Tools: hv: kvp: eliminate 'may be used uninitialized' warning
[linux/fpc-iii.git] / drivers / pci / pci.c
bloba07533702d269f48c55bff686cd4efc634356358
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 EXPORT_SYMBOL_GPL(pci_power_names);
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
47 unsigned int pci_pm_d3_delay;
49 static void pci_pme_list_scan(struct work_struct *work);
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 unsigned int delay = dev->d3_delay;
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
69 msleep(delay);
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
76 #define DEFAULT_CARDBUS_IO_SIZE (256)
77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
82 #define DEFAULT_HOTPLUG_IO_SIZE (256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
88 #define DEFAULT_HOTPLUG_BUS_SIZE 1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
106 unsigned int pcibios_max_latency = 255;
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
116 static int __init pcie_port_pm_setup(char *str)
118 if (!strcmp(str, "off"))
119 pci_bridge_d3_disable = true;
120 else if (!strcmp(str, "force"))
121 pci_bridge_d3_force = true;
122 return 1;
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
135 struct pci_bus *tmp;
136 unsigned char max, n;
138 max = bus->busn_res.end;
139 list_for_each_entry(tmp, &bus->children, node) {
140 n = pci_bus_max_busnr(tmp);
141 if (n > max)
142 max = n;
144 return max;
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
151 struct resource *res = &pdev->resource[bar];
154 * Make sure the BAR is actually a memory resource, not an IO resource
156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 return NULL;
160 return ioremap_nocache(res->start, resource_size(res));
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167 * Make sure the BAR is actually a memory resource, not an IO resource
169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 WARN_ON(1);
171 return NULL;
173 return ioremap_wc(pci_resource_start(pdev, bar),
174 pci_resource_len(pdev, bar));
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 u8 pos, int cap, int *ttl)
183 u8 id;
184 u16 ent;
186 pci_bus_read_config_byte(bus, devfn, pos, &pos);
188 while ((*ttl)--) {
189 if (pos < 0x40)
190 break;
191 pos &= ~3;
192 pci_bus_read_config_word(bus, devfn, pos, &ent);
194 id = ent & 0xff;
195 if (id == 0xff)
196 break;
197 if (id == cap)
198 return pos;
199 pos = (ent >> 8);
201 return 0;
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 u8 pos, int cap)
207 int ttl = PCI_FIND_CAP_TTL;
209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
214 return __pci_find_next_cap(dev->bus, dev->devfn,
215 pos + PCI_CAP_LIST_NEXT, cap);
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 unsigned int devfn, u8 hdr_type)
222 u16 status;
224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 if (!(status & PCI_STATUS_CAP_LIST))
226 return 0;
228 switch (hdr_type) {
229 case PCI_HEADER_TYPE_NORMAL:
230 case PCI_HEADER_TYPE_BRIDGE:
231 return PCI_CAPABILITY_LIST;
232 case PCI_HEADER_TYPE_CARDBUS:
233 return PCI_CB_CAPABILITY_LIST;
236 return 0;
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
258 int pci_find_capability(struct pci_dev *dev, int cap)
260 int pos;
262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 if (pos)
264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
266 return pos;
268 EXPORT_SYMBOL(pci_find_capability);
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
281 * support it.
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
285 int pos;
286 u8 hdr_type;
288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 if (pos)
292 pos = __pci_find_next_cap(bus, devfn, pos, cap);
294 return pos;
296 EXPORT_SYMBOL(pci_bus_find_capability);
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
311 u32 header;
312 int ttl;
313 int pos = PCI_CFG_SPACE_SIZE;
315 /* minimum 8 bytes per capability */
316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 return 0;
321 if (start)
322 pos = start;
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 return 0;
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
331 if (header == 0)
332 return 0;
334 while (ttl-- > 0) {
335 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 return pos;
338 pos = PCI_EXT_CAP_NEXT(header);
339 if (pos < PCI_CFG_SPACE_SIZE)
340 break;
342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 break;
346 return 0;
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
366 return pci_find_next_ext_capability(dev, 0, cap);
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372 int rc, ttl = PCI_FIND_CAP_TTL;
373 u8 cap, mask;
375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 mask = HT_3BIT_CAP_MASK;
377 else
378 mask = HT_5BIT_CAP_MASK;
380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 PCI_CAP_ID_HT, &ttl);
382 while (pos) {
383 rc = pci_read_config_byte(dev, pos + 3, &cap);
384 if (rc != PCIBIOS_SUCCESSFUL)
385 return 0;
387 if ((cap & mask) == ht_cap)
388 return pos;
390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 pos + PCI_CAP_LIST_NEXT,
392 PCI_CAP_ID_HT, &ttl);
395 return 0;
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429 int pos;
431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 if (pos)
433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435 return pos;
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 struct resource *res)
450 const struct pci_bus *bus = dev->bus;
451 struct resource *r;
452 int i;
454 pci_bus_for_each_resource(bus, r, i) {
455 if (!r)
456 continue;
457 if (res->start && resource_contains(r, res)) {
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
463 if (r->flags & IORESOURCE_PREFETCH &&
464 !(res->flags & IORESOURCE_PREFETCH))
465 return NULL;
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
473 * first.
475 return r;
478 return NULL;
480 EXPORT_SYMBOL(pci_find_parent_resource);
483 * pci_find_resource - Return matching PCI device resource
484 * @dev: PCI device to query
485 * @res: Resource to look for
487 * Goes over standard PCI resources (BARs) and checks if the given resource
488 * is partially or fully contained in any of them. In that case the
489 * matching resource is returned, %NULL otherwise.
491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
493 int i;
495 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 struct resource *r = &dev->resource[i];
498 if (r->start && resource_contains(r, res))
499 return r;
502 return NULL;
504 EXPORT_SYMBOL(pci_find_resource);
507 * pci_find_pcie_root_port - return PCIe Root Port
508 * @dev: PCI device to query
510 * Traverse up the parent chain and return the PCIe Root Port PCI Device
511 * for a given PCI Device.
