1 // SPDX-License-Identifier: GPL-2.0
3 * sparse memory mappings.
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
21 * Permanent SPARSEMEM data:
23 * 1) mem_section - memory sections, mem_map's for valid memory
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section
**mem_section
;
28 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
29 ____cacheline_internodealigned_in_smp
;
31 EXPORT_SYMBOL(mem_section
);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
45 int page_to_nid(const struct page
*page
)
47 return section_to_node_table
[page_to_section(page
)];
49 EXPORT_SYMBOL(page_to_nid
);
51 static void set_section_nid(unsigned long section_nr
, int nid
)
53 section_to_node_table
[section_nr
] = nid
;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr
, int nid
)
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline
struct mem_section __ref
*sparse_index_alloc(int nid
)
64 struct mem_section
*section
= NULL
;
65 unsigned long array_size
= SECTIONS_PER_ROOT
*
66 sizeof(struct mem_section
);
68 if (slab_is_available()) {
69 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
71 section
= memblock_alloc_node(array_size
, SMP_CACHE_BYTES
,
74 panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 __func__
, array_size
, nid
);
81 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
83 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
84 struct mem_section
*section
;
87 * An existing section is possible in the sub-section hotplug
88 * case. First hot-add instantiates, follow-on hot-add reuses
89 * the existing section.
91 * The mem_hotplug_lock resolves the apparent race below.
93 if (mem_section
[root
])
96 section
= sparse_index_alloc(nid
);
100 mem_section
[root
] = section
;
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
111 #ifdef CONFIG_SPARSEMEM_EXTREME
112 unsigned long __section_nr(struct mem_section
*ms
)
114 unsigned long root_nr
;
115 struct mem_section
*root
= NULL
;
117 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
118 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
122 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
128 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
131 unsigned long __section_nr(struct mem_section
*ms
)
133 return (unsigned long)(ms
- mem_section
[0]);
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node. This keeps us from having to use another data structure. The
141 * node information is cleared just before we store the real mem_map.
143 static inline unsigned long sparse_encode_early_nid(int nid
)
145 return (nid
<< SECTION_NID_SHIFT
);
148 static inline int sparse_early_nid(struct mem_section
*section
)
150 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
153 /* Validate the physical addressing limitations of the model */
154 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
155 unsigned long *end_pfn
)
157 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
160 * Sanity checks - do not allow an architecture to pass
161 * in larger pfns than the maximum scope of sparsemem:
163 if (*start_pfn
> max_sparsemem_pfn
) {
164 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
168 *start_pfn
= max_sparsemem_pfn
;
169 *end_pfn
= max_sparsemem_pfn
;
170 } else if (*end_pfn
> max_sparsemem_pfn
) {
171 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
175 *end_pfn
= max_sparsemem_pfn
;
180 * There are a number of times that we loop over NR_MEM_SECTIONS,
181 * looking for section_present() on each. But, when we have very
182 * large physical address spaces, NR_MEM_SECTIONS can also be
183 * very large which makes the loops quite long.
