Merge tag 'locking-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / mm / vmstat.c
blobf8942160fc95f56f6e95daf80bbb0589dbe2fd12
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
32 #include "internal.h"
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
36 #ifdef CONFIG_NUMA
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone *zone)
42 int item, cpu;
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
55 struct zone *zone;
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
64 int item;
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
70 static void invalid_numa_statistics(void)
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
76 static DEFINE_MUTEX(vm_numa_stat_lock);
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
81 int ret, oldval;
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
101 out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
105 #endif
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
111 static void sum_vm_events(unsigned long *ret)
113 int cpu;
114 int i;
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
131 void all_vm_events(unsigned long *ret)
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
137 EXPORT_SYMBOL_GPL(all_vm_events);
140 * Fold the foreign cpu events into our own.
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
145 void vm_events_fold_cpu(int cpu)
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
159 * Manage combined zone based / global counters
161 * vm_stat contains the global counters
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
170 #ifdef CONFIG_SMP
172 int calculate_pressure_threshold(struct zone *zone)
174 int threshold;
175 int watermark_distance;
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
189 * Maximum threshold is 125
191 threshold = min(125, threshold);
193 return threshold;
196 int calculate_normal_threshold(struct zone *zone)
198 int threshold;
199 int mem; /* memory in 128 MB units */
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
207 * Some sample thresholds:
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
236 * Maximum threshold is 125
238 threshold = min(125, threshold);
240 return threshold;
244 * Refresh the thresholds for each zone.
246 void refresh_zone_stat_thresholds(void)
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
264 threshold = calculate_normal_threshold(zone);
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
324 x = delta + __this_cpu_read(*p);
326 t = __this_cpu_read(pcp->stat_threshold);
328 if (unlikely(abs(x) > t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
332 __this_cpu_write(*p, x);
334 EXPORT_SYMBOL(__mod_zone_page_state);
336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
344 if (vmstat_item_in_bytes(item)) {
345 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
346 delta >>= PAGE_SHIFT;
349 x = delta + __this_cpu_read(*p);
351 t = __this_cpu_read(pcp->stat_threshold);
353 if (unlikely(abs(x) > t)) {
354 node_page_state_add(x, pgdat, item);
355 x = 0;
357 __this_cpu_write(*p, x);
359 EXPORT_SYMBOL(__mod_node_page_state);
362 * Optimized increment and decrement functions.
364 * These are only for a single page and therefore can take a struct page *
365 * argument instead of struct zone *. This allows the inclusion of the code
366 * generated for page_zone(page) into the optimized functions.
368 * No overflow check is necessary and therefore the differential can be
369 * incremented or decremented in place which may allow the compilers to
370 * generate better code.
371 * The increment or decrement is known and therefore one boundary check can
372 * be omitted.
374 * NOTE: These functions are very performance sensitive. Change only
375 * with care.
377 * Some processors have inc/dec instructions that are atomic vs an interrupt.
378 * However, the code must first determine the differential location in a zone
379 * based on the processor number and then inc/dec the counter. There is no
380 * guarantee without disabling preemption that the processor will not change
381 * in between and therefore the atomicity vs. interrupt cannot be exploited
382 * in a useful way here.
384 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 struct per_cpu_pageset __percpu *pcp = zone->pageset;
387 s8 __percpu *p = pcp->vm_stat_diff + item;
388 s8 v, t;
390 v = __this_cpu_inc_return(*p);
391 t = __this_cpu_read(pcp->stat_threshold);
392 if (unlikely(v > t)) {
393 s8 overstep = t >> 1;
395 zone_page_state_add(v + overstep, zone, item);
396 __this_cpu_write(*p, -overstep);
400 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
402 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
403 s8 __percpu *p = pcp->vm_node_stat_diff + item;
404 s8 v, t;
406 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
408 v = __this_cpu_inc_return(*p);
409 t = __this_cpu_read(pcp->stat_threshold);
410 if (unlikely(v > t)) {
411 s8 overstep = t >> 1;
413 node_page_state_add(v + overstep, pgdat, item);
414 __this_cpu_write(*p, -overstep);
418 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
420 __inc_zone_state(page_zone(page), item);
422 EXPORT_SYMBOL(__inc_zone_page_state);
424 void __inc_node_page_state(struct page *page, enum node_stat_item item)
426 __inc_node_state(page_pgdat(page), item);
428 EXPORT_SYMBOL(__inc_node_page_state);
430 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
432 struct per_cpu_pageset __percpu *pcp = zone->pageset;
433 s8 __percpu *p = pcp->vm_stat_diff + item;
434 s8 v, t;
436 v = __this_cpu_dec_return(*p);
437 t = __this_cpu_read(pcp->stat_threshold);
438 if (unlikely(v < - t)) {
439 s8 overstep = t >> 1;
441 zone_page_state_add(v - overstep, zone, item);
442 __this_cpu_write(*p, overstep);
446 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
448 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
449 s8 __percpu *p = pcp->vm_node_stat_diff + item;
450 s8 v, t;
452 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
454 v = __this_cpu_dec_return(*p);
455 t = __this_cpu_read(pcp->stat_threshold);
456 if (unlikely(v < - t)) {
457 s8 overstep = t >> 1;
459 node_page_state_add(v - overstep, pgdat, item);
460 __this_cpu_write(*p, overstep);
464 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
466 __dec_zone_state(page_zone(page), item);
468 EXPORT_SYMBOL(__dec_zone_page_state);
470 void __dec_node_page_state(struct page *page, enum node_stat_item item)
472 __dec_node_state(page_pgdat(page), item);
474 EXPORT_SYMBOL(__dec_node_page_state);
476 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
478 * If we have cmpxchg_local support then we do not need to incur the overhead
479 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
481 * mod_state() modifies the zone counter state through atomic per cpu
482 * operations.
484 * Overstep mode specifies how overstep should handled:
485 * 0 No overstepping
486 * 1 Overstepping half of threshold
487 * -1 Overstepping minus half of threshold
489 static inline void mod_zone_state(struct zone *zone,
490 enum zone_stat_item item, long delta, int overstep_mode)
492 struct per_cpu_pageset __percpu *pcp = zone->pageset;
493 s8 __percpu *p = pcp->vm_stat_diff + item;
494 long o, n, t, z;
496 do {
497 z = 0; /* overflow to zone counters */
500 * The fetching of the stat_threshold is racy. We may apply
501 * a counter threshold to the wrong the cpu if we get
502 * rescheduled while executing here. However, the next
503 * counter update will apply the threshold again and
504 * therefore bring the counter under the threshold again.
