2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
50 #include "dmaengine.h"
53 #define SDMA_H_C0PTR 0x000
54 #define SDMA_H_INTR 0x004
55 #define SDMA_H_STATSTOP 0x008
56 #define SDMA_H_START 0x00c
57 #define SDMA_H_EVTOVR 0x010
58 #define SDMA_H_DSPOVR 0x014
59 #define SDMA_H_HOSTOVR 0x018
60 #define SDMA_H_EVTPEND 0x01c
61 #define SDMA_H_DSPENBL 0x020
62 #define SDMA_H_RESET 0x024
63 #define SDMA_H_EVTERR 0x028
64 #define SDMA_H_INTRMSK 0x02c
65 #define SDMA_H_PSW 0x030
66 #define SDMA_H_EVTERRDBG 0x034
67 #define SDMA_H_CONFIG 0x038
68 #define SDMA_ONCE_ENB 0x040
69 #define SDMA_ONCE_DATA 0x044
70 #define SDMA_ONCE_INSTR 0x048
71 #define SDMA_ONCE_STAT 0x04c
72 #define SDMA_ONCE_CMD 0x050
73 #define SDMA_EVT_MIRROR 0x054
74 #define SDMA_ILLINSTADDR 0x058
75 #define SDMA_CHN0ADDR 0x05c
76 #define SDMA_ONCE_RTB 0x060
77 #define SDMA_XTRIG_CONF1 0x070
78 #define SDMA_XTRIG_CONF2 0x074
79 #define SDMA_CHNENBL0_IMX35 0x200
80 #define SDMA_CHNENBL0_IMX31 0x080
81 #define SDMA_CHNPRI_0 0x100
84 * Buffer descriptor status values.
95 * Data Node descriptor status values.
97 #define DND_END_OF_FRAME 0x80
98 #define DND_END_OF_XFER 0x40
100 #define DND_UNUSED 0x01
103 * IPCV2 descriptor status values.
105 #define BD_IPCV2_END_OF_FRAME 0x40
107 #define IPCV2_MAX_NODES 50
109 * Error bit set in the CCB status field by the SDMA,
110 * in setbd routine, in case of a transfer error
112 #define DATA_ERROR 0x10000000
115 * Buffer descriptor commands.
120 #define C0_SETCTX 0x07
121 #define C0_GETCTX 0x03
122 #define C0_SETDM 0x01
123 #define C0_SETPM 0x04
124 #define C0_GETDM 0x02
125 #define C0_GETPM 0x08
127 * Change endianness indicator in the BD command field
129 #define CHANGE_ENDIANNESS 0x80
132 * p_2_p watermark_level description
133 * Bits Name Description
134 * 0-7 Lower WML Lower watermark level
135 * 8 PS 1: Pad Swallowing
136 * 0: No Pad Swallowing
139 * 10 SPDIF If this bit is set both source
140 * and destination are on SPBA
141 * 11 Source Bit(SP) 1: Source on SPBA
143 * 12 Destination Bit(DP) 1: Destination on SPBA
144 * 0: Destination on AIPS
145 * 13-15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
182 * Mode/Count of data node descriptors - IPCv2
184 struct sdma_mode_count
{
185 u32 count
: 16; /* size of the buffer pointed by this BD */
186 u32 status
: 8; /* E,R,I,C,W,D status bits stored here */
187 u32 command
: 8; /* command mostly used for channel 0 */
193 struct sdma_buffer_descriptor
{
194 struct sdma_mode_count mode
;
195 u32 buffer_addr
; /* address of the buffer described */
196 u32 ext_buffer_addr
; /* extended buffer address */
197 } __attribute__ ((packed
));
200 * struct sdma_channel_control - Channel control Block
202 * @current_bd_ptr current buffer descriptor processed
203 * @base_bd_ptr first element of buffer descriptor array
204 * @unused padding. The SDMA engine expects an array of 128 byte
207 struct sdma_channel_control
{
211 } __attribute__ ((packed
));
214 * struct sdma_state_registers - SDMA context for a channel
216 * @pc: program counter
217 * @t: test bit: status of arithmetic & test instruction
218 * @rpc: return program counter
219 * @sf: source fault while loading data
220 * @spc: loop start program counter
221 * @df: destination fault while storing data
222 * @epc: loop end program counter
225 struct sdma_state_registers
{
237 } __attribute__ ((packed
));
240 * struct sdma_context_data - sdma context specific to a channel
242 * @channel_state: channel state bits
243 * @gReg: general registers
244 * @mda: burst dma destination address register
245 * @msa: burst dma source address register
246 * @ms: burst dma status register
247 * @md: burst dma data register
248 * @pda: peripheral dma destination address register
249 * @psa: peripheral dma source address register
250 * @ps: peripheral dma status register
251 * @pd: peripheral dma data register
252 * @ca: CRC polynomial register
253 * @cs: CRC accumulator register
254 * @dda: dedicated core destination address register
255 * @dsa: dedicated core source address register
256 * @ds: dedicated core status register
257 * @dd: dedicated core data register
259 struct sdma_context_data
{
260 struct sdma_state_registers channel_state
;
284 } __attribute__ ((packed
));
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
291 * struct sdma_channel - housekeeping for a SDMA channel
293 * @sdma pointer to the SDMA engine for this channel
294 * @channel the channel number, matches dmaengine chan_id + 1
295 * @direction transfer type. Needed for setting SDMA script
296 * @peripheral_type Peripheral type. Needed for setting SDMA script
297 * @event_id0 aka dma request line
298 * @event_id1 for channels that use 2 events
299 * @word_size peripheral access size
300 * @buf_tail ID of the buffer that was processed
301 * @buf_ptail ID of the previous buffer that was processed
302 * @num_bd max NUM_BD. number of descriptors currently handling
304 struct sdma_channel
{
305 struct sdma_engine
*sdma
;
306 unsigned int channel
;
307 enum dma_transfer_direction direction
;
308 enum sdma_peripheral_type peripheral_type
;
309 unsigned int event_id0
;
310 unsigned int event_id1
;
311 enum dma_slave_buswidth word_size
;
312 unsigned int buf_tail
;
313 unsigned int buf_ptail
;
315 unsigned int period_len
;
316 struct sdma_buffer_descriptor
*bd
;
318 unsigned int pc_from_device
, pc_to_device
;
319 unsigned int device_to_device
;
321 dma_addr_t per_address
, per_address2
;
322 unsigned long event_mask
[2];
323 unsigned long watermark_level
;
324 u32 shp_addr
, per_addr
;
325 struct dma_chan chan
;
327 struct dma_async_tx_descriptor desc
;
328 enum dma_status status
;
329 unsigned int chn_count
