1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
43 #include "pgalloc-track.h"
45 bool is_vmalloc_addr(const void *x
)
47 unsigned long addr
= (unsigned long)x
;
49 return addr
>= VMALLOC_START
&& addr
< VMALLOC_END
;
51 EXPORT_SYMBOL(is_vmalloc_addr
);
53 struct vfree_deferred
{
54 struct llist_head list
;
55 struct work_struct wq
;
57 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
59 static void __vunmap(const void *, int);
61 static void free_work(struct work_struct
*w
)
63 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
64 struct llist_node
*t
, *llnode
;
66 llist_for_each_safe(llnode
, t
, llist_del_all(&p
->list
))
67 __vunmap((void *)llnode
, 1);
70 /*** Page table manipulation functions ***/
72 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
77 pte
= pte_offset_kernel(pmd
, addr
);
79 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
80 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
81 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
82 *mask
|= PGTBL_PTE_MODIFIED
;
85 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
,
92 pmd
= pmd_offset(pud
, addr
);
94 next
= pmd_addr_end(addr
, end
);
96 cleared
= pmd_clear_huge(pmd
);
97 if (cleared
|| pmd_bad(*pmd
))
98 *mask
|= PGTBL_PMD_MODIFIED
;
102 if (pmd_none_or_clear_bad(pmd
))
104 vunmap_pte_range(pmd
, addr
, next
, mask
);
107 } while (pmd
++, addr
= next
, addr
!= end
);
110 static void vunmap_pud_range(p4d_t
*p4d
, unsigned long addr
, unsigned long end
,
111 pgtbl_mod_mask
*mask
)
117 pud
= pud_offset(p4d
, addr
);
119 next
= pud_addr_end(addr
, end
);
121 cleared
= pud_clear_huge(pud
);
122 if (cleared
|| pud_bad(*pud
))
123 *mask
|= PGTBL_PUD_MODIFIED
;
127 if (pud_none_or_clear_bad(pud
))
129 vunmap_pmd_range(pud
, addr
, next
, mask
);
130 } while (pud
++, addr
= next
, addr
!= end
);
133 static void vunmap_p4d_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
134 pgtbl_mod_mask
*mask
)
140 p4d
= p4d_offset(pgd
, addr
);
142 next
= p4d_addr_end(addr
, end
);
144 cleared
= p4d_clear_huge(p4d
);
145 if (cleared
|| p4d_bad(*p4d
))
146 *mask
|= PGTBL_P4D_MODIFIED
;
150 if (p4d_none_or_clear_bad(p4d
))
152 vunmap_pud_range(p4d
, addr
, next
, mask
);
153 } while (p4d
++, addr
= next
, addr
!= end
);
157 * unmap_kernel_range_noflush - unmap kernel VM area
158 * @start: start of the VM area to unmap
159 * @size: size of the VM area to unmap
161 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
162 * should have been allocated using get_vm_area() and its friends.
165 * This function does NOT do any cache flushing. The caller is responsible
166 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167 * function and flush_tlb_kernel_range() after.
169 void unmap_kernel_range_noflush(unsigned long start
, unsigned long size
)
171 unsigned long end
= start
+ size
;
174 unsigned long addr
= start
;
175 pgtbl_mod_mask mask
= 0;
178 pgd
= pgd_offset_k(addr
);
180 next
= pgd_addr_end(addr
, end
);
182 mask
|= PGTBL_PGD_MODIFIED
;
183 if (pgd_none_or_clear_bad(pgd
))
185 vunmap_p4d_range(pgd
, addr
, next
, &mask
);
186 } while (pgd
++, addr
= next
, addr
!= end
);
188 if (mask
& ARCH_PAGE_TABLE_SYNC_MASK
)
189 arch_sync_kernel_mappings(start
, end
);
192 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
193 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
194 pgtbl_mod_mask
*mask
)
199 * nr is a running index into the array which helps higher level
200 * callers keep track of where we're up to.
203 pte
= pte_alloc_kernel_track(pmd
, addr
, mask
);
207 struct page
*page
= pages
[*nr
];
209 if (WARN_ON(!pte_none(*pte
)))
213 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
215 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
216 *mask
|= PGTBL_PTE_MODIFIED
;
220 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
221 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
222 pgtbl_mod_mask
*mask
)
227 pmd
= pmd_alloc_track(&init_mm
, pud
, addr
, mask
);
231 next
= pmd_addr_end(addr
, end
);
232 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
, mask
))
234 } while (pmd
++, addr
= next
, addr
!= end
);
238 static int vmap_pud_range(p4d_t
*p4d
, unsigned long addr
,
239 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
240 pgtbl_mod_mask
*mask
)
245 pud
= pud_alloc_track(&init_mm
, p4d
, addr
, mask
);
249 next
= pud_addr_end(addr
, end
);
250 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
, mask
))
252 } while (pud
++, addr
= next
, addr
!= end
);
256 static int vmap_p4d_range(pgd_t
*pgd
, unsigned long addr
,
257 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
258 pgtbl_mod_mask
*mask
)
263 p4d
= p4d_alloc_track(&init_mm
, pgd
, addr
, mask
);
267 next
= p4d_addr_end(addr
, end
);
268 if (vmap_pud_range(p4d
, addr
, next
, prot
, pages
, nr
, mask
))
270 } while (p4d
++, addr
= next
, addr
!= end
);
275 * map_kernel_range_noflush - map kernel VM area with the specified pages
276 * @addr: start of the VM area to map
277 * @size: size of the VM area to map
278 * @prot: page protection flags to use
279 * @pages: pages to map
281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
282 * have been allocated using get_vm_area() and its friends.
285 * This function does NOT do any cache flushing. The caller is responsible for
286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
290 * 0 on success, -errno on failure.
292 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
293 pgprot_t prot
, struct page
**pages
)
295 unsigned long start
= addr
;
296 unsigned long end
= addr
+ size
;
301 pgtbl_mod_mask mask
= 0;
304 pgd
= pgd_offset_k(addr
);
306 next
= pgd_addr_end(addr
, end
);
308 mask
|= PGTBL_PGD_MODIFIED
;
309 err
= vmap_p4d_range(pgd
, addr
, next
, prot
, pages
, &nr
, &mask
);
312 } while (pgd
++, addr
= next
, addr
!= end
);
314 if (mask
& ARCH_PAGE_TABLE_SYNC_MASK
)
315 arch_sync_kernel_mappings(start
, end
);
320 int map_kernel_range(unsigned long start
, unsigned long size
, pgprot_t prot
,
325 ret
= map_kernel_range_noflush(start
, size
, prot
, pages
);
326 flush_cache_vmap(start
, start
+ size
);
330 int is_vmalloc_or_module_addr(const void *x
)
333 * ARM, x86-64 and sparc64 put modules in a special place,
334 * and fall back on vmalloc() if that fails. Others
335 * just put it in the vmalloc space.
337 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
338 unsigned long addr
= (unsigned long)x
;
339 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
342 return is_vmalloc_addr(x
);
346 * Walk a vmap address to the struct page it maps.
348 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
350 unsigned long addr
= (unsigned long) vmalloc_addr
;
351 struct page
*page
= NULL
;
352 pgd_t
*pgd
= pgd_offset_k(addr
);
359 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
360 * architectures that do not vmalloc module space
362 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
366 p4d
= p4d_offset(pgd
, addr
);
369 pud
= pud_offset(p4d
, addr
);
372 * Don't dereference bad PUD or PMD (below) entries. This will also
373 * identify huge mappings, which we may encounter on architectures
374 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
375 * identified as vmalloc addresses by is_vmalloc_addr(), but are
376 * not [unambiguously] associated with a struct page, so there is
377 * no correct value to return for them.
379 WARN_ON_ONCE(pud_bad(*pud
));
380 if (pud_none(*pud
) || pud_bad(*pud
))
382 pmd
= pmd_offset(pud
, addr
);
383 WARN_ON_ONCE(pmd_bad(*pmd
));
384 if (pmd_none(*pmd
) || pmd_bad(*pmd
))
387 ptep
= pte_offset_map(pmd
, addr
);
389 if (pte_present(pte
))
390 page
= pte_page(pte
);
394 EXPORT_SYMBOL(vmalloc_to_page
);
397 * Map a vmalloc()-space virtual address to the physical page frame number.
399 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
401 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
403 EXPORT_SYMBOL(vmalloc_to_pfn
);
406 /*** Global kva allocator ***/
408 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
412 static DEFINE_SPINLOCK(vmap_area_lock
);
413 static DEFINE_SPINLOCK(free_vmap_area_lock
);
414 /* Export for kexec only */
415 LIST_HEAD(vmap_area_list
);
416 static struct rb_root vmap_area_root
= RB_ROOT
;
417 static bool vmap_initialized __read_mostly
;
419 static struct rb_root purge_vmap_area_root
= RB_ROOT
;
420 static LIST_HEAD(purge_vmap_area_list
);
421 static DEFINE_SPINLOCK(purge_vmap_area_lock
);
424 * This kmem_cache is used for vmap_area objects. Instead of
425 * allocating from slab we reuse an object from this cache to
426 * make things faster. Especially in "no edge" splitting of
429 static struct kmem_cache
*vmap_area_cachep
;
432 * This linked list is used in pair with free_vmap_area_root.
433 * It gives O(1) access to prev/next to perform fast coalescing.
435 static LIST_HEAD(free_vmap_area_list
);
438 * This augment red-black tree represents the free vmap space.
439 * All vmap_area objects in this tree are sorted by va->va_start
440 * address. It is used for allocation and merging when a vmap
441 * object is released.
443 * Each vmap_area node contains a maximum available free block
444 * of its sub-tree, right or left. Therefore it is possible to
445 * find a lowest match of free area.
447 static struct rb_root free_vmap_area_root
= RB_ROOT
;
450 * Preload a CPU with one object for "no edge" split case. The
451 * aim is to get rid of allocations from the atomic context, thus
452 * to use more permissive allocation masks.
454 static DEFINE_PER_CPU(struct vmap_area
*, ne_fit_preload_node
);
456 static __always_inline
unsigned long
457 va_size(struct vmap_area
*va
)
459 return (va
->va_end
- va
->va_start
);
462 static __always_inline
unsigned long
463 get_subtree_max_size(struct rb_node
*node
)
465 struct vmap_area
*va
;
467 va
= rb_entry_safe(node
, struct vmap_area
, rb_node
);
468 return va
? va
->subtree_max_size
: 0;
472 * Gets called when remove the node and rotate.
474 static __always_inline
unsigned long
475 compute_subtree_max_size(struct vmap_area
*va
)
477 return max3(va_size(va
),
478 get_subtree_max_size(va
->rb_node
.rb_left
),
479 get_subtree_max_size(va
->rb_node
.rb_right
));
482 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb
,
483 struct vmap_area
, rb_node
, unsigned long, subtree_max_size
, va_size
)
485 static void purge_vmap_area_lazy(void);
486 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
487 static unsigned long lazy_max_pages(void);
489 static atomic_long_t nr_vmalloc_pages
;
491 unsigned long vmalloc_nr_pages(void)
493 return atomic_long_read(&nr_vmalloc_pages
);
496 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
498 struct rb_node
*n
= vmap_area_root
.rb_node
;
501 struct vmap_area
*va
;
503 va
= rb_entry(n
, struct vmap_area
, rb_node
);
504 if (addr
< va
->va_start
)
506 else if (addr
>= va
->va_end
)
516 * This function returns back addresses of parent node
517 * and its left or right link for further processing.