506 * Most of the time the thresholds are the same anyways
507 * for all cpus in a zone.
509 t = this_cpu_read(pcp->stat_threshold);
511 o = this_cpu_read(*p);
512 n = delta + o;
514 if (abs(n) > t) {
515 int os = overstep_mode * (t >> 1) ;
517 /* Overflow must be added to zone counters */
518 z = n + os;
519 n = -os;
521 } while (this_cpu_cmpxchg(*p, o, n) != o);
523 if (z)
524 zone_page_state_add(z, zone, item);
527 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
528 long delta)
530 mod_zone_state(zone, item, delta, 0);
532 EXPORT_SYMBOL(mod_zone_page_state);
534 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
536 mod_zone_state(page_zone(page), item, 1, 1);
538 EXPORT_SYMBOL(inc_zone_page_state);
540 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
542 mod_zone_state(page_zone(page), item, -1, -1);
544 EXPORT_SYMBOL(dec_zone_page_state);
546 static inline void mod_node_state(struct pglist_data *pgdat,
547 enum node_stat_item item, int delta, int overstep_mode)
549 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
550 s8 __percpu *p = pcp->vm_node_stat_diff + item;
551 long o, n, t, z;
553 if (vmstat_item_in_bytes(item)) {
554 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
555 delta >>= PAGE_SHIFT;
558 do {
559 z = 0; /* overflow to node counters */
562 * The fetching of the stat_threshold is racy. We may apply
563 * a counter threshold to the wrong the cpu if we get
564 * rescheduled while executing here. However, the next
565 * counter update will apply the threshold again and
566 * therefore bring the counter under the threshold again.
568 * Most of the time the thresholds are the same anyways
569 * for all cpus in a node.
571 t = this_cpu_read(pcp->stat_threshold);
573 o = this_cpu_read(*p);
574 n = delta + o;
576 if (abs(n) > t) {
577 int os = overstep_mode * (t >> 1) ;
579 /* Overflow must be added to node counters */
580 z = n + os;
581 n = -os;
583 } while (this_cpu_cmpxchg(*p, o, n) != o);
585 if (z)
586 node_page_state_add(z, pgdat, item);
589 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
590 long delta)
592 mod_node_state(pgdat, item, delta, 0);
594 EXPORT_SYMBOL(mod_node_page_state);
596 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
598 mod_node_state(pgdat, item, 1, 1);
601 void inc_node_page_state(struct page *page, enum node_stat_item item)
603 mod_node_state(page_pgdat(page), item, 1, 1);
605 EXPORT_SYMBOL(inc_node_page_state);
607 void dec_node_page_state(struct page *page, enum node_stat_item item)
609 mod_node_state(page_pgdat(page), item, -1, -1);
611 EXPORT_SYMBOL(dec_node_page_state);
612 #else
614 * Use interrupt disable to serialize counter updates
616 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
617 long delta)
619 unsigned long flags;
621 local_irq_save(flags);
622 __mod_zone_page_state(zone, item, delta);
623 local_irq_restore(flags);
625 EXPORT_SYMBOL(mod_zone_page_state);
627 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
629 unsigned long flags;
630 struct zone *zone;
632 zone = page_zone(page);
633 local_irq_save(flags);
634 __inc_zone_state(zone, item);
635 local_irq_restore(flags);
637 EXPORT_SYMBOL(inc_zone_page_state);
639 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
641 unsigned long flags;
643 local_irq_save(flags);
644 __dec_zone_page_state(page, item);
645 local_irq_restore(flags);
647 EXPORT_SYMBOL(dec_zone_page_state);
649 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
651 unsigned long flags;
653 local_irq_save(flags);
654 __inc_node_state(pgdat, item);
655 local_irq_restore(flags);
657 EXPORT_SYMBOL(inc_node_state);
659 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
660 long delta)
662 unsigned long flags;
664 local_irq_save(flags);
665 __mod_node_page_state(pgdat, item, delta);
666 local_irq_restore(flags);
668 EXPORT_SYMBOL(mod_node_page_state);
670 void inc_node_page_state(struct page *page, enum node_stat_item item)
672 unsigned long flags;
673 struct pglist_data *pgdat;
675 pgdat = page_pgdat(page);
676 local_irq_save(flags);
677 __inc_node_state(pgdat, item);
678 local_irq_restore(flags);
680 EXPORT_SYMBOL(inc_node_page_state);
682 void dec_node_page_state(struct page *page, enum node_stat_item item)
684 unsigned long flags;
686 local_irq_save(flags);
687 __dec_node_page_state(page, item);
688 local_irq_restore(flags);
690 EXPORT_SYMBOL(dec_node_page_state);
691 #endif
694 * Fold a differential into the global counters.
695 * Returns the number of counters updated.
697 #ifdef CONFIG_NUMA
698 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
700 int i;
701 int changes = 0;
703 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
704 if (zone_diff[i]) {
705 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
706 changes++;
709 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
710 if (numa_diff[i]) {
711 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
712 changes++;
715 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
716 if (node_diff[i]) {
717 atomic_long_add(node_diff[i], &vm_node_stat[i]);
718 changes++;
720 return changes;
722 #else
723 static int fold_diff(int *zone_diff, int *node_diff)
725 int i;
726 int changes = 0;
728 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
729 if (zone_diff[i]) {
730 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
731 changes++;
734 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
735 if (node_diff[i]) {
736 atomic_long_add(node_diff[i], &vm_node_stat[i]);
737 changes++;
739 return changes;
741 #endif /* CONFIG_NUMA */
744 * Update the zone counters for the current cpu.
746 * Note that refresh_cpu_vm_stats strives to only access
747 * node local memory. The per cpu pagesets on remote zones are placed
748 * in the memory local to the processor using that pageset. So the
749 * loop over all zones will access a series of cachelines local to
750 * the processor.
752 * The call to zone_page_state_add updates the cachelines with the
753 * statistics in the remote zone struct as well as the global cachelines
754 * with the global counters. These could cause remote node cache line
755 * bouncing and will have to be only done when necessary.
757 * The function returns the number of global counters updated.