;
330 unsigned int chn_real_count
;
331 struct tasklet_struct tasklet
;
332 struct imx_dma_data data
;
335 #define IMX_DMA_SG_LOOP BIT(0)
337 #define MAX_DMA_CHANNELS 32
338 #define MXC_SDMA_DEFAULT_PRIORITY 1
339 #define MXC_SDMA_MIN_PRIORITY 1
340 #define MXC_SDMA_MAX_PRIORITY 7
342 #define SDMA_FIRMWARE_MAGIC 0x414d4453
345 * struct sdma_firmware_header - Layout of the firmware image
348 * @version_major increased whenever layout of struct sdma_script_start_addrs
350 * @version_minor firmware minor version (for binary compatible changes)
351 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
352 * @num_script_addrs Number of script addresses in this image
353 * @ram_code_start offset of SDMA ram image in this firmware image
354 * @ram_code_size size of SDMA ram image
355 * @script_addrs Stores the start address of the SDMA scripts
356 * (in SDMA memory space)
358 struct sdma_firmware_header
{
362 u32 script_addrs_start
;
363 u32 num_script_addrs
;
368 struct sdma_driver_data
{
371 struct sdma_script_start_addrs
*script_addrs
;
376 struct device_dma_parameters dma_parms
;
377 struct sdma_channel channel
[MAX_DMA_CHANNELS
];
378 struct sdma_channel_control
*channel_control
;
380 struct sdma_context_data
*context
;
381 dma_addr_t context_phys
;
382 struct dma_device dma_device
;
385 spinlock_t channel_0_lock
;
387 struct sdma_script_start_addrs
*script_addrs
;
388 const struct sdma_driver_data
*drvdata
;
394 static struct sdma_driver_data sdma_imx31
= {
395 .chnenbl0
= SDMA_CHNENBL0_IMX31
,
399 static struct sdma_script_start_addrs sdma_script_imx25
= {
401 .uart_2_mcu_addr
= 904,
402 .per_2_app_addr
= 1255,
403 .mcu_2_app_addr
= 834,
404 .uartsh_2_mcu_addr
= 1120,
405 .per_2_shp_addr
= 1329,
406 .mcu_2_shp_addr
= 1048,
407 .ata_2_mcu_addr
= 1560,
408 .mcu_2_ata_addr
= 1479,
409 .app_2_per_addr
= 1189,
410 .app_2_mcu_addr
= 770,
411 .shp_2_per_addr
= 1407,
412 .shp_2_mcu_addr
= 979,
415 static struct sdma_driver_data sdma_imx25
= {
416 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
418 .script_addrs
= &sdma_script_imx25
,
421 static struct sdma_driver_data sdma_imx35
= {
422 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
426 static struct sdma_script_start_addrs sdma_script_imx51
= {
428 .uart_2_mcu_addr
= 817,
429 .mcu_2_app_addr
= 747,
430 .mcu_2_shp_addr
= 961,
431 .ata_2_mcu_addr
= 1473,
432 .mcu_2_ata_addr
= 1392,
433 .app_2_per_addr
= 1033,
434 .app_2_mcu_addr
= 683,
435 .shp_2_per_addr
= 1251,
436 .shp_2_mcu_addr
= 892,
439 static struct sdma_driver_data sdma_imx51
= {
440 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
442 .script_addrs
= &sdma_script_imx51
,
445 static struct sdma_script_start_addrs sdma_script_imx53
= {
447 .app_2_mcu_addr
= 683,
448 .mcu_2_app_addr
= 747,
449 .uart_2_mcu_addr
= 817,
450 .shp_2_mcu_addr
= 891,
451 .mcu_2_shp_addr
= 960,
452 .uartsh_2_mcu_addr
= 1032,
453 .spdif_2_mcu_addr
= 1100,
454 .mcu_2_spdif_addr
= 1134,
455 .firi_2_mcu_addr
= 1193,
456 .mcu_2_firi_addr
= 1290,
459 static struct sdma_driver_data sdma_imx53
= {
460 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
462 .script_addrs
= &sdma_script_imx53
,
465 static struct sdma_script_start_addrs sdma_script_imx6q
= {
467 .uart_2_mcu_addr
= 817,
468 .mcu_2_app_addr
= 747,
469 .per_2_per_addr
= 6331,
470 .uartsh_2_mcu_addr
= 1032,
471 .mcu_2_shp_addr
= 960,
472 .app_2_mcu_addr
= 683,
473 .shp_2_mcu_addr
= 891,
474 .spdif_2_mcu_addr
= 1100,
475 .mcu_2_spdif_addr
= 1134,
478 static struct sdma_driver_data sdma_imx6q
= {
479 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
481 .script_addrs
= &sdma_script_imx6q
,
484 static struct sdma_script_start_addrs sdma_script_imx7d
= {
486 .uart_2_mcu_addr
= 819,
487 .mcu_2_app_addr
= 749,
488 .uartsh_2_mcu_addr
= 1034,
489 .mcu_2_shp_addr
= 962,
490 .app_2_mcu_addr
= 685,
491 .shp_2_mcu_addr
= 893,
492 .spdif_2_mcu_addr
= 1102,
493 .mcu_2_spdif_addr
= 1136,
496 static struct sdma_driver_data sdma_imx7d
= {
497 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
499 .script_addrs
= &sdma_script_imx7d
,
502 static const struct platform_device_id sdma_devtypes
[] = {
504 .name
= "imx25-sdma",
505 .driver_data
= (unsigned long)&sdma_imx25
,
507 .name
= "imx31-sdma",
508 .driver_data
= (unsigned long)&sdma_imx31
,
510 .name
= "imx35-sdma",
511 .driver_data
= (unsigned long)&sdma_imx35
,
513 .name
= "imx51-sdma",
514 .driver_data
= (unsigned long)&sdma_imx51
,
516 .name
= "imx53-sdma",
517 .driver_data
= (unsigned long)&sdma_imx53
,
519 .name
= "imx6q-sdma",
520 .driver_data
= (unsigned long)&sdma_imx6q
,
522 .name
= "imx7d-sdma",
523 .driver_data
= (unsigned long)&sdma_imx7d
,
528 MODULE_DEVICE_TABLE(platform
, sdma_devtypes
);
530 static const struct of_device_id sdma_dt_ids
[] = {
531 { .compatible
= "fsl,imx6q-sdma", .data
= &sdma_imx6q
, },
532 { .compatible
= "fsl,imx53-sdma", .data
= &sdma_imx53
, },
533 { .compatible
= "fsl,imx51-sdma", .data
= &sdma_imx51
, },
534 { .compatible
= "fsl,imx35-sdma", .data
= &sdma_imx35
, },
535 { .compatible
= "fsl,imx31-sdma", .data
= &sdma_imx31
, },
536 { .compatible
= "fsl,imx25-sdma", .data
= &sdma_imx25
, },
537 { .compatible
= "fsl,imx7d-sdma", .data
= &sdma_imx7d
, },
540 MODULE_DEVICE_TABLE(of
, sdma_dt_ids
);
542 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
543 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
544 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
545 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
547 static inline u32
chnenbl_ofs(struct sdma_engine
*sdma
, unsigned int event
)
549 u32 chnenbl0
= sdma
->drvdata
->chnenbl0
;
550 return chnenbl0
+ event
* 4;
553 static int sdma_config_ownership(struct sdma_channel
