
494 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
495 if (!vma_migratable(walk
->vma
) ||
496 migrate_page_add(page
, qp
->pagelist
, flags
)) {
509 * Scan through pages checking if pages follow certain conditions,
510 * and move them to the pagelist if they do.
512 * queue_pages_pte_range() has three possible return values:
513 * 0 - pages are placed on the right node or queued successfully.
514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517 * on a node that does not follow the policy.
519 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
520 unsigned long end
, struct mm_walk
*walk
)
522 struct vm_area_struct
*vma
= walk
->vma
;
524 struct queue_pages
*qp
= walk
->private;
525 unsigned long flags
= qp
->flags
;
527 bool has_unmovable
= false;
528 pte_t
*pte
, *mapped_pte
;
531 ptl
= pmd_trans_huge_lock(pmd
, vma
);
533 ret
= queue_pages_pmd(pmd
, ptl
, addr
, end
, walk
);
537 /* THP was split, fall through to pte walk */
539 if (pmd_trans_unstable(pmd
))
542 mapped_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
543 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
544 if (!pte_present(*pte
))
546 page
= vm_normal_page(vma
, addr
, *pte
);
550 * vm_normal_page() filters out zero pages, but there might
551 * still be PageReserved pages to skip, perhaps in a VDSO.
553 if (PageReserved(page
))
555 if (!queue_pages_required(page
, qp
))
557 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
558 /* MPOL_MF_STRICT must be specified if we get here */
559 if (!vma_migratable(vma
)) {
560 has_unmovable
= true;
565 * Do not abort immediately since there may be
566 * temporary off LRU pages in the range. Still
567 * need migrate other LRU pages.
569 if (migrate_page_add(page
, qp
->pagelist
, flags
))
570 has_unmovable
= true;
574 pte_unmap_unlock(mapped_pte
, ptl
);
580 return addr
!= end
? -EIO
: 0;
583 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
584 unsigned long addr
, unsigned long end
,
585 struct mm_walk
*walk
)
588 #ifdef CONFIG_HUGETLB_PAGE
589 struct queue_pages
*qp
= walk
->private;
590 unsigned long flags
= (qp
->flags
& MPOL_MF_VALID
);
595 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
596 entry
= huge_ptep_get(pte
);
597 if (!pte_present(entry
))
599 page
= pte_page(entry
);
600 if (!queue_pages_required(page
, qp
))
603 if (flags
== MPOL_MF_STRICT
) {
605 * STRICT alone means only detecting misplaced page and no
606 * need to further check other vma.
612 if (!vma_migratable(walk
->vma
)) {
614 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 * stopped walking current vma.
616 * Detecting misplaced page but allow migrating pages which
623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 if (flags
& (MPOL_MF_MOVE_ALL
) ||
625 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1)) {
626 if (!isolate_huge_page(page
, qp
->pagelist
) &&
627 (flags
& MPOL_MF_STRICT
))
629 * Failed to isolate page but allow migrating pages
630 * which have been queued.
642 #ifdef CONFIG_NUMA_BALANCING
644 * This is used to mark a range of virtual addresses to be inaccessible.
645 * These are later cleared by a NUMA hinting fault. Depending on these
646 * faults, pages may be migrated for better NUMA placement.
648 * This is assuming that NUMA faults are handled using PROT_NONE. If
649 * an architecture makes a different choice, it will need further
650 * changes to the core.
652 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
653 unsigned long addr
, unsigned long end
)
657 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, MM_CP_PROT_NUMA
);
659 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
664 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
665 unsigned long addr
, unsigned long end
)
669 #endif /* CONFIG_NUMA_BALANCING */
671 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
672 struct mm_walk
*walk
)
674 struct vm_area_struct
*vma
= walk
->vma
;
675 struct queue_pages
*qp
= walk
->private;
676 unsigned long endvma
= vma
->vm_end
;
677 unsigned long flags
= qp
->flags
;
679 /* range check first */
680 VM_BUG_ON_VMA((vma
->vm_start
> start
) || (vma
->vm_end
< end
), vma
);
684 if (!(flags
& MPOL_MF_DISCONTIG_OK
) &&
685 (qp
->start
< vma
->vm_start
))
686 /* hole at head side of range */
689 if (!(flags
& MPOL_MF_DISCONTIG_OK
) &&
690 ((vma
->vm_end
< qp
->end
) &&
691 (!vma
->vm_next
|| vma
->vm_end
< vma
->vm_next
->vm_start
)))
692 /* hole at middle or tail of range */
696 * Need check MPOL_MF_STRICT to return -EIO if possible
697 * regardless of vma_migratable
699 if (!vma_migratable(vma
) &&
700 !(flags
& MPOL_MF_STRICT
))
706 if (flags
& MPOL_MF_LAZY
) {
707 /* Similar to task_numa_work, skip inaccessible VMAs */
708 if (!is_vm_hugetlb_page(vma
) && vma_is_accessible(vma
) &&
709 !(vma
->vm_flags
& VM_MIXEDMAP
))
710 change_prot_numa(vma
, start
, endvma
);
714 /* queue pages from current vma */
715 if (flags
& MPOL_MF_VALID
)
720 static const struct mm_walk_ops queue_pages_walk_ops
= {
721 .hugetlb_entry
= queue_pages_hugetlb
,
722 .pmd_entry
= queue_pages_pte_range
,
723 .test_walk
= queue_pages_test_walk
,
727 * Walk through page tables and collect pages to be migrated.
729 * If pages found in a given range are on a set of nodes (determined by
730 * @nodes and @flags,) it's isolated and queued to the pagelist which is
731 * passed via @private.
733 * queue_pages_range() has three possible return values:
734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
736 * 0 - queue pages successfully or no misplaced page.
737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738 * memory range specified by nodemask and maxnode points outside
739 * your accessible address space (-EFAULT)
742 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
743 nodemask_t
*nodes
, unsigned long flags
,
744 struct list_head
*pagelist
)
747 struct queue_pages qp
= {
748 .pagelist
= pagelist
,
756 err
= walk_page_range(mm
, start
, end
, &queue_pages_walk_ops
, &qp
);
759 /* whole range in hole */
766 * Apply policy to a single VMA
767 * This must be called with the mmap_lock held for writing.