513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
515 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
517 bridge = pci_upstream_bridge(dev);
518 while (bridge && pci_is_pcie(bridge)) {
519 highest_pcie_bridge = bridge;
520 bridge = pci_upstream_bridge(bridge);
523 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 return NULL;
526 return highest_pcie_bridge;
528 EXPORT_SYMBOL(pci_find_pcie_root_port);
531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532 * @dev: the PCI device to operate on
533 * @pos: config space offset of status word
534 * @mask: mask of bit(s) to care about in status word
536 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
540 int i;
542 /* Wait for Transaction Pending bit clean */
543 for (i = 0; i < 4; i++) {
544 u16 status;
545 if (i)
546 msleep((1 << (i - 1)) * 100);
548 pci_read_config_word(dev, pos, &status);
549 if (!(status & mask))
550 return 1;
553 return 0;
557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558 * @dev: PCI device to have its BARs restored
560 * Restore the BAR values for a given device, so as to make it
561 * accessible by its driver.
563 static void pci_restore_bars(struct pci_dev *dev)
565 int i;
567 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
568 pci_update_resource(dev, i);
571 static const struct pci_platform_pm_ops *pci_platform_pm;
573 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
575 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
576 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
577 !ops->need_resume)
578 return -EINVAL;
579 pci_platform_pm = ops;
580 return 0;
583 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588 static inline int platform_pci_set_power_state(struct pci_dev *dev,
589 pci_power_t t)
591 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 return pci_platform_pm ?
602 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
607 return pci_platform_pm ?
608 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
611 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
613 return pci_platform_pm ?
614 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624 * given PCI device
625 * @dev: PCI device to handle.
626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
628 * RETURN VALUE:
629 * -EINVAL if the requested state is invalid.
630 * -EIO if device does not support PCI PM or its PM capabilities register has a
631 * wrong version, or device doesn't support the requested state.
632 * 0 if device already is in the requested state.
633 * 0 if device's power state has been successfully changed.
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
637 u16 pmcsr;
638 bool need_restore = false;
640 /* Check if we're already there */
641 if (dev->current_state == state)
642 return 0;
644 if (!dev->pm_cap)
645 return -EIO;
647 if (state < PCI_D0 || state > PCI_D3hot)
648 return -EINVAL;
650 /* Validate current state:
651 * Can enter D0 from any state, but if we can only go deeper
652 * to sleep if we're already in a low power state
654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 && dev->current_state > state) {
656 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
657 dev->current_state, state);
658 return -EINVAL;
661 /* check if this device supports the desired state */
662 if ((state == PCI_D1 && !dev->d1_support)
663 || (state == PCI_D2 && !dev->d2_support))
664 return -EIO;
666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
668 /* If we're (effectively) in D3, force entire word to 0.
669 * This doesn't affect PME_Status, disables PME_En, and
670 * sets PowerState to 0.
672 switch (dev->current_state) {
673 case PCI_D0:
674 case PCI_D1:
675 case PCI_D2:
676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 pmcsr |= state;
678 break;
679 case PCI_D3hot:
680 case PCI_D3cold:
681 case PCI_UNKNOWN: /* Boot-up */
682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 need_restore = true;
685 /* Fall-through: force to D0 */
686 default:
687 pmcsr = 0;
688 break;
691 /* enter specified state */
692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
694 /* Mandatory power management transition delays */
695 /* see PCI PM 1.1 5.6.1 table 18 */
696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 pci_dev_d3_sleep(dev);
698 else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 udelay(PCI_PM_D2_DELAY);
701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 if (dev->current_state != state && printk_ratelimit())
704 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
705 dev->current_state);
708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 * from D3hot to D0 _may_ perform an internal reset, thereby
711 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 * For example, at least some versions of the 3c905B and the
713 * 3c556B exhibit this behaviour.
715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 * devices in a D3hot state at boot. Consequently, we need to
717 * restore at least the BARs so that the device will be
718 * accessible to its driver.
720 if (need_restore)
721 pci_restore_bars(dev);
723 if (dev->bus->self)
724 pcie_aspm_pm_state_change(dev->bus->self);
726 return 0;
730 * pci_update_current_state - Read power state of given device and cache it
731 * @dev: PCI device to handle.
732 * @state: State to cache in case the device doesn't have the PM capability
734 * The power state is read from the PMCSR register, which however is
735 * inaccessible in D3cold. The platform firmware is therefore queried first
736 * to detect accessibility of the register. In case the platform firmware
737 * reports an incorrect state or the device isn't power manageable by the
738 * platform at all, we try to detect D3cold by testing accessibility of the
739 * vendor ID in config space.
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
743 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 !pci_device_is_present(dev)) {
745 dev->current_state = PCI_D3cold;
746 } else if (dev->pm_cap) {
747 u16 pmcsr;
749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 } else {
752 dev->current_state = state;
757 * pci_power_up - Put the given device into D0 forcibly
758 * @dev: PCI device to power up
760 void pci_power_up(struct pci_dev *dev)
762 if (platform_pci_power_manageable(dev))
763 platform_pci_set_power_state(dev, PCI_D0);
765 pci_raw_set_power_state(dev, PCI_D0);
766 pci_update_current_state(dev, PCI_D0);
770 * pci_platform_power_transition - Use platform to change device power state
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
776 int error;
778 if (platform_pci_power_manageable(dev)) {
779 error = platform_pci_set_power_state(dev, state);
780 if (!error)
781 pci_update_current_state(dev, state);
782 } else
783 error = -ENODEV;
785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 dev->current_state = PCI_D0;
788 return error;
792 * pci_wakeup - Wake up a PCI device
793 * @pci_dev: Device to handle.
794 * @ign: ignored parameter
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
798 pci_wakeup_event(pci_dev);
799 pm_request_resume(&pci_dev->dev);
800 return 0;
804 * pci_wakeup_bus - Walk given bus and wake up devices on it
805 * @bus: Top bus of the subtree to walk.