759 static int refresh_cpu_vm_stats(bool do_pagesets)
761 struct pglist_data *pgdat;
762 struct zone *zone;
763 int i;
764 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
765 #ifdef CONFIG_NUMA
766 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
767 #endif
768 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
769 int changes = 0;
771 for_each_populated_zone(zone) {
772 struct per_cpu_pageset __percpu *p = zone->pageset;
774 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
775 int v;
777 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
778 if (v) {
780 atomic_long_add(v, &zone->vm_stat[i]);
781 global_zone_diff[i] += v;
782 #ifdef CONFIG_NUMA
783 /* 3 seconds idle till flush */
784 __this_cpu_write(p->expire, 3);
785 #endif
788 #ifdef CONFIG_NUMA
789 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
790 int v;
792 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
793 if (v) {
795 atomic_long_add(v, &zone->vm_numa_stat[i]);
796 global_numa_diff[i] += v;
797 __this_cpu_write(p->expire, 3);
801 if (do_pagesets) {
802 cond_resched();
804 * Deal with draining the remote pageset of this
805 * processor
807 * Check if there are pages remaining in this pageset
808 * if not then there is nothing to expire.
810 if (!__this_cpu_read(p->expire) ||
811 !__this_cpu_read(p->pcp.count))
812 continue;
815 * We never drain zones local to this processor.
817 if (zone_to_nid(zone) == numa_node_id()) {
818 __this_cpu_write(p->expire, 0);
819 continue;
822 if (__this_cpu_dec_return(p->expire))
823 continue;
825 if (__this_cpu_read(p->pcp.count)) {
826 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
827 changes++;
830 #endif
833 for_each_online_pgdat(pgdat) {
834 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
836 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
837 int v;
839 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
840 if (v) {
841 atomic_long_add(v, &pgdat->vm_stat[i]);
842 global_node_diff[i] += v;
847 #ifdef CONFIG_NUMA
848 changes += fold_diff(global_zone_diff, global_numa_diff,
849 global_node_diff);
850 #else
851 changes += fold_diff(global_zone_diff, global_node_diff);
852 #endif
853 return changes;
857 * Fold the data for an offline cpu into the global array.
858 * There cannot be any access by the offline cpu and therefore
859 * synchronization is simplified.
861 void cpu_vm_stats_fold(int cpu)
863 struct pglist_data *pgdat;
864 struct zone *zone;
865 int i;
866 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
867 #ifdef CONFIG_NUMA
868 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
869 #endif
870 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
872 for_each_populated_zone(zone) {
873 struct per_cpu_pageset *p;
875 p = per_cpu_ptr(zone->pageset, cpu);
877 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
878 if (p->vm_stat_diff[i]) {
879 int v;
881 v = p->vm_stat_diff[i];
882 p->vm_stat_diff[i] = 0;
883 atomic_long_add(v, &zone->vm_stat[i]);
884 global_zone_diff[i] += v;
887 #ifdef CONFIG_NUMA
888 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
889 if (p->vm_numa_stat_diff[i]) {
890 int v;
892 v = p->vm_numa_stat_diff[i];
893 p->vm_numa_stat_diff[i] = 0;
894 atomic_long_add(v, &zone->vm_numa_stat[i]);
895 global_numa_diff[i] += v;
897 #endif
900 for_each_online_pgdat(pgdat) {
901 struct per_cpu_nodestat *p;
903 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
905 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
906 if (p->vm_node_stat_diff[i]) {
907 int v;
909 v = p->vm_node_stat_diff[i];
910 p->vm_node_stat_diff[i] = 0;
911 atomic_long_add(v, &pgdat->vm_stat[i]);
912 global_node_diff[i] += v;
916 #ifdef CONFIG_NUMA
917 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
918 #else
919 fold_diff(global_zone_diff, global_node_diff);
920 #endif
924 * this is only called if !populated_zone(zone), which implies no other users of
925 * pset->vm_stat_diff[] exsist.
927 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
929 int i;
931 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
932 if (pset->vm_stat_diff[i]) {
933 int v = pset->vm_stat_diff[i];
934 pset->vm_stat_diff[i] = 0;
935 atomic_long_add(v, &zone->vm_stat[i]);
936 atomic_long_add(v, &vm_zone_stat[i]);
939 #ifdef CONFIG_NUMA
940 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
941 if (pset->vm_numa_stat_diff[i]) {
942 int v = pset->vm_numa_stat_diff[i];
944 pset->vm_numa_stat_diff[i] = 0;
945 atomic_long_add(v, &zone->vm_numa_stat[i]);
946 atomic_long_add(v, &vm_numa_stat[i]);
948 #endif
950 #endif
952 #ifdef CONFIG_NUMA
953 void __inc_numa_state(struct zone *zone,
954 enum numa_stat_item item)
956 struct per_cpu_pageset __percpu *pcp = zone->pageset;
957 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
958 u16 v;
960 v = __this_cpu_inc_return(*p);
962 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
963 zone_numa_state_add(v, zone, item);
964 __this_cpu_write(*p, 0);
969 * Determine the per node value of a stat item. This function
970 * is called frequently in a NUMA machine, so try to be as
971 * frugal as possible.
973 unsigned long sum_zone_node_page_state(int node,
974 enum zone_stat_item item)
976 struct zone *zones = NODE_DATA(node)->node_zones;
977 int i;
978 unsigned long count = 0;
980 for (i = 0; i < MAX_NR_ZONES; i++)
981 count += zone_page_state(zones + i, item);
983 return count;
987 * Determine the per node value of a numa stat item. To avoid deviation,
988 * the per cpu stat number in vm_numa_stat_diff[] is also included.
990 unsigned long sum_zone_numa_state(int node,
991 enum numa_stat_item item)
993 struct zone *zones = NODE_DATA(node)->node_zones;
994 int i;
995 unsigned long count = 0;
997 for (i = 0; i < MAX_NR_ZONES; i++)
998 count += zone_numa_state_snapshot(zones + i, item);
1000 return count;
1004 * Determine the per node value of a stat item.