769 static int vma_replace_policy(struct vm_area_struct
*vma
,
770 struct mempolicy
*pol
)
773 struct mempolicy
*old
;
774 struct mempolicy
*new;
776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
778 vma
->vm_ops
, vma
->vm_file
,
779 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
785 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
786 err
= vma
->vm_ops
->set_policy(vma
, new);
791 old
= vma
->vm_policy
;
792 vma
->vm_policy
= new; /* protected by mmap_lock */
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
803 unsigned long end
, struct mempolicy
*new_pol
)
805 struct vm_area_struct
*next
;
806 struct vm_area_struct
*prev
;
807 struct vm_area_struct
*vma
;
810 unsigned long vmstart
;
813 vma
= find_vma(mm
, start
);
817 if (start
> vma
->vm_start
)
820 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
822 vmstart
= max(start
, vma
->vm_start
);
823 vmend
= min(end
, vma
->vm_end
);
825 if (mpol_equal(vma_policy(vma
), new_pol
))
828 pgoff
= vma
->vm_pgoff
+
829 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
830 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
831 vma
->anon_vma
, vma
->vm_file
, pgoff
,
832 new_pol
, vma
->vm_userfaultfd_ctx
);
836 if (mpol_equal(vma_policy(vma
), new_pol
))
838 /* vma_merge() joined vma && vma->next, case 8 */
841 if (vma
->vm_start
!= vmstart
) {
842 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
846 if (vma
->vm_end
!= vmend
) {
847 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
852 err
= vma_replace_policy(vma
, new_pol
);
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
865 struct mempolicy
*new, *old
;
866 NODEMASK_SCRATCH(scratch
);
872 new = mpol_new(mode
, flags
, nodes
);
878 ret
= mpol_set_nodemask(new, nodes
, scratch
);
884 old
= current
->mempolicy
;
885 current
->mempolicy
= new;
886 if (new && new->mode
== MPOL_INTERLEAVE
)
887 current
->il_prev
= MAX_NUMNODES
-1;
888 task_unlock(current
);
892 NODEMASK_SCRATCH_FREE(scratch
);
897 * Return nodemask for policy for get_mempolicy() query
899 * Called with task's alloc_lock held
901 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
904 if (p
== &default_policy
)
909 case MPOL_INTERLEAVE
:
913 if (!(p
->flags
& MPOL_F_LOCAL
))
914 node_set(p
->v
.preferred_node
, *nodes
);
915 /* else return empty node mask for local allocation */
922 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
924 struct page
*p
= NULL
;
928 err
= get_user_pages_locked(addr
& PAGE_MASK
, 1, 0, &p
, &locked
);
930 err
= page_to_nid(p
);
934 mmap_read_unlock(mm
);
938 /* Retrieve NUMA policy */
939 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
940 unsigned long addr
, unsigned long flags
)
943 struct mm_struct
*mm
= current
->mm
;
944 struct vm_area_struct
*vma
= NULL
;
945 struct mempolicy
*pol
= current
->mempolicy
, *pol_refcount
= NULL
;
948 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
951 if (flags
& MPOL_F_MEMS_ALLOWED
) {
952 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
954 *policy
= 0; /* just so it's initialized */
956 *nmask
= cpuset_current_mems_allowed
;
957 task_unlock(current
);
961 if (flags
& MPOL_F_ADDR
) {
963 * Do NOT fall back to task policy if the
964 * vma/shared policy at addr is NULL. We
965 * want to return MPOL_DEFAULT in this case.
968 vma
= find_vma_intersection(mm
, addr
, addr
+1);
970 mmap_read_unlock(mm
);
973 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
974 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
976 pol
= vma
->vm_policy
;
981 pol
= &default_policy
; /* indicates default behavior */
983 if (flags
& MPOL_F_NODE
) {
984 if (flags
& MPOL_F_ADDR
) {
986 * Take a refcount on the mpol, lookup_node()
987 * wil drop the mmap_lock, so after calling
988 * lookup_node() only "pol" remains valid, "vma"
994 err
= lookup_node(mm
, addr
);
998 } else if (pol
== current
->mempolicy
&&
999 pol
->mode
== MPOL_INTERLEAVE
) {
1000 *policy
= next_node_in(current
->il_prev
, pol
->v
.nodes
);
1006 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
1009 * Internal mempolicy flags must be masked off before exposing
1010 * the policy to userspace.
1012 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
1017 if (mpol_store_user_nodemask(pol
)) {
1018 *nmask
= pol
->w
.user_nodemask
;
1021 get_policy_nodemask(pol
, nmask
);
1022 task_unlock(current
);
1029 mmap_read_unlock(mm
);
1031 mpol_put(pol_refcount
);
1035 #ifdef CONFIG_MIGRATION
1037 * page migration, thp tail pages can be passed.
1039 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1040 unsigned long flags
)
1042 struct page
*head
= compound_head(page
);
1044 * Avoid migrating a page that is shared with others.
1046 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(head
) == 1) {
1047 if (!isolate_lru_page(head
)) {
1048 list_add_tail(&head
->lru
, pagelist
);
1049 mod_node_page_state(page_pgdat(head
),
1050 NR_ISOLATED_ANON
+ page_is_file_lru(head
),
1051 thp_nr_pages(head
));
1052 } else if (flags
& MPOL_MF_STRICT
) {
1054 * Non-movable page may reach here. And, there may be
1055 * temporary off LRU pages or non-LRU movable pages.
1056 * Treat them as unmovable pages since they can't be
1057 * isolated, so they can't be moved at the moment. It
1058 * should return -EIO for this case too.
1068 * Migrate pages from one node to a target node.
1069 * Returns error or the number of pages not migrated.
1071 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1075 LIST_HEAD(pagelist
);
1077 struct migration_target_control mtc
= {
1079 .gfp_mask
= GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
,
1083 node_set(source
, nmask
);
1086 * This does not "check" the range but isolates all pages that
1087 * need migration. Between passing in the full user address
1088 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1090 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1091 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1092 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1094 if (!list_empty(&pagelist
)) {
1095 err
= migrate_pages(&pagelist
, alloc_migration_target
, NULL
,
1096 (unsigned long)&mtc
, MIGRATE_SYNC
, MR_SYSCALL
);
1098 putback_movable_pages(&pagelist
);
1105 * Move pages between the two nodesets so as to preserve the physical
1106 * layout as much as possible.
1108 * Returns the number of page that could not be moved.
1110 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1111 const nodemask_t
*to
, int flags
)
1122 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1123 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1124 * bit in 'tmp', and return that <source, dest> pair for migration.
1125 * The pair of nodemasks 'to' and 'from' define the map.
1127 * If no pair of bits is found that way, fallback to picking some
1128 * pair of 'source' and 'dest' bits that are not the same. If the
1129 * 'source' and 'dest' bits are the same, this represents a node
1130 * that will be migrating to itself, so no pages need move.
1132 * If no bits are left in 'tmp', or if all remaining bits left
1133 * in 'tmp' correspond to the same bit in 'to', return false
1134 * (nothing left to migrate).
1136 * This lets us pick a pair of nodes to migrate between, such that
1137 * if possible the dest node is not already occupied by some other
1138 * source node, minimizing the risk of overloading the memory on a
1139 * node that would happen if we migrated incoming memory to a node
1140 * before migrating outgoing memory source that same node.
1142 * A single scan of tmp is sufficient. As we go, we remember the
1143 * most recent <s, d> pair that moved (s != d). If we find a pair
1144 * that not only moved, but what's better, moved to an empty slot
1145 * (d is not set in tmp), then we break out then, with that pair.