519 * Otherwise NULL is returned. In that case all further
520 * steps regarding inserting of conflicting overlap range
521 * have to be declined and actually considered as a bug.
523 static __always_inline
struct rb_node
**
524 find_va_links(struct vmap_area
*va
,
525 struct rb_root
*root
, struct rb_node
*from
,
526 struct rb_node
**parent
)
528 struct vmap_area
*tmp_va
;
529 struct rb_node
**link
;
532 link
= &root
->rb_node
;
533 if (unlikely(!*link
)) {
542 * Go to the bottom of the tree. When we hit the last point
543 * we end up with parent rb_node and correct direction, i name
544 * it link, where the new va->rb_node will be attached to.
547 tmp_va
= rb_entry(*link
, struct vmap_area
, rb_node
);
550 * During the traversal we also do some sanity check.
551 * Trigger the BUG() if there are sides(left/right)
554 if (va
->va_start
< tmp_va
->va_end
&&
555 va
->va_end
<= tmp_va
->va_start
)
556 link
= &(*link
)->rb_left
;
557 else if (va
->va_end
> tmp_va
->va_start
&&
558 va
->va_start
>= tmp_va
->va_end
)
559 link
= &(*link
)->rb_right
;
561 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
562 va
->va_start
, va
->va_end
, tmp_va
->va_start
, tmp_va
->va_end
);
568 *parent
= &tmp_va
->rb_node
;
572 static __always_inline
struct list_head
*
573 get_va_next_sibling(struct rb_node
*parent
, struct rb_node
**link
)
575 struct list_head
*list
;
577 if (unlikely(!parent
))
579 * The red-black tree where we try to find VA neighbors
580 * before merging or inserting is empty, i.e. it means
581 * there is no free vmap space. Normally it does not
582 * happen but we handle this case anyway.
586 list
= &rb_entry(parent
, struct vmap_area
, rb_node
)->list
;
587 return (&parent
->rb_right
== link
? list
->next
: list
);
590 static __always_inline
void
591 link_va(struct vmap_area
*va
, struct rb_root
*root
,
592 struct rb_node
*parent
, struct rb_node
**link
, struct list_head
*head
)
595 * VA is still not in the list, but we can
596 * identify its future previous list_head node.
598 if (likely(parent
)) {
599 head
= &rb_entry(parent
, struct vmap_area
, rb_node
)->list
;
600 if (&parent
->rb_right
!= link
)
604 /* Insert to the rb-tree */
605 rb_link_node(&va
->rb_node
, parent
, link
);
606 if (root
== &free_vmap_area_root
) {
608 * Some explanation here. Just perform simple insertion
609 * to the tree. We do not set va->subtree_max_size to
610 * its current size before calling rb_insert_augmented().
611 * It is because of we populate the tree from the bottom
612 * to parent levels when the node _is_ in the tree.
614 * Therefore we set subtree_max_size to zero after insertion,
615 * to let __augment_tree_propagate_from() puts everything to
616 * the correct order later on.
618 rb_insert_augmented(&va
->rb_node
,
619 root
, &free_vmap_area_rb_augment_cb
);
620 va
->subtree_max_size
= 0;
622 rb_insert_color(&va
->rb_node
, root
);
625 /* Address-sort this list */
626 list_add(&va
->list
, head
);
629 static __always_inline
void
630 unlink_va(struct vmap_area
*va
, struct rb_root
*root
)
632 if (WARN_ON(RB_EMPTY_NODE(&va
->rb_node
)))
635 if (root
== &free_vmap_area_root
)
636 rb_erase_augmented(&va
->rb_node
,
637 root
, &free_vmap_area_rb_augment_cb
);
639 rb_erase(&va
->rb_node
, root
);
642 RB_CLEAR_NODE(&va
->rb_node
);
645 #if DEBUG_AUGMENT_PROPAGATE_CHECK
647 augment_tree_propagate_check(void)
649 struct vmap_area
*va
;
650 unsigned long computed_size
;
652 list_for_each_entry(va
, &free_vmap_area_list
, list
) {
653 computed_size
= compute_subtree_max_size(va
);
654 if (computed_size
!= va
->subtree_max_size
)
655 pr_emerg("tree is corrupted: %lu, %lu\n",
656 va_size(va
), va
->subtree_max_size
);
662 * This function populates subtree_max_size from bottom to upper
663 * levels starting from VA point. The propagation must be done
664 * when VA size is modified by changing its va_start/va_end. Or
665 * in case of newly inserting of VA to the tree.
667 * It means that __augment_tree_propagate_from() must be called:
668 * - After VA has been inserted to the tree(free path);
669 * - After VA has been shrunk(allocation path);
670 * - After VA has been increased(merging path).
672 * Please note that, it does not mean that upper parent nodes
673 * and their subtree_max_size are recalculated all the time up
682 * For example if we modify the node 4, shrinking it to 2, then
683 * no any modification is required. If we shrink the node 2 to 1
684 * its subtree_max_size is updated only, and set to 1. If we shrink
685 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
688 static __always_inline
void
689 augment_tree_propagate_from(struct vmap_area
*va
)
692 * Populate the tree from bottom towards the root until
693 * the calculated maximum available size of checked node
694 * is equal to its current one.
696 free_vmap_area_rb_augment_cb_propagate(&va
->rb_node
, NULL
);
698 #if DEBUG_AUGMENT_PROPAGATE_CHECK
699 augment_tree_propagate_check();
704 insert_vmap_area(struct vmap_area
*va
,
705 struct rb_root
*root
, struct list_head
*head
)
707 struct rb_node
**link
;
708 struct rb_node
*parent
;
710 link
= find_va_links(va
, root
, NULL
, &parent
);
712 link_va(va
, root
, parent
, link
, head
);
716 insert_vmap_area_augment(struct vmap_area
*va
,
717 struct rb_node
*from
, struct rb_root
*root
,
718 struct list_head
*head
)
720 struct rb_node
**link
;
721 struct rb_node
*parent
;
724 link
= find_va_links(va
, NULL
, from
, &parent
);
726 link
= find_va_links(va
, root
, NULL
, &parent
);
729 link_va(va
, root
, parent
, link
, head
);
730 augment_tree_propagate_from(va
);
735 * Merge de-allocated chunk of VA memory with previous
736 * and next free blocks. If coalesce is not done a new
737 * free area is inserted. If VA has been merged, it is
740 * Please note, it can return NULL in case of overlap
741 * ranges, followed by WARN() report. Despite it is a
742 * buggy behaviour, a system can be alive and keep
745 static __always_inline
struct vmap_area
*
746 merge_or_add_vmap_area(struct vmap_area
*va
,
747 struct rb_root
*root
, struct list_head
*head
)
749 struct vmap_area
*sibling
;
750 struct list_head
*next
;
751 struct rb_node
**link
;
752 struct rb_node
*parent
;
756 * Find a place in the tree where VA potentially will be
757 * inserted, unless it is merged with its sibling/siblings.
759 link
= find_va_links(va
, root
, NULL
, &parent
);
764 * Get next node of VA to check if merging can be done.
766 next
= get_va_next_sibling(parent
, link
);
767 if (unlikely(next
== NULL
))
773 * |<------VA------>|<-----Next----->|
778 sibling
= list_entry(next
, struct vmap_area
, list
);
779 if (sibling
->va_start
== va
->va_end
) {
780 sibling
->va_start
= va
->va_start
;
782 /* Free vmap_area object. */
783 kmem_cache_free(vmap_area_cachep
, va
);
785 /* Point to the new merged area. */
794 * |<-----Prev----->|<------VA------>|
798 if (next
->prev
!= head
) {
799 sibling
= list_entry(next
->prev
, struct vmap_area
, list
);
800 if (sibling
->va_end
== va
->va_start
) {
802 * If both neighbors are coalesced, it is important
803 * to unlink the "next" node first, followed by merging
804 * with "previous" one. Otherwise the tree might not be
805 * fully populated if a sibling's augmented value is
806 * "normalized" because of rotation operations.
811 sibling
->va_end
= va
->va_end
;
813 /* Free vmap_area object. */
814 kmem_cache_free(vmap_area_cachep
, va
);
816 /* Point to the new merged area. */
824 link_va(va
, root
, parent
, link
, head
);
829 static __always_inline
struct vmap_area
*
830 merge_or_add_vmap_area_augment(struct vmap_area
*va
,
831 struct rb_root
*root
, struct list_head
*head
)
833 va
= merge_or_add_vmap_area(va
, root
, head
);
835 augment_tree_propagate_from(va
);
840 static __always_inline
bool
841 is_within_this_va(struct vmap_area
*va
, unsigned long size
,
842 unsigned long align
, unsigned long vstart
)
844 unsigned long nva_start_addr
;
846 if (va
->va_start
> vstart
)
847 nva_start_addr
= ALIGN(va
->va_start
, align
);
849 nva_start_addr
= ALIGN(vstart
, align
);
851 /* Can be overflowed due to big size or alignment. */
852 if (nva_start_addr
+ size
< nva_start_addr
||
853 nva_start_addr
< vstart
)
856 return (nva_start_addr
+ size
<= va
->va_end
);
860 * Find the first free block(lowest start address) in the tree,
861 * that will accomplish the request corresponding to passing
864 static __always_inline
struct vmap_area
*
865 find_vmap_lowest_match(unsigned long size
,
866 unsigned long align
, unsigned long vstart
)
868 struct vmap_area
*va
;
869 struct rb_node
*node
;
870 unsigned long length
;
872 /* Start from the root. */
873 node
= free_vmap_area_root
.rb_node
;
875 /* Adjust the search size for alignment overhead. */
876 length
= size
+ align
- 1;
879 va
= rb_entry(node
, struct vmap_area
, rb_node
);
881 if (get_subtree_max_size(node
->rb_left
) >= length
&&
882 vstart
< va
->va_start
) {
883 node
= node
->rb_left
;
885 if (is_within_this_va(va
, size
, align
, vstart
))
889 * Does not make sense to go deeper towards the right
890 * sub-tree if it does not have a free block that is
891 * equal or bigger to the requested search length.
893 if (get_subtree_max_size(node
->rb_right
) >= length
) {
894 node
= node
->rb_right
;
899 * OK. We roll back and find the first right sub-tree,
900 * that will satisfy the search criteria. It can happen
901 * only once due to "vstart" restriction.