807 static void pci_wakeup_bus(struct pci_bus *bus)
809 if (bus)
810 pci_walk_bus(bus, pci_wakeup, NULL);
814 * __pci_start_power_transition - Start power transition of a PCI device
815 * @dev: PCI device to handle.
816 * @state: State to put the device into.
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
820 if (state == PCI_D0) {
821 pci_platform_power_transition(dev, PCI_D0);
823 * Mandatory power management transition delays, see
824 * PCI Express Base Specification Revision 2.0 Section
825 * 6.6.1: Conventional Reset. Do not delay for
826 * devices powered on/off by corresponding bridge,
827 * because have already delayed for the bridge.
829 if (dev->runtime_d3cold) {
830 msleep(dev->d3cold_delay);
832 * When powering on a bridge from D3cold, the
833 * whole hierarchy may be powered on into
834 * D0uninitialized state, resume them to give
835 * them a chance to suspend again
837 pci_wakeup_bus(dev->subordinate);
843 * __pci_dev_set_current_state - Set current state of a PCI device
844 * @dev: Device to handle
845 * @data: pointer to state to be set
847 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
849 pci_power_t state = *(pci_power_t *)data;
851 dev->current_state = state;
852 return 0;
856 * __pci_bus_set_current_state - Walk given bus and set current state of devices
857 * @bus: Top bus of the subtree to walk.
858 * @state: state to be set
860 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
862 if (bus)
863 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
867 * __pci_complete_power_transition - Complete power transition of a PCI device
868 * @dev: PCI device to handle.
869 * @state: State to put the device into.
871 * This function should not be called directly by device drivers.
873 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
875 int ret;
877 if (state <= PCI_D0)
878 return -EINVAL;
879 ret = pci_platform_power_transition(dev, state);
880 /* Power off the bridge may power off the whole hierarchy */
881 if (!ret && state == PCI_D3cold)
882 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
883 return ret;
885 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
888 * pci_set_power_state - Set the power state of a PCI device
889 * @dev: PCI device to handle.
890 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
892 * Transition a device to a new power state, using the platform firmware and/or
893 * the device's PCI PM registers.
895 * RETURN VALUE:
896 * -EINVAL if the requested state is invalid.
897 * -EIO if device does not support PCI PM or its PM capabilities register has a
898 * wrong version, or device doesn't support the requested state.
899 * 0 if device already is in the requested state.
900 * 0 if device's power state has been successfully changed.
902 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
904 int error;
906 /* bound the state we're entering */
907 if (state > PCI_D3cold)
908 state = PCI_D3cold;
909 else if (state < PCI_D0)
910 state = PCI_D0;
911 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
913 * If the device or the parent bridge do not support PCI PM,
914 * ignore the request if we're doing anything other than putting
915 * it into D0 (which would only happen on boot).
917 return 0;
919 /* Check if we're already there */
920 if (dev->current_state == state)
921 return 0;
923 __pci_start_power_transition(dev, state);
925 /* This device is quirked not to be put into D3, so
926 don't put it in D3 */
927 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
928 return 0;
931 * To put device in D3cold, we put device into D3hot in native
932 * way, then put device into D3cold with platform ops
934 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
935 PCI_D3hot : state);
937 if (!__pci_complete_power_transition(dev, state))
938 error = 0;
940 return error;
942 EXPORT_SYMBOL(pci_set_power_state);
945 * pci_choose_state - Choose the power state of a PCI device
946 * @dev: PCI device to be suspended
947 * @state: target sleep state for the whole system. This is the value
948 * that is passed to suspend() function.
950 * Returns PCI power state suitable for given device and given system
951 * message.
954 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
956 pci_power_t ret;
958 if (!dev->pm_cap)
959 return PCI_D0;
961 ret = platform_pci_choose_state(dev);
962 if (ret != PCI_POWER_ERROR)
963 return ret;
965 switch (state.event) {
966 case PM_EVENT_ON:
967 return PCI_D0;
968 case PM_EVENT_FREEZE:
969 case PM_EVENT_PRETHAW:
970 /* REVISIT both freeze and pre-thaw "should" use D0 */
971 case PM_EVENT_SUSPEND:
972 case PM_EVENT_HIBERNATE:
973 return PCI_D3hot;
974 default:
975 dev_info(&dev->dev, "unrecognized suspend event %d\n",
976 state.event);
977 BUG();
979 return PCI_D0;
981 EXPORT_SYMBOL(pci_choose_state);
983 #define PCI_EXP_SAVE_REGS 7
985 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
986 u16 cap, bool extended)
988 struct pci_cap_saved_state *tmp;
990 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
991 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
992 return tmp;
994 return NULL;
997 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
999 return _pci_find_saved_cap(dev, cap, false);
1002 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1004 return _pci_find_saved_cap(dev, cap, true);
1007 static int pci_save_pcie_state(struct pci_dev *dev)
1009 int i = 0;
1010 struct pci_cap_saved_state *save_state;
1011 u16 *cap;
1013 if (!pci_is_pcie(dev))
1014 return 0;
1016 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1017 if (!save_state) {
1018 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1019 return -ENOMEM;
1022 cap = (u16 *)&save_state->cap.data[0];
1023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1031 return 0;
1034 static void pci_restore_pcie_state(struct pci_dev *dev)
1036 int i = 0;
1037 struct pci_cap_saved_state *save_state;
1038 u16 *cap;
1040 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1041 if (!save_state)
1042 return;
1044 cap = (u16 *)&save_state->cap.data[0];
1045 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055 static int pci_save_pcix_state(struct pci_dev *dev)
1057 int pos;
1058 struct pci_cap_saved_state *save_state;
1060 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1061 if (!pos)
1062 return 0;
1064 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1065 if (!save_state) {
1066 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1067 return -ENOMEM;
1070 pci_read_config_word(dev, pos + PCI_X_CMD,
1071 (u16 *)save_state->cap.data);
1073 return 0;
1076 static void pci_restore_pcix_state(struct pci_dev *dev)
1078 int i = 0, pos;
1079 struct pci_cap_saved_state *save_state;
1080 u16 *cap;
1082 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1083 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1084 if (!save_state || !pos)