1146 * Otherwise when we finish scanning from_tmp, we at least have the
1147 * most recent <s, d> pair that moved. If we get all the way through
1148 * the scan of tmp without finding any node that moved, much less
1149 * moved to an empty node, then there is nothing left worth migrating.
1153 while (!nodes_empty(tmp
)) {
1155 int source
= NUMA_NO_NODE
;
1158 for_each_node_mask(s
, tmp
) {
1161 * do_migrate_pages() tries to maintain the relative
1162 * node relationship of the pages established between
1163 * threads and memory areas.
1165 * However if the number of source nodes is not equal to
1166 * the number of destination nodes we can not preserve
1167 * this node relative relationship. In that case, skip
1168 * copying memory from a node that is in the destination
1171 * Example: [2,3,4] -> [3,4,5] moves everything.
1172 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1175 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1176 (node_isset(s
, *to
)))
1179 d
= node_remap(s
, *from
, *to
);
1183 source
= s
; /* Node moved. Memorize */
1186 /* dest not in remaining from nodes? */
1187 if (!node_isset(dest
, tmp
))
1190 if (source
== NUMA_NO_NODE
)
1193 node_clear(source
, tmp
);
1194 err
= migrate_to_node(mm
, source
, dest
, flags
);
1200 mmap_read_unlock(mm
);
1208 * Allocate a new page for page migration based on vma policy.
1209 * Start by assuming the page is mapped by the same vma as contains @start.
1210 * Search forward from there, if not. N.B., this assumes that the
1211 * list of pages handed to migrate_pages()--which is how we get here--
1212 * is in virtual address order.
1214 static struct page
*new_page(struct page
*page
, unsigned long start
)
1216 struct vm_area_struct
*vma
;
1217 unsigned long address
;
1219 vma
= find_vma(current
->mm
, start
);
1221 address
= page_address_in_vma(page
, vma
);
1222 if (address
!= -EFAULT
)
1227 if (PageHuge(page
)) {
1228 return alloc_huge_page_vma(page_hstate(compound_head(page
)),
1230 } else if (PageTransHuge(page
)) {
1233 thp
= alloc_hugepage_vma(GFP_TRANSHUGE
, vma
, address
,
1237 prep_transhuge_page(thp
);
1241 * if !vma, alloc_page_vma() will use task or system default policy
1243 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
| __GFP_RETRY_MAYFAIL
,
1248 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1249 unsigned long flags
)
1254 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1255 const nodemask_t
*to
, int flags
)
1260 static struct page
*new_page(struct page
*page
, unsigned long start
)
1266 static long do_mbind(unsigned long start
, unsigned long len
,
1267 unsigned short mode
, unsigned short mode_flags
,
1268 nodemask_t
*nmask
, unsigned long flags
)
1270 struct mm_struct
*mm
= current
->mm
;
1271 struct mempolicy
*new;
1275 LIST_HEAD(pagelist
);
1277 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1279 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1282 if (start
& ~PAGE_MASK
)
1285 if (mode
== MPOL_DEFAULT
)
1286 flags
&= ~MPOL_MF_STRICT
;
1288 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1296 new = mpol_new(mode
, mode_flags
, nmask
);
1298 return PTR_ERR(new);
1300 if (flags
& MPOL_MF_LAZY
)
1301 new->flags
|= MPOL_F_MOF
;
1304 * If we are using the default policy then operation
1305 * on discontinuous address spaces is okay after all
1308 flags
|= MPOL_MF_DISCONTIG_OK
;
1310 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1311 start
, start
+ len
, mode
, mode_flags
,
1312 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1314 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1319 NODEMASK_SCRATCH(scratch
);
1321 mmap_write_lock(mm
);
1322 err
= mpol_set_nodemask(new, nmask
, scratch
);
1324 mmap_write_unlock(mm
);
1327 NODEMASK_SCRATCH_FREE(scratch
);
1332 ret
= queue_pages_range(mm
, start
, end
, nmask
,
1333 flags
| MPOL_MF_INVERT
, &pagelist
);
1340 err
= mbind_range(mm
, start
, end
, new);
1345 if (!list_empty(&pagelist
)) {
1346 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1347 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1348 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1350 putback_movable_pages(&pagelist
);
1353 if ((ret
> 0) || (nr_failed
&& (flags
& MPOL_MF_STRICT
)))
1357 if (!list_empty(&pagelist
))
1358 putback_movable_pages(&pagelist
);
1361 mmap_write_unlock(mm
);
1368 * User space interface with variable sized bitmaps for nodelists.
1371 /* Copy a node mask from user space. */
1372 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1373 unsigned long maxnode
)
1377 unsigned long nlongs
;
1378 unsigned long endmask
;
1381 nodes_clear(*nodes
);
1382 if (maxnode
== 0 || !nmask
)
1384 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1387 nlongs
= BITS_TO_LONGS(maxnode
);
1388 if ((maxnode
% BITS_PER_LONG
) == 0)
1391 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1394 * When the user specified more nodes than supported just check
1395 * if the non supported part is all zero.
1397 * If maxnode have more longs than MAX_NUMNODES, check
1398 * the bits in that area first. And then go through to
1399 * check the rest bits which equal or bigger than MAX_NUMNODES.
1400 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1402 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1403 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1404 if (get_user(t
, nmask
+ k
))
1406 if (k
== nlongs
- 1) {
1412 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1416 if (maxnode
> MAX_NUMNODES
&& MAX_NUMNODES
% BITS_PER_LONG
!= 0) {
1417 unsigned long valid_mask
= endmask
;
1419 valid_mask
&= ~((1UL << (MAX_NUMNODES
% BITS_PER_LONG
)) - 1);
1420 if (get_user(t
, nmask
+ nlongs
- 1))
1426 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1428 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1432 /* Copy a kernel node mask to user space */
1433 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1436 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1437 unsigned int nbytes
= BITS_TO_LONGS(nr_node_ids
) * sizeof(long);
1439 if (copy
> nbytes
) {
1440 if (copy
> PAGE_SIZE
)
1442 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1446 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1449 static long kernel_mbind(unsigned long start
, unsigned long len
,
1450 unsigned long mode
, const unsigned long __user
*nmask
,
1451 unsigned long maxnode
, unsigned int flags
)
1455 unsigned short mode_flags
;
1457 start
= untagged_addr(start
);
1458 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1459 mode
&= ~MPOL_MODE_FLAGS
;
1460 if (mode
>= MPOL_MAX
)
1462 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1463 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1465 err
= get_nodes(&nodes
, nmask
, maxnode
);
1468 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1471 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1472 unsigned long, mode
, const unsigned long __user
*, nmask
,
1473 unsigned long, maxnode
, unsigned int, flags
)
1475 return kernel_mbind(start
, len
, mode
, nmask
, maxnode
, flags
);
1478 /* Set the process memory policy */
1479 static long kernel_set_mempolicy(int mode
, const unsigned long __user
*nmask
,
1480 unsigned long maxnode
)
1484 unsigned short flags
;
1486 flags
= mode
& MPOL_MODE_FLAGS
;
1487 mode
&= ~MPOL_MODE_FLAGS
;
1488 if ((unsigned int)mode
>= MPOL_MAX
)
1490 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1492 err
= get_nodes(&nodes
, nmask
, maxnode
);
1495 return do_set_mempolicy(mode
, flags
, &nodes
);
1498 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1499 unsigned long, maxnode
)
1501 return kernel_set_mempolicy(mode
, nmask
, maxnode
);
1504 static int kernel_migrate_pages(pid_t pid
, unsigned long maxnode
,
1505 const unsigned long __user
*old_nodes
,
1506 const unsigned long __user
*new_nodes
)
1508 struct mm_struct
*mm
= NULL
;
1509 struct task_struct
*task
;
1510 nodemask_t task_nodes
;
1514 NODEMASK_SCRATCH(scratch
);
1519 old
= &scratch
->mask1
;
1520 new = &scratch
->mask2
;
1522 err
= get_nodes(old
, old_nodes
, maxnode
);
1526 err
= get_nodes(new, new_nodes
, maxnode
);
1530 /* Find the mm_struct */
1532 task
= pid
? find_task_by_vpid(pid
) : current
;
1538 get_task_struct(task
);
1543 * Check if this process has the right to modify the specified process.