185 * Keeping track of this gives us an easy way to break out of
188 unsigned long __highest_present_section_nr
;
189 static void section_mark_present(struct mem_section
*ms
)
191 unsigned long section_nr
= __section_nr(ms
);
193 if (section_nr
> __highest_present_section_nr
)
194 __highest_present_section_nr
= section_nr
;
196 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
199 #define for_each_present_section_nr(start, section_nr) \
200 for (section_nr = next_present_section_nr(start-1); \
201 ((section_nr != -1) && \
202 (section_nr <= __highest_present_section_nr)); \
203 section_nr = next_present_section_nr(section_nr))
205 static inline unsigned long first_present_section_nr(void)
207 return next_present_section_nr(-1);
210 #ifdef CONFIG_SPARSEMEM_VMEMMAP
211 static void subsection_mask_set(unsigned long *map
, unsigned long pfn
,
212 unsigned long nr_pages
)
214 int idx
= subsection_map_index(pfn
);
215 int end
= subsection_map_index(pfn
+ nr_pages
- 1);
217 bitmap_set(map
, idx
, end
- idx
+ 1);
220 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
222 int end_sec
= pfn_to_section_nr(pfn
+ nr_pages
- 1);
223 unsigned long nr
, start_sec
= pfn_to_section_nr(pfn
);
228 for (nr
= start_sec
; nr
<= end_sec
; nr
++) {
229 struct mem_section
*ms
;
232 pfns
= min(nr_pages
, PAGES_PER_SECTION
233 - (pfn
& ~PAGE_SECTION_MASK
));
234 ms
= __nr_to_section(nr
);
235 subsection_mask_set(ms
->usage
->subsection_map
, pfn
, pfns
);
237 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__
, nr
,
238 pfns
, subsection_map_index(pfn
),
239 subsection_map_index(pfn
+ pfns
- 1));
246 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
251 /* Record a memory area against a node. */
252 static void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
256 #ifdef CONFIG_SPARSEMEM_EXTREME
257 if (unlikely(!mem_section
)) {
258 unsigned long size
, align
;
260 size
= sizeof(struct mem_section
*) * NR_SECTION_ROOTS
;
261 align
= 1 << (INTERNODE_CACHE_SHIFT
);
262 mem_section
= memblock_alloc(size
, align
);
264 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265 __func__
, size
, align
);
269 start
&= PAGE_SECTION_MASK
;
270 mminit_validate_memmodel_limits(&start
, &end
);
271 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
272 unsigned long section
= pfn_to_section_nr(pfn
);
273 struct mem_section
*ms
;
275 sparse_index_init(section
, nid
);
276 set_section_nid(section
, nid
);
278 ms
= __nr_to_section(section
);
279 if (!ms
->section_mem_map
) {
280 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
282 section_mark_present(ms
);
288 * Mark all memblocks as present using memory_present().
289 * This is a convenience function that is useful to mark all of the systems
290 * memory as present during initialization.
292 static void __init
memblocks_present(void)
294 unsigned long start
, end
;
297 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
)
298 memory_present(nid
, start
, end
);
302 * Subtle, we encode the real pfn into the mem_map such that
303 * the identity pfn - section_mem_map will return the actual
304 * physical page frame number.
306 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
308 unsigned long coded_mem_map
=
309 (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
310 BUILD_BUG_ON(SECTION_MAP_LAST_BIT
> (1UL<<PFN_SECTION_SHIFT
));
311 BUG_ON(coded_mem_map
& ~SECTION_MAP_MASK
);
312 return coded_mem_map
;
315 #ifdef CONFIG_MEMORY_HOTPLUG
317 * Decode mem_map from the coded memmap
319 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
321 /* mask off the extra low bits of information */
322 coded_mem_map
&= SECTION_MAP_MASK
;
323 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
325 #endif /* CONFIG_MEMORY_HOTPLUG */
327 static void __meminit
sparse_init_one_section(struct mem_section
*ms
,
328 unsigned long pnum
, struct page
*mem_map
,
329 struct mem_section_usage
*usage
, unsigned long flags
)
331 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
332 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
)
333 | SECTION_HAS_MEM_MAP
| flags
;
337 static unsigned long usemap_size(void)
339 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
) * sizeof(unsigned long);
342 size_t mem_section_usage_size(void)
344 return sizeof(struct mem_section_usage
) + usemap_size();
347 #ifdef CONFIG_MEMORY_HOTREMOVE
348 static struct mem_section_usage
* __init
349 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
352 struct mem_section_usage
*usage
;
353 unsigned long goal
, limit
;
356 * A page may contain usemaps for other sections preventing the