903 while ((node
= rb_parent(node
))) {
904 va
= rb_entry(node
, struct vmap_area
, rb_node
);
905 if (is_within_this_va(va
, size
, align
, vstart
))
908 if (get_subtree_max_size(node
->rb_right
) >= length
&&
909 vstart
<= va
->va_start
) {
910 node
= node
->rb_right
;
920 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
921 #include <linux/random.h>
923 static struct vmap_area
*
924 find_vmap_lowest_linear_match(unsigned long size
,
925 unsigned long align
, unsigned long vstart
)
927 struct vmap_area
*va
;
929 list_for_each_entry(va
, &free_vmap_area_list
, list
) {
930 if (!is_within_this_va(va
, size
, align
, vstart
))
940 find_vmap_lowest_match_check(unsigned long size
)
942 struct vmap_area
*va_1
, *va_2
;
943 unsigned long vstart
;
946 get_random_bytes(&rnd
, sizeof(rnd
));
947 vstart
= VMALLOC_START
+ rnd
;
949 va_1
= find_vmap_lowest_match(size
, 1, vstart
);
950 va_2
= find_vmap_lowest_linear_match(size
, 1, vstart
);
953 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
960 FL_FIT_TYPE
= 1, /* full fit */
961 LE_FIT_TYPE
= 2, /* left edge fit */
962 RE_FIT_TYPE
= 3, /* right edge fit */
963 NE_FIT_TYPE
= 4 /* no edge fit */
966 static __always_inline
enum fit_type
967 classify_va_fit_type(struct vmap_area
*va
,
968 unsigned long nva_start_addr
, unsigned long size
)
972 /* Check if it is within VA. */
973 if (nva_start_addr
< va
->va_start
||
974 nva_start_addr
+ size
> va
->va_end
)
978 if (va
->va_start
== nva_start_addr
) {
979 if (va
->va_end
== nva_start_addr
+ size
)
983 } else if (va
->va_end
== nva_start_addr
+ size
) {
992 static __always_inline
int
993 adjust_va_to_fit_type(struct vmap_area
*va
,
994 unsigned long nva_start_addr
, unsigned long size
,
997 struct vmap_area
*lva
= NULL
;
999 if (type
== FL_FIT_TYPE
) {
1001 * No need to split VA, it fully fits.
1007 unlink_va(va
, &free_vmap_area_root
);
1008 kmem_cache_free(vmap_area_cachep
, va
);
1009 } else if (type
== LE_FIT_TYPE
) {
1011 * Split left edge of fit VA.
1017 va
->va_start
+= size
;
1018 } else if (type
== RE_FIT_TYPE
) {
1020 * Split right edge of fit VA.
1026 va
->va_end
= nva_start_addr
;
1027 } else if (type
== NE_FIT_TYPE
) {
1029 * Split no edge of fit VA.
1035 lva
= __this_cpu_xchg(ne_fit_preload_node
, NULL
);
1036 if (unlikely(!lva
)) {
1038 * For percpu allocator we do not do any pre-allocation
1039 * and leave it as it is. The reason is it most likely
1040 * never ends up with NE_FIT_TYPE splitting. In case of
1041 * percpu allocations offsets and sizes are aligned to
1042 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1043 * are its main fitting cases.
1045 * There are a few exceptions though, as an example it is
1046 * a first allocation (early boot up) when we have "one"
1047 * big free space that has to be split.
1049 * Also we can hit this path in case of regular "vmap"
1050 * allocations, if "this" current CPU was not preloaded.
1051 * See the comment in alloc_vmap_area() why. If so, then
1052 * GFP_NOWAIT is used instead to get an extra object for
1053 * split purpose. That is rare and most time does not
1056 * What happens if an allocation gets failed. Basically,
1057 * an "overflow" path is triggered to purge lazily freed
1058 * areas to free some memory, then, the "retry" path is
1059 * triggered to repeat one more time. See more details
1060 * in alloc_vmap_area() function.
1062 lva
= kmem_cache_alloc(vmap_area_cachep
, GFP_NOWAIT
);
1068 * Build the remainder.
1070 lva
->va_start
= va
->va_start
;
1071 lva
->va_end
= nva_start_addr
;
1074 * Shrink this VA to remaining size.
1076 va
->va_start
= nva_start_addr
+ size
;
1081 if (type
!= FL_FIT_TYPE
) {
1082 augment_tree_propagate_from(va
);
1084 if (lva
) /* type == NE_FIT_TYPE */
1085 insert_vmap_area_augment(lva
, &va
->rb_node
,
1086 &free_vmap_area_root
, &free_vmap_area_list
);
1093 * Returns a start address of the newly allocated area, if success.
1094 * Otherwise a vend is returned that indicates failure.
1096 static __always_inline
unsigned long
1097 __alloc_vmap_area(unsigned long size
, unsigned long align
,
1098 unsigned long vstart
, unsigned long vend
)
1100 unsigned long nva_start_addr
;
1101 struct vmap_area
*va
;
1105 va
= find_vmap_lowest_match(size
, align
, vstart
);
1109 if (va
->va_start
> vstart
)
1110 nva_start_addr
= ALIGN(va
->va_start
, align
);
1112 nva_start_addr
= ALIGN(vstart
, align
);
1114 /* Check the "vend" restriction. */
1115 if (nva_start_addr
+ size
> vend
)
1118 /* Classify what we have found. */
1119 type
= classify_va_fit_type(va
, nva_start_addr
, size
);
1120 if (WARN_ON_ONCE(type
== NOTHING_FIT
))
1123 /* Update the free vmap_area. */
1124 ret
= adjust_va_to_fit_type(va
, nva_start_addr
, size
, type
);
1128 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1129 find_vmap_lowest_match_check(size
);
1132 return nva_start_addr
;
1136 * Free a region of KVA allocated by alloc_vmap_area
1138 static void free_vmap_area(struct vmap_area
*va
)
1141 * Remove from the busy tree/list.
1143 spin_lock(&vmap_area_lock
);
1144 unlink_va(va
, &vmap_area_root
);
1145 spin_unlock(&vmap_area_lock
);
1148 * Insert/Merge it back to the free tree/list.
1150 spin_lock(&free_vmap_area_lock
);
1151 merge_or_add_vmap_area_augment(va
, &free_vmap_area_root
, &free_vmap_area_list
);
1152 spin_unlock(&free_vmap_area_lock
);
1156 * Allocate a region of KVA of the specified size and alignment, within the
1159 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
1160 unsigned long align
,
1161 unsigned long vstart
, unsigned long vend
,
1162 int node
, gfp_t gfp_mask
)
1164 struct vmap_area
*va
, *pva
;
1170 BUG_ON(offset_in_page(size
));
1171 BUG_ON(!is_power_of_2(align
));
1173 if (unlikely(!vmap_initialized
))
1174 return ERR_PTR(-EBUSY
);
1177 gfp_mask
= gfp_mask
& GFP_RECLAIM_MASK
;
1179 va
= kmem_cache_alloc_node(vmap_area_cachep
, gfp_mask
, node
);
1181 return ERR_PTR(-ENOMEM
);
1184 * Only scan the relevant parts containing pointers to other objects
1185 * to avoid false negatives.
1187 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
);
1191 * Preload this CPU with one extra vmap_area object. It is used
1192 * when fit type of free area is NE_FIT_TYPE. Please note, it
1193 * does not guarantee that an allocation occurs on a CPU that
1194 * is preloaded, instead we minimize the case when it is not.
1195 * It can happen because of cpu migration, because there is a
1196 * race until the below spinlock is taken.
1198 * The preload is done in non-atomic context, thus it allows us
1199 * to use more permissive allocation masks to be more stable under
1200 * low memory condition and high memory pressure. In rare case,
1201 * if not preloaded, GFP_NOWAIT is used.
1203 * Set "pva" to NULL here, because of "retry" path.
1207 if (!this_cpu_read(ne_fit_preload_node
))
1209 * Even if it fails we do not really care about that.
1210 * Just proceed as it is. If needed "overflow" path
1211 * will refill the cache we allocate from.
1213 pva
= kmem_cache_alloc_node(vmap_area_cachep
, gfp_mask
, node
);
1215 spin_lock(&free_vmap_area_lock
);
1217 if (pva
&& __this_cpu_cmpxchg(ne_fit_preload_node
, NULL
, pva
))
1218 kmem_cache_free(vmap_area_cachep
, pva
);
1221 * If an allocation fails, the "vend" address is
1222 * returned. Therefore trigger the overflow path.
1224 addr
= __alloc_vmap_area(size
, align
, vstart
, vend
);
1225 spin_unlock(&free_vmap_area_lock
);
1227 if (unlikely(addr
== vend
))
1230 va
->va_start
= addr
;
1231 va
->va_end
= addr
+ size
;
1235 spin_lock(&vmap_area_lock
);
1236 insert_vmap_area(va
, &vmap_area_root
, &vmap_area_list
);
1237 spin_unlock(&vmap_area_lock
);
1239 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
1240 BUG_ON(va
->va_start
< vstart
);
1241 BUG_ON(va
->va_end
> vend
);
1243 ret
= kasan_populate_vmalloc(addr
, size
);
1246 return ERR_PTR(ret
);
1253 purge_vmap_area_lazy();
1258 if (gfpflags_allow_blocking(gfp_mask
)) {
1259 unsigned long freed
= 0;
1260 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
1267 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit())
1268 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1271 kmem_cache_free(vmap_area_cachep
, va
);
1272 return ERR_PTR(-EBUSY
);
1275 int register_vmap_purge_notifier(struct notifier_block
*nb
)
1277 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
1279 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
1281 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
1283 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
1285 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
1288 * lazy_max_pages is the maximum amount of virtual address space we gather up
1289 * before attempting to purge with a TLB flush.
1291 * There is a tradeoff here: a larger number will cover more kernel page tables
1292 * and take slightly longer to purge, but it will linearly reduce the number of
1293 * global TLB flushes that must be performed. It would seem natural to scale
1294 * this number up linearly with the number of CPUs (because vmapping activity
1295 * could also scale linearly with the number of CPUs), however it is likely
1296 * that in practice, workloads might be constrained in other ways that mean
1297 * vmap activity will not scale linearly with CPUs. Also, I want to be
1298 * conservative and not introduce a big latency on huge systems, so go with
1299 * a less aggressive log scale. It will still be an improvement over the old
1300 * code, and it will be simple to change the scale factor if we find that it
1301 * becomes a problem on bigger systems.
1303 static unsigned long lazy_max_pages(void)
1307 log
= fls(num_online_cpus());
1309 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
1312 static atomic_long_t vmap_lazy_nr
= ATOMIC_LONG_INIT(0);
1315 * Serialize vmap purging. There is no actual criticial section protected
1316 * by this look, but we want to avoid concurrent calls for performance
1317 * reasons and to make the pcpu_get_vm_areas more deterministic.
1319 static DEFINE_MUTEX(vmap_purge_lock
);
1321 /* for per-CPU blocks */
1322 static void purge_fragmented_blocks_allcpus(void);
1325 * called before a call to iounmap() if the caller wants vm_area_struct's
1326 * immediately freed.
1328 void set_iounmap_nonlazy(void)
1330 atomic_long_set(&vmap_lazy_nr
, lazy_max_pages()+1);
1334 * Purges all lazily-freed vmap areas.