1544 * Use the regular "ptrace_may_access()" checks.
1546 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1553 task_nodes
= cpuset_mems_allowed(task
);
1554 /* Is the user allowed to access the target nodes? */
1555 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1560 task_nodes
= cpuset_mems_allowed(current
);
1561 nodes_and(*new, *new, task_nodes
);
1562 if (nodes_empty(*new))
1565 err
= security_task_movememory(task
);
1569 mm
= get_task_mm(task
);
1570 put_task_struct(task
);
1577 err
= do_migrate_pages(mm
, old
, new,
1578 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1582 NODEMASK_SCRATCH_FREE(scratch
);
1587 put_task_struct(task
);
1592 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1593 const unsigned long __user
*, old_nodes
,
1594 const unsigned long __user
*, new_nodes
)
1596 return kernel_migrate_pages(pid
, maxnode
, old_nodes
, new_nodes
);
1600 /* Retrieve NUMA policy */
1601 static int kernel_get_mempolicy(int __user
*policy
,
1602 unsigned long __user
*nmask
,
1603 unsigned long maxnode
,
1605 unsigned long flags
)
1611 if (nmask
!= NULL
&& maxnode
< nr_node_ids
)
1614 addr
= untagged_addr(addr
);
1616 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1621 if (policy
&& put_user(pval
, policy
))
1625 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1630 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1631 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1632 unsigned long, addr
, unsigned long, flags
)
1634 return kernel_get_mempolicy(policy
, nmask
, maxnode
, addr
, flags
);
1637 #ifdef CONFIG_COMPAT
1639 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1640 compat_ulong_t __user
*, nmask
,
1641 compat_ulong_t
, maxnode
,
1642 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1645 unsigned long __user
*nm
= NULL
;
1646 unsigned long nr_bits
, alloc_size
;
1647 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1649 nr_bits
= min_t(unsigned long, maxnode
-1, nr_node_ids
);
1650 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1653 nm
= compat_alloc_user_space(alloc_size
);
1655 err
= kernel_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1657 if (!err
&& nmask
) {
1658 unsigned long copy_size
;
1659 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1660 err
= copy_from_user(bm
, nm
, copy_size
);
1661 /* ensure entire bitmap is zeroed */
1662 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1663 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1669 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1670 compat_ulong_t
, maxnode
)
1672 unsigned long __user
*nm
= NULL
;
1673 unsigned long nr_bits
, alloc_size
;
1674 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1676 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1677 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1680 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1682 nm
= compat_alloc_user_space(alloc_size
);
1683 if (copy_to_user(nm
, bm
, alloc_size
))
1687 return kernel_set_mempolicy(mode
, nm
, nr_bits
+1);
1690 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1691 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1692 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1694 unsigned long __user
*nm
= NULL
;
1695 unsigned long nr_bits
, alloc_size
;
1698 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1699 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1702 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1704 nm
= compat_alloc_user_space(alloc_size
);
1705 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1709 return kernel_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1712 COMPAT_SYSCALL_DEFINE4(migrate_pages
, compat_pid_t
, pid
,
1713 compat_ulong_t
, maxnode
,
1714 const compat_ulong_t __user
*, old_nodes
,
1715 const compat_ulong_t __user
*, new_nodes
)
1717 unsigned long __user
*old
= NULL
;
1718 unsigned long __user
*new = NULL
;
1719 nodemask_t tmp_mask
;
1720 unsigned long nr_bits
;
1723 nr_bits
= min_t(unsigned long, maxnode
- 1, MAX_NUMNODES
);
1724 size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1726 if (compat_get_bitmap(nodes_addr(tmp_mask
), old_nodes
, nr_bits
))
1728 old
= compat_alloc_user_space(new_nodes
? size
* 2 : size
);
1730 new = old
+ size
/ sizeof(unsigned long);
1731 if (copy_to_user(old
, nodes_addr(tmp_mask
), size
))
1735 if (compat_get_bitmap(nodes_addr(tmp_mask
), new_nodes
, nr_bits
))
1738 new = compat_alloc_user_space(size
);
1739 if (copy_to_user(new, nodes_addr(tmp_mask
), size
))
1742 return kernel_migrate_pages(pid
, nr_bits
+ 1, old
, new);
1745 #endif /* CONFIG_COMPAT */
1747 bool vma_migratable(struct vm_area_struct
*vma
)
1749 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1753 * DAX device mappings require predictable access latency, so avoid
1754 * incurring periodic faults.
1756 if (vma_is_dax(vma
))
1759 if (is_vm_hugetlb_page(vma
) &&
1760 !hugepage_migration_supported(hstate_vma(vma
)))
1764 * Migration allocates pages in the highest zone. If we cannot
1765 * do so then migration (at least from node to node) is not
1769 gfp_zone(mapping_gfp_mask(vma
->vm_file
->f_mapping
))
1775 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1778 struct mempolicy
*pol
= NULL
;
1781 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1782 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1783 } else if (vma
->vm_policy
) {
1784 pol
= vma
->vm_policy
;
1787 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1788 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1789 * count on these policies which will be dropped by
1790 * mpol_cond_put() later
1792 if (mpol_needs_cond_ref(pol
))
1801 * get_vma_policy(@vma, @addr)
1802 * @vma: virtual memory area whose policy is sought
1803 * @addr: address in @vma for shared policy lookup
1805 * Returns effective policy for a VMA at specified address.