*sdmac
,
554 bool event_override
, bool mcu_override
, bool dsp_override
)
556 struct sdma_engine
*sdma
= sdmac
->sdma
;
557 int channel
= sdmac
->channel
;
558 unsigned long evt
, mcu
, dsp
;
560 if (event_override
&& mcu_override
&& dsp_override
)
563 evt
= readl_relaxed(sdma
->regs
+ SDMA_H_EVTOVR
);
564 mcu
= readl_relaxed(sdma
->regs
+ SDMA_H_HOSTOVR
);
565 dsp
= readl_relaxed(sdma
->regs
+ SDMA_H_DSPOVR
);
568 __clear_bit(channel
, &dsp
);
570 __set_bit(channel
, &dsp
);
573 __clear_bit(channel
, &evt
);
575 __set_bit(channel
, &evt
);
578 __clear_bit(channel
, &mcu
);
580 __set_bit(channel
, &mcu
);
582 writel_relaxed(evt
, sdma
->regs
+ SDMA_H_EVTOVR
);
583 writel_relaxed(mcu
, sdma
->regs
+ SDMA_H_HOSTOVR
);
584 writel_relaxed(dsp
, sdma
->regs
+ SDMA_H_DSPOVR
);
589 static void sdma_enable_channel(struct sdma_engine
*sdma
, int channel
)
591 writel(BIT(channel
), sdma
->regs
+ SDMA_H_START
);
595 * sdma_run_channel0 - run a channel and wait till it's done
597 static int sdma_run_channel0(struct sdma_engine
*sdma
)
602 sdma_enable_channel(sdma
, 0);
604 ret
= readl_relaxed_poll_timeout_atomic(sdma
->regs
+ SDMA_H_STATSTOP
,
605 reg
, !(reg
& 1), 1, 500);
607 dev_err(sdma
->dev
, "Timeout waiting for CH0 ready\n");
609 /* Set bits of CONFIG register with dynamic context switching */
610 if (readl(sdma
->regs
+ SDMA_H_CONFIG
) == 0)
611 writel_relaxed(SDMA_H_CONFIG_CSM
, sdma
->regs
+ SDMA_H_CONFIG
);
616 static int sdma_load_script(struct sdma_engine
*sdma
, void *buf
, int size
,
619 struct sdma_buffer_descriptor
*bd0
= sdma
->channel
[0].bd
;
625 buf_virt
= dma_alloc_coherent(NULL
,
627 &buf_phys
, GFP_KERNEL
);
632 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
634 bd0
->mode
.command
= C0_SETPM
;
635 bd0
->mode
.status
= BD_DONE
| BD_WRAP
| BD_EXTD
;
636 bd0
->mode
.count
= size
/ 2;
637 bd0
->buffer_addr
= buf_phys
;
638 bd0
->ext_buffer_addr
= address
;
640 memcpy(buf_virt
, buf
, size
);
642 ret
= sdma_run_channel0(sdma
);
644 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
646 dma_free_coherent(NULL
, size
, buf_virt
, buf_phys
);
651 static void sdma_event_enable(struct sdma_channel
*sdmac
, unsigned int event
)
653 struct sdma_engine
*sdma
= sdmac
->sdma
;
654 int channel
= sdmac
->channel
;
656 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
658 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
659 __set_bit(channel
, &val
);
660 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
663 static void sdma_event_disable(struct sdma_channel
*sdmac
, unsigned int event
)
665 struct sdma_engine
*sdma
= sdmac
->sdma
;
666 int channel
= sdmac
->channel
;
667 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
670 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
671 __clear_bit(channel
, &val
);
672 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
675 static void sdma_update_channel_loop(struct sdma_channel
*sdmac
)
677 struct sdma_buffer_descriptor
*bd
;
679 enum dma_status old_status
= sdmac
->status
;
682 * loop mode. Iterate over descriptors, re-setup them and
683 * call callback function.
686 bd
= &sdmac
->bd
[sdmac
->buf_tail
];
688 if (bd
->mode
.status
& BD_DONE
)
691 if (bd
->mode
.status
& BD_RROR
) {
692 bd
->mode
.status
&= ~BD_RROR
;
693 sdmac
->status
= DMA_ERROR
;
698 * We use bd->mode.count to calculate the residue, since contains
699 * the number of bytes present in the current buffer descriptor.
702 sdmac
->chn_real_count
= bd
->mode
.count
;
703 bd
->mode
.status
|= BD_DONE
;
704 bd
->mode
.count
= sdmac
->period_len
;
705 sdmac
->buf_ptail
= sdmac
->buf_tail
;
706 sdmac
->buf_tail
= (sdmac
->buf_tail
+ 1) % sdmac
->num_bd
;
709 * The callback is called from the interrupt context in order
710 * to reduce latency and to avoid the risk of altering the
711 * SDMA transaction status by the time the client tasklet is
715 dmaengine_desc_get_callback_invoke(&sdmac
->desc
, NULL
);
718 sdmac
->status
= old_status
;
722 static void mxc_sdma_handle_channel_normal(unsigned long data
)
724 struct sdma_channel
*sdmac
= (struct sdma_channel
*) data
;
725 struct sdma_buffer_descriptor
*bd
;
728 sdmac
->chn_real_count
= 0;
730 * non loop mode. Iterate over all descriptors, collect
731 * errors and call callback function
733 for (i
= 0; i
< sdmac
->num_bd
; i
++) {
736 if (bd
->mode
.status
& (BD_DONE
| BD_RROR
))
738 sdmac
->chn_real_count
+= bd
->mode
.count
;
742 sdmac
->status
= DMA_ERROR
;
744 sdmac
->status
= DMA_COMPLETE
;
746 dma_cookie_complete(&sdmac
->desc
);
748 dmaengine_desc_get_callback_invoke(&sdmac
->desc
, NULL
);
751 static irqreturn_t
sdma_int_handler(int irq
, void *dev_id
)
753 struct sdma_engine
*sdma
= dev_id
;
756 stat
= readl_relaxed(sdma
->regs
+ SDMA_H_INTR
);
757 writel_relaxed(stat
, sdma
->regs
+ SDMA_H_INTR
);
758 /* channel 0 is special and not handled here, see run_channel0() */
762 int channel
= fls(stat
) - 1;
763 struct sdma_channel
*sdmac
= &sdma
->channel
[channel
];
765 if (sdmac
->flags
& IMX_DMA_SG_LOOP
)
766 sdma_update_channel_loop(sdmac
);
768 tasklet_schedule(&sdmac
->tasklet
);
770 __clear_bit(channel
, &stat
);
777 * sets the pc of SDMA script according to the peripheral type
779 static void sdma_get_pc(struct sdma_channel
*sdmac
,
780 enum sdma_peripheral_type peripheral_type
)
782 struct sdma_engine
*sdma
= sdmac
->sdma
;
783 int per_2_emi
= 0, emi_2_per
= 0;
785 * These are needed once we start to support transfers between
786 * two peripherals or memory-to-memory transfers
790 sdmac
->pc_from_device
= 0;
791 sdmac
->pc_to_device
= 0;
792 sdmac
->device_to_device
= 0;
794 switch (peripheral_type
) {
795 case IMX_DMATYPE_MEMORY
:
797 case IMX_DMATYPE_DSP
:
798 emi_2_per
= sdma
->script_addrs
->bp_2_ap_addr
;
799 per_2_emi
= sdma
->script_addrs
->ap_2_bp_addr
;
801 case IMX_DMATYPE_FIRI
:
802 per_2_emi
= sdma
->script_addrs
->firi_2_mcu_addr
;
803 emi_2_per
= sdma
->script_addrs
->mcu_2_firi_addr
;
805 case IMX_DMATYPE_UART
:
806 per_2_emi
= sdma
->script_addrs
->uart_2_mcu_addr
;
807 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
809 case IMX_DMATYPE_UART_SP
:
810 per_2_emi
= sdma
->script_addrs
->uartsh_2_mcu_addr
;
811 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
813 case IMX_DMATYPE_ATA
:
814 per_2_emi
= sdma
->script_addrs
->ata_2_mcu_addr
;
815 emi_2_per
= sdma
->script_addrs
->mcu_2_ata_addr
;
817 case IMX_DMATYPE_CSPI
:
818 case IMX_DMATYPE_EXT
:
819 case IMX_DMATYPE_SSI
:
820 case IMX_DMATYPE_SAI
:
821 per_2_emi
= sdma
->script_addrs
->app_2_mcu_addr
;
822 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
824 case IMX_DMATYPE_SSI_DUAL
:
825 per_2_emi
= sdma
->script_addrs
->ssish_2_mcu_addr
;
826 emi_2_per
= sdma
->script_addrs
->mcu_2_ssish_addr
;
828 case IMX_DMATYPE_SSI_SP
:
829 case IMX_DMATYPE_MMC
:
830 case IMX_DMATYPE_SDHC
:
831 case IMX_DMATYPE_CSPI_SP
:
832 case IMX_DMATYPE_ESAI
:
833 case IMX_DMATYPE_MSHC_SP
:
834 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
835 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
837 case IMX_DMATYPE_ASRC
:
838 per_2_emi
= sdma
->script_addrs
->asrc_2_mcu_addr
;
839 emi_2_per
= sdma
->script_addrs
->asrc_2_mcu_addr
;
840 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
842 case IMX_DMATYPE_ASRC_SP
:
843 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
844 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
845 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
847 case IMX_DMATYPE_MSHC
:
848 per_2_emi
= sdma
->script_addrs
->mshc_2_mcu_addr
;
849 emi_2_per
= sdma
->script_addrs
->mcu_2_mshc_addr
;
851 case IMX_DMATYPE_CCM
:
852 per_2_emi
= sdma
->script_addrs
->dptc_dvfs_addr
;
854 case IMX_DMATYPE_SPDIF
:
855 per_2_emi
= sdma
->script_addrs
->spdif_2_mcu_addr
;
856 emi_2_per
= sdma
->script_addrs
->mcu_2_spdif_addr
;
858 case IMX_DMATYPE_IPU_MEMORY
:
859 emi_2_per
= sdma
->script_addrs
->ext_mem_2_ipu_addr
;
865 sdmac
->pc_from_device
= per_2_emi
;
866 sdmac
->pc_to_device
= emi_2_per
;
867 sdmac
->device_to_device
= per_2_per
;
870 static int sdma_load_context(struct sdma_channel
*sdmac
)
872 struct sdma_engine
*sdma
= sdmac
->sdma
;
873 int channel
= sdmac
->channel
;
875 struct sdma_context_data
*context
= sdma
->context
;
876 struct sdma_buffer_descriptor
*bd0
= sdma
->channel
[0].bd
;
880 if (sdmac
->direction
== DMA_DEV_TO_MEM
)
881 load_address
= sdmac
->pc_from_device
;
882 else if (sdmac
->direction
== DMA_DEV_TO_DEV
)
883 load_address
= sdmac
->device_to_device
;
885 load_address
= sdmac
->pc_to_device
;
887 if (load_address
< 0)
890 dev_dbg(sdma
->dev
, "load_address = %d\n", load_address
);
891 dev_dbg(sdma
->dev
, "wml = 0x%08x\n", (u32
)sdmac
->watermark_level
);
892 dev_dbg(sdma
->dev
, "shp_addr = 0x%08x\n", sdmac
->shp_addr
);
893 dev_dbg(sdma
->dev
, "per_addr = 0x%08x\n", sdmac
->per_addr
);
894 dev_dbg(sdma
->dev
, "event_mask0 = 0x%08x\n", (u32
)sdmac
->event_mask
[0]);
895 dev_dbg(sdma
->dev
, "event_mask1 = 0x%08x\n", (u32
)sdmac
->event_mask
[1]);
897 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
899 memset(context
, 0, sizeof(*context
));
900 context
->channel_state
.pc
= load_address
;
902 /* Send by context the event mask,base address for peripheral
903 * and watermark level
905 context
->gReg
[0] = sdmac
->event_mask
[1];
906 context
->gReg
[1] = sdmac
->event_mask
[0];
907 context
->gReg
[2] = sdmac
->per_addr
;
908 context
->gReg
[6] = sdmac
->shp_addr
;
909 context
->gReg
[7] = sdmac
->watermark_level
;
911 bd0
->mode
.command
= C0_SETDM
;
912 bd0
->mode
.status
= BD_DONE
| BD_WRAP
| BD_EXTD
;
913 bd0
->mode
.count
= sizeof(*context
) / 4;
914 bd0
->buffer_addr
= sdma
->context_phys
;
915 bd0
->ext_buffer_addr
= 2048 + (sizeof(*context
) / 4) * channel
;
916 ret
= sdma_run_channel0(sdma
);
918 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
923 static struct sdma_channel
*to_sdma_chan(struct dma_chan
*chan
)
925 return container_of(chan
, struct sdma_channel
, chan
);
928 static int sdma_disable_channel(struct dma_chan
*chan
)
930 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
931 struct sdma_engine
*sdma
= sdmac
->sdma
;
932 int channel
= sdmac
->channel
;
934 writel_relaxed(BIT(channel
), sdma
->regs
+ SDMA_H_STATSTOP
);
935 sdmac
->status
= DMA_ERROR
;
940 static int sdma_disable_channel_with_delay(struct dma_chan
*chan
)
942 sdma_disable_channel(chan
);
945 * According to NXP R&D team a delay of one BD SDMA cost time
946 * (maximum is 1ms) should be added after disable of the channel
947 * bit, to ensure SDMA core has really been stopped after SDMA
948 * clients call .device_terminate_all.
955 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel
*sdmac
)
957 struct sdma_engine
*sdma
= sdmac
->sdma
;
959 int lwml
= sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_LWML
;
960 int hwml
= (sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_HWML
) >> 16;
962 set_bit(sdmac
->event_id0
% 32, &sdmac
->event_mask
[1]);
963 set_bit(sdmac
->event_id1
% 32, &sdmac
->event_mask
[0]);
965 if (sdmac
->event_id0
> 31)
966 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_LWE
;
968 if (sdmac
->event_id1
> 31)
969 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_HWE
;
972 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
973 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
974 * r0(event_mask[1]) and r1(event_mask[0]).