357 * page being freed and making a section unremovable while
358 * other sections referencing the usemap remain active. Similarly,
359 * a pgdat can prevent a section being removed. If section A
360 * contains a pgdat and section B contains the usemap, both
361 * sections become inter-dependent. This allocates usemaps
362 * from the same section as the pgdat where possible to avoid
365 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
366 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
367 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
369 usage
= memblock_alloc_try_nid(size
, SMP_CACHE_BYTES
, goal
, limit
, nid
);
370 if (!usage
&& limit
) {
377 static void __init
check_usemap_section_nr(int nid
,
378 struct mem_section_usage
*usage
)
380 unsigned long usemap_snr
, pgdat_snr
;
381 static unsigned long old_usemap_snr
;
382 static unsigned long old_pgdat_snr
;
383 struct pglist_data
*pgdat
= NODE_DATA(nid
);
387 if (!old_usemap_snr
) {
388 old_usemap_snr
= NR_MEM_SECTIONS
;
389 old_pgdat_snr
= NR_MEM_SECTIONS
;
392 usemap_snr
= pfn_to_section_nr(__pa(usage
) >> PAGE_SHIFT
);
393 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
394 if (usemap_snr
== pgdat_snr
)
397 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
398 /* skip redundant message */
401 old_usemap_snr
= usemap_snr
;
402 old_pgdat_snr
= pgdat_snr
;
404 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
405 if (usemap_nid
!= nid
) {
406 pr_info("node %d must be removed before remove section %ld\n",
411 * There is a circular dependency.
412 * Some platforms allow un-removable section because they will just
413 * gather other removable sections for dynamic partitioning.
414 * Just notify un-removable section's number here.
416 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417 usemap_snr
, pgdat_snr
, nid
);
420 static struct mem_section_usage
* __init
421 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
424 return memblock_alloc_node(size
, SMP_CACHE_BYTES
, pgdat
->node_id
);
427 static void __init
check_usemap_section_nr(int nid
,
428 struct mem_section_usage
*usage
)
431 #endif /* CONFIG_MEMORY_HOTREMOVE */
433 #ifdef CONFIG_SPARSEMEM_VMEMMAP
434 static unsigned long __init
section_map_size(void)
436 return ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
, PMD_SIZE
);
440 static unsigned long __init
section_map_size(void)
442 return PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
445 struct page __init
*__populate_section_memmap(unsigned long pfn
,
446 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
448 unsigned long size
= section_map_size();
449 struct page
*map
= sparse_buffer_alloc(size
);
450 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
455 map
= memblock_alloc_try_nid_raw(size
, size
, addr
,
456 MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
458 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459 __func__
, size
, PAGE_SIZE
, nid
, &addr
);
463 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
465 static void *sparsemap_buf __meminitdata
;
466 static void *sparsemap_buf_end __meminitdata
;
468 static inline void __meminit
sparse_buffer_free(unsigned long size
)
470 WARN_ON(!sparsemap_buf
|| size
== 0);
471 memblock_free_early(__pa(sparsemap_buf
), size
);
474 static void __init
sparse_buffer_init(unsigned long size
, int nid
)
476 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
477 WARN_ON(sparsemap_buf
); /* forgot to call sparse_buffer_fini()? */
479 * Pre-allocated buffer is mainly used by __populate_section_memmap
480 * and we want it to be properly aligned to the section size - this is
481 * especially the case for VMEMMAP which maps memmap to PMDs
483 sparsemap_buf
= memblock_alloc_exact_nid_raw(size
, section_map_size(),
484 addr
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
485 sparsemap_buf_end
= sparsemap_buf
+ size
;
488 static void __init
sparse_buffer_fini(void)
490 unsigned long size
= sparsemap_buf_end
- sparsemap_buf
;
492 if (sparsemap_buf
&& size
> 0)
493 sparse_buffer_free(size
);
494 sparsemap_buf
= NULL
;
497 void * __meminit
sparse_buffer_alloc(unsigned long size
)
502 ptr
= (void *) roundup((unsigned long)sparsemap_buf
, size
);
503 if (ptr
+ size
> sparsemap_buf_end
)
506 /* Free redundant aligned space */
507 if ((unsigned long)(ptr
- sparsemap_buf
) > 0)
508 sparse_buffer_free((unsigned long)(ptr
- sparsemap_buf
));
509 sparsemap_buf
= ptr
+ size
;
515 void __weak __meminit
vmemmap_populate_print_last(void)
520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521 * And number of present sections in this node is map_count.