1336 static bool __purge_vmap_area_lazy(unsigned long start
, unsigned long end
)
1338 unsigned long resched_threshold
;
1339 struct list_head local_pure_list
;
1340 struct vmap_area
*va
, *n_va
;
1342 lockdep_assert_held(&vmap_purge_lock
);
1344 spin_lock(&purge_vmap_area_lock
);
1345 purge_vmap_area_root
= RB_ROOT
;
1346 list_replace_init(&purge_vmap_area_list
, &local_pure_list
);
1347 spin_unlock(&purge_vmap_area_lock
);
1349 if (unlikely(list_empty(&local_pure_list
)))
1353 list_first_entry(&local_pure_list
,
1354 struct vmap_area
, list
)->va_start
);
1357 list_last_entry(&local_pure_list
,
1358 struct vmap_area
, list
)->va_end
);
1360 flush_tlb_kernel_range(start
, end
);
1361 resched_threshold
= lazy_max_pages() << 1;
1363 spin_lock(&free_vmap_area_lock
);
1364 list_for_each_entry_safe(va
, n_va
, &local_pure_list
, list
) {
1365 unsigned long nr
= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
1366 unsigned long orig_start
= va
->va_start
;
1367 unsigned long orig_end
= va
->va_end
;
1370 * Finally insert or merge lazily-freed area. It is
1371 * detached and there is no need to "unlink" it from
1374 va
= merge_or_add_vmap_area_augment(va
, &free_vmap_area_root
,
1375 &free_vmap_area_list
);
1380 if (is_vmalloc_or_module_addr((void *)orig_start
))
1381 kasan_release_vmalloc(orig_start
, orig_end
,
1382 va
->va_start
, va
->va_end
);
1384 atomic_long_sub(nr
, &vmap_lazy_nr
);
1386 if (atomic_long_read(&vmap_lazy_nr
) < resched_threshold
)
1387 cond_resched_lock(&free_vmap_area_lock
);
1389 spin_unlock(&free_vmap_area_lock
);
1394 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1395 * is already purging.
1397 static void try_purge_vmap_area_lazy(void)
1399 if (mutex_trylock(&vmap_purge_lock
)) {
1400 __purge_vmap_area_lazy(ULONG_MAX
, 0);
1401 mutex_unlock(&vmap_purge_lock
);
1406 * Kick off a purge of the outstanding lazy areas.
1408 static void purge_vmap_area_lazy(void)
1410 mutex_lock(&vmap_purge_lock
);
1411 purge_fragmented_blocks_allcpus();
1412 __purge_vmap_area_lazy(ULONG_MAX
, 0);
1413 mutex_unlock(&vmap_purge_lock
);
1417 * Free a vmap area, caller ensuring that the area has been unmapped
1418 * and flush_cache_vunmap had been called for the correct range
1421 static void free_vmap_area_noflush(struct vmap_area
*va
)
1423 unsigned long nr_lazy
;
1425 spin_lock(&vmap_area_lock
);
1426 unlink_va(va
, &vmap_area_root
);
1427 spin_unlock(&vmap_area_lock
);
1429 nr_lazy
= atomic_long_add_return((va
->va_end
- va
->va_start
) >>
1430 PAGE_SHIFT
, &vmap_lazy_nr
);
1433 * Merge or place it to the purge tree/list.
1435 spin_lock(&purge_vmap_area_lock
);
1436 merge_or_add_vmap_area(va
,
1437 &purge_vmap_area_root
, &purge_vmap_area_list
);
1438 spin_unlock(&purge_vmap_area_lock
);
1440 /* After this point, we may free va at any time */
1441 if (unlikely(nr_lazy
> lazy_max_pages()))
1442 try_purge_vmap_area_lazy();
1446 * Free and unmap a vmap area
1448 static void free_unmap_vmap_area(struct vmap_area
*va
)
1450 flush_cache_vunmap(va
->va_start
, va
->va_end
);
1451 unmap_kernel_range_noflush(va
->va_start
, va
->va_end
- va
->va_start
);
1452 if (debug_pagealloc_enabled_static())
1453 flush_tlb_kernel_range(va
->va_start
, va
->va_end
);
1455 free_vmap_area_noflush(va
);
1458 static struct vmap_area
*find_vmap_area(unsigned long addr
)
1460 struct vmap_area
*va
;
1462 spin_lock(&vmap_area_lock
);
1463 va
= __find_vmap_area(addr
);
1464 spin_unlock(&vmap_area_lock
);
1469 /*** Per cpu kva allocator ***/
1472 * vmap space is limited especially on 32 bit architectures. Ensure there is
1473 * room for at least 16 percpu vmap blocks per CPU.
1476 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1477 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1478 * instead (we just need a rough idea)
1480 #if BITS_PER_LONG == 32
1481 #define VMALLOC_SPACE (128UL*1024*1024)
1483 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1486 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1487 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1488 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1489 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1490 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1491 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1492 #define VMAP_BBMAP_BITS \
1493 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1494 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1495 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1497 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1499 struct vmap_block_queue
{
1501 struct list_head free
;
1506 struct vmap_area
*va
;
1507 unsigned long free
, dirty
;
1508 unsigned long dirty_min
, dirty_max
; /*< dirty range */
1509 struct list_head free_list
;
1510 struct rcu_head rcu_head
;
1511 struct list_head purge
;
1514 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1515 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
1518 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1519 * in the free path. Could get rid of this if we change the API to return a
1520 * "cookie" from alloc, to be passed to free. But no big deal yet.
1522 static DEFINE_XARRAY(vmap_blocks
);
1525 * We should probably have a fallback mechanism to allocate virtual memory
1526 * out of partially filled vmap blocks. However vmap block sizing should be
1527 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1531 static unsigned long addr_to_vb_idx(unsigned long addr
)
1533 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
1534 addr
/= VMAP_BLOCK_SIZE
;
1538 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
1542 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
1543 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
1544 return (void *)addr
;
1548 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1549 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1550 * @order: how many 2^order pages should be occupied in newly allocated block
1551 * @gfp_mask: flags for the page level allocator
1553 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1555 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
1557 struct vmap_block_queue
*vbq
;
1558 struct vmap_block
*vb
;
1559 struct vmap_area
*va
;
1560 unsigned long vb_idx
;
1564 node
= numa_node_id();
1566 vb
= kmalloc_node(sizeof(struct vmap_block
),
1567 gfp_mask
& GFP_RECLAIM_MASK
, node
);
1569 return ERR_PTR(-ENOMEM
);
1571 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
1572 VMALLOC_START
, VMALLOC_END
,
1576 return ERR_CAST(va
);
1579 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
1580 spin_lock_init(&vb
->lock
);
1582 /* At least something should be left free */
1583 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
1584 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
1586 vb
->dirty_min
= VMAP_BBMAP_BITS
;
1588 INIT_LIST_HEAD(&vb
->free_list
);
1590 vb_idx
= addr_to_vb_idx(va
->va_start
);
1591 err
= xa_insert(&vmap_blocks
, vb_idx
, vb
, gfp_mask
);
1595 return ERR_PTR(err
);
1598 vbq
= &get_cpu_var(vmap_block_queue
);
1599 spin_lock(&vbq
->lock
);
1600 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
1601 spin_unlock(&vbq
->lock
);
1602 put_cpu_var(vmap_block_queue
);
1607 static void free_vmap_block(struct vmap_block
*vb
)
1609 struct vmap_block
*tmp
;
1611 tmp
= xa_erase(&vmap_blocks
, addr_to_vb_idx(vb
->va
->va_start
));
1614 free_vmap_area_noflush(vb
->va
);
1615 kfree_rcu(vb
, rcu_head
);
1618 static void purge_fragmented_blocks(int cpu
)
1621 struct vmap_block
*vb
;
1622 struct vmap_block
*n_vb
;
1623 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1626 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1628 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
1631 spin_lock(&vb
->lock
);
1632 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
1633 vb
->free
= 0; /* prevent further allocs after releasing lock */
1634 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
1636 vb
->dirty_max
= VMAP_BBMAP_BITS
;
1637 spin_lock(&vbq
->lock
);
1638 list_del_rcu(&vb
->free_list
);
1639 spin_unlock(&vbq
->lock
);
1640 spin_unlock(&vb
->lock
);
1641 list_add_tail(&vb
->purge
, &purge
);
1643 spin_unlock(&vb
->lock
);
1647 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
1648 list_del(&vb
->purge
);
1649 free_vmap_block(vb
);
1653 static void purge_fragmented_blocks_allcpus(void)
1657 for_each_possible_cpu(cpu
)
1658 purge_fragmented_blocks(cpu
);
1661 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
1663 struct vmap_block_queue
*vbq
;
1664 struct vmap_block
*vb
;
1668 BUG_ON(offset_in_page(size
));
1669 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1670 if (WARN_ON(size
== 0)) {
1672 * Allocating 0 bytes isn't what caller wants since
1673 * get_order(0) returns funny result. Just warn and terminate
1678 order
= get_order(size
);
1681 vbq
= &get_cpu_var(vmap_block_queue
);
1682 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1683 unsigned long pages_off
;
1685 spin_lock(&vb
->lock
);
1686 if (vb
->free
< (1UL << order
)) {
1687 spin_unlock(&vb
->lock
);
1691 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
1692 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
1693 vb
->free
-= 1UL << order
;
1694 if (vb
->free
== 0) {
1695 spin_lock(&vbq
->lock
);
1696 list_del_rcu(&vb
->free_list
);
1697 spin_unlock(&vbq
->lock
);
1700 spin_unlock(&vb
->lock
);
1704 put_cpu_var(vmap_block_queue
);
1707 /* Allocate new block if nothing was found */
1709 vaddr
= new_vmap_block(order
, gfp_mask
);
1714 static void vb_free(unsigned long addr
, unsigned long size
)
1716 unsigned long offset
;
1718 struct vmap_block
*vb
;
1720 BUG_ON(offset_in_page(size
));
1721 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1723 flush_cache_vunmap(addr
, addr
+ size
);
1725 order
= get_order(size
);
1726 offset
= (addr
& (VMAP_BLOCK_SIZE
- 1)) >> PAGE_SHIFT
;
1727 vb
= xa_load(&vmap_blocks
, addr_to_vb_idx(addr
));
1729 unmap_kernel_range_noflush(addr
, size
);
1731 if (debug_pagealloc_enabled_static())
1732 flush_tlb_kernel_range(addr
, addr
+ size
);
1734 spin_lock(&vb
->lock
);
1736 /* Expand dirty range */
1737 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1738 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1740 vb
->dirty
+= 1UL << order
;
1741 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1743 spin_unlock(&vb
->lock
);
1744 free_vmap_block(vb
);
1746 spin_unlock(&vb
->lock
);
1749 static void _vm_unmap_aliases(unsigned long start
, unsigned long end
, int flush
)
1753 if (unlikely(!vmap_initialized
))
1758 for_each_possible_cpu(cpu
) {
1759 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1760 struct vmap_block
*vb
;
1763 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1764 spin_lock(&vb
->lock
);
1766 unsigned long va_start
= vb
->va
->va_start
;
1769 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1770 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1772 start
= min(s
, start
);
1777 spin_unlock(&vb
->lock
);
1782 mutex_lock(&vmap_purge_lock
);
1783 purge_fragmented_blocks_allcpus();
1784 if (!__purge_vmap_area_lazy(start
, end
) && flush
)
1785 flush_tlb_kernel_range(start
, end
);
1786 mutex_unlock(&vmap_purge_lock
);
1790 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1792 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1793 * to amortize TLB flushing overheads. What this means is that any page you
1794 * have now, may, in a former life, have been mapped into kernel virtual
1795 * address by the vmap layer and so there might be some CPUs with TLB entries
1796 * still referencing that page (additional to the regular 1:1 kernel mapping).