977 sdmac
->watermark_level
&= ~(SDMA_WATERMARK_LEVEL_LWML
|
978 SDMA_WATERMARK_LEVEL_HWML
);
979 sdmac
->watermark_level
|= hwml
;
980 sdmac
->watermark_level
|= lwml
<< 16;
981 swap(sdmac
->event_mask
[0], sdmac
->event_mask
[1]);
984 if (sdmac
->per_address2
>= sdma
->spba_start_addr
&&
985 sdmac
->per_address2
<= sdma
->spba_end_addr
)
986 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_SP
;
988 if (sdmac
->per_address
>= sdma
->spba_start_addr
&&
989 sdmac
->per_address
<= sdma
->spba_end_addr
)
990 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_DP
;
992 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_CONT
;
995 static int sdma_config_channel(struct dma_chan
*chan
)
997 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1000 sdma_disable_channel(chan
);
1002 sdmac
->event_mask
[0] = 0;
1003 sdmac
->event_mask
[1] = 0;
1004 sdmac
->shp_addr
= 0;
1005 sdmac
->per_addr
= 0;
1007 if (sdmac
->event_id0
) {
1008 if (sdmac
->event_id0
>= sdmac
->sdma
->drvdata
->num_events
)
1010 sdma_event_enable(sdmac
, sdmac
->event_id0
);
1013 if (sdmac
->event_id1
) {
1014 if (sdmac
->event_id1
>= sdmac
->sdma
->drvdata
->num_events
)
1016 sdma_event_enable(sdmac
, sdmac
->event_id1
);
1019 switch (sdmac
->peripheral_type
) {
1020 case IMX_DMATYPE_DSP
:
1021 sdma_config_ownership(sdmac
, false, true, true);
1023 case IMX_DMATYPE_MEMORY
:
1024 sdma_config_ownership(sdmac
, false, true, false);
1027 sdma_config_ownership(sdmac
, true, true, false);
1031 sdma_get_pc(sdmac
, sdmac
->peripheral_type
);
1033 if ((sdmac
->peripheral_type
!= IMX_DMATYPE_MEMORY
) &&
1034 (sdmac
->peripheral_type
!= IMX_DMATYPE_DSP
)) {
1035 /* Handle multiple event channels differently */
1036 if (sdmac
->event_id1
) {
1037 if (sdmac
->peripheral_type
== IMX_DMATYPE_ASRC_SP
||
1038 sdmac
->peripheral_type
== IMX_DMATYPE_ASRC
)
1039 sdma_set_watermarklevel_for_p2p(sdmac
);
1041 __set_bit(sdmac
->event_id0
, sdmac
->event_mask
);
1044 sdmac
->shp_addr
= sdmac
->per_address
;
1045 sdmac
->per_addr
= sdmac
->per_address2
;
1047 sdmac
->watermark_level
= 0; /* FIXME: M3_BASE_ADDRESS */
1050 ret
= sdma_load_context(sdmac
);
1055 static int sdma_set_channel_priority(struct sdma_channel
*sdmac
,
1056 unsigned int priority
)
1058 struct sdma_engine
*sdma
= sdmac
->sdma
;
1059 int channel
= sdmac
->channel
;
1061 if (priority
< MXC_SDMA_MIN_PRIORITY
1062 || priority
> MXC_SDMA_MAX_PRIORITY
) {
1066 writel_relaxed(priority
, sdma
->regs
+ SDMA_CHNPRI_0
+ 4 * channel
);
1071 static int sdma_request_channel(struct sdma_channel
*sdmac
)
1073 struct sdma_engine
*sdma
= sdmac
->sdma
;
1074 int channel
= sdmac
->channel
;
1077 sdmac
->bd
= dma_zalloc_coherent(NULL
, PAGE_SIZE
, &sdmac
->bd_phys
,
1084 sdma
->channel_control
[channel
].base_bd_ptr
= sdmac
->bd_phys
;
1085 sdma
->channel_control
[channel
].current_bd_ptr
= sdmac
->bd_phys
;
1087 sdma_set_channel_priority(sdmac
, MXC_SDMA_DEFAULT_PRIORITY
);
1094 static dma_cookie_t
sdma_tx_submit(struct dma_async_tx_descriptor
*tx
)
1096 unsigned long flags
;
1097 struct sdma_channel
*sdmac
= to_sdma_chan(tx
->chan
);
1098 dma_cookie_t cookie
;
1100 spin_lock_irqsave(&sdmac
->lock
, flags
);
1102 cookie
= dma_cookie_assign(tx
);
1104 spin_unlock_irqrestore(&sdmac
->lock
, flags
);
1109 static int sdma_alloc_chan_resources(struct dma_chan
*chan
)
1111 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1112 struct imx_dma_data
*data
= chan
->private;
1118 switch (data
->priority
) {
1122 case DMA_PRIO_MEDIUM
:
1131 sdmac
->peripheral_type
= data
->peripheral_type
;
1132 sdmac
->event_id0
= data
->dma_request
;
1133 sdmac
->event_id1
= data
->dma_request2
;
1135 ret
= clk_enable(sdmac
->sdma
->clk_ipg
);
1138 ret
= clk_enable(sdmac
->sdma
->clk_ahb
);
1140 goto disable_clk_ipg
;
1142 ret
= sdma_request_channel(sdmac
);
1144 goto disable_clk_ahb
;
1146 ret
= sdma_set_channel_priority(sdmac
, prio
);
1148 goto disable_clk_ahb
;
1150 dma_async_tx_descriptor_init(&sdmac
->desc
, chan
);
1151 sdmac
->desc
.tx_submit
= sdma_tx_submit
;
1152 /* txd.flags will be overwritten in prep funcs */
1153 sdmac
->desc
.flags
= DMA_CTRL_ACK
;
1158 clk_disable(sdmac
->sdma
->clk_ahb
);
1160 clk_disable(sdmac
->sdma
->clk_ipg
);
1164 static void sdma_free_chan_resources(struct dma_chan
*chan
)
1166 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1167 struct sdma_engine
*sdma
= sdmac
->sdma
;
1169 sdma_disable_channel(chan
);
1171 if (sdmac
->event_id0
)
1172 sdma_event_disable(sdmac
, sdmac
->event_id0
);
1173 if (sdmac
->event_id1
)
1174 sdma_event_disable(sdmac
, sdmac
->event_id1
);
1176 sdmac
->event_id0
= 0;
1177 sdmac
->event_id1
= 0;
1179 sdma_set_channel_priority(sdmac
, 0);
1181 dma_free_coherent(NULL
, PAGE_SIZE
, sdmac
->bd
, sdmac
->bd_phys
);
1183 clk_disable(sdma
->clk_ipg
);
1184 clk_disable(sdma
->clk_ahb
);
1187 static struct dma_async_tx_descriptor
*sdma_prep_slave_sg(
1188 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1189 unsigned int sg_len
, enum dma_transfer_direction direction
,
1190 unsigned long flags
, void *context
)
1192 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1193 struct sdma_engine
*sdma
= sdmac
->sdma
;
1195 int channel
= sdmac
->channel
;
1196 struct scatterlist
*sg
;
1198 if (sdmac
->status
== DMA_IN_PROGRESS
)
1200 sdmac
->status
= DMA_IN_PROGRESS
;
1204 sdmac
->buf_tail
= 0;
1205 sdmac
->buf_ptail
= 0;
1206 sdmac
->chn_real_count
= 0;
1208 dev_dbg(sdma
->dev
, "setting up %d entries for channel %d.\n",
1211 sdmac
->direction
= direction
;
1212 ret
= sdma_load_context(sdmac
);
1216 if (sg_len
> NUM_BD
) {
1217 dev_err(sdma
->dev
, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1218 channel
, sg_len
, NUM_BD
);
1223 sdmac
->chn_count
= 0;
1224 for_each_sg(sgl
, sg
, sg_len
, i
) {
1225 struct sdma_buffer_descriptor
*bd
= &sdmac
->bd
[i
];
1228 bd
->buffer_addr
= sg
->dma_address
;
1230 count
= sg_dma_len(sg
);
1232 if (count
> 0xffff) {