523 static void __init
sparse_init_nid(int nid
, unsigned long pnum_begin
,
524 unsigned long pnum_end
,
525 unsigned long map_count
)
527 struct mem_section_usage
*usage
;
531 usage
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid
),
532 mem_section_usage_size() * map_count
);
534 pr_err("%s: node[%d] usemap allocation failed", __func__
, nid
);
537 sparse_buffer_init(map_count
* section_map_size(), nid
);
538 for_each_present_section_nr(pnum_begin
, pnum
) {
539 unsigned long pfn
= section_nr_to_pfn(pnum
);
541 if (pnum
>= pnum_end
)
544 map
= __populate_section_memmap(pfn
, PAGES_PER_SECTION
,
547 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
552 check_usemap_section_nr(nid
, usage
);
553 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
, usage
,
555 usage
= (void *) usage
+ mem_section_usage_size();
557 sparse_buffer_fini();
560 /* We failed to allocate, mark all the following pnums as not present */
561 for_each_present_section_nr(pnum_begin
, pnum
) {
562 struct mem_section
*ms
;
564 if (pnum
>= pnum_end
)
566 ms
= __nr_to_section(pnum
);
567 ms
->section_mem_map
= 0;
572 * Allocate the accumulated non-linear sections, allocate a mem_map
573 * for each and record the physical to section mapping.
575 void __init
sparse_init(void)
577 unsigned long pnum_end
, pnum_begin
, map_count
= 1;
582 pnum_begin
= first_present_section_nr();
583 nid_begin
= sparse_early_nid(__nr_to_section(pnum_begin
));
585 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586 set_pageblock_order();
588 for_each_present_section_nr(pnum_begin
+ 1, pnum_end
) {
589 int nid
= sparse_early_nid(__nr_to_section(pnum_end
));
591 if (nid
== nid_begin
) {
595 /* Init node with sections in range [pnum_begin, pnum_end) */
596 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
598 pnum_begin
= pnum_end
;
601 /* cover the last node */
602 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
603 vmemmap_populate_print_last();
606 #ifdef CONFIG_MEMORY_HOTPLUG
608 /* Mark all memory sections within the pfn range as online */
609 void online_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
613 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
614 unsigned long section_nr
= pfn_to_section_nr(pfn
);
615 struct mem_section
*ms
;
617 /* onlining code should never touch invalid ranges */
618 if (WARN_ON(!valid_section_nr(section_nr
)))
621 ms
= __nr_to_section(section_nr
);
622 ms
->section_mem_map
|= SECTION_IS_ONLINE
;
626 #ifdef CONFIG_MEMORY_HOTREMOVE
627 /* Mark all memory sections within the pfn range as offline */
628 void offline_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
632 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
633 unsigned long section_nr
= pfn_to_section_nr(pfn
);
634 struct mem_section
*ms
;
637 * TODO this needs some double checking. Offlining code makes
638 * sure to check pfn_valid but those checks might be just bogus
640 if (WARN_ON(!valid_section_nr(section_nr
)))
643 ms
= __nr_to_section(section_nr
);
644 ms
->section_mem_map
&= ~SECTION_IS_ONLINE
;
649 #ifdef CONFIG_SPARSEMEM_VMEMMAP
650 static struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
651 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
653 return __populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
656 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
657 struct vmem_altmap
*altmap
)
659 unsigned long start
= (unsigned long) pfn_to_page(pfn
);
660 unsigned long end
= start
+ nr_pages
* sizeof(struct page
);
662 vmemmap_free(start
, end
, altmap
);
664 static void free_map_bootmem(struct page
*memmap
)
666 unsigned long start
= (unsigned long)memmap
;
667 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
669 vmemmap_free(start
, end
, NULL
);
672 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
674 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
675 DECLARE_BITMAP(tmp
, SUBSECTIONS_PER_SECTION
) = { 0 };
676 struct mem_section
*ms
= __pfn_to_section(pfn