1806 * Falls back to current->mempolicy or system default policy, as necessary.
1807 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1808 * count--added by the get_policy() vm_op, as appropriate--to protect against
1809 * freeing by another task. It is the caller's responsibility to free the
1810 * extra reference for shared policies.
1812 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1815 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1818 pol
= get_task_policy(current
);
1823 bool vma_policy_mof(struct vm_area_struct
*vma
)
1825 struct mempolicy
*pol
;
1827 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1830 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1831 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1838 pol
= vma
->vm_policy
;
1840 pol
= get_task_policy(current
);
1842 return pol
->flags
& MPOL_F_MOF
;
1845 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1847 enum zone_type dynamic_policy_zone
= policy_zone
;
1849 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1852 * if policy->v.nodes has movable memory only,
1853 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1855 * policy->v.nodes is intersect with node_states[N_MEMORY].
1856 * so if the following test faile, it implies
1857 * policy->v.nodes has movable memory only.
1859 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1860 dynamic_policy_zone
= ZONE_MOVABLE
;
1862 return zone
>= dynamic_policy_zone
;
1866 * Return a nodemask representing a mempolicy for filtering nodes for
1869 nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1871 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1872 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1873 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1874 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1875 return &policy
->v
.nodes
;
1880 /* Return the node id preferred by the given mempolicy, or the given id */
1881 static int policy_node(gfp_t gfp
, struct mempolicy
*policy
, int nd
)
1883 if (policy
->mode
== MPOL_PREFERRED
&& !(policy
->flags
& MPOL_F_LOCAL
))
1884 nd
= policy
->v
.preferred_node
;
1887 * __GFP_THISNODE shouldn't even be used with the bind policy
1888 * because we might easily break the expectation to stay on the
1889 * requested node and not break the policy.
1891 WARN_ON_ONCE(policy
->mode
== MPOL_BIND
&& (gfp
& __GFP_THISNODE
));
1897 /* Do dynamic interleaving for a process */
1898 static unsigned interleave_nodes(struct mempolicy
*policy
)
1901 struct task_struct
*me
= current
;
1903 next
= next_node_in(me
->il_prev
, policy
->v
.nodes
);
1904 if (next
< MAX_NUMNODES
)
1910 * Depending on the memory policy provide a node from which to allocate the
1913 unsigned int mempolicy_slab_node(void)
1915 struct mempolicy
*policy
;
1916 int node
= numa_mem_id();
1921 policy
= current
->mempolicy
;
1922 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1925 switch (policy
->mode
) {
1926 case MPOL_PREFERRED
:
1928 * handled MPOL_F_LOCAL above
1930 return policy
->v
.preferred_node
;
1932 case MPOL_INTERLEAVE
:
1933 return interleave_nodes(policy
);
1939 * Follow bind policy behavior and start allocation at the
1942 struct zonelist
*zonelist
;
1943 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1944 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1945 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1947 return z
->zone
? zone_to_nid(z
->zone
) : node
;
1956 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1957 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1958 * number of present nodes.
1960 static unsigned offset_il_node(struct mempolicy
*pol
, unsigned long n
)
1962 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1968 return numa_node_id();
1969 target
= (unsigned int)n
% nnodes
;
1970 nid
= first_node(pol
->v
.nodes
);
1971 for (i
= 0; i
< target
; i
++)
1972 nid
= next_node(nid
, pol
->v
.nodes
);
1976 /* Determine a node number for interleave */
1977 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1978 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1984 * for small pages, there is no difference between
1985 * shift and PAGE_SHIFT, so the bit-shift is safe.
1986 * for huge pages, since vm_pgoff is in units of small
1987 * pages, we need to shift off the always 0 bits to get
1990 BUG_ON(shift
< PAGE_SHIFT
);
1991 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1992 off
+= (addr
- vma
->vm_start
) >> shift
;
1993 return offset_il_node(pol
, off
);
1995 return interleave_nodes(pol
);
1998 #ifdef CONFIG_HUGETLBFS
2000 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2001 * @vma: virtual memory area whose policy is sought
2002 * @addr: address in @vma for shared policy lookup and interleave policy
2003 * @gfp_flags: for requested zone
2004 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2005 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2007 * Returns a nid suitable for a huge page allocation and a pointer
2008 * to the struct mempolicy for conditional unref after allocation.
2009 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2010 * @nodemask for filtering the zonelist.
2012 * Must be protected by read_mems_allowed_begin()
2014 int huge_node(struct vm_area_struct
*vma
, unsigned long addr
, gfp_t gfp_flags
,
2015 struct mempolicy
**mpol
, nodemask_t
**nodemask
)
2019 *mpol
= get_vma_policy(vma
, addr
);
2020 *nodemask
= NULL
; /* assume !MPOL_BIND */
2022 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
2023 nid
= interleave_nid(*mpol
, vma
, addr
,
2024 huge_page_shift(hstate_vma(vma
)));
2026 nid
= policy_node(gfp_flags
, *mpol
, numa_node_id());
2027 if ((*mpol
)->mode
== MPOL_BIND
)
2028 *nodemask
= &(*mpol
)->v
.nodes
;
2034 * init_nodemask_of_mempolicy
2036 * If the current task's mempolicy is "default" [NULL], return 'false'
2037 * to indicate default policy. Otherwise, extract the policy nodemask
2038 * for 'bind' or 'interleave' policy into the argument nodemask, or
2039 * initialize the argument nodemask to contain the single node for
2040 * 'preferred' or 'local' policy and return 'true' to indicate presence
2041 * of non-default mempolicy.
2043 * We don't bother with reference counting the mempolicy [mpol_get/put]
2044 * because the current task is examining it's own mempolicy and a task's
2045 * mempolicy is only ever changed by the task itself.
2047 * N.B., it is the caller's responsibility to free a returned nodemask.
2049 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
2051 struct mempolicy
*mempolicy
;
2054 if (!(mask
&& current
->mempolicy
))
2058 mempolicy
= current
->mempolicy
;
2059 switch (mempolicy
->mode
) {
2060 case MPOL_PREFERRED
:
2061 if (mempolicy
->flags
& MPOL_F_LOCAL
)
2062 nid
= numa_node_id();
2064 nid
= mempolicy
->v
.preferred_node
;
2065 init_nodemask_of_node(mask
, nid
);
2069 case MPOL_INTERLEAVE
:
2070 *mask
= mempolicy
->v
.nodes
;
2076 task_unlock(current
);
2083 * mempolicy_nodemask_intersects
2085 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2086 * policy. Otherwise, check for intersection between mask and the policy
2087 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2088 * policy, always return true since it may allocate elsewhere on fallback.
2090 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2092 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
2093 const nodemask_t
*mask
)
2095 struct mempolicy
*mempolicy
;
2101 mempolicy
= tsk
->mempolicy
;
2105 switch (mempolicy
->mode
) {
2106 case MPOL_PREFERRED
:
2108 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2109 * allocate from, they may fallback to other nodes when oom.