1085 return;
1086 cap = (u16 *)&save_state->cap.data[0];
1088 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1093 * pci_save_state - save the PCI configuration space of a device before suspending
1094 * @dev: - PCI device that we're dealing with
1096 int pci_save_state(struct pci_dev *dev)
1098 int i;
1099 /* XXX: 100% dword access ok here? */
1100 for (i = 0; i < 16; i++)
1101 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1102 dev->state_saved = true;
1104 i = pci_save_pcie_state(dev);
1105 if (i != 0)
1106 return i;
1108 i = pci_save_pcix_state(dev);
1109 if (i != 0)
1110 return i;
1112 return pci_save_vc_state(dev);
1114 EXPORT_SYMBOL(pci_save_state);
1116 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1117 u32 saved_val, int retry, bool force)
1119 u32 val;
1121 pci_read_config_dword(pdev, offset, &val);
1122 if (!force && val == saved_val)
1123 return;
1125 for (;;) {
1126 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127 offset, val, saved_val);
1128 pci_write_config_dword(pdev, offset, saved_val);
1129 if (retry-- <= 0)
1130 return;
1132 pci_read_config_dword(pdev, offset, &val);
1133 if (val == saved_val)
1134 return;
1136 mdelay(1);
1140 static void pci_restore_config_space_range(struct pci_dev *pdev,
1141 int start, int end, int retry,
1142 bool force)
1144 int index;
1146 for (index = end; index >= start; index--)
1147 pci_restore_config_dword(pdev, 4 * index,
1148 pdev->saved_config_space[index],
1149 retry, force);
1152 static void pci_restore_config_space(struct pci_dev *pdev)
1154 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1155 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1156 /* Restore BARs before the command register. */
1157 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1158 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1159 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1160 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1163 * Force rewriting of prefetch registers to avoid S3 resume
1164 * issues on Intel PCI bridges that occur when these
1165 * registers are not explicitly written.
1167 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1168 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1169 } else {
1170 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1175 * pci_restore_state - Restore the saved state of a PCI device
1176 * @dev: - PCI device that we're dealing with
1178 void pci_restore_state(struct pci_dev *dev)
1180 if (!dev->state_saved)
1181 return;
1183 /* PCI Express register must be restored first */
1184 pci_restore_pcie_state(dev);
1185 pci_restore_ats_state(dev);
1186 pci_restore_vc_state(dev);
1188 pci_cleanup_aer_error_status_regs(dev);
1190 pci_restore_config_space(dev);
1192 pci_restore_pcix_state(dev);
1193 pci_restore_msi_state(dev);
1195 /* Restore ACS and IOV configuration state */
1196 pci_enable_acs(dev);
1197 pci_restore_iov_state(dev);
1199 dev->state_saved = false;
1201 EXPORT_SYMBOL(pci_restore_state);
1203 struct pci_saved_state {
1204 u32 config_space[16];
1205 struct pci_cap_saved_data cap[0];
1209 * pci_store_saved_state - Allocate and return an opaque struct containing
1210 * the device saved state.
1211 * @dev: PCI device that we're dealing with
1213 * Return NULL if no state or error.
1215 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1217 struct pci_saved_state *state;
1218 struct pci_cap_saved_state *tmp;
1219 struct pci_cap_saved_data *cap;
1220 size_t size;
1222 if (!dev->state_saved)
1223 return NULL;
1225 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1228 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230 state = kzalloc(size, GFP_KERNEL);
1231 if (!state)
1232 return NULL;
1234 memcpy(state->config_space, dev->saved_config_space,
1235 sizeof(state->config_space));
1237 cap = state->cap;
1238 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1239 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1240 memcpy(cap, &tmp->cap, len);
1241 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1243 /* Empty cap_save terminates list */
1245 return state;
1247 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1250 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1251 * @dev: PCI device that we're dealing with
1252 * @state: Saved state returned from pci_store_saved_state()
1254 int pci_load_saved_state(struct pci_dev *dev,
1255 struct pci_saved_state *state)
1257 struct pci_cap_saved_data *cap;
1259 dev->state_saved = false;
1261 if (!state)
1262 return 0;
1264 memcpy(dev->saved_config_space, state->config_space,
1265 sizeof(state->config_space));
1267 cap = state->cap;
1268 while (cap->size) {
1269 struct pci_cap_saved_state *tmp;
1271 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1272 if (!tmp || tmp->cap.size != cap->size)
1273 return -EINVAL;
1275 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1276 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1277 sizeof(struct pci_cap_saved_data) + cap->size);
1280 dev->state_saved = true;
1281 return 0;
1283 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1286 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1287 * and free the memory allocated for it.
1288 * @dev: PCI device that we're dealing with
1289 * @state: Pointer to saved state returned from pci_store_saved_state()
1291 int pci_load_and_free_saved_state(struct pci_dev *dev,
1292 struct pci_saved_state **state)
1294 int ret = pci_load_saved_state(dev, *state);
1295 kfree(*state);
1296 *state = NULL;
1297 return ret;
1299 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1301 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1303 return pci_enable_resources(dev, bars);
1306 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1308 int err;
1309 struct pci_dev *bridge;
1310 u16 cmd;
1311 u8 pin;
1313 err = pci_set_power_state(dev, PCI_D0);
1314 if (err < 0 && err != -EIO)
1315 return err;
1317 bridge = pci_upstream_bridge(dev);
1318 if (bridge)
1319 pcie_aspm_powersave_config_link(bridge);
1321 err = pcibios_enable_device(dev, bars);
1322 if (err < 0)
1323 return err;
1324 pci_fixup_device(pci_fixup_enable, dev);
1326 if (dev->msi_enabled || dev->msix_enabled)
1327 return 0;
1329 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1330 if (pin) {
1331 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1332 if (cmd & PCI_COMMAND_INTX_DISABLE)
1333 pci_write_config_word(dev, PCI_COMMAND,
1334 cmd & ~PCI_COMMAND_INTX_DISABLE);
1337 return 0;
1341 * pci_reenable_device - Resume abandoned device
1342 * @dev: PCI device to be resumed
1344 * Note this function is a backend of pci_default_resume and is not supposed
1345 * to be called by normal code, write proper resume handler and use it instead.