1233 dev_err(sdma
->dev
, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1234 channel
, count
, 0xffff);
1239 bd
->mode
.count
= count
;
1240 sdmac
->chn_count
+= count
;
1242 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
) {
1247 switch (sdmac
->word_size
) {
1248 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1249 bd
->mode
.command
= 0;
1250 if (count
& 3 || sg
->dma_address
& 3)
1253 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1254 bd
->mode
.command
= 2;
1255 if (count
& 1 || sg
->dma_address
& 1)
1258 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1259 bd
->mode
.command
= 1;
1265 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1267 if (i
+ 1 == sg_len
) {
1273 dev_dbg(sdma
->dev
, "entry %d: count: %d dma: %#llx %s%s\n",
1274 i
, count
, (u64
)sg
->dma_address
,
1275 param
& BD_WRAP
? "wrap" : "",
1276 param
& BD_INTR
? " intr" : "");
1278 bd
->mode
.status
= param
;
1281 sdmac
->num_bd
= sg_len
;
1282 sdma
->channel_control
[channel
].current_bd_ptr
= sdmac
->bd_phys
;
1284 return &sdmac
->desc
;
1286 sdmac
->status
= DMA_ERROR
;
1290 static struct dma_async_tx_descriptor
*sdma_prep_dma_cyclic(
1291 struct dma_chan
*chan
, dma_addr_t dma_addr
, size_t buf_len
,
1292 size_t period_len
, enum dma_transfer_direction direction
,
1293 unsigned long flags
)
1295 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1296 struct sdma_engine
*sdma
= sdmac
->sdma
;
1297 int num_periods
= buf_len
/ period_len
;
1298 int channel
= sdmac
->channel
;
1299 int ret
, i
= 0, buf
= 0;
1301 dev_dbg(sdma
->dev
, "%s channel: %d\n", __func__
, channel
);
1303 if (sdmac
->status
== DMA_IN_PROGRESS
)
1306 sdmac
->status
= DMA_IN_PROGRESS
;
1308 sdmac
->buf_tail
= 0;
1309 sdmac
->buf_ptail
= 0;
1310 sdmac
->chn_real_count
= 0;
1311 sdmac
->period_len
= period_len
;
1313 sdmac
->flags
|= IMX_DMA_SG_LOOP
;
1314 sdmac
->direction
= direction
;
1315 ret
= sdma_load_context(sdmac
);
1319 if (num_periods
> NUM_BD
) {
1320 dev_err(sdma
->dev
, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1321 channel
, num_periods
, NUM_BD
);
1325 if (period_len
> 0xffff) {
1326 dev_err(sdma
->dev
, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1327 channel
, period_len
, 0xffff);
1331 while (buf
< buf_len
) {
1332 struct sdma_buffer_descriptor
*bd
= &sdmac
->bd
[i
];
1335 bd
->buffer_addr
= dma_addr
;
1337 bd
->mode
.count
= period_len
;
1339 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1341 if (sdmac
->word_size
== DMA_SLAVE_BUSWIDTH_4_BYTES
)
1342 bd
->mode
.command
= 0;
1344 bd
->mode
.command
= sdmac
->word_size
;
1346 param
= BD_DONE
| BD_EXTD
| BD_CONT
| BD_INTR
;
1347 if (i
+ 1 == num_periods
)
1350 dev_dbg(sdma
->dev
, "entry %d: count: %d dma: %#llx %s%s\n",
1351 i
, period_len
, (u64
)dma_addr
,
1352 param
& BD_WRAP
? "wrap" : "",
1353 param
& BD_INTR
? " intr" : "");
1355 bd
->mode
.status
= param
;
1357 dma_addr
+= period_len
;
1363 sdmac
->num_bd
= num_periods
;
1364 sdma
->channel_control
[channel
].current_bd_ptr
= sdmac
->bd_phys
;
1366 return &sdmac
->desc
;
1368 sdmac
->status
= DMA_ERROR
;
1372 static int sdma_config(struct dma_chan
*chan
,
1373 struct dma_slave_config
*dmaengine_cfg
)
1375 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1377 if (dmaengine_cfg
->direction
== DMA_DEV_TO_MEM
) {
1378 sdmac
->per_address
= dmaengine_cfg
->src_addr
;
1379 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
*
1380 dmaengine_cfg
->src_addr_width
;
1381 sdmac
->word_size
= dmaengine_cfg
->src_addr_width
;
1382 } else if (dmaengine_cfg
->direction
== DMA_DEV_TO_DEV
) {
1383 sdmac
->per_address2
= dmaengine_cfg
->src_addr
;
1384 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1385 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
&
1386 SDMA_WATERMARK_LEVEL_LWML
;
1387 sdmac
->watermark_level
|= (dmaengine_cfg
->dst_maxburst
<< 16) &
1388 SDMA_WATERMARK_LEVEL_HWML
;
1389 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1391 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1392 sdmac
->watermark_level
= dmaengine_cfg
->dst_maxburst
*
1393 dmaengine_cfg
->dst_addr_width
;
1394 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1396 sdmac
->direction
= dmaengine_cfg
->direction
;
1397 return sdma_config_channel(chan
);
1400 static enum dma_status
sdma_tx_status(struct dma_chan
*chan
,
1401 dma_cookie_t cookie
,
1402 struct dma_tx_state
*txstate
)
1404 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1407 if (sdmac
->flags
& IMX_DMA_SG_LOOP
)
1408 residue
= (sdmac
->num_bd
- sdmac
->buf_ptail
) *
1409 sdmac
->period_len
- sdmac
->chn_real_count
;
1411 residue
= sdmac
->chn_count
- sdmac
->chn_real_count
;
1413 dma_set_tx_state(txstate
, chan
->completed_cookie
, chan
->cookie
,
1416 return sdmac
->status
;
1419 static void sdma_issue_pending(struct dma_chan
*chan
)
1421 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1422 struct sdma_engine
*sdma
= sdmac
->sdma
;
1424 if (sdmac
->status
== DMA_IN_PROGRESS
)
1425 sdma_enable_channel(sdma
, sdmac
->channel
);
1428 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1429 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1430 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1431 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1433 static void sdma_add_scripts(struct sdma_engine
*sdma
,
1434 const struct sdma_script_start_addrs
*addr
)
1436 s32
*addr_arr
= (u32
*)addr
;
1437 s32
*saddr_arr
= (u32
*)sdma
->script_addrs
;
1440 /* use the default firmware in ROM if missing external firmware */
1441 if (!sdma
->script_number
)
1442 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1444 for (i
= 0; i
< sdma
->script_number
; i
++)
1445 if (addr_arr
[i
] > 0)
1446 saddr_arr
[i
] = addr_arr
[i
];
1449 static void sdma_load_firmware(const struct firmware
*fw
, void *context
)
1451 struct sdma_engine
*sdma
= context
;
1452 const struct sdma_firmware_header
*header
;
1453 const struct sdma_script_start_addrs