1798 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1799 * be sure that none of the pages we have control over will have any aliases
1800 * from the vmap layer.
1802 void vm_unmap_aliases(void)
1804 unsigned long start
= ULONG_MAX
, end
= 0;
1807 _vm_unmap_aliases(start
, end
, flush
);
1809 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1812 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1813 * @mem: the pointer returned by vm_map_ram
1814 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1816 void vm_unmap_ram(const void *mem
, unsigned int count
)
1818 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1819 unsigned long addr
= (unsigned long)mem
;
1820 struct vmap_area
*va
;
1824 BUG_ON(addr
< VMALLOC_START
);
1825 BUG_ON(addr
> VMALLOC_END
);
1826 BUG_ON(!PAGE_ALIGNED(addr
));
1828 kasan_poison_vmalloc(mem
, size
);
1830 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1831 debug_check_no_locks_freed(mem
, size
);
1832 vb_free(addr
, size
);
1836 va
= find_vmap_area(addr
);
1838 debug_check_no_locks_freed((void *)va
->va_start
,
1839 (va
->va_end
- va
->va_start
));
1840 free_unmap_vmap_area(va
);
1842 EXPORT_SYMBOL(vm_unmap_ram
);
1845 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1846 * @pages: an array of pointers to the pages to be mapped
1847 * @count: number of pages
1848 * @node: prefer to allocate data structures on this node
1850 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1851 * faster than vmap so it's good. But if you mix long-life and short-life
1852 * objects with vm_map_ram(), it could consume lots of address space through
1853 * fragmentation (especially on a 32bit machine). You could see failures in
1854 * the end. Please use this function for short-lived objects.
1856 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1858 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
)
1860 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1864 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1865 mem
= vb_alloc(size
, GFP_KERNEL
);
1868 addr
= (unsigned long)mem
;
1870 struct vmap_area
*va
;
1871 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1872 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1876 addr
= va
->va_start
;
1880 kasan_unpoison_vmalloc(mem
, size
);
1882 if (map_kernel_range(addr
, size
, PAGE_KERNEL
, pages
) < 0) {
1883 vm_unmap_ram(mem
, count
);
1888 EXPORT_SYMBOL(vm_map_ram
);
1890 static struct vm_struct
*vmlist __initdata
;
1893 * vm_area_add_early - add vmap area early during boot
1894 * @vm: vm_struct to add
1896 * This function is used to add fixed kernel vm area to vmlist before
1897 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1898 * should contain proper values and the other fields should be zero.
1900 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1902 void __init
vm_area_add_early(struct vm_struct
*vm
)
1904 struct vm_struct
*tmp
, **p
;
1906 BUG_ON(vmap_initialized
);
1907 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1908 if (tmp
->addr
>= vm
->addr
) {
1909 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1912 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1919 * vm_area_register_early - register vmap area early during boot
1920 * @vm: vm_struct to register
1921 * @align: requested alignment
1923 * This function is used to register kernel vm area before
1924 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1925 * proper values on entry and other fields should be zero. On return,
1926 * vm->addr contains the allocated address.
1928 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1930 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1932 static size_t vm_init_off __initdata
;
1935 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1936 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1938 vm
->addr
= (void *)addr
;
1940 vm_area_add_early(vm
);
1943 static void vmap_init_free_space(void)
1945 unsigned long vmap_start
= 1;
1946 const unsigned long vmap_end
= ULONG_MAX
;
1947 struct vmap_area
*busy
, *free
;
1951 * -|-----|.....|-----|-----|-----|.....|-
1953 * |<--------------------------------->|
1955 list_for_each_entry(busy
, &vmap_area_list
, list
) {
1956 if (busy
->va_start
- vmap_start
> 0) {
1957 free
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
1958 if (!WARN_ON_ONCE(!free
)) {
1959 free
->va_start
= vmap_start
;
1960 free
->va_end
= busy
->va_start
;
1962 insert_vmap_area_augment(free
, NULL
,
1963 &free_vmap_area_root
,
1964 &free_vmap_area_list
);
1968 vmap_start
= busy
->va_end
;
1971 if (vmap_end
- vmap_start
> 0) {
1972 free
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
1973 if (!WARN_ON_ONCE(!free
)) {
1974 free
->va_start
= vmap_start
;
1975 free
->va_end
= vmap_end
;
1977 insert_vmap_area_augment(free
, NULL
,
1978 &free_vmap_area_root
,
1979 &free_vmap_area_list
);
1984 void __init
vmalloc_init(void)
1986 struct vmap_area
*va
;
1987 struct vm_struct
*tmp
;
1991 * Create the cache for vmap_area objects.
1993 vmap_area_cachep
= KMEM_CACHE(vmap_area
, SLAB_PANIC
);
1995 for_each_possible_cpu(i
) {
1996 struct vmap_block_queue
*vbq
;
1997 struct vfree_deferred
*p
;
1999 vbq
= &per_cpu(vmap_block_queue
, i
);
2000 spin_lock_init(&vbq
->lock
);
2001 INIT_LIST_HEAD(&vbq
->free
);
2002 p
= &per_cpu(vfree_deferred
, i
);
2003 init_llist_head(&p
->list
);
2004 INIT_WORK(&p
->wq
, free_work
);
2007 /* Import existing vmlist entries. */
2008 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
2009 va
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
2010 if (WARN_ON_ONCE(!va
))
2013 va
->va_start
= (unsigned long)tmp
->addr
;
2014 va
->va_end
= va
->va_start
+ tmp
->size
;
2016 insert_vmap_area(va
, &vmap_area_root
, &vmap_area_list
);
2020 * Now we can initialize a free vmap space.
2022 vmap_init_free_space();
2023 vmap_initialized
= true;
2027 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2028 * @addr: start of the VM area to unmap
2029 * @size: size of the VM area to unmap
2031 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2032 * the unmapping and tlb after.
2034 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
2036 unsigned long end
= addr
+ size
;
2038 flush_cache_vunmap(addr
, end
);
2039 unmap_kernel_range_noflush(addr
, size
);
2040 flush_tlb_kernel_range(addr
, end
);
2043 static inline void setup_vmalloc_vm_locked(struct vm_struct
*vm
,
2044 struct vmap_area
*va
, unsigned long flags
, const void *caller
)
2047 vm
->addr
= (void *)va
->va_start
;
2048 vm
->size
= va
->va_end
- va
->va_start
;
2049 vm
->caller
= caller
;
2053 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
2054 unsigned long flags
, const void *caller
)
2056 spin_lock(&vmap_area_lock
);
2057 setup_vmalloc_vm_locked(vm
, va
, flags
, caller
);
2058 spin_unlock(&vmap_area_lock
);
2061 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
2064 * Before removing VM_UNINITIALIZED,
2065 * we should make sure that vm has proper values.
2066 * Pair with smp_rmb() in show_numa_info().
2069 vm
->flags
&= ~VM_UNINITIALIZED
;
2072 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
2073 unsigned long align
, unsigned long flags
, unsigned long start
,
2074 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
2076 struct vmap_area
*va
;
2077 struct vm_struct
*area
;
2078 unsigned long requested_size
= size
;
2080 BUG_ON(in_interrupt());
2081 size
= PAGE_ALIGN(size
);
2082 if (unlikely(!size
))
2085 if (flags
& VM_IOREMAP
)
2086 align
= 1ul << clamp_t(int, get_count_order_long(size
),
2087 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
2089 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
2090 if (unlikely(!area
))
2093 if (!(flags
& VM_NO_GUARD
))
2096 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
2102 kasan_unpoison_vmalloc((void *)va
->va_start
, requested_size
);
2104 setup_vmalloc_vm(area
, va
, flags
, caller
);
2109 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
2110 unsigned long start
, unsigned long end
,
2113 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
2114 GFP_KERNEL
, caller
);
2118 * get_vm_area - reserve a contiguous kernel virtual area
2119 * @size: size of the area
2120 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2122 * Search an area of @size in the kernel virtual mapping area,
2123 * and reserved it for out purposes. Returns the area descriptor
2124 * on success or %NULL on failure.
2126 * Return: the area descriptor on success or %NULL on failure.
2128 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
2130 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
2131 NUMA_NO_NODE
, GFP_KERNEL
,
2132 __builtin_return_address(0));
2135 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
2138 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
2139 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
2143 * find_vm_area - find a continuous kernel virtual area
2144 * @addr: base address
2146 * Search for the kernel VM area starting at @addr, and return it.
2147 * It is up to the caller to do all required locking to keep the returned
2150 * Return: the area descriptor on success or %NULL on failure.
2152 struct vm_struct
*find_vm_area(const void *addr
)
2154 struct vmap_area
*va
;
2156 va
= find_vmap_area((unsigned long)addr
);
2164 * remove_vm_area - find and remove a continuous kernel virtual area
2165 * @addr: base address
2167 * Search for the kernel VM area starting at @addr, and remove it.
2168 * This function returns the found VM area, but using it is NOT safe
2169 * on SMP machines, except for its size or flags.
2171 * Return: the area descriptor on success or %NULL on failure.
2173 struct vm_struct
*remove_vm_area(const void *addr
)
2175 struct vmap_area
*va
;
2179 spin_lock(&vmap_area_lock
);
2180 va
= __find_vmap_area((unsigned long)addr
);
2182 struct vm_struct
*vm
= va
->vm
;
2185 spin_unlock(&vmap_area_lock
);
2187 kasan_free_shadow(vm
);
2188 free_unmap_vmap_area(va
);
2193 spin_unlock(&vmap_area_lock
);
2197 static inline void set_area_direct_map(const struct vm_struct
*area
,
2198 int (*set_direct_map
)(struct page
*page
))
2202 for (i
= 0; i
< area
->nr_pages
; i
++)
2203 if (page_address(area
->pages
[i
]))
2204 set_direct_map(area
->pages
[i
]);
2207 /* Handle removing and resetting vm mappings related to the vm_struct. */
2208 static void vm_remove_mappings(struct vm_struct
*area
, int deallocate_pages
)
2210 unsigned long start
= ULONG_MAX
, end
= 0;
2211 int flush_reset
= area
->flags
& VM_FLUSH_RESET_PERMS
;
2215 remove_vm_area(area
->addr
);
2217 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2222 * If not deallocating pages, just do the flush of the VM area and
2225 if (!deallocate_pages
) {
2231 * If execution gets here, flush the vm mapping and reset the direct
2232 * map. Find the start and end range of the direct mappings to make sure
2233 * the vm_unmap_aliases() flush includes the direct map.
2235 for (i
= 0; i
< area
->nr_pages
; i
++) {
2236 unsigned long addr
= (unsigned long)page_address(area
->pages
[i
]);
2238 start
= min(addr
, start
);
2239 end
= max(addr
+ PAGE_SIZE
, end
);
2245 * Set direct map to something invalid so that it won't be cached if
2246 * there are any accesses after the TLB flush, then flush the TLB and
2247 * reset the direct map permissions to the default.