1347 int pci_reenable_device(struct pci_dev *dev)
1349 if (pci_is_enabled(dev))
1350 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1351 return 0;
1353 EXPORT_SYMBOL(pci_reenable_device);
1355 static void pci_enable_bridge(struct pci_dev *dev)
1357 struct pci_dev *bridge;
1358 int retval;
1360 bridge = pci_upstream_bridge(dev);
1361 if (bridge)
1362 pci_enable_bridge(bridge);
1364 if (pci_is_enabled(dev)) {
1365 if (!dev->is_busmaster)
1366 pci_set_master(dev);
1367 return;
1370 retval = pci_enable_device(dev);
1371 if (retval)
1372 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1373 retval);
1374 pci_set_master(dev);
1377 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1379 struct pci_dev *bridge;
1380 int err;
1381 int i, bars = 0;
1384 * Power state could be unknown at this point, either due to a fresh
1385 * boot or a device removal call. So get the current power state
1386 * so that things like MSI message writing will behave as expected
1387 * (e.g. if the device really is in D0 at enable time).
1389 if (dev->pm_cap) {
1390 u16 pmcsr;
1391 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1392 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1395 if (atomic_inc_return(&dev->enable_cnt) > 1)
1396 return 0; /* already enabled */
1398 bridge = pci_upstream_bridge(dev);
1399 if (bridge)
1400 pci_enable_bridge(bridge);
1402 /* only skip sriov related */
1403 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1404 if (dev->resource[i].flags & flags)
1405 bars |= (1 << i);
1406 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1407 if (dev->resource[i].flags & flags)
1408 bars |= (1 << i);
1410 err = do_pci_enable_device(dev, bars);
1411 if (err < 0)
1412 atomic_dec(&dev->enable_cnt);
1413 return err;
1417 * pci_enable_device_io - Initialize a device for use with IO space
1418 * @dev: PCI device to be initialized
1420 * Initialize device before it's used by a driver. Ask low-level code
1421 * to enable I/O resources. Wake up the device if it was suspended.
1422 * Beware, this function can fail.
1424 int pci_enable_device_io(struct pci_dev *dev)
1426 return pci_enable_device_flags(dev, IORESOURCE_IO);
1428 EXPORT_SYMBOL(pci_enable_device_io);
1431 * pci_enable_device_mem - Initialize a device for use with Memory space
1432 * @dev: PCI device to be initialized
1434 * Initialize device before it's used by a driver. Ask low-level code
1435 * to enable Memory resources. Wake up the device if it was suspended.
1436 * Beware, this function can fail.
1438 int pci_enable_device_mem(struct pci_dev *dev)
1440 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1442 EXPORT_SYMBOL(pci_enable_device_mem);
1445 * pci_enable_device - Initialize device before it's used by a driver.
1446 * @dev: PCI device to be initialized
1448 * Initialize device before it's used by a driver. Ask low-level code
1449 * to enable I/O and memory. Wake up the device if it was suspended.
1450 * Beware, this function can fail.
1452 * Note we don't actually enable the device many times if we call
1453 * this function repeatedly (we just increment the count).
1455 int pci_enable_device(struct pci_dev *dev)
1457 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1459 EXPORT_SYMBOL(pci_enable_device);
1462 * Managed PCI resources. This manages device on/off, intx/msi/msix
1463 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1464 * there's no need to track it separately. pci_devres is initialized
1465 * when a device is enabled using managed PCI device enable interface.
1467 struct pci_devres {
1468 unsigned int enabled:1;
1469 unsigned int pinned:1;
1470 unsigned int orig_intx:1;
1471 unsigned int restore_intx:1;
1472 u32 region_mask;
1475 static void pcim_release(struct device *gendev, void *res)
1477 struct pci_dev *dev = to_pci_dev(gendev);
1478 struct pci_devres *this = res;
1479 int i;
1481 if (dev->msi_enabled)
1482 pci_disable_msi(dev);
1483 if (dev->msix_enabled)
1484 pci_disable_msix(dev);
1486 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1487 if (this->region_mask & (1 << i))
1488 pci_release_region(dev, i);
1490 if (this->restore_intx)
1491 pci_intx(dev, this->orig_intx);
1493 if (this->enabled && !this->pinned)
1494 pci_disable_device(dev);
1497 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1499 struct pci_devres *dr, *new_dr;
1501 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1502 if (dr)
1503 return dr;
1505 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1506 if (!new_dr)
1507 return NULL;
1508 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1511 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1513 if (pci_is_managed(pdev))
1514 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1515 return NULL;
1519 * pcim_enable_device - Managed pci_enable_device()
1520 * @pdev: PCI device to be initialized
1522 * Managed pci_enable_device().
1524 int pcim_enable_device(struct pci_dev *pdev)
1526 struct pci_devres *dr;
1527 int rc;
1529 dr = get_pci_dr(pdev);
1530 if (unlikely(!dr))
1531 return -ENOMEM;
1532 if (dr->enabled)
1533 return 0;
1535 rc = pci_enable_device(pdev);
1536 if (!rc) {
1537 pdev->is_managed = 1;
1538 dr->enabled = 1;
1540 return rc;
1542 EXPORT_SYMBOL(pcim_enable_device);
1545 * pcim_pin_device - Pin managed PCI device
1546 * @pdev: PCI device to pin
1548 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1549 * driver detach. @pdev must have been enabled with
1550 * pcim_enable_device().
1552 void pcim_pin_device(struct pci_dev *pdev)
1554 struct pci_devres *dr;
1556 dr = find_pci_dr(pdev);
1557 WARN_ON(!dr || !dr->enabled);
1558 if (dr)
1559 dr->pinned = 1;
1561 EXPORT_SYMBOL(pcim_pin_device);
1564 * pcibios_add_device - provide arch specific hooks when adding device dev
1565 * @dev: the PCI device being added
1567 * Permits the platform to provide architecture specific functionality when
1568 * devices are added. This is the default implementation. Architecture
1569 * implementations can override this.