2110 * Thus, it's possible for tsk to have allocated memory from
2115 case MPOL_INTERLEAVE
:
2116 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
2126 /* Allocate a page in interleaved policy.
2127 Own path because it needs to do special accounting. */
2128 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
2133 page
= __alloc_pages(gfp
, order
, nid
);
2134 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2135 if (!static_branch_likely(&vm_numa_stat_key
))
2137 if (page
&& page_to_nid(page
) == nid
) {
2139 __inc_numa_state(page_zone(page
), NUMA_INTERLEAVE_HIT
);
2146 * alloc_pages_vma - Allocate a page for a VMA.
2149 * %GFP_USER user allocation.
2150 * %GFP_KERNEL kernel allocations,
2151 * %GFP_HIGHMEM highmem/user allocations,
2152 * %GFP_FS allocation should not call back into a file system.
2153 * %GFP_ATOMIC don't sleep.
2155 * @order:Order of the GFP allocation.
2156 * @vma: Pointer to VMA or NULL if not available.
2157 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2158 * @node: Which node to prefer for allocation (modulo policy).
2159 * @hugepage: for hugepages try only the preferred node if possible
2161 * This function allocates a page from the kernel page pool and applies
2162 * a NUMA policy associated with the VMA or the current process.
2163 * When VMA is not NULL caller must read-lock the mmap_lock of the
2164 * mm_struct of the VMA to prevent it from going away. Should be used for
2165 * all allocations for pages that will be mapped into user space. Returns
2166 * NULL when no page can be allocated.
2169 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2170 unsigned long addr
, int node
, bool hugepage
)
2172 struct mempolicy
*pol
;
2177 pol
= get_vma_policy(vma
, addr
);
2179 if (pol
->mode
== MPOL_INTERLEAVE
) {
2182 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2184 page
= alloc_page_interleave(gfp
, order
, nid
);
2188 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
2189 int hpage_node
= node
;
2192 * For hugepage allocation and non-interleave policy which
2193 * allows the current node (or other explicitly preferred
2194 * node) we only try to allocate from the current/preferred
2195 * node and don't fall back to other nodes, as the cost of
2196 * remote accesses would likely offset THP benefits.
2198 * If the policy is interleave, or does not allow the current
2199 * node in its nodemask, we allocate the standard way.
2201 if (pol
->mode
== MPOL_PREFERRED
&& !(pol
->flags
& MPOL_F_LOCAL
))
2202 hpage_node
= pol
->v
.preferred_node
;
2204 nmask
= policy_nodemask(gfp
, pol
);
2205 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
2208 * First, try to allocate THP only on local node, but
2209 * don't reclaim unnecessarily, just compact.
2211 page
= __alloc_pages_node(hpage_node
,
2212 gfp
| __GFP_THISNODE
| __GFP_NORETRY
, order
);
2215 * If hugepage allocations are configured to always
2216 * synchronous compact or the vma has been madvised
2217 * to prefer hugepage backing, retry allowing remote
2218 * memory with both reclaim and compact as well.
2220 if (!page
&& (gfp
& __GFP_DIRECT_RECLAIM
))
2221 page
= __alloc_pages_node(hpage_node
,
2228 nmask
= policy_nodemask(gfp
, pol
);
2229 preferred_nid
= policy_node(gfp
, pol
, node
);
2230 page
= __alloc_pages_nodemask(gfp
, order
, preferred_nid
, nmask
);
2235 EXPORT_SYMBOL(alloc_pages_vma
);
2238 * alloc_pages_current - Allocate pages.
2241 * %GFP_USER user allocation,
2242 * %GFP_KERNEL kernel allocation,
2243 * %GFP_HIGHMEM highmem allocation,
2244 * %GFP_FS don't call back into a file system.
2245 * %GFP_ATOMIC don't sleep.
2246 * @order: Power of two of allocation size in pages. 0 is a single page.
2248 * Allocate a page from the kernel page pool. When not in
2249 * interrupt context and apply the current process NUMA policy.
2250 * Returns NULL when no page can be allocated.
2252 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2254 struct mempolicy
*pol
= &default_policy
;
2257 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2258 pol
= get_task_policy(current
);
2261 * No reference counting needed for current->mempolicy
2262 * nor system default_policy
2264 if (pol
->mode
== MPOL_INTERLEAVE
)
2265 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2267 page
= __alloc_pages_nodemask(gfp
, order
,
2268 policy_node(gfp
, pol
, numa_node_id()),
2269 policy_nodemask(gfp
, pol
));
2273 EXPORT_SYMBOL(alloc_pages_current
);
2275 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2277 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2280 return PTR_ERR(pol
);
2281 dst
->vm_policy
= pol
;
2286 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2287 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2288 * with the mems_allowed returned by cpuset_mems_allowed(). This
2289 * keeps mempolicies cpuset relative after its cpuset moves. See
2290 * further kernel/cpuset.c update_nodemask().
2292 * current's mempolicy may be rebinded by the other task(the task that changes
2293 * cpuset's mems), so we needn't do rebind work for current task.
2296 /* Slow path of a mempolicy duplicate */
2297 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2299 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2302 return ERR_PTR(-ENOMEM
);
2304 /* task's mempolicy is protected by alloc_lock */
2305 if (old
== current
->mempolicy
) {
2308 task_unlock(current
);
2312 if (current_cpuset_is_being_rebound()) {
2313 nodemask_t mems
= cpuset_mems_allowed(current
);
2314 mpol_rebind_policy(new, &mems
);
2316 atomic_set(&new->refcnt
, 1);
2320 /* Slow path of a mempolicy comparison */
2321 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2325 if (a
->mode
!= b
->mode
)
2327 if (a
->flags
!= b
->flags
)
2329 if (mpol_store_user_nodemask(a
))
2330 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2335 case MPOL_INTERLEAVE
:
2336 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2337 case MPOL_PREFERRED
:
2338 /* a's ->flags is the same as b's */
2339 if (a
->flags
& MPOL_F_LOCAL
)
2341 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2349 * Shared memory backing store policy support.
2351 * Remember policies even when nobody has shared memory mapped.
2352 * The policies are kept in Red-Black tree linked from the inode.
2353 * They are protected by the sp->lock rwlock, which should be held
2354 * for any accesses to the tree.