2249 set_area_direct_map(area
, set_direct_map_invalid_noflush
);
2250 _vm_unmap_aliases(start
, end
, flush_dmap
);
2251 set_area_direct_map(area
, set_direct_map_default_noflush
);
2254 static void __vunmap(const void *addr
, int deallocate_pages
)
2256 struct vm_struct
*area
;
2261 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
2265 area
= find_vm_area(addr
);
2266 if (unlikely(!area
)) {
2267 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
2272 debug_check_no_locks_freed(area
->addr
, get_vm_area_size(area
));
2273 debug_check_no_obj_freed(area
->addr
, get_vm_area_size(area
));
2275 kasan_poison_vmalloc(area
->addr
, get_vm_area_size(area
));
2277 vm_remove_mappings(area
, deallocate_pages
);
2279 if (deallocate_pages
) {
2282 for (i
= 0; i
< area
->nr_pages
; i
++) {
2283 struct page
*page
= area
->pages
[i
];
2286 __free_pages(page
, 0);
2288 atomic_long_sub(area
->nr_pages
, &nr_vmalloc_pages
);
2290 kvfree(area
->pages
);
2296 static inline void __vfree_deferred(const void *addr
)
2299 * Use raw_cpu_ptr() because this can be called from preemptible
2300 * context. Preemption is absolutely fine here, because the llist_add()
2301 * implementation is lockless, so it works even if we are adding to
2302 * another cpu's list. schedule_work() should be fine with this too.
2304 struct vfree_deferred
*p
= raw_cpu_ptr(&vfree_deferred
);
2306 if (llist_add((struct llist_node
*)addr
, &p
->list
))
2307 schedule_work(&p
->wq
);
2311 * vfree_atomic - release memory allocated by vmalloc()
2312 * @addr: memory base address
2314 * This one is just like vfree() but can be called in any atomic context
2317 void vfree_atomic(const void *addr
)
2321 kmemleak_free(addr
);
2325 __vfree_deferred(addr
);
2328 static void __vfree(const void *addr
)
2330 if (unlikely(in_interrupt()))
2331 __vfree_deferred(addr
);
2337 * vfree - Release memory allocated by vmalloc()
2338 * @addr: Memory base address
2340 * Free the virtually continuous memory area starting at @addr, as obtained
2341 * from one of the vmalloc() family of APIs. This will usually also free the
2342 * physical memory underlying the virtual allocation, but that memory is
2343 * reference counted, so it will not be freed until the last user goes away.
2345 * If @addr is NULL, no operation is performed.
2348 * May sleep if called *not* from interrupt context.
2349 * Must not be called in NMI context (strictly speaking, it could be
2350 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2351 * conventions for vfree() arch-depenedent would be a really bad idea).
2353 void vfree(const void *addr
)
2357 kmemleak_free(addr
);
2359 might_sleep_if(!in_interrupt());
2366 EXPORT_SYMBOL(vfree
);
2369 * vunmap - release virtual mapping obtained by vmap()
2370 * @addr: memory base address
2372 * Free the virtually contiguous memory area starting at @addr,
2373 * which was created from the page array passed to vmap().
2375 * Must not be called in interrupt context.
2377 void vunmap(const void *addr
)
2379 BUG_ON(in_interrupt());
2384 EXPORT_SYMBOL(vunmap
);
2387 * vmap - map an array of pages into virtually contiguous space
2388 * @pages: array of page pointers
2389 * @count: number of pages to map
2390 * @flags: vm_area->flags
2391 * @prot: page protection for the mapping
2393 * Maps @count pages from @pages into contiguous kernel virtual space.
2394 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2395 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2396 * are transferred from the caller to vmap(), and will be freed / dropped when
2397 * vfree() is called on the return value.
2399 * Return: the address of the area or %NULL on failure
2401 void *vmap(struct page
**pages
, unsigned int count
,
2402 unsigned long flags
, pgprot_t prot
)
2404 struct vm_struct
*area
;
2405 unsigned long size
; /* In bytes */
2409 if (count
> totalram_pages())
2412 size
= (unsigned long)count
<< PAGE_SHIFT
;
2413 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
2417 if (map_kernel_range((unsigned long)area
->addr
, size
, pgprot_nx(prot
),
2423 if (flags
& VM_MAP_PUT_PAGES
)
2424 area
->pages
= pages
;
2427 EXPORT_SYMBOL(vmap
);
2429 #ifdef CONFIG_VMAP_PFN
2430 struct vmap_pfn_data
{
2431 unsigned long *pfns
;
2436 static int vmap_pfn_apply(pte_t
*pte
, unsigned long addr
, void *private)
2438 struct vmap_pfn_data
*data
= private;
2440 if (WARN_ON_ONCE(pfn_valid(data
->pfns
[data
->idx
])))
2442 *pte
= pte_mkspecial(pfn_pte(data
->pfns
[data
->idx
++], data
->prot
));
2447 * vmap_pfn - map an array of PFNs into virtually contiguous space
2448 * @pfns: array of PFNs
2449 * @count: number of pages to map
2450 * @prot: page protection for the mapping
2452 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2453 * the start address of the mapping.
2455 void *vmap_pfn(unsigned long *pfns
, unsigned int count
, pgprot_t prot
)
2457 struct vmap_pfn_data data
= { .pfns
= pfns
, .prot
= pgprot_nx(prot
) };
2458 struct vm_struct
*area
;
2460 area
= get_vm_area_caller(count
* PAGE_SIZE
, VM_IOREMAP
,
2461 __builtin_return_address(0));
2464 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2465 count
* PAGE_SIZE
, vmap_pfn_apply
, &data
)) {
2471 EXPORT_SYMBOL_GPL(vmap_pfn
);
2472 #endif /* CONFIG_VMAP_PFN */
2474 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
2475 pgprot_t prot
, int node
)
2477 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
2478 unsigned int nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
2479 unsigned long array_size
;
2481 struct page
**pages
;
2483 array_size
= (unsigned long)nr_pages
* sizeof(struct page
*);
2484 gfp_mask
|= __GFP_NOWARN
;
2485 if (!(gfp_mask
& (GFP_DMA
| GFP_DMA32
)))
2486 gfp_mask
|= __GFP_HIGHMEM
;
2488 /* Please note that the recursion is strictly bounded. */
2489 if (array_size
> PAGE_SIZE
) {
2490 pages
= __vmalloc_node(array_size
, 1, nested_gfp
, node
,
2493 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
2501 area
->pages
= pages
;
2502 area
->nr_pages
= nr_pages
;
2504 for (i
= 0; i
< area
->nr_pages
; i
++) {
2507 if (node
== NUMA_NO_NODE
)
2508 page
= alloc_page(gfp_mask
);
2510 page
= alloc_pages_node(node
, gfp_mask
, 0);
2512 if (unlikely(!page
)) {
2513 /* Successfully allocated i pages, free them in __vfree() */
2515 atomic_long_add(area
->nr_pages
, &nr_vmalloc_pages
);
2518 area
->pages
[i
] = page
;
2519 if (gfpflags_allow_blocking(gfp_mask
))
2522 atomic_long_add(area
->nr_pages
, &nr_vmalloc_pages
);
2524 if (map_kernel_range((unsigned long)area
->addr
, get_vm_area_size(area
),
2531 warn_alloc(gfp_mask
, NULL
,
2532 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2533 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
2534 __vfree(area
->addr
);
2539 * __vmalloc_node_range - allocate virtually contiguous memory
2540 * @size: allocation size
2541 * @align: desired alignment
2542 * @start: vm area range start
2543 * @end: vm area range end
2544 * @gfp_mask: flags for the page level allocator
2545 * @prot: protection mask for the allocated pages
2546 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2547 * @node: node to use for allocation or NUMA_NO_NODE
2548 * @caller: caller's return address
2550 * Allocate enough pages to cover @size from the page level
2551 * allocator with @gfp_mask flags. Map them into contiguous
2552 * kernel virtual space, using a pagetable protection of @prot.
2554 * Return: the address of the area or %NULL on failure
2556 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
2557 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
2558 pgprot_t prot
, unsigned long vm_flags
, int node
,
2561 struct vm_struct
*area
;
2563 unsigned long real_size
= size
;
2565 size
= PAGE_ALIGN(size
);
2566 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages())
2569 area
= __get_vm_area_node(real_size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
2570 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
2574 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
2579 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2580 * flag. It means that vm_struct is not fully initialized.
2581 * Now, it is fully initialized, so remove this flag here.
2583 clear_vm_uninitialized_flag(area
);
2585 kmemleak_vmalloc(area
, size
, gfp_mask
);
2590 warn_alloc(gfp_mask
, NULL
,
2591 "vmalloc: allocation failure: %lu bytes", real_size
);
2596 * __vmalloc_node - allocate virtually contiguous memory
2597 * @size: allocation size
2598 * @align: desired alignment
2599 * @gfp_mask: flags for the page level allocator
2600 * @node: node to use for allocation or NUMA_NO_NODE
2601 * @caller: caller's return address
2603 * Allocate enough pages to cover @size from the page level allocator with
2604 * @gfp_mask flags. Map them into contiguous kernel virtual space.
2606 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2607 * and __GFP_NOFAIL are not supported
2609 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2612 * Return: pointer to the allocated memory or %NULL on error
2614 void *__vmalloc_node(unsigned long size
, unsigned long align
,
2615 gfp_t gfp_mask
, int node
, const void *caller
)
2617 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
2618 gfp_mask
, PAGE_KERNEL
, 0, node
, caller
);
2621 * This is only for performance analysis of vmalloc and stress purpose.
2622 * It is required by vmalloc test module, therefore do not use it other
2625 #ifdef CONFIG_TEST_VMALLOC_MODULE
2626 EXPORT_SYMBOL_GPL(__vmalloc_node
);
2629 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
)
2631 return __vmalloc_node(size
, 1, gfp_mask
, NUMA_NO_NODE
,
2632 __builtin_return_address(0));
2634 EXPORT_SYMBOL(__vmalloc
);
2637 * vmalloc - allocate virtually contiguous memory
2638 * @size: allocation size
2640 * Allocate enough pages to cover @size from the page level
2641 * allocator and map them into contiguous kernel virtual space.
2643 * For tight control over page level allocator and protection flags
2644 * use __vmalloc() instead.
2646 * Return: pointer to the allocated memory or %NULL on error
2648 void *vmalloc(unsigned long size
)
2650 return __vmalloc_node(size
, 1, GFP_KERNEL
, NUMA_NO_NODE
,
2651 __builtin_return_address(0));
2653 EXPORT_SYMBOL(vmalloc
);
2656 * vzalloc - allocate virtually contiguous memory with zero fill
2657 * @size: allocation size
2659 * Allocate enough pages to cover @size from the page level
2660 * allocator and map them into contiguous kernel virtual space.
2661 * The memory allocated is set to zero.
2663 * For tight control over page level allocator and protection flags
2664 * use __vmalloc() instead.
2666 * Return: pointer to the allocated memory or %NULL on error
2668 void *vzalloc(unsigned long size
)
2670 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_ZERO
, NUMA_NO_NODE
,
2671 __builtin_return_address(0));
2673 EXPORT_SYMBOL(vzalloc
);
2676 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2677 * @size: allocation size
2679 * The resulting memory area is zeroed so it can be mapped to userspace
2680 * without leaking data.