1571 int __weak pcibios_add_device(struct pci_dev *dev)
1573 return 0;
1577 * pcibios_release_device - provide arch specific hooks when releasing device dev
1578 * @dev: the PCI device being released
1580 * Permits the platform to provide architecture specific functionality when
1581 * devices are released. This is the default implementation. Architecture
1582 * implementations can override this.
1584 void __weak pcibios_release_device(struct pci_dev *dev) {}
1587 * pcibios_disable_device - disable arch specific PCI resources for device dev
1588 * @dev: the PCI device to disable
1590 * Disables architecture specific PCI resources for the device. This
1591 * is the default implementation. Architecture implementations can
1592 * override this.
1594 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1597 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1598 * @irq: ISA IRQ to penalize
1599 * @active: IRQ active or not
1601 * Permits the platform to provide architecture-specific functionality when
1602 * penalizing ISA IRQs. This is the default implementation. Architecture
1603 * implementations can override this.
1605 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1607 static void do_pci_disable_device(struct pci_dev *dev)
1609 u16 pci_command;
1611 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1612 if (pci_command & PCI_COMMAND_MASTER) {
1613 pci_command &= ~PCI_COMMAND_MASTER;
1614 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1617 pcibios_disable_device(dev);
1621 * pci_disable_enabled_device - Disable device without updating enable_cnt
1622 * @dev: PCI device to disable
1624 * NOTE: This function is a backend of PCI power management routines and is
1625 * not supposed to be called drivers.
1627 void pci_disable_enabled_device(struct pci_dev *dev)
1629 if (pci_is_enabled(dev))
1630 do_pci_disable_device(dev);
1634 * pci_disable_device - Disable PCI device after use
1635 * @dev: PCI device to be disabled
1637 * Signal to the system that the PCI device is not in use by the system
1638 * anymore. This only involves disabling PCI bus-mastering, if active.
1640 * Note we don't actually disable the device until all callers of
1641 * pci_enable_device() have called pci_disable_device().
1643 void pci_disable_device(struct pci_dev *dev)
1645 struct pci_devres *dr;
1647 dr = find_pci_dr(dev);
1648 if (dr)
1649 dr->enabled = 0;
1651 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1652 "disabling already-disabled device");
1654 if (atomic_dec_return(&dev->enable_cnt) != 0)
1655 return;
1657 do_pci_disable_device(dev);
1659 dev->is_busmaster = 0;
1661 EXPORT_SYMBOL(pci_disable_device);
1664 * pcibios_set_pcie_reset_state - set reset state for device dev
1665 * @dev: the PCIe device reset
1666 * @state: Reset state to enter into
1669 * Sets the PCIe reset state for the device. This is the default
1670 * implementation. Architecture implementations can override this.
1672 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1673 enum pcie_reset_state state)
1675 return -EINVAL;
1679 * pci_set_pcie_reset_state - set reset state for device dev
1680 * @dev: the PCIe device reset
1681 * @state: Reset state to enter into
1684 * Sets the PCI reset state for the device.
1686 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1688 return pcibios_set_pcie_reset_state(dev, state);
1690 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1693 * pci_check_pme_status - Check if given device has generated PME.
1694 * @dev: Device to check.
1696 * Check the PME status of the device and if set, clear it and clear PME enable
1697 * (if set). Return 'true' if PME status and PME enable were both set or
1698 * 'false' otherwise.
1700 bool pci_check_pme_status(struct pci_dev *dev)
1702 int pmcsr_pos;
1703 u16 pmcsr;
1704 bool ret = false;
1706 if (!dev->pm_cap)
1707 return false;
1709 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1710 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1711 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1712 return false;
1714 /* Clear PME status. */
1715 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1716 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1717 /* Disable PME to avoid interrupt flood. */
1718 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1719 ret = true;
1722 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1724 return ret;
1728 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1729 * @dev: Device to handle.
1730 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1732 * Check if @dev has generated PME and queue a resume request for it in that
1733 * case.
1735 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1737 if (pme_poll_reset && dev->pme_poll)
1738 dev->pme_poll = false;
1740 if (pci_check_pme_status(dev)) {
1741 pci_wakeup_event(dev);
1742 pm_request_resume(&dev->dev);
1744 return 0;
1748 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1749 * @bus: Top bus of the subtree to walk.
1751 void pci_pme_wakeup_bus(struct pci_bus *bus)
1753 if (bus)
1754 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1759 * pci_pme_capable - check the capability of PCI device to generate PME#
1760 * @dev: PCI device to handle.
1761 * @state: PCI state from which device will issue PME#.
1763 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1765 if (!dev->pm_cap)
1766 return false;
1768 return !!(dev->pme_support & (1 << state));
1770 EXPORT_SYMBOL(pci_pme_capable);
1772 static void pci_pme_list_scan(struct work_struct *work)
1774 struct pci_pme_device *pme_dev, *n;
1776 mutex_lock(&pci_pme_list_mutex);
1777 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1778 if (pme_dev->dev->pme_poll) {
1779 struct pci_dev *bridge;
1781 bridge = pme_dev->dev->bus->self;
1783 * If bridge is in low power state, the
1784 * configuration space of subordinate devices
1785 * may be not accessible
1787 if (bridge && bridge->current_state != PCI_D0)
1788 continue;
1790 * If the device is in D3cold it should not be
1791 * polled either.
1793 if (pme_dev->dev->current_state == PCI_D3cold)
1794 continue;
1796 pci_pme_wakeup(pme_dev->dev, NULL);
1797 } else {
1798 list_del(&pme_dev->list);
1799 kfree(pme_dev);
1802 if (!list_empty(&pci_pme_list))
1803 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804 msecs_to_jiffies(PME_TIMEOUT));
1805 mutex_unlock(&pci_pme_list_mutex);
1808 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1810 u16 pmcsr;
1812 if (!dev->pme_support)
1813 return;
1815 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816 /* Clear PME_Status by writing 1 to it and enable PME# */
1817 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1818 if (!enable)
1819 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1825 * pci_pme_active - enable or disable PCI device's PME# function
1826 * @dev: PCI device to handle.