);
677 unsigned long *subsection_map
= ms
->usage
678 ? &ms
->usage
->subsection_map
[0] : NULL
;
680 subsection_mask_set(map
, pfn
, nr_pages
);
682 bitmap_and(tmp
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
684 if (WARN(!subsection_map
|| !bitmap_equal(tmp
, map
, SUBSECTIONS_PER_SECTION
),
685 "section already deactivated (%#lx + %ld)\n",
689 bitmap_xor(subsection_map
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
693 static bool is_subsection_map_empty(struct mem_section
*ms
)
695 return bitmap_empty(&ms
->usage
->subsection_map
[0],
696 SUBSECTIONS_PER_SECTION
);
699 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
701 struct mem_section
*ms
= __pfn_to_section(pfn
);
702 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
703 unsigned long *subsection_map
;
706 subsection_mask_set(map
, pfn
, nr_pages
);
708 subsection_map
= &ms
->usage
->subsection_map
[0];
710 if (bitmap_empty(map
, SUBSECTIONS_PER_SECTION
))
712 else if (bitmap_intersects(map
, subsection_map
, SUBSECTIONS_PER_SECTION
))
715 bitmap_or(subsection_map
, map
, subsection_map
,
716 SUBSECTIONS_PER_SECTION
);
721 struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
722 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
724 return kvmalloc_node(array_size(sizeof(struct page
),
725 PAGES_PER_SECTION
), GFP_KERNEL
, nid
);
728 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
729 struct vmem_altmap
*altmap
)
731 kvfree(pfn_to_page(pfn
));
734 static void free_map_bootmem(struct page
*memmap
)
736 unsigned long maps_section_nr
, removing_section_nr
, i
;
737 unsigned long magic
, nr_pages
;
738 struct page
*page
= virt_to_page(memmap
);
740 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
743 for (i
= 0; i
< nr_pages
; i
++, page
++) {
744 magic
= (unsigned long) page
->freelist
;
746 BUG_ON(magic
== NODE_INFO
);
748 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
749 removing_section_nr
= page_private(page
);
752 * When this function is called, the removing section is
753 * logical offlined state. This means all pages are isolated
754 * from page allocator. If removing section's memmap is placed
755 * on the same section, it must not be freed.
756 * If it is freed, page allocator may allocate it which will
757 * be removed physically soon.
759 if (maps_section_nr
!= removing_section_nr
)
760 put_page_bootmem(page
);
764 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
769 static bool is_subsection_map_empty(struct mem_section
*ms
)
774 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
778 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
781 * To deactivate a memory region, there are 3 cases to handle across
782 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
784 * 1. deactivation of a partial hot-added section (only possible in
785 * the SPARSEMEM_VMEMMAP=y case).
786 * a) section was present at memory init.
787 * b) section was hot-added post memory init.
788 * 2. deactivation of a complete hot-added section.
789 * 3. deactivation of a complete section from memory init.
791 * For 1, when subsection_map does not empty we will not be freeing the
792 * usage map, but still need to free the vmemmap range.
794 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
796 static void section_deactivate(unsigned long pfn
, unsigned long nr_pages
,
797 struct vmem_altmap
*altmap
)
799 struct mem_section
*ms
= __pfn_to_section(pfn
);
800 bool section_is_early
= early_section(ms
);
801 struct page
*memmap
= NULL
;
804 if (clear_subsection_map(pfn
, nr_pages
))
807 empty
= is_subsection_map_empty(ms
);
809 unsigned long section_nr
= pfn_to_section_nr(pfn
);
812 * When removing an early section, the usage map is kept (as the
813 * usage maps of other sections fall into the same page). It
814 * will be re-used when re-adding the section - which is then no
815 * longer an early section. If the usage map is PageReserved, it
816 * was allocated during boot.