2682 * Return: pointer to the allocated memory or %NULL on error
2684 void *vmalloc_user(unsigned long size
)
2686 return __vmalloc_node_range(size
, SHMLBA
, VMALLOC_START
, VMALLOC_END
,
2687 GFP_KERNEL
| __GFP_ZERO
, PAGE_KERNEL
,
2688 VM_USERMAP
, NUMA_NO_NODE
,
2689 __builtin_return_address(0));
2691 EXPORT_SYMBOL(vmalloc_user
);
2694 * vmalloc_node - allocate memory on a specific node
2695 * @size: allocation size
2698 * Allocate enough pages to cover @size from the page level
2699 * allocator and map them into contiguous kernel virtual space.
2701 * For tight control over page level allocator and protection flags
2702 * use __vmalloc() instead.
2704 * Return: pointer to the allocated memory or %NULL on error
2706 void *vmalloc_node(unsigned long size
, int node
)
2708 return __vmalloc_node(size
, 1, GFP_KERNEL
, node
,
2709 __builtin_return_address(0));
2711 EXPORT_SYMBOL(vmalloc_node
);
2714 * vzalloc_node - allocate memory on a specific node with zero fill
2715 * @size: allocation size
2718 * Allocate enough pages to cover @size from the page level
2719 * allocator and map them into contiguous kernel virtual space.
2720 * The memory allocated is set to zero.
2722 * Return: pointer to the allocated memory or %NULL on error
2724 void *vzalloc_node(unsigned long size
, int node
)
2726 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_ZERO
, node
,
2727 __builtin_return_address(0));
2729 EXPORT_SYMBOL(vzalloc_node
);
2731 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2732 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2733 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2734 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2737 * 64b systems should always have either DMA or DMA32 zones. For others
2738 * GFP_DMA32 should do the right thing and use the normal zone.
2740 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2744 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2745 * @size: allocation size
2747 * Allocate enough 32bit PA addressable pages to cover @size from the
2748 * page level allocator and map them into contiguous kernel virtual space.
2750 * Return: pointer to the allocated memory or %NULL on error
2752 void *vmalloc_32(unsigned long size
)
2754 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, NUMA_NO_NODE
,
2755 __builtin_return_address(0));
2757 EXPORT_SYMBOL(vmalloc_32
);
2760 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2761 * @size: allocation size
2763 * The resulting memory area is 32bit addressable and zeroed so it can be
2764 * mapped to userspace without leaking data.
2766 * Return: pointer to the allocated memory or %NULL on error
2768 void *vmalloc_32_user(unsigned long size
)
2770 return __vmalloc_node_range(size
, SHMLBA
, VMALLOC_START
, VMALLOC_END
,
2771 GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
2772 VM_USERMAP
, NUMA_NO_NODE
,
2773 __builtin_return_address(0));
2775 EXPORT_SYMBOL(vmalloc_32_user
);
2778 * small helper routine , copy contents to buf from addr.
2779 * If the page is not present, fill zero.
2782 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
2788 unsigned long offset
, length
;
2790 offset
= offset_in_page(addr
);
2791 length
= PAGE_SIZE
- offset
;
2794 p
= vmalloc_to_page(addr
);
2796 * To do safe access to this _mapped_ area, we need
2797 * lock. But adding lock here means that we need to add
2798 * overhead of vmalloc()/vfree() calles for this _debug_
2799 * interface, rarely used. Instead of that, we'll use
2800 * kmap() and get small overhead in this access function.
2804 * we can expect USER0 is not used (see vread/vwrite's
2805 * function description)
2807 void *map
= kmap_atomic(p
);
2808 memcpy(buf
, map
+ offset
, length
);
2811 memset(buf
, 0, length
);
2821 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
2827 unsigned long offset
, length
;
2829 offset
= offset_in_page(addr
);
2830 length
= PAGE_SIZE
- offset
;
2833 p
= vmalloc_to_page(addr
);
2835 * To do safe access to this _mapped_ area, we need
2836 * lock. But adding lock here means that we need to add
2837 * overhead of vmalloc()/vfree() calles for this _debug_
2838 * interface, rarely used. Instead of that, we'll use
2839 * kmap() and get small overhead in this access function.
2843 * we can expect USER0 is not used (see vread/vwrite's
2844 * function description)
2846 void *map
= kmap_atomic(p
);
2847 memcpy(map
+ offset
, buf
, length
);
2859 * vread() - read vmalloc area in a safe way.
2860 * @buf: buffer for reading data
2861 * @addr: vm address.
2862 * @count: number of bytes to be read.
2864 * This function checks that addr is a valid vmalloc'ed area, and
2865 * copy data from that area to a given buffer. If the given memory range
2866 * of [addr...addr+count) includes some valid address, data is copied to
2867 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2868 * IOREMAP area is treated as memory hole and no copy is done.
2870 * If [addr...addr+count) doesn't includes any intersects with alive
2871 * vm_struct area, returns 0. @buf should be kernel's buffer.
2873 * Note: In usual ops, vread() is never necessary because the caller
2874 * should know vmalloc() area is valid and can use memcpy().
2875 * This is for routines which have to access vmalloc area without
2876 * any information, as /dev/kmem.
2878 * Return: number of bytes for which addr and buf should be increased
2879 * (same number as @count) or %0 if [addr...addr+count) doesn't
2880 * include any intersection with valid vmalloc area
2882 long vread(char *buf
, char *addr
, unsigned long count
)
2884 struct vmap_area
*va
;
2885 struct vm_struct
*vm
;
2886 char *vaddr
, *buf_start
= buf
;
2887 unsigned long buflen
= count
;
2890 /* Don't allow overflow */
2891 if ((unsigned long) addr
+ count
< count
)
2892 count
= -(unsigned long) addr
;
2894 spin_lock(&vmap_area_lock
);
2895 list_for_each_entry(va
, &vmap_area_list
, list
) {
2903 vaddr
= (char *) vm
->addr
;
2904 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2906 while (addr
< vaddr
) {
2914 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2917 if (!(vm
->flags
& VM_IOREMAP
))
2918 aligned_vread(buf
, addr
, n
);
2919 else /* IOREMAP area is treated as memory hole */
2926 spin_unlock(&vmap_area_lock
);
2928 if (buf
== buf_start
)
2930 /* zero-fill memory holes */
2931 if (buf
!= buf_start
+ buflen
)
2932 memset(buf
, 0, buflen
- (buf
- buf_start
));
2938 * vwrite() - write vmalloc area in a safe way.
2939 * @buf: buffer for source data
2940 * @addr: vm address.
2941 * @count: number of bytes to be read.
2943 * This function checks that addr is a valid vmalloc'ed area, and
2944 * copy data from a buffer to the given addr. If specified range of
2945 * [addr...addr+count) includes some valid address, data is copied from
2946 * proper area of @buf. If there are memory holes, no copy to hole.
2947 * IOREMAP area is treated as memory hole and no copy is done.
2949 * If [addr...addr+count) doesn't includes any intersects with alive
2950 * vm_struct area, returns 0. @buf should be kernel's buffer.
2952 * Note: In usual ops, vwrite() is never necessary because the caller
2953 * should know vmalloc() area is valid and can use memcpy().
2954 * This is for routines which have to access vmalloc area without
2955 * any information, as /dev/kmem.
2957 * Return: number of bytes for which addr and buf should be
2958 * increased (same number as @count) or %0 if [addr...addr+count)
2959 * doesn't include any intersection with valid vmalloc area
2961 long vwrite(char *buf
, char *addr
, unsigned long count
)
2963 struct vmap_area
*va
;
2964 struct vm_struct
*vm
;
2966 unsigned long n
, buflen
;
2969 /* Don't allow overflow */
2970 if ((unsigned long) addr
+ count
< count
)
2971 count
= -(unsigned long) addr
;
2974 spin_lock(&vmap_area_lock
);
2975 list_for_each_entry(va
, &vmap_area_list
, list
) {
2983 vaddr
= (char *) vm
->addr
;
2984 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2986 while (addr
< vaddr
) {
2993 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2996 if (!(vm
->flags
& VM_IOREMAP
)) {
2997 aligned_vwrite(buf
, addr
, n
);
3005 spin_unlock(&vmap_area_lock
);
3012 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3013 * @vma: vma to cover
3014 * @uaddr: target user address to start at
3015 * @kaddr: virtual address of vmalloc kernel memory
3016 * @pgoff: offset from @kaddr to start at
3017 * @size: size of map area
3019 * Returns: 0 for success, -Exxx on failure
3021 * This function checks that @kaddr is a valid vmalloc'ed area,
3022 * and that it is big enough to cover the range starting at
3023 * @uaddr in @vma. Will return failure if that criteria isn't
3026 * Similar to remap_pfn_range() (see mm/memory.c)
3028 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
3029 void *kaddr
, unsigned long pgoff
,
3032 struct vm_struct
*area
;
3034 unsigned long end_index
;
3036 if (check_shl_overflow(pgoff
, PAGE_SHIFT
, &off
))
3039 size
= PAGE_ALIGN(size
);
3041 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
3044 area
= find_vm_area(kaddr
);
3048 if (!(area
->flags
& (VM_USERMAP
| VM_DMA_COHERENT
)))
3051 if (check_add_overflow(size
, off
, &end_index
) ||
3052 end_index
> get_vm_area_size(area
))
3057 struct page
*page
= vmalloc_to_page(kaddr
);
3060 ret
= vm_insert_page(vma
, uaddr
, page
);
3069 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
3073 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
3076 * remap_vmalloc_range - map vmalloc pages to userspace
3077 * @vma: vma to cover (map full range of vma)
3078 * @addr: vmalloc memory
3079 * @pgoff: number of pages into addr before first page to map
3081 * Returns: 0 for success, -Exxx on failure
3083 * This function checks that addr is a valid vmalloc'ed area, and
3084 * that it is big enough to cover the vma. Will return failure if
3085 * that criteria isn't met.
3087 * Similar to remap_pfn_range() (see mm/memory.c)
3089 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
3090 unsigned long pgoff
)
3092 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
3094 vma
->vm_end
- vma
->vm_start
);
3096 EXPORT_SYMBOL(remap_vmalloc_range
);
3098 void free_vm_area(struct vm_struct
*area
)
3100 struct vm_struct
*ret
;
3101 ret
= remove_vm_area(area
->addr
);
3102 BUG_ON(ret
!= area
);
3105 EXPORT_SYMBOL_GPL(free_vm_area
);
3108 static struct vmap_area
*node_to_va(struct rb_node
*n
)
3110 return rb_entry_safe(n
, struct vmap_area
, rb_node
);
3114 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3115 * @addr: target address
3117 * Returns: vmap_area if it is found. If there is no such area
3118 * the first highest(reverse order) vmap_area is returned
3119 * i.e. va->va_start < addr && va->va_end < addr or NULL
3120 * if there are no any areas before @addr.
3122 static struct vmap_area
*
3123 pvm_find_va_enclose_addr(unsigned long addr
)
3125 struct vmap_area
*va
, *tmp
;
3128 n
= free_vmap_area_root
.rb_node
;
3132 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
3133 if (tmp
->va_start
<= addr
) {
3135 if (tmp
->va_end
>= addr
)
3148 * pvm_determine_end_from_reverse - find the highest aligned address
3149 * of free block below VMALLOC_END
3151 * in - the VA we start the search(reverse order);
3152 * out - the VA with the highest aligned end address.