1827 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1829 * The caller must verify that the device is capable of generating PME# before
1830 * calling this function with @enable equal to 'true'.
1832 void pci_pme_active(struct pci_dev *dev, bool enable)
1834 __pci_pme_active(dev, enable);
1837 * PCI (as opposed to PCIe) PME requires that the device have
1838 * its PME# line hooked up correctly. Not all hardware vendors
1839 * do this, so the PME never gets delivered and the device
1840 * remains asleep. The easiest way around this is to
1841 * periodically walk the list of suspended devices and check
1842 * whether any have their PME flag set. The assumption is that
1843 * we'll wake up often enough anyway that this won't be a huge
1844 * hit, and the power savings from the devices will still be a
1845 * win.
1847 * Although PCIe uses in-band PME message instead of PME# line
1848 * to report PME, PME does not work for some PCIe devices in
1849 * reality. For example, there are devices that set their PME
1850 * status bits, but don't really bother to send a PME message;
1851 * there are PCI Express Root Ports that don't bother to
1852 * trigger interrupts when they receive PME messages from the
1853 * devices below. So PME poll is used for PCIe devices too.
1856 if (dev->pme_poll) {
1857 struct pci_pme_device *pme_dev;
1858 if (enable) {
1859 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1860 GFP_KERNEL);
1861 if (!pme_dev) {
1862 dev_warn(&dev->dev, "can't enable PME#\n");
1863 return;
1865 pme_dev->dev = dev;
1866 mutex_lock(&pci_pme_list_mutex);
1867 list_add(&pme_dev->list, &pci_pme_list);
1868 if (list_is_singular(&pci_pme_list))
1869 queue_delayed_work(system_freezable_wq,
1870 &pci_pme_work,
1871 msecs_to_jiffies(PME_TIMEOUT));
1872 mutex_unlock(&pci_pme_list_mutex);
1873 } else {
1874 mutex_lock(&pci_pme_list_mutex);
1875 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1876 if (pme_dev->dev == dev) {
1877 list_del(&pme_dev->list);
1878 kfree(pme_dev);
1879 break;
1882 mutex_unlock(&pci_pme_list_mutex);
1886 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1888 EXPORT_SYMBOL(pci_pme_active);
1891 * __pci_enable_wake - enable PCI device as wakeup event source
1892 * @dev: PCI device affected
1893 * @state: PCI state from which device will issue wakeup events
1894 * @runtime: True if the events are to be generated at run time
1895 * @enable: True to enable event generation; false to disable
1897 * This enables the device as a wakeup event source, or disables it.
1898 * When such events involves platform-specific hooks, those hooks are
1899 * called automatically by this routine.
1901 * Devices with legacy power management (no standard PCI PM capabilities)
1902 * always require such platform hooks.
1904 * RETURN VALUE:
1905 * 0 is returned on success
1906 * -EINVAL is returned if device is not supposed to wake up the system
1907 * Error code depending on the platform is returned if both the platform and
1908 * the native mechanism fail to enable the generation of wake-up events
1910 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1911 bool runtime, bool enable)
1913 int ret = 0;
1915 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1916 return -EINVAL;
1918 /* Don't do the same thing twice in a row for one device. */
1919 if (!!enable == !!dev->wakeup_prepared)
1920 return 0;
1923 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1924 * Anderson we should be doing PME# wake enable followed by ACPI wake
1925 * enable. To disable wake-up we call the platform first, for symmetry.
1928 if (enable) {
1929 int error;
1931 if (pci_pme_capable(dev, state))
1932 pci_pme_active(dev, true);
1933 else
1934 ret = 1;
1935 error = runtime ? platform_pci_run_wake(dev, true) :
1936 platform_pci_sleep_wake(dev, true);
1937 if (ret)
1938 ret = error;
1939 if (!ret)
1940 dev->wakeup_prepared = true;
1941 } else {
1942 if (runtime)
1943 platform_pci_run_wake(dev, false);
1944 else
1945 platform_pci_sleep_wake(dev, false);
1946 pci_pme_active(dev, false);
1947 dev->wakeup_prepared = false;
1950 return ret;
1952 EXPORT_SYMBOL(__pci_enable_wake);
1955 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1956 * @dev: PCI device to prepare
1957 * @enable: True to enable wake-up event generation; false to disable
1959 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1960 * and this function allows them to set that up cleanly - pci_enable_wake()
1961 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1962 * ordering constraints.
1964 * This function only returns error code if the device is not capable of
1965 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1966 * enable wake-up power for it.
1968 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1970 return pci_pme_capable(dev, PCI_D3cold) ?
1971 pci_enable_wake(dev, PCI_D3cold, enable) :
1972 pci_enable_wake(dev, PCI_D3hot, enable);
1974 EXPORT_SYMBOL(pci_wake_from_d3);
1977 * pci_target_state - find an appropriate low power state for a given PCI dev
1978 * @dev: PCI device
1980 * Use underlying platform code to find a supported low power state for @dev.
1981 * If the platform can't manage @dev, return the deepest state from which it
1982 * can generate wake events, based on any available PME info.
1984 static pci_power_t pci_target_state(struct pci_dev *dev)
1986 pci_power_t target_state = PCI_D3hot;
1988 if (platform_pci_power_manageable(dev)) {
1990 * Call the platform to choose the target state of the device
1991 * and enable wake-up from this state if supported.
1993 pci_power_t state = platform_pci_choose_state(dev);
1995 switch (state) {
1996 case PCI_POWER_ERROR:
1997 case PCI_UNKNOWN:
1998 break;
1999 case PCI_D1:
2000 case PCI_D2:
2001 if (pci_no_d1d2(dev))
2002 break;
2003 default:
2004 target_state = state;
2007 return target_state;
2010 if (!dev->pm_cap)
2011 target_state = PCI_D0;
2014 * If the device is in D3cold even though it's not power-manageable by
2015 * the platform, it may have been powered down by non-standard means.