1006 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1007 enum node_stat_item item)
1009 long x = atomic_long_read(&pgdat->vm_stat[item]);
1010 #ifdef CONFIG_SMP
1011 if (x < 0)
1012 x = 0;
1013 #endif
1014 return x;
1017 unsigned long node_page_state(struct pglist_data *pgdat,
1018 enum node_stat_item item)
1020 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1022 return node_page_state_pages(pgdat, item);
1024 #endif
1026 #ifdef CONFIG_COMPACTION
1028 struct contig_page_info {
1029 unsigned long free_pages;
1030 unsigned long free_blocks_total;
1031 unsigned long free_blocks_suitable;
1035 * Calculate the number of free pages in a zone, how many contiguous
1036 * pages are free and how many are large enough to satisfy an allocation of
1037 * the target size. Note that this function makes no attempt to estimate
1038 * how many suitable free blocks there *might* be if MOVABLE pages were
1039 * migrated. Calculating that is possible, but expensive and can be
1040 * figured out from userspace
1042 static void fill_contig_page_info(struct zone *zone,
1043 unsigned int suitable_order,
1044 struct contig_page_info *info)
1046 unsigned int order;
1048 info->free_pages = 0;
1049 info->free_blocks_total = 0;
1050 info->free_blocks_suitable = 0;
1052 for (order = 0; order < MAX_ORDER; order++) {
1053 unsigned long blocks;
1055 /* Count number of free blocks */
1056 blocks = zone->free_area[order].nr_free;
1057 info->free_blocks_total += blocks;
1059 /* Count free base pages */
1060 info->free_pages += blocks << order;
1062 /* Count the suitable free blocks */
1063 if (order >= suitable_order)
1064 info->free_blocks_suitable += blocks <<
1065 (order - suitable_order);
1070 * A fragmentation index only makes sense if an allocation of a requested
1071 * size would fail. If that is true, the fragmentation index indicates
1072 * whether external fragmentation or a lack of memory was the problem.
1073 * The value can be used to determine if page reclaim or compaction
1074 * should be used
1076 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1078 unsigned long requested = 1UL << order;
1080 if (WARN_ON_ONCE(order >= MAX_ORDER))
1081 return 0;
1083 if (!info->free_blocks_total)
1084 return 0;
1086 /* Fragmentation index only makes sense when a request would fail */
1087 if (info->free_blocks_suitable)
1088 return -1000;
1091 * Index is between 0 and 1 so return within 3 decimal places
1093 * 0 => allocation would fail due to lack of memory
1094 * 1 => allocation would fail due to fragmentation
1096 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1100 * Calculates external fragmentation within a zone wrt the given order.
1101 * It is defined as the percentage of pages found in blocks of size
1102 * less than 1 << order. It returns values in range [0, 100].
1104 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1106 struct contig_page_info info;
1108 fill_contig_page_info(zone, order, &info);
1109 if (info.free_pages == 0)
1110 return 0;
1112 return div_u64((info.free_pages -
1113 (info.free_blocks_suitable << order)) * 100,
1114 info.free_pages);
1117 /* Same as __fragmentation index but allocs contig_page_info on stack */
1118 int fragmentation_index(struct zone *zone, unsigned int order)
1120 struct contig_page_info info;
1122 fill_contig_page_info(zone, order, &info);
1123 return __fragmentation_index(order, &info);
1125 #endif
1127 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1128 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1129 #ifdef CONFIG_ZONE_DMA
1130 #define TEXT_FOR_DMA(xx) xx "_dma",
1131 #else
1132 #define TEXT_FOR_DMA(xx)
1133 #endif
1135 #ifdef CONFIG_ZONE_DMA32
1136 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1137 #else
1138 #define TEXT_FOR_DMA32(xx)
1139 #endif
1141 #ifdef CONFIG_HIGHMEM
1142 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1143 #else
1144 #define TEXT_FOR_HIGHMEM(xx)
1145 #endif
1147 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1148 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1150 const char * const vmstat_text[] = {
1151 /* enum zone_stat_item counters */
1152 "nr_free_pages",
1153 "nr_zone_inactive_anon",
1154 "nr_zone_active_anon",
1155 "nr_zone_inactive_file",
1156 "nr_zone_active_file",
1157 "nr_zone_unevictable",
1158 "nr_zone_write_pending",
1159 "nr_mlock",
1160 "nr_bounce",
1161 #if IS_ENABLED(CONFIG_ZSMALLOC)
1162 "nr_zspages",
1163 #endif
1164 "nr_free_cma",
1166 /* enum numa_stat_item counters */
1167 #ifdef CONFIG_NUMA
1168 "numa_hit",
1169 "numa_miss",
1170 "numa_foreign",
1171 "numa_interleave",
1172 "numa_local",
1173 "numa_other",
1174 #endif
1176 /* enum node_stat_item counters */
1177 "nr_inactive_anon",
1178 "nr_active_anon",
1179 "nr_inactive_file",
1180 "nr_active_file",
1181 "nr_unevictable",
1182 "nr_slab_reclaimable",
1183 "nr_slab_unreclaimable",
1184 "nr_isolated_anon",
1185 "nr_isolated_file",
1186 "workingset_nodes",
1187 "workingset_refault_anon",
1188 "workingset_refault_file",
1189 "workingset_activate_anon",
1190 "workingset_activate_file",
1191 "workingset_restore_anon",
1192 "workingset_restore_file",
1193 "workingset_nodereclaim",
1194 "nr_anon_pages",
1195 "nr_mapped",
1196 "nr_file_pages",
1197 "nr_dirty",
1198 "nr_writeback",
1199 "nr_writeback_temp",
1200 "nr_shmem",
1201 "nr_shmem_hugepages",
1202 "nr_shmem_pmdmapped",
1203 "nr_file_hugepages",
1204 "nr_file_pmdmapped",
1205 "nr_anon_transparent_hugepages",
1206 "nr_vmscan_write",
1207 "nr_vmscan_immediate_reclaim",
1208 "nr_dirtied",
1209 "nr_written",
1210 "nr_kernel_misc_reclaimable",
1211 "nr_foll_pin_acquired",
1212 "nr_foll_pin_released",
1213 "nr_kernel_stack",
1214 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1215 "nr_shadow_call_stack",
1216 #endif
1217 "nr_page_table_pages",
1219 /* enum writeback_stat_item counters */
1220 "nr_dirty_threshold",
1221 "nr_dirty_background_threshold",