3153 * @align: alignment for required highest address
3155 * Returns: determined end address within vmap_area
3157 static unsigned long
3158 pvm_determine_end_from_reverse(struct vmap_area
**va
, unsigned long align
)
3160 unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
3164 list_for_each_entry_from_reverse((*va
),
3165 &free_vmap_area_list
, list
) {
3166 addr
= min((*va
)->va_end
& ~(align
- 1), vmalloc_end
);
3167 if ((*va
)->va_start
< addr
)
3176 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3177 * @offsets: array containing offset of each area
3178 * @sizes: array containing size of each area
3179 * @nr_vms: the number of areas to allocate
3180 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3182 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3183 * vm_structs on success, %NULL on failure
3185 * Percpu allocator wants to use congruent vm areas so that it can
3186 * maintain the offsets among percpu areas. This function allocates
3187 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3188 * be scattered pretty far, distance between two areas easily going up
3189 * to gigabytes. To avoid interacting with regular vmallocs, these
3190 * areas are allocated from top.
3192 * Despite its complicated look, this allocator is rather simple. It
3193 * does everything top-down and scans free blocks from the end looking
3194 * for matching base. While scanning, if any of the areas do not fit the
3195 * base address is pulled down to fit the area. Scanning is repeated till
3196 * all the areas fit and then all necessary data structures are inserted
3197 * and the result is returned.
3199 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
3200 const size_t *sizes
, int nr_vms
,
3203 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
3204 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
3205 struct vmap_area
**vas
, *va
;
3206 struct vm_struct
**vms
;
3207 int area
, area2
, last_area
, term_area
;
3208 unsigned long base
, start
, size
, end
, last_end
, orig_start
, orig_end
;
3209 bool purged
= false;
3212 /* verify parameters and allocate data structures */
3213 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
3214 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
3215 start
= offsets
[area
];
3216 end
= start
+ sizes
[area
];
3218 /* is everything aligned properly? */
3219 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
3220 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
3222 /* detect the area with the highest address */
3223 if (start
> offsets
[last_area
])
3226 for (area2
= area
+ 1; area2
< nr_vms
; area2
++) {
3227 unsigned long start2
= offsets
[area2
];
3228 unsigned long end2
= start2
+ sizes
[area2
];
3230 BUG_ON(start2
< end
&& start
< end2
);
3233 last_end
= offsets
[last_area
] + sizes
[last_area
];
3235 if (vmalloc_end
- vmalloc_start
< last_end
) {
3240 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
3241 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
3245 for (area
= 0; area
< nr_vms
; area
++) {
3246 vas
[area
] = kmem_cache_zalloc(vmap_area_cachep
, GFP_KERNEL
);
3247 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
3248 if (!vas
[area
] || !vms
[area
])
3252 spin_lock(&free_vmap_area_lock
);
3254 /* start scanning - we scan from the top, begin with the last area */
3255 area
= term_area
= last_area
;
3256 start
= offsets
[area
];
3257 end
= start
+ sizes
[area
];
3259 va
= pvm_find_va_enclose_addr(vmalloc_end
);
3260 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
3264 * base might have underflowed, add last_end before
3267 if (base
+ last_end
< vmalloc_start
+ last_end
)
3271 * Fitting base has not been found.
3277 * If required width exceeds current VA block, move
3278 * base downwards and then recheck.
3280 if (base
+ end
> va
->va_end
) {
3281 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
3287 * If this VA does not fit, move base downwards and recheck.
3289 if (base
+ start
< va
->va_start
) {
3290 va
= node_to_va(rb_prev(&va
->rb_node
));
3291 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
3297 * This area fits, move on to the previous one. If
3298 * the previous one is the terminal one, we're done.
3300 area
= (area
+ nr_vms
- 1) % nr_vms
;
3301 if (area
== term_area
)
3304 start
= offsets
[area
];
3305 end
= start
+ sizes
[area
];
3306 va
= pvm_find_va_enclose_addr(base
+ end
);
3309 /* we've found a fitting base, insert all va's */
3310 for (area
= 0; area
< nr_vms
; area
++) {
3313 start
= base
+ offsets
[area
];
3316 va
= pvm_find_va_enclose_addr(start
);
3317 if (WARN_ON_ONCE(va
== NULL
))
3318 /* It is a BUG(), but trigger recovery instead. */
3321 type
= classify_va_fit_type(va
, start
, size
);
3322 if (WARN_ON_ONCE(type
== NOTHING_FIT
))
3323 /* It is a BUG(), but trigger recovery instead. */
3326 ret
= adjust_va_to_fit_type(va
, start
, size
, type
);
3330 /* Allocated area. */
3332 va
->va_start
= start
;
3333 va
->va_end
= start
+ size
;
3336 spin_unlock(&free_vmap_area_lock
);
3338 /* populate the kasan shadow space */
3339 for (area
= 0; area
< nr_vms
; area
++) {
3340 if (kasan_populate_vmalloc(vas
[area
]->va_start
, sizes
[area
]))
3341 goto err_free_shadow
;
3343 kasan_unpoison_vmalloc((void *)vas
[area
]->va_start
,
3347 /* insert all vm's */
3348 spin_lock(&vmap_area_lock
);
3349 for (area
= 0; area
< nr_vms
; area
++) {
3350 insert_vmap_area(vas
[area
], &vmap_area_root
, &vmap_area_list
);
3352 setup_vmalloc_vm_locked(vms
[area
], vas
[area
], VM_ALLOC
,
3355 spin_unlock(&vmap_area_lock
);
3362 * Remove previously allocated areas. There is no
3363 * need in removing these areas from the busy tree,
3364 * because they are inserted only on the final step
3365 * and when pcpu_get_vm_areas() is success.
3368 orig_start
= vas
[area
]->va_start
;
3369 orig_end
= vas
[area
]->va_end
;
3370 va
= merge_or_add_vmap_area_augment(vas
[area
], &free_vmap_area_root
,
3371 &free_vmap_area_list
);
3373 kasan_release_vmalloc(orig_start
, orig_end
,
3374 va
->va_start
, va
->va_end
);
3379 spin_unlock(&free_vmap_area_lock
);
3381 purge_vmap_area_lazy();
3384 /* Before "retry", check if we recover. */
3385 for (area
= 0; area
< nr_vms
; area
++) {
3389 vas
[area
] = kmem_cache_zalloc(
3390 vmap_area_cachep
, GFP_KERNEL
);
3399 for (area
= 0; area
< nr_vms
; area
++) {
3401 kmem_cache_free(vmap_area_cachep
, vas
[area
]);
3411 spin_lock(&free_vmap_area_lock
);
3413 * We release all the vmalloc shadows, even the ones for regions that
3414 * hadn't been successfully added. This relies on kasan_release_vmalloc
3415 * being able to tolerate this case.
3417 for (area
= 0; area
< nr_vms
; area
++) {
3418 orig_start
= vas
[area
]->va_start
;
3419 orig_end
= vas
[area
]->va_end
;
3420 va
= merge_or_add_vmap_area_augment(vas
[area
], &free_vmap_area_root
,
3421 &free_vmap_area_list
);
3423 kasan_release_vmalloc(orig_start
, orig_end
,
3424 va
->va_start
, va
->va_end
);
3428 spin_unlock(&free_vmap_area_lock
);
3435 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3436 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3437 * @nr_vms: the number of allocated areas
3439 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3441 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
3445 for (i
= 0; i
< nr_vms
; i
++)
3446 free_vm_area(vms
[i
]);
3449 #endif /* CONFIG_SMP */
3451 #ifdef CONFIG_PROC_FS
3452 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3453 __acquires(&vmap_purge_lock
)
3454 __acquires(&vmap_area_lock
)
3456 mutex_lock(&vmap_purge_lock
);
3457 spin_lock(&vmap_area_lock
);
3459 return seq_list_start(&vmap_area_list
, *pos
);
3462 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3464 return seq_list_next(p
, &vmap_area_list
, pos
);
3467 static void s_stop(struct seq_file
*m
, void *p
)
3468 __releases(&vmap_area_lock
)
3469 __releases(&vmap_purge_lock
)
3471 spin_unlock(&vmap_area_lock
);
3472 mutex_unlock(&vmap_purge_lock
);
3475 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
3477 if (IS_ENABLED(CONFIG_NUMA
)) {
3478 unsigned int nr
, *counters
= m
->private;
3483 if (v
->flags
& VM_UNINITIALIZED
)
3485 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3488 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
3490 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
3491 counters
[page_to_nid(v
->pages
[nr
])]++;
3493 for_each_node_state(nr
, N_HIGH_MEMORY
)
3495 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
3499 static void show_purge_info(struct seq_file
*m
)
3501 struct vmap_area
*va
;
3503 spin_lock(&purge_vmap_area_lock
);
3504 list_for_each_entry(va
, &purge_vmap_area_list
, list
) {
3505 seq_printf(m
, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3506 (void *)va
->va_start
, (void *)va
->va_end
,
3507 va
->va_end
- va
->va_start
);
3509 spin_unlock(&purge_vmap_area_lock
);
3512 static int s_show(struct seq_file
*m
, void *p
)
3514 struct vmap_area
*va
;
3515 struct vm_struct
*v
;
3517 va
= list_entry(p
, struct vmap_area
, list
);
3520 * s_show can encounter race with remove_vm_area, !vm on behalf
3521 * of vmap area is being tear down or vm_map_ram allocation.
3524 seq_printf(m
, "0x%pK-0x%pK %7ld vm_map_ram\n",
3525 (void *)va
->va_start
, (void *)va
->va_end
,
3526 va
->va_end
- va
->va_start
);
3533 seq_printf(m
, "0x%pK-0x%pK %7ld",
3534 v
->addr
, v
->addr
+ v
->size
, v
->size
);
3537 seq_printf(m
, " %pS", v
->caller
);
3540 seq_printf(m
, " pages=%d", v
->nr_pages
);
3543 seq_printf(m
, " phys=%pa", &v
->phys_addr
);
3545 if (v
->flags
& VM_IOREMAP
)
3546 seq_puts(m
, " ioremap");
3548 if (v
->flags
& VM_ALLOC
)
3549 seq_puts(m
, " vmalloc");
3551 if (v
->flags
& VM_MAP
)
3552 seq_puts(m
, " vmap");
3554 if (v
->flags
& VM_USERMAP
)
3555 seq_puts(m
, " user");
3557 if (v
->flags
& VM_DMA_COHERENT
)
3558 seq_puts(m
, " dma-coherent");
3560 if (is_vmalloc_addr(v
->pages
))
3561 seq_puts(m
, " vpages");
3563 show_numa_info(m
, v
);
3567 * As a final step, dump "unpurged" areas.
3569 if (list_is_last(&va
->list
, &vmap_area_list
))
3575 static const struct seq_operations vmalloc_op
= {
3582 static int __init
proc_vmalloc_init(void)
3584 if (IS_ENABLED(CONFIG_NUMA
))
3585 proc_create_seq_private("vmallocinfo", 0400, NULL
,
3587 nr_node_ids
* sizeof(unsigned int), NULL
);
3589 proc_create_seq("vmallocinfo", 0400, NULL
, &vmalloc_op
);
3592 module_init(proc_vmalloc_init
);