*addr
;
1454 unsigned short *ram_code
;
1457 dev_info(sdma
->dev
, "external firmware not found, using ROM firmware\n");
1458 /* In this case we just use the ROM firmware. */
1462 if (fw
->size
< sizeof(*header
))
1465 header
= (struct sdma_firmware_header
*)fw
->data
;
1467 if (header
->magic
!= SDMA_FIRMWARE_MAGIC
)
1469 if (header
->ram_code_start
+ header
->ram_code_size
> fw
->size
)
1471 switch (header
->version_major
) {
1473 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1476 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2
;
1479 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3
;
1482 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4
;
1485 dev_err(sdma
->dev
, "unknown firmware version\n");
1489 addr
= (void *)header
+ header
->script_addrs_start
;
1490 ram_code
= (void *)header
+ header
->ram_code_start
;
1492 clk_enable(sdma
->clk_ipg
);
1493 clk_enable(sdma
->clk_ahb
);
1494 /* download the RAM image for SDMA */
1495 sdma_load_script(sdma
, ram_code
,
1496 header
->ram_code_size
,
1497 addr
->ram_code_start_addr
);
1498 clk_disable(sdma
->clk_ipg
);
1499 clk_disable(sdma
->clk_ahb
);
1501 sdma_add_scripts(sdma
, addr
);
1503 dev_info(sdma
->dev
, "loaded firmware %d.%d\n",
1504 header
->version_major
,
1505 header
->version_minor
);
1508 release_firmware(fw
);
1511 #define EVENT_REMAP_CELLS 3
1513 static int sdma_event_remap(struct sdma_engine
*sdma
)
1515 struct device_node
*np
= sdma
->dev
->of_node
;
1516 struct device_node
*gpr_np
= of_parse_phandle(np
, "gpr", 0);
1517 struct property
*event_remap
;
1519 char propname
[] = "fsl,sdma-event-remap";
1520 u32 reg
, val
, shift
, num_map
, i
;
1523 if (IS_ERR(np
) || IS_ERR(gpr_np
))
1526 event_remap
= of_find_property(np
, propname
, NULL
);
1527 num_map
= event_remap
? (event_remap
->length
/ sizeof(u32
)) : 0;
1529 dev_dbg(sdma
->dev
, "no event needs to be remapped\n");
1531 } else if (num_map
% EVENT_REMAP_CELLS
) {
1532 dev_err(sdma
->dev
, "the property %s must modulo %d\n",
1533 propname
, EVENT_REMAP_CELLS
);
1538 gpr
= syscon_node_to_regmap(gpr_np
);
1540 dev_err(sdma
->dev
, "failed to get gpr regmap\n");
1545 for (i
= 0; i
< num_map
; i
+= EVENT_REMAP_CELLS
) {
1546 ret
= of_property_read_u32_index(np
, propname
, i
, ®
);
1548 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1553 ret
= of_property_read_u32_index(np
, propname
, i
+ 1, &shift
);
1555 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1560 ret
= of_property_read_u32_index(np
, propname
, i
+ 2, &val
);
1562 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1567 regmap_update_bits(gpr
, reg
, BIT(shift
), val
<< shift
);
1571 if (!IS_ERR(gpr_np
))
1572 of_node_put(gpr_np
);
1577 static int sdma_get_firmware(struct sdma_engine
*sdma
,
1578 const char *fw_name
)
1582 ret
= request_firmware_nowait(THIS_MODULE
,
1583 FW_ACTION_HOTPLUG
, fw_name
, sdma
->dev
,
1584 GFP_KERNEL
, sdma
, sdma_load_firmware
);
1589 static int sdma_init(struct sdma_engine
*sdma
)
1592 dma_addr_t ccb_phys
;
1594 ret
= clk_enable(sdma
->clk_ipg
);
1597 ret
= clk_enable(sdma
->clk_ahb
);
1599 goto disable_clk_ipg
;
1601 /* Be sure SDMA has not started yet */
1602 writel_relaxed(0, sdma
->regs
+ SDMA_H_C0PTR
);
1604 sdma
->channel_control
= dma_alloc_coherent(NULL
,
1605 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
) +
1606 sizeof(struct sdma_context_data
),
1607 &ccb_phys
, GFP_KERNEL
);
1609 if (!sdma
->channel_control
) {
1614 sdma
->context
= (void *)sdma
->channel_control
+
1615 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1616 sdma
->context_phys
= ccb_phys
+
1617 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1619 /* Zero-out the CCB structures array just allocated */
1620 memset(sdma
->channel_control
, 0,
1621 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
));
1623 /* disable all channels */
1624 for (i
= 0; i
< sdma
->drvdata
->num_events
; i
++)
1625 writel_relaxed(0, sdma
->regs
+ chnenbl_ofs(sdma
, i
));
1627 /* All channels have priority 0 */
1628 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++)
1629 writel_relaxed(0, sdma
->regs
+ SDMA_CHNPRI_0
+ i
* 4);
1631 ret
= sdma_request_channel(&sdma
->channel
[0]);
1635 sdma_config_ownership(&sdma
->channel
[0], false, true, false);
1637 /* Set Command Channel (Channel Zero) */
1638 writel_relaxed(0x4050, sdma
->regs
+ SDMA_CHN0ADDR
);
1640 /* Set bits of CONFIG register but with static context switching */
1641 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1642 writel_relaxed(0, sdma
->regs
+ SDMA_H_CONFIG
);
1644 writel_relaxed(ccb_phys
, sdma
->regs
+ SDMA_H_C0PTR
);
1646 /* Initializes channel's priorities */
1647 sdma_set_channel_priority(&sdma
->channel
[0], 7);
1649 clk_disable(sdma
->clk_ipg
);
1650 clk_disable(sdma
->clk_ahb
);
1655 clk_disable(sdma
->clk_ahb
);
1657 clk_disable(sdma
->clk_ipg
);
1658 dev_err(sdma
->dev
, "initialisation failed with %d\n", ret
);
1662 static bool sdma_filter_fn(struct dma_chan
*chan
, void *fn_param
)
1664 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1665 struct imx_dma_data
*data
= fn_param
;
1667 if (!imx_dma_is_general_purpose(chan
))
1670 sdmac
->data
= *data
;
1671 chan
->private = &sdmac
->data
;
1676 static struct dma_chan
*sdma_xlate(struct of_phandle_args
*dma_spec
,
1677 struct of_dma
*ofdma
)
1679 struct sdma_engine
*sdma
= ofdma
->of_dma_data
;
1680 dma_cap_mask_t mask
= sdma
->dma_device
.cap_mask
;
1681 struct imx_dma_data data
;
1683 if (dma_spec
->args_count
!= 3)
1686 data
.dma_request
= dma_spec
->args
[0];
1687 data
.peripheral_type
= dma_spec
->args
[1];
1688 data
.priority
= dma_spec
->args
[2];
1690 * init dma_request2 to zero, which is not used by the dts.
1691 * For P2P, dma_request2 is init from dma_request_channel(),
1692 * chan->private will point to the imx_dma_data, and in
1693 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1694 * be set to sdmac->event_id1.