1223 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1224 /* enum vm_event_item counters */
1225 "pgpgin",
1226 "pgpgout",
1227 "pswpin",
1228 "pswpout",
1230 TEXTS_FOR_ZONES("pgalloc")
1231 TEXTS_FOR_ZONES("allocstall")
1232 TEXTS_FOR_ZONES("pgskip")
1234 "pgfree",
1235 "pgactivate",
1236 "pgdeactivate",
1237 "pglazyfree",
1239 "pgfault",
1240 "pgmajfault",
1241 "pglazyfreed",
1243 "pgrefill",
1244 "pgreuse",
1245 "pgsteal_kswapd",
1246 "pgsteal_direct",
1247 "pgscan_kswapd",
1248 "pgscan_direct",
1249 "pgscan_direct_throttle",
1250 "pgscan_anon",
1251 "pgscan_file",
1252 "pgsteal_anon",
1253 "pgsteal_file",
1255 #ifdef CONFIG_NUMA
1256 "zone_reclaim_failed",
1257 #endif
1258 "pginodesteal",
1259 "slabs_scanned",
1260 "kswapd_inodesteal",
1261 "kswapd_low_wmark_hit_quickly",
1262 "kswapd_high_wmark_hit_quickly",
1263 "pageoutrun",
1265 "pgrotated",
1267 "drop_pagecache",
1268 "drop_slab",
1269 "oom_kill",
1271 #ifdef CONFIG_NUMA_BALANCING
1272 "numa_pte_updates",
1273 "numa_huge_pte_updates",
1274 "numa_hint_faults",
1275 "numa_hint_faults_local",
1276 "numa_pages_migrated",
1277 #endif
1278 #ifdef CONFIG_MIGRATION
1279 "pgmigrate_success",
1280 "pgmigrate_fail",
1281 "thp_migration_success",
1282 "thp_migration_fail",
1283 "thp_migration_split",
1284 #endif
1285 #ifdef CONFIG_COMPACTION
1286 "compact_migrate_scanned",
1287 "compact_free_scanned",
1288 "compact_isolated",
1289 "compact_stall",
1290 "compact_fail",
1291 "compact_success",
1292 "compact_daemon_wake",
1293 "compact_daemon_migrate_scanned",
1294 "compact_daemon_free_scanned",
1295 #endif
1297 #ifdef CONFIG_HUGETLB_PAGE
1298 "htlb_buddy_alloc_success",
1299 "htlb_buddy_alloc_fail",
1300 #endif
1301 "unevictable_pgs_culled",
1302 "unevictable_pgs_scanned",
1303 "unevictable_pgs_rescued",
1304 "unevictable_pgs_mlocked",
1305 "unevictable_pgs_munlocked",
1306 "unevictable_pgs_cleared",
1307 "unevictable_pgs_stranded",
1309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310 "thp_fault_alloc",
1311 "thp_fault_fallback",
1312 "thp_fault_fallback_charge",
1313 "thp_collapse_alloc",
1314 "thp_collapse_alloc_failed",
1315 "thp_file_alloc",
1316 "thp_file_fallback",
1317 "thp_file_fallback_charge",
1318 "thp_file_mapped",
1319 "thp_split_page",
1320 "thp_split_page_failed",
1321 "thp_deferred_split_page",
1322 "thp_split_pmd",
1323 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1324 "thp_split_pud",
1325 #endif
1326 "thp_zero_page_alloc",
1327 "thp_zero_page_alloc_failed",
1328 "thp_swpout",
1329 "thp_swpout_fallback",
1330 #endif
1331 #ifdef CONFIG_MEMORY_BALLOON
1332 "balloon_inflate",
1333 "balloon_deflate",
1334 #ifdef CONFIG_BALLOON_COMPACTION
1335 "balloon_migrate",
1336 #endif
1337 #endif /* CONFIG_MEMORY_BALLOON */
1338 #ifdef CONFIG_DEBUG_TLBFLUSH
1339 "nr_tlb_remote_flush",
1340 "nr_tlb_remote_flush_received",
1341 "nr_tlb_local_flush_all",
1342 "nr_tlb_local_flush_one",
1343 #endif /* CONFIG_DEBUG_TLBFLUSH */
1345 #ifdef CONFIG_DEBUG_VM_VMACACHE
1346 "vmacache_find_calls",
1347 "vmacache_find_hits",
1348 #endif
1349 #ifdef CONFIG_SWAP
1350 "swap_ra",
1351 "swap_ra_hit",
1352 #endif
1353 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1355 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1357 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1358 defined(CONFIG_PROC_FS)
1359 static void *frag_start(struct seq_file *m, loff_t *pos)
1361 pg_data_t *pgdat;
1362 loff_t node = *pos;
1364 for (pgdat = first_online_pgdat();
1365 pgdat && node;
1366 pgdat = next_online_pgdat(pgdat))
1367 --node;
1369 return pgdat;
1372 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1374 pg_data_t *pgdat = (pg_data_t *)arg;
1376 (*pos)++;
1377 return next_online_pgdat(pgdat);
1380 static void frag_stop(struct seq_file *m, void *arg)
1385 * Walk zones in a node and print using a callback.
1386 * If @assert_populated is true, only use callback for zones that are populated.
1388 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1389 bool assert_populated, bool nolock,
1390 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1392 struct zone *zone;
1393 struct zone *node_zones = pgdat->node_zones;
1394 unsigned long flags;
1396 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1397 if (assert_populated && !populated_zone(zone))
1398 continue;
1400 if (!nolock)
1401 spin_lock_irqsave(&zone->lock, flags);
1402 print(m, pgdat, zone);
1403 if (!nolock)
1404 spin_unlock_irqrestore(&zone->lock, flags);
1407 #endif
1409 #ifdef CONFIG_PROC_FS
1410 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1411 struct zone *zone)
1413 int order;
1415 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1416 for (order = 0; order < MAX_ORDER; ++order)
1417 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1418 seq_putc(m, '\n');
1422 * This walks the free areas for each zone.
1424 static int frag_show(struct seq_file *m, void *arg)
1426 pg_data_t *pgdat = (pg_data_t *)arg;
1427 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1428 return 0;
1431 static void pagetypeinfo_showfree_print(struct seq_file *m,
1432 pg_data_t *pgdat, struct zone *zone)
1434 int order, mtype;
1436 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1437 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1438 pgdat->node_id,
1439 zone->name,
1440 migratetype_names[mtype]);
1441 for (order = 0; order < MAX_ORDER; ++order) {
1442 unsigned long freecount = 0;
1443 struct free_area *area;
1444 struct list_head *curr;
1445 bool overflow = false;
1447 area = &(zone->free_area[order]);
1449 list_for_each(curr, &area->free_list[mtype]) {
1451 * Cap the free_list iteration because it might
1452 * be really large and we are under a spinlock
1453 * so a long time spent here could trigger a
1454 * hard lockup detector. Anyway this is a
1455 * debugging tool so knowing there is a handful
1456 * of pages of this order should be more than
1457 * sufficient.