818 if (!PageReserved(virt_to_page(ms
->usage
))) {
822 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
824 * Mark the section invalid so that valid_section()
825 * return false. This prevents code from dereferencing
828 ms
->section_mem_map
&= ~SECTION_HAS_MEM_MAP
;
832 * The memmap of early sections is always fully populated. See
833 * section_activate() and pfn_valid() .
835 if (!section_is_early
)
836 depopulate_section_memmap(pfn
, nr_pages
, altmap
);
838 free_map_bootmem(memmap
);
841 ms
->section_mem_map
= (unsigned long)NULL
;
844 static struct page
* __meminit
section_activate(int nid
, unsigned long pfn
,
845 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
847 struct mem_section
*ms
= __pfn_to_section(pfn
);
848 struct mem_section_usage
*usage
= NULL
;
853 usage
= kzalloc(mem_section_usage_size(), GFP_KERNEL
);
855 return ERR_PTR(-ENOMEM
);
859 rc
= fill_subsection_map(pfn
, nr_pages
);
868 * The early init code does not consider partially populated
869 * initial sections, it simply assumes that memory will never be
870 * referenced. If we hot-add memory into such a section then we
871 * do not need to populate the memmap and can simply reuse what
874 if (nr_pages
< PAGES_PER_SECTION
&& early_section(ms
))
875 return pfn_to_page(pfn
);
877 memmap
= populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
879 section_deactivate(pfn
, nr_pages
, altmap
);
880 return ERR_PTR(-ENOMEM
);
887 * sparse_add_section - add a memory section, or populate an existing one
888 * @nid: The node to add section on
889 * @start_pfn: start pfn of the memory range
890 * @nr_pages: number of pfns to add in the section
891 * @altmap: device page map
893 * This is only intended for hotplug.
895 * Note that only VMEMMAP supports sub-section aligned hotplug,
896 * the proper alignment and size are gated by check_pfn_span().
901 * * -EEXIST - Section has been present.
902 * * -ENOMEM - Out of memory.
904 int __meminit
sparse_add_section(int nid
, unsigned long start_pfn
,
905 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
907 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
908 struct mem_section
*ms
;
912 ret
= sparse_index_init(section_nr
, nid
);
916 memmap
= section_activate(nid
, start_pfn
, nr_pages
, altmap
);
918 return PTR_ERR(memmap
);
921 * Poison uninitialized struct pages in order to catch invalid flags
924 page_init_poison(memmap
, sizeof(struct page
) * nr_pages
);
926 ms
= __nr_to_section(section_nr
);
927 set_section_nid(section_nr
, nid
);
928 section_mark_present(ms
);
930 /* Align memmap to section boundary in the subsection case */
931 if (section_nr_to_pfn(section_nr
) != start_pfn
)
932 memmap
= pfn_to_page(section_nr_to_pfn(section_nr
));
933 sparse_init_one_section(ms
, section_nr
, memmap
, ms
->usage
, 0);
938 #ifdef CONFIG_MEMORY_FAILURE
939 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
944 * A further optimization is to have per section refcounted
945 * num_poisoned_pages. But that would need more space per memmap, so
946 * for now just do a quick global check to speed up this routine in the
947 * absence of bad pages.
949 if (atomic_long_read(&num_poisoned_pages
) == 0)
952 for (i
= 0; i
< nr_pages
; i
++) {
953 if (PageHWPoison(&memmap
[i
])) {
954 num_poisoned_pages_dec();
955 ClearPageHWPoison(&memmap
[i
]);
960 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
965 void sparse_remove_section(struct mem_section
*ms
, unsigned long pfn
,
966 unsigned long nr_pages
, unsigned long map_offset
,
967 struct vmem_altmap
*altmap
)
969 clear_hwpoisoned_pages(pfn_to_page(pfn
) + map_offset
,
970 nr_pages
- map_offset
);
971 section_deactivate(pfn
, nr_pages
, altmap
);
973 #endif /* CONFIG_MEMORY_HOTPLUG */