1696 data
.dma_request2
= 0;
1698 return dma_request_channel(mask
, sdma_filter_fn
, &data
);
1701 static int sdma_probe(struct platform_device
*pdev
)
1703 const struct of_device_id
*of_id
=
1704 of_match_device(sdma_dt_ids
, &pdev
->dev
);
1705 struct device_node
*np
= pdev
->dev
.of_node
;
1706 struct device_node
*spba_bus
;
1707 const char *fw_name
;
1710 struct resource
*iores
;
1711 struct resource spba_res
;
1712 struct sdma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1714 struct sdma_engine
*sdma
;
1716 const struct sdma_driver_data
*drvdata
= NULL
;
1719 drvdata
= of_id
->data
;
1720 else if (pdev
->id_entry
)
1721 drvdata
= (void *)pdev
->id_entry
->driver_data
;
1724 dev_err(&pdev
->dev
, "unable to find driver data\n");
1728 ret
= dma_coerce_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1732 sdma
= devm_kzalloc(&pdev
->dev
, sizeof(*sdma
), GFP_KERNEL
);
1736 spin_lock_init(&sdma
->channel_0_lock
);
1738 sdma
->dev
= &pdev
->dev
;
1739 sdma
->drvdata
= drvdata
;
1741 irq
= platform_get_irq(pdev
, 0);
1745 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1746 sdma
->regs
= devm_ioremap_resource(&pdev
->dev
, iores
);
1747 if (IS_ERR(sdma
->regs
))
1748 return PTR_ERR(sdma
->regs
);
1750 sdma
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
1751 if (IS_ERR(sdma
->clk_ipg
))
1752 return PTR_ERR(sdma
->clk_ipg
);
1754 sdma
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
1755 if (IS_ERR(sdma
->clk_ahb
))
1756 return PTR_ERR(sdma
->clk_ahb
);
1758 ret
= clk_prepare(sdma
->clk_ipg
);
1762 ret
= clk_prepare(sdma
->clk_ahb
);
1766 ret
= devm_request_irq(&pdev
->dev
, irq
, sdma_int_handler
, 0, "sdma",
1773 sdma
->script_addrs
= kzalloc(sizeof(*sdma
->script_addrs
), GFP_KERNEL
);
1774 if (!sdma
->script_addrs
) {
1779 /* initially no scripts available */
1780 saddr_arr
= (s32
*)sdma
->script_addrs
;
1781 for (i
= 0; i
< SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
; i
++)
1782 saddr_arr
[i
] = -EINVAL
;
1784 dma_cap_set(DMA_SLAVE
, sdma
->dma_device
.cap_mask
);
1785 dma_cap_set(DMA_CYCLIC
, sdma
->dma_device
.cap_mask
);
1787 INIT_LIST_HEAD(&sdma
->dma_device
.channels
);
1788 /* Initialize channel parameters */
1789 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
1790 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
1793 spin_lock_init(&sdmac
->lock
);
1795 sdmac
->chan
.device
= &sdma
->dma_device
;
1796 dma_cookie_init(&sdmac
->chan
);
1799 tasklet_init(&sdmac
->tasklet
, mxc_sdma_handle_channel_normal
,
1800 (unsigned long) sdmac
);
1802 * Add the channel to the DMAC list. Do not add channel 0 though
1803 * because we need it internally in the SDMA driver. This also means
1804 * that channel 0 in dmaengine counting matches sdma channel 1.
1807 list_add_tail(&sdmac
->chan
.device_node
,
1808 &sdma
->dma_device
.channels
);
1811 ret
= sdma_init(sdma
);
1815 ret
= sdma_event_remap(sdma
);
1819 if (sdma
->drvdata
->script_addrs
)
1820 sdma_add_scripts(sdma
, sdma
->drvdata
->script_addrs
);
1821 if (pdata
&& pdata
->script_addrs
)
1822 sdma_add_scripts(sdma
, pdata
->script_addrs
);
1824 sdma
->dma_device
.dev
= &pdev
->dev
;
1826 sdma
->dma_device
.device_alloc_chan_resources
= sdma_alloc_chan_resources
;
1827 sdma
->dma_device
.device_free_chan_resources
= sdma_free_chan_resources
;
1828 sdma
->dma_device
.device_tx_status
= sdma_tx_status
;
1829 sdma
->dma_device
.device_prep_slave_sg
= sdma_prep_slave_sg
;
1830 sdma
->dma_device
.device_prep_dma_cyclic
= sdma_prep_dma_cyclic
;
1831 sdma
->dma_device
.device_config
= sdma_config
;
1832 sdma
->dma_device
.device_terminate_all
= sdma_disable_channel_with_delay
;
1833 sdma
->dma_device
.src_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1834 sdma
->dma_device
.dst_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1835 sdma
->dma_device
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1836 sdma
->dma_device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1837 sdma
->dma_device
.device_issue_pending
= sdma_issue_pending
;
1838 sdma
->dma_device
.dev
->dma_parms
= &sdma
->dma_parms
;
1839 dma_set_max_seg_size(sdma
->dma_device
.dev
, 65535);
1841 platform_set_drvdata(pdev
, sdma
);
1843 ret
= dma_async_device_register(&sdma
->dma_device
);
1845 dev_err(&pdev
->dev
, "unable to register\n");
1850 ret
= of_dma_controller_register(np
, sdma_xlate
, sdma
);
1852 dev_err(&pdev
->dev
, "failed to register controller\n");
1856 spba_bus
= of_find_compatible_node(NULL
, NULL
, "fsl,spba-bus");
1857 ret
= of_address_to_resource(spba_bus
, 0, &spba_res
);
1859 sdma
->spba_start_addr
= spba_res
.start
;
1860 sdma
->spba_end_addr
= spba_res
.end
;
1862 of_node_put(spba_bus
);
1866 * Kick off firmware loading as the very last step:
1867 * attempt to load firmware only if we're not on the error path, because
1868 * the firmware callback requires a fully functional and allocated sdma
1872 ret
= sdma_get_firmware(sdma
, pdata
->fw_name
);
1874 dev_warn(&pdev
->dev
, "failed to get firmware from platform data\n");
1877 * Because that device tree does not encode ROM script address,
1878 * the RAM script in firmware is mandatory for device tree
1879 * probe, otherwise it fails.
1881 ret
= of_property_read_string(np
, "fsl,sdma-ram-script-name",
1884 dev_warn(&pdev
->dev
, "failed to get firmware name\n");
1886 ret
= sdma_get_firmware(sdma
, fw_name
);
1888 dev_warn(&pdev
->dev
, "failed to get firmware from device tree\n");
1895 dma_async_device_unregister(&sdma
->dma_device
);
1897 kfree(sdma
->script_addrs
);
1899 clk_unprepare(sdma
->clk_ahb
);
1901 clk_unprepare(sdma
->clk_ipg
);
1905 static int sdma_remove(struct platform_device
*pdev
)
1907 struct sdma_engine
*sdma
= platform_get_drvdata(pdev
);
1910 devm_free_irq(&pdev
->dev
, sdma
->irq
, sdma
);
1911 dma_async_device_unregister(&sdma
->dma_device
);
1912 kfree(sdma
->script_addrs
);
1913 clk_unprepare(sdma
->clk_ahb
);
1914 clk_unprepare(sdma
->clk_ipg
);
1915 /* Kill the tasklet */
1916 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
1917 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
1919 tasklet_kill(&sdmac
->tasklet
);
1922 platform_set_drvdata(pdev
, NULL
);
1926 static struct platform_driver sdma_driver
= {
1929 .of_match_table
= sdma_dt_ids
,
1931 .id_table
= sdma_devtypes
,
1932 .remove
= sdma_remove
,
1933 .probe
= sdma_probe
,
1936 module_platform_driver(sdma_driver
);
1938 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1939 MODULE_DESCRIPTION("i.MX SDMA driver");
1940 MODULE_LICENSE("GPL");