1459 if (++freecount >= 100000) {
1460 overflow = true;
1461 break;
1464 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1465 spin_unlock_irq(&zone->lock);
1466 cond_resched();
1467 spin_lock_irq(&zone->lock);
1469 seq_putc(m, '\n');
1473 /* Print out the free pages at each order for each migatetype */
1474 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1476 int order;
1477 pg_data_t *pgdat = (pg_data_t *)arg;
1479 /* Print header */
1480 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1481 for (order = 0; order < MAX_ORDER; ++order)
1482 seq_printf(m, "%6d ", order);
1483 seq_putc(m, '\n');
1485 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1487 return 0;
1490 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1491 pg_data_t *pgdat, struct zone *zone)
1493 int mtype;
1494 unsigned long pfn;
1495 unsigned long start_pfn = zone->zone_start_pfn;
1496 unsigned long end_pfn = zone_end_pfn(zone);
1497 unsigned long count[MIGRATE_TYPES] = { 0, };
1499 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1500 struct page *page;
1502 page = pfn_to_online_page(pfn);
1503 if (!page)
1504 continue;
1506 if (page_zone(page) != zone)
1507 continue;
1509 mtype = get_pageblock_migratetype(page);
1511 if (mtype < MIGRATE_TYPES)
1512 count[mtype]++;
1515 /* Print counts */
1516 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1517 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1518 seq_printf(m, "%12lu ", count[mtype]);
1519 seq_putc(m, '\n');
1522 /* Print out the number of pageblocks for each migratetype */
1523 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1525 int mtype;
1526 pg_data_t *pgdat = (pg_data_t *)arg;
1528 seq_printf(m, "\n%-23s", "Number of blocks type ");
1529 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1530 seq_printf(m, "%12s ", migratetype_names[mtype]);
1531 seq_putc(m, '\n');
1532 walk_zones_in_node(m, pgdat, true, false,
1533 pagetypeinfo_showblockcount_print);
1535 return 0;
1539 * Print out the number of pageblocks for each migratetype that contain pages
1540 * of other types. This gives an indication of how well fallbacks are being
1541 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1542 * to determine what is going on
1544 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1546 #ifdef CONFIG_PAGE_OWNER
1547 int mtype;
1549 if (!static_branch_unlikely(&page_owner_inited))
1550 return;
1552 drain_all_pages(NULL);
1554 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1555 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1556 seq_printf(m, "%12s ", migratetype_names[mtype]);
1557 seq_putc(m, '\n');
1559 walk_zones_in_node(m, pgdat, true, true,
1560 pagetypeinfo_showmixedcount_print);
1561 #endif /* CONFIG_PAGE_OWNER */
1565 * This prints out statistics in relation to grouping pages by mobility.
1566 * It is expensive to collect so do not constantly read the file.
1568 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1570 pg_data_t *pgdat = (pg_data_t *)arg;
1572 /* check memoryless node */
1573 if (!node_state(pgdat->node_id, N_MEMORY))
1574 return 0;
1576 seq_printf(m, "Page block order: %d\n", pageblock_order);
1577 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1578 seq_putc(m, '\n');
1579 pagetypeinfo_showfree(m, pgdat);
1580 pagetypeinfo_showblockcount(m, pgdat);
1581 pagetypeinfo_showmixedcount(m, pgdat);
1583 return 0;
1586 static const struct seq_operations fragmentation_op = {
1587 .start = frag_start,
1588 .next = frag_next,
1589 .stop = frag_stop,
1590 .show = frag_show,
1593 static const struct seq_operations pagetypeinfo_op = {
1594 .start = frag_start,
1595 .next = frag_next,
1596 .stop = frag_stop,
1597 .show = pagetypeinfo_show,
1600 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1602 int zid;
1604 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1605 struct zone *compare = &pgdat->node_zones[zid];
1607 if (populated_zone(compare))
1608 return zone == compare;
1611 return false;
1614 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1615 struct zone *zone)
1617 int i;
1618 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1619 if (is_zone_first_populated(pgdat, zone)) {
1620 seq_printf(m, "\n per-node stats");
1621 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1622 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1623 node_page_state_pages(pgdat, i));
1626 seq_printf(m,
1627 "\n pages free %lu"
1628 "\n min %lu"
1629 "\n low %lu"
1630 "\n high %lu"
1631 "\n spanned %lu"
1632 "\n present %lu"
1633 "\n managed %lu",
1634 zone_page_state(zone, NR_FREE_PAGES),
1635 min_wmark_pages(zone),
1636 low_wmark_pages(zone),
1637 high_wmark_pages(zone),
1638 zone->spanned_pages,
1639 zone->present_pages,
1640 zone_managed_pages(zone));
1642 seq_printf(m,
1643 "\n protection: (%ld",
1644 zone->lowmem_reserve[0]);
1645 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1646 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1647 seq_putc(m, ')');
1649 /* If unpopulated, no other information is useful */
1650 if (!populated_zone(zone)) {
1651 seq_putc(m, '\n');
1652 return;
1655 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1656 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1657 zone_page_state(zone, i));
1659 #ifdef CONFIG_NUMA
1660 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1661 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1662 zone_numa_state_snapshot(zone, i));
1663 #endif
1665 seq_printf(m, "\n pagesets");
1666 for_each_online_cpu(i) {
1667 struct per_cpu_pageset *pageset;
1669 pageset = per_cpu_ptr(zone->pageset, i);
1670 seq_printf(m,
1671 "\n cpu: %i"
1672 "\n count: %i"
1673 "\n high: %i"
1674 "\n batch: %i",
1676 pageset->pcp.count,
1677 pageset->pcp.high,
1678 pageset->pcp.batch);
1679 #ifdef CONFIG_SMP
1680 seq_printf(m, "\n vm stats threshold: %d",
1681 pageset->stat_threshold);
1682 #endif
1684 seq_printf(m,
1685 "\n node_unreclaimable: %u"
1686 "\n start_pfn: %lu",
1687 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1688 zone->zone_start_pfn);
1689 seq_putc(m, '\n');
1693 * Output information about zones in @pgdat. All zones are printed regardless