2358 * lookup first element intersecting start-end. Caller holds sp->lock for
2359 * reading or for writing
2361 static struct sp_node
*
2362 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2364 struct rb_node
*n
= sp
->root
.rb_node
;
2367 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2369 if (start
>= p
->end
)
2371 else if (end
<= p
->start
)
2379 struct sp_node
*w
= NULL
;
2380 struct rb_node
*prev
= rb_prev(n
);
2383 w
= rb_entry(prev
, struct sp_node
, nd
);
2384 if (w
->end
<= start
)
2388 return rb_entry(n
, struct sp_node
, nd
);
2392 * Insert a new shared policy into the list. Caller holds sp->lock for
2395 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2397 struct rb_node
**p
= &sp
->root
.rb_node
;
2398 struct rb_node
*parent
= NULL
;
2403 nd
= rb_entry(parent
, struct sp_node
, nd
);
2404 if (new->start
< nd
->start
)
2406 else if (new->end
> nd
->end
)
2407 p
= &(*p
)->rb_right
;
2411 rb_link_node(&new->nd
, parent
, p
);
2412 rb_insert_color(&new->nd
, &sp
->root
);
2413 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2414 new->policy
? new->policy
->mode
: 0);
2417 /* Find shared policy intersecting idx */
2419 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2421 struct mempolicy
*pol
= NULL
;
2424 if (!sp
->root
.rb_node
)
2426 read_lock(&sp
->lock
);
2427 sn
= sp_lookup(sp
, idx
, idx
+1);
2429 mpol_get(sn
->policy
);
2432 read_unlock(&sp
->lock
);
2436 static void sp_free(struct sp_node
*n
)
2438 mpol_put(n
->policy
);
2439 kmem_cache_free(sn_cache
, n
);
2443 * mpol_misplaced - check whether current page node is valid in policy
2445 * @page: page to be checked
2446 * @vma: vm area where page mapped
2447 * @addr: virtual address where page mapped
2449 * Lookup current policy node id for vma,addr and "compare to" page's
2453 * -1 - not misplaced, page is in the right node
2454 * node - node id where the page should be
2456 * Policy determination "mimics" alloc_page_vma().
2457 * Called from fault path where we know the vma and faulting address.
2459 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2461 struct mempolicy
*pol
;
2463 int curnid
= page_to_nid(page
);
2464 unsigned long pgoff
;
2465 int thiscpu
= raw_smp_processor_id();
2466 int thisnid
= cpu_to_node(thiscpu
);
2467 int polnid
= NUMA_NO_NODE
;
2470 pol
= get_vma_policy(vma
, addr
);
2471 if (!(pol
->flags
& MPOL_F_MOF
))
2474 switch (pol
->mode
) {
2475 case MPOL_INTERLEAVE
:
2476 pgoff
= vma
->vm_pgoff
;
2477 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2478 polnid
= offset_il_node(pol
, pgoff
);
2481 case MPOL_PREFERRED
:
2482 if (pol
->flags
& MPOL_F_LOCAL
)
2483 polnid
= numa_node_id();
2485 polnid
= pol
->v
.preferred_node
;
2491 * allows binding to multiple nodes.
2492 * use current page if in policy nodemask,
2493 * else select nearest allowed node, if any.
2494 * If no allowed nodes, use current [!misplaced].
2496 if (node_isset(curnid
, pol
->v
.nodes
))
2498 z
= first_zones_zonelist(
2499 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2500 gfp_zone(GFP_HIGHUSER
),
2502 polnid
= zone_to_nid(z
->zone
);
2509 /* Migrate the page towards the node whose CPU is referencing it */
2510 if (pol
->flags
& MPOL_F_MORON
) {
2513 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2517 if (curnid
!= polnid
)
2526 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2527 * dropped after task->mempolicy is set to NULL so that any allocation done as
2528 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2531 void mpol_put_task_policy(struct task_struct
*task
)
2533 struct mempolicy
*pol
;
2536 pol
= task
->mempolicy
;
2537 task
->mempolicy
= NULL
;
2542 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2544 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2545 rb_erase(&n
->nd
, &sp
->root
);
2549 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2550 unsigned long end
, struct mempolicy
*pol
)
2552 node
->start
= start
;
2557 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2558 struct mempolicy
*pol
)
2561 struct mempolicy
*newpol
;
2563 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2567 newpol
= mpol_dup(pol
);
2568 if (IS_ERR(newpol
)) {
2569 kmem_cache_free(sn_cache
, n
);
2572 newpol
->flags
|= MPOL_F_SHARED
;
2573 sp_node_init(n
, start
, end
, newpol
);
2578 /* Replace a policy range. */
2579 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2580 unsigned long end
, struct sp_node
*new)
2583 struct sp_node
*n_new
= NULL
;
2584 struct mempolicy
*mpol_new
= NULL
;
2588 write_lock(&sp
->lock
);
2589 n
= sp_lookup(sp
, start
, end
);
2590 /* Take care of old policies in the same range. */
2591 while (n
&& n
->start
< end
) {
2592 struct rb_node
*next
= rb_next(&n
->nd
);
2593 if (n
->start
>= start
) {
2599 /* Old policy spanning whole new range. */
2604 *mpol_new
= *n
->policy
;
2605 atomic_set(&mpol_new
->refcnt
, 1);
2606 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2608 sp_insert(sp
, n_new
);
2617 n
= rb_entry(next
, struct sp_node
, nd
);
2621 write_unlock(&sp
->lock
);
2628 kmem_cache_free(sn_cache
, n_new
);
2633 write_unlock(&sp
->lock
);
2635 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2638 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2645 * mpol_shared_policy_init - initialize shared policy for inode
2646 * @sp: pointer to inode shared policy
2647 * @mpol: struct mempolicy to install
2649 * Install non-NULL @mpol in inode's shared policy rb-tree.
2650 * On entry, the current task has a reference on a non-NULL @mpol.
2651 * This must be released on exit.
2652 * This is called at get_inode() calls and we can use GFP_KERNEL.