1694 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1695 * set of all zones and userspace would not be aware of such zones if they are
1696 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1698 static int zoneinfo_show(struct seq_file *m, void *arg)
1700 pg_data_t *pgdat = (pg_data_t *)arg;
1701 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1702 return 0;
1705 static const struct seq_operations zoneinfo_op = {
1706 .start = frag_start, /* iterate over all zones. The same as in
1707 * fragmentation. */
1708 .next = frag_next,
1709 .stop = frag_stop,
1710 .show = zoneinfo_show,
1713 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1714 NR_VM_NUMA_STAT_ITEMS + \
1715 NR_VM_NODE_STAT_ITEMS + \
1716 NR_VM_WRITEBACK_STAT_ITEMS + \
1717 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1718 NR_VM_EVENT_ITEMS : 0))
1720 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1722 unsigned long *v;
1723 int i;
1725 if (*pos >= NR_VMSTAT_ITEMS)
1726 return NULL;
1728 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1729 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1730 m->private = v;
1731 if (!v)
1732 return ERR_PTR(-ENOMEM);
1733 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1734 v[i] = global_zone_page_state(i);
1735 v += NR_VM_ZONE_STAT_ITEMS;
1737 #ifdef CONFIG_NUMA
1738 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1739 v[i] = global_numa_state(i);
1740 v += NR_VM_NUMA_STAT_ITEMS;
1741 #endif
1743 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1744 v[i] = global_node_page_state_pages(i);
1745 v += NR_VM_NODE_STAT_ITEMS;
1747 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1748 v + NR_DIRTY_THRESHOLD);
1749 v += NR_VM_WRITEBACK_STAT_ITEMS;
1751 #ifdef CONFIG_VM_EVENT_COUNTERS
1752 all_vm_events(v);
1753 v[PGPGIN] /= 2; /* sectors -> kbytes */
1754 v[PGPGOUT] /= 2;
1755 #endif
1756 return (unsigned long *)m->private + *pos;
1759 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1761 (*pos)++;
1762 if (*pos >= NR_VMSTAT_ITEMS)
1763 return NULL;
1764 return (unsigned long *)m->private + *pos;
1767 static int vmstat_show(struct seq_file *m, void *arg)
1769 unsigned long *l = arg;
1770 unsigned long off = l - (unsigned long *)m->private;
1772 seq_puts(m, vmstat_text[off]);
1773 seq_put_decimal_ull(m, " ", *l);
1774 seq_putc(m, '\n');
1776 if (off == NR_VMSTAT_ITEMS - 1) {
1778 * We've come to the end - add any deprecated counters to avoid
1779 * breaking userspace which might depend on them being present.
1781 seq_puts(m, "nr_unstable 0\n");
1783 return 0;
1786 static void vmstat_stop(struct seq_file *m, void *arg)
1788 kfree(m->private);
1789 m->private = NULL;
1792 static const struct seq_operations vmstat_op = {
1793 .start = vmstat_start,
1794 .next = vmstat_next,
1795 .stop = vmstat_stop,
1796 .show = vmstat_show,
1798 #endif /* CONFIG_PROC_FS */
1800 #ifdef CONFIG_SMP
1801 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1802 int sysctl_stat_interval __read_mostly = HZ;
1804 #ifdef CONFIG_PROC_FS
1805 static void refresh_vm_stats(struct work_struct *work)
1807 refresh_cpu_vm_stats(true);
1810 int vmstat_refresh(struct ctl_table *table, int write,
1811 void *buffer, size_t *lenp, loff_t *ppos)
1813 long val;
1814 int err;
1815 int i;
1818 * The regular update, every sysctl_stat_interval, may come later
1819 * than expected: leaving a significant amount in per_cpu buckets.
1820 * This is particularly misleading when checking a quantity of HUGE
1821 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1822 * which can equally be echo'ed to or cat'ted from (by root),
1823 * can be used to update the stats just before reading them.
1825 * Oh, and since global_zone_page_state() etc. are so careful to hide
1826 * transiently negative values, report an error here if any of
1827 * the stats is negative, so we know to go looking for imbalance.
1829 err = schedule_on_each_cpu(refresh_vm_stats);
1830 if (err)
1831 return err;
1832 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1833 val = atomic_long_read(&vm_zone_stat[i]);
1834 if (val < 0) {
1835 pr_warn("%s: %s %ld\n",
1836 __func__, zone_stat_name(i), val);
1837 err = -EINVAL;
1840 #ifdef CONFIG_NUMA
1841 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1842 val = atomic_long_read(&vm_numa_stat[i]);
1843 if (val < 0) {
1844 pr_warn("%s: %s %ld\n",
1845 __func__, numa_stat_name(i), val);
1846 err = -EINVAL;
1849 #endif
1850 if (err)
1851 return err;
1852 if (write)
1853 *ppos += *lenp;
1854 else
1855 *lenp = 0;
1856 return 0;
1858 #endif /* CONFIG_PROC_FS */
1860 static void vmstat_update(struct work_struct *w)
1862 if (refresh_cpu_vm_stats(true)) {
1864 * Counters were updated so we expect more updates
1865 * to occur in the future. Keep on running the
1866 * update worker thread.
1868 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1869 this_cpu_ptr(&vmstat_work),
1870 round_jiffies_relative(sysctl_stat_interval));
1875 * Switch off vmstat processing and then fold all the remaining differentials
1876 * until the diffs stay at zero. The function is used by NOHZ and can only be
1877 * invoked when tick processing is not active.
1880 * Check if the diffs for a certain cpu indicate that
1881 * an update is needed.
1883 static bool need_update(int cpu)
1885 struct zone *zone;
1887 for_each_populated_zone(zone) {
1888 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1890 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1891 #ifdef CONFIG_NUMA
1892 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1893 #endif
1896 * The fast way of checking if there are any vmstat diffs.
1898 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1899 sizeof(p->vm_stat_diff[0])))
1900 return true;
1901 #ifdef CONFIG_NUMA
1902 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1903 sizeof(p->vm_numa_stat_diff[0])))
1904 return true;
1905 #endif
1907 return false;
1911 * Switch off vmstat processing and then fold all the remaining differentials
1912 * until the diffs stay at zero. The function is used by NOHZ and can only be
1913 * invoked when tick processing is not active.
1915 void quiet_vmstat(void)
1917 if (system_state != SYSTEM_RUNNING)
1918 return;
1920 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1921 return;
1923 if (!need_update(smp_processor_id()))
1924 return;
1927 * Just refresh counters and do not care about the pending delayed
1928 * vmstat_update. It doesn't fire that often to matter and canceling
1929 * it would be too expensive from this path.
1930 * vmstat_shepherd will take care about that for us.
1932 refresh_cpu_vm_stats(false);
1936 * Shepherd worker thread that checks the
1937 * differentials of processors that have their worker
1938 * threads for vm statistics updates disabled because of
1939 * inactivity.
1941 static void vmstat_shepherd(struct work_struct *w);
1943 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1945 static void vmstat_shepherd(struct work_struct *w)
1947 int cpu;
1949 get_online_cpus();
1950 /* Check processors whose vmstat worker threads have been disabled */
1951 for_each_online_cpu(cpu) {
1952 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1954 if (!delayed_work_pending(dw) && need_update(cpu))
1955 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1957 put_online_cpus();
1959 schedule_delayed_work(&shepherd,
1960 round_jiffies_relative(sysctl_stat_interval));
1963 static void __init start_shepherd_timer(void)
1965 int cpu;
1967 for_each_possible_cpu(cpu)
1968 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1969 vmstat_update);
1971 schedule_delayed_work(&shepherd,
1972 round_jiffies_relative(sysctl_stat_interval));
1975 static void __init init_cpu_node_state(void)
1977 int node;
1979 for_each_online_node(node) {
1980 if (cpumask_weight(cpumask_of_node(node)) > 0)
1981 node_set_state(node, N_CPU);
1985 static int vmstat_cpu_online(unsigned int cpu)
1987 refresh_zone_stat_thresholds();
1988 node_set_state(cpu_to_node(cpu), N_CPU);
1989 return 0;
1992 static int vmstat_cpu_down_prep(unsigned int cpu)
1994 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1995 return 0;
1998 static int vmstat_cpu_dead(unsigned int cpu)
2000 const struct cpumask *node_cpus;
2001 int node;
2003 node = cpu_to_node(cpu);
2005 refresh_zone_stat_thresholds();
2006 node_cpus = cpumask_of_node(node);
2007 if (cpumask_weight(node_cpus) > 0)
2008 return 0;
2010 node_clear_state(node, N_CPU);
2011 return 0;
2014 #endif
2016 struct workqueue_struct *mm_percpu_wq;
2018 void __init init_mm_internals(void)
2020 int ret __maybe_unused;
2022 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2024 #ifdef CONFIG_SMP
2025 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2026 NULL, vmstat_cpu_dead);
2027 if (ret < 0)
2028 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2030 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2031 vmstat_cpu_online,
2032 vmstat_cpu_down_prep);
2033 if (ret < 0)
2034 pr_err("vmstat: failed to register 'online' hotplug state\n");
2036 get_online_cpus();
2037 init_cpu_node_state();
2038 put_online_cpus();
2040 start_shepherd_timer();
2041 #endif
2042 #ifdef CONFIG_PROC_FS
2043 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2044 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2045 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2046 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2047 #endif
2050 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2053 * Return an index indicating how much of the available free memory is
2054 * unusable for an allocation of the requested size.
2056 static int unusable_free_index(unsigned int order,
2057 struct contig_page_info *info)
2059 /* No free memory is interpreted as all free memory is unusable */
2060 if (info->free_pages == 0)
2061 return 1000;
2064 * Index should be a value between 0 and 1. Return a value to 3
2065 * decimal places.
2067 * 0 => no fragmentation
2068 * 1 => high fragmentation
2070 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2074 static void unusable_show_print(struct seq_file *m,
2075 pg_data_t *pgdat, struct zone *zone)
2077 unsigned int order;
2078 int index;
2079 struct contig_page_info info;
2081 seq_printf(m, "Node %d, zone %8s ",
2082 pgdat->node_id,
2083 zone->name);
2084 for (order = 0; order < MAX_ORDER; ++order) {
2085 fill_contig_page_info(zone, order, &info);
2086 index = unusable_free_index(order, &info);
2087 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2090 seq_putc(m, '\n');
2094 * Display unusable free space index
2096 * The unusable free space index measures how much of the available free
2097 * memory cannot be used to satisfy an allocation of a given size and is a
2098 * value between 0 and 1. The higher the value, the more of free memory is
2099 * unusable and by implication, the worse the external fragmentation is. This
2100 * can be expressed as a percentage by multiplying by 100.
2102 static int unusable_show(struct seq_file *m, void *arg)
2104 pg_data_t *pgdat = (pg_data_t *)arg;
2106 /* check memoryless node */
2107 if (!node_state(pgdat->node_id, N_MEMORY))
2108 return 0;
2110 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2112 return 0;
2115 static const struct seq_operations unusable_sops = {
2116 .start = frag_start,
2117 .next = frag_next,
2118 .stop = frag_stop,
2119 .show = unusable_show,
2122 DEFINE_SEQ_ATTRIBUTE(unusable);
2124 static void extfrag_show_print(struct seq_file *m,
2125 pg_data_t *pgdat, struct zone *zone)
2127 unsigned int order;
2128 int index;
2130 /* Alloc on stack as interrupts are disabled for zone walk */
2131 struct contig_page_info info;
2133 seq_printf(m, "Node %d, zone %8s ",
2134 pgdat->node_id,
2135 zone->name);
2136 for (order = 0; order < MAX_ORDER; ++order) {
2137 fill_contig_page_info(zone, order, &info);
2138 index = __fragmentation_index(order, &info);
2139 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2142 seq_putc(m, '\n');
2146 * Display fragmentation index for orders that allocations would fail for
2148 static int extfrag_show(struct seq_file *m, void *arg)
2150 pg_data_t *pgdat = (pg_data_t *)arg;
2152 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2154 return 0;
2157 static const struct seq_operations extfrag_sops = {
2158 .start = frag_start,
2159 .next = frag_next,
2160 .stop = frag_stop,
2161 .show = extfrag_show,
2164 DEFINE_SEQ_ATTRIBUTE(extfrag);
2166 static int __init extfrag_debug_init(void)
2168 struct dentry *extfrag_debug_root;
2170 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2172 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2173 &unusable_fops);
2175 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2176 &extfrag_fops);
2178 return 0;
2181 module_init(extfrag_debug_init);
2182 #endif