2654 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2658 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2659 rwlock_init(&sp
->lock
);
2662 struct vm_area_struct pvma
;
2663 struct mempolicy
*new;
2664 NODEMASK_SCRATCH(scratch
);
2668 /* contextualize the tmpfs mount point mempolicy */
2669 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2671 goto free_scratch
; /* no valid nodemask intersection */
2674 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2675 task_unlock(current
);
2679 /* Create pseudo-vma that contains just the policy */
2680 vma_init(&pvma
, NULL
);
2681 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2682 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2685 mpol_put(new); /* drop initial ref */
2687 NODEMASK_SCRATCH_FREE(scratch
);
2689 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2693 int mpol_set_shared_policy(struct shared_policy
*info
,
2694 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2697 struct sp_node
*new = NULL
;
2698 unsigned long sz
= vma_pages(vma
);
2700 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2702 sz
, npol
? npol
->mode
: -1,
2703 npol
? npol
->flags
: -1,
2704 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2707 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2711 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2717 /* Free a backing policy store on inode delete. */
2718 void mpol_free_shared_policy(struct shared_policy
*p
)
2721 struct rb_node
*next
;
2723 if (!p
->root
.rb_node
)
2725 write_lock(&p
->lock
);
2726 next
= rb_first(&p
->root
);
2728 n
= rb_entry(next
, struct sp_node
, nd
);
2729 next
= rb_next(&n
->nd
);
2732 write_unlock(&p
->lock
);
2735 #ifdef CONFIG_NUMA_BALANCING
2736 static int __initdata numabalancing_override
;
2738 static void __init
check_numabalancing_enable(void)
2740 bool numabalancing_default
= false;
2742 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2743 numabalancing_default
= true;
2745 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2746 if (numabalancing_override
)
2747 set_numabalancing_state(numabalancing_override
== 1);
2749 if (num_online_nodes() > 1 && !numabalancing_override
) {
2750 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2751 numabalancing_default
? "Enabling" : "Disabling");
2752 set_numabalancing_state(numabalancing_default
);
2756 static int __init
setup_numabalancing(char *str
)
2762 if (!strcmp(str
, "enable")) {
2763 numabalancing_override
= 1;
2765 } else if (!strcmp(str
, "disable")) {
2766 numabalancing_override
= -1;
2771 pr_warn("Unable to parse numa_balancing=\n");
2775 __setup("numa_balancing=", setup_numabalancing
);
2777 static inline void __init
check_numabalancing_enable(void)
2780 #endif /* CONFIG_NUMA_BALANCING */
2782 /* assumes fs == KERNEL_DS */
2783 void __init
numa_policy_init(void)
2785 nodemask_t interleave_nodes
;
2786 unsigned long largest
= 0;
2787 int nid
, prefer
= 0;
2789 policy_cache
= kmem_cache_create("numa_policy",
2790 sizeof(struct mempolicy
),
2791 0, SLAB_PANIC
, NULL
);
2793 sn_cache
= kmem_cache_create("shared_policy_node",
2794 sizeof(struct sp_node
),
2795 0, SLAB_PANIC
, NULL
);
2797 for_each_node(nid
) {
2798 preferred_node_policy
[nid
] = (struct mempolicy
) {
2799 .refcnt
= ATOMIC_INIT(1),
2800 .mode
= MPOL_PREFERRED
,
2801 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2802 .v
= { .preferred_node
= nid
, },
2807 * Set interleaving policy for system init. Interleaving is only
2808 * enabled across suitably sized nodes (default is >= 16MB), or
2809 * fall back to the largest node if they're all smaller.
2811 nodes_clear(interleave_nodes
);
2812 for_each_node_state(nid
, N_MEMORY
) {
2813 unsigned long total_pages
= node_present_pages(nid
);
2815 /* Preserve the largest node */
2816 if (largest
< total_pages
) {
2817 largest
= total_pages
;
2821 /* Interleave this node? */
2822 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2823 node_set(nid
, interleave_nodes
);
2826 /* All too small, use the largest */
2827 if (unlikely(nodes_empty(interleave_nodes
)))
2828 node_set(prefer
, interleave_nodes
);
2830 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2831 pr_err("%s: interleaving failed\n", __func__
);
2833 check_numabalancing_enable();
2836 /* Reset policy of current process to default */
2837 void numa_default_policy(void)
2839 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2843 * Parse and format mempolicy from/to strings
2847 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2849 static const char * const policy_modes
[] =
2851 [MPOL_DEFAULT
] = "default",
2852 [MPOL_PREFERRED
] = "prefer",
2853 [MPOL_BIND
] = "bind",
2854 [MPOL_INTERLEAVE
] = "interleave",
2855 [MPOL_LOCAL
] = "local",
2861 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2862 * @str: string containing mempolicy to parse
2863 * @mpol: pointer to struct mempolicy pointer, returned on success.
2866 * <mode>[=<flags>][:<nodelist>]
2868 * On success, returns 0, else 1
2870 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2872 struct mempolicy
*new = NULL
;
2873 unsigned short mode_flags
;
2875 char *nodelist
= strchr(str
, ':');
2876 char *flags
= strchr(str
, '=');
2880 *flags
++ = '\0'; /* terminate mode string */
2883 /* NUL-terminate mode or flags string */
2885 if (nodelist_parse(nodelist
, nodes
))
2887 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2892 mode
= match_string(policy_modes
, MPOL_MAX
, str
);
2897 case MPOL_PREFERRED
:
2899 * Insist on a nodelist of one node only, although later
2900 * we use first_node(nodes) to grab a single node, so here
2901 * nodelist (or nodes) cannot be empty.
2904 char *rest
= nodelist
;
2905 while (isdigit(*rest
))
2909 if (nodes_empty(nodes
))
2913 case MPOL_INTERLEAVE
:
2915 * Default to online nodes with memory if no nodelist
2918 nodes
= node_states
[N_MEMORY
];
2922 * Don't allow a nodelist; mpol_new() checks flags
2926 mode
= MPOL_PREFERRED
;
2930 * Insist on a empty nodelist
2937 * Insist on a nodelist
2946 * Currently, we only support two mutually exclusive
2949 if (!strcmp(flags
, "static"))
2950 mode_flags
|= MPOL_F_STATIC_NODES
;
2951 else if (!strcmp(flags
, "relative"))
2952 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2957 new = mpol_new(mode
, mode_flags
, &nodes
);
2962 * Save nodes for mpol_to_str() to show the tmpfs mount options
2963 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2965 if (mode
!= MPOL_PREFERRED
)
2966 new->v
.nodes
= nodes
;
2968 new->v
.preferred_node
= first_node(nodes
);
2970 new->flags
|= MPOL_F_LOCAL
;
2973 * Save nodes for contextualization: this will be used to "clone"
2974 * the mempolicy in a specific context [cpuset] at a later time.
2976 new->w
.user_nodemask
= nodes
;
2981 /* Restore string for error message */
2990 #endif /* CONFIG_TMPFS */
2993 * mpol_to_str - format a mempolicy structure for printing
2994 * @buffer: to contain formatted mempolicy string
2995 * @maxlen: length of @buffer
2996 * @pol: pointer to mempolicy to be formatted
2998 * Convert @pol into a string. If @buffer is too short, truncate the string.
2999 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3000 * longest flag, "relative", and to display at least a few node ids.
3002 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
3005 nodemask_t nodes
= NODE_MASK_NONE
;
3006 unsigned short mode
= MPOL_DEFAULT
;
3007 unsigned short flags
= 0;
3009 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
3017 case MPOL_PREFERRED
:
3018 if (flags
& MPOL_F_LOCAL
)
3021 node_set(pol
->v
.preferred_node
, nodes
);
3024 case MPOL_INTERLEAVE
:
3025 nodes
= pol
->v
.nodes
;
3029 snprintf(p
, maxlen
, "unknown");
3033 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
3035 if (flags
& MPOL_MODE_FLAGS
) {
3036 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
3039 * Currently, the only defined flags are mutually exclusive
3041 if (flags
& MPOL_F_STATIC_NODES
)
3042 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
3043 else if (flags
& MPOL_F_RELATIVE_NODES
)
3044 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
3047 if (!nodes_empty(nodes
))
3048 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
3049 nodemask_pr_args(&nodes
));