2016 * Best to let it slumber.
2018 if (dev->current_state == PCI_D3cold)
2019 target_state = PCI_D3cold;
2021 if (device_may_wakeup(&dev->dev)) {
2023 * Find the deepest state from which the device can generate
2024 * wake-up events, make it the target state and enable device
2025 * to generate PME#.
2027 if (dev->pme_support) {
2028 while (target_state
2029 && !(dev->pme_support & (1 << target_state)))
2030 target_state--;
2034 return target_state;
2038 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2039 * @dev: Device to handle.
2041 * Choose the power state appropriate for the device depending on whether
2042 * it can wake up the system and/or is power manageable by the platform
2043 * (PCI_D3hot is the default) and put the device into that state.
2045 int pci_prepare_to_sleep(struct pci_dev *dev)
2047 pci_power_t target_state = pci_target_state(dev);
2048 int error;
2050 if (target_state == PCI_POWER_ERROR)
2051 return -EIO;
2053 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2055 error = pci_set_power_state(dev, target_state);
2057 if (error)
2058 pci_enable_wake(dev, target_state, false);
2060 return error;
2062 EXPORT_SYMBOL(pci_prepare_to_sleep);
2065 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2066 * @dev: Device to handle.
2068 * Disable device's system wake-up capability and put it into D0.
2070 int pci_back_from_sleep(struct pci_dev *dev)
2072 pci_enable_wake(dev, PCI_D0, false);
2073 return pci_set_power_state(dev, PCI_D0);
2075 EXPORT_SYMBOL(pci_back_from_sleep);
2078 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2079 * @dev: PCI device being suspended.
2081 * Prepare @dev to generate wake-up events at run time and put it into a low
2082 * power state.
2084 int pci_finish_runtime_suspend(struct pci_dev *dev)
2086 pci_power_t target_state = pci_target_state(dev);
2087 int error;
2089 if (target_state == PCI_POWER_ERROR)
2090 return -EIO;
2092 dev->runtime_d3cold = target_state == PCI_D3cold;
2094 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2096 error = pci_set_power_state(dev, target_state);
2098 if (error) {
2099 __pci_enable_wake(dev, target_state, true, false);
2100 dev->runtime_d3cold = false;
2103 return error;
2107 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2108 * @dev: Device to check.
2110 * Return true if the device itself is capable of generating wake-up events
2111 * (through the platform or using the native PCIe PME) or if the device supports
2112 * PME and one of its upstream bridges can generate wake-up events.
2114 bool pci_dev_run_wake(struct pci_dev *dev)
2116 struct pci_bus *bus = dev->bus;
2118 if (device_run_wake(&dev->dev))
2119 return true;
2121 if (!dev->pme_support)
2122 return false;
2124 /* PME-capable in principle, but not from the intended sleep state */
2125 if (!pci_pme_capable(dev, pci_target_state(dev)))
2126 return false;
2128 while (bus->parent) {
2129 struct pci_dev *bridge = bus->self;
2131 if (device_run_wake(&bridge->dev))
2132 return true;
2134 bus = bus->parent;
2137 /* We have reached the root bus. */
2138 if (bus->bridge)
2139 return device_run_wake(bus->bridge);
2141 return false;
2143 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2146 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2147 * @pci_dev: Device to check.
2149 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2150 * reconfigured due to wakeup settings difference between system and runtime
2151 * suspend and the current power state of it is suitable for the upcoming
2152 * (system) transition.
2154 * If the device is not configured for system wakeup, disable PME for it before
2155 * returning 'true' to prevent it from waking up the system unnecessarily.
2157 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2159 struct device *dev = &pci_dev->dev;
2161 if (!pm_runtime_suspended(dev)
2162 || pci_target_state(pci_dev) != pci_dev->current_state
2163 || platform_pci_need_resume(pci_dev)
2164 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2165 return false;
2168 * At this point the device is good to go unless it's been configured
2169 * to generate PME at the runtime suspend time, but it is not supposed
2170 * to wake up the system. In that case, simply disable PME for it
2171 * (it will have to be re-enabled on exit from system resume).
2173 * If the device's power state is D3cold and the platform check above
2174 * hasn't triggered, the device's configuration is suitable and we don't
2175 * need to manipulate it at all.
2177 spin_lock_irq(&dev->power.lock);
2179 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2180 !device_may_wakeup(dev))
2181 __pci_pme_active(pci_dev, false);
2183 spin_unlock_irq(&dev->power.lock);
2184 return true;
2188 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2189 * @pci_dev: Device to handle.
2191 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2192 * it might have been disabled during the prepare phase of system suspend if
2193 * the device was not configured for system wakeup.
2195 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2197 struct device *dev = &pci_dev->dev;
2199 if (!pci_dev_run_wake(pci_dev))
2200 return;
2202 spin_lock_irq(&dev->power.lock);
2204 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2205 __pci_pme_active(pci_dev, true);
2207 spin_unlock_irq(&dev->power.lock);
2210 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2212 struct device *dev = &pdev->dev;
2213 struct device *parent = dev->parent;
2215 if (parent)
2216 pm_runtime_get_sync(parent);
2217 pm_runtime_get_noresume(dev);
2219 * pdev->current_state is set to PCI_D3cold during suspending,
2220 * so wait until suspending completes
2222 pm_runtime_barrier(dev);
2224 * Only need to resume devices in D3cold, because config
2225 * registers are still accessible for devices suspended but
2226 * not in D3cold.
2228 if (pdev->current_state == PCI_D3cold)
2229 pm_runtime_resume(dev);
2232 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2234 struct device *dev = &pdev->dev;
2235 struct device *parent = dev->parent;
2237 pm_runtime_put(dev);
2238 if (parent)
2239 pm_runtime_put_sync(parent);
2243 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2244 * @bridge: Bridge to check
2246 * This function checks if it is possible to move the bridge to D3.
2247 * Currently we only allow D3 for recent enough PCIe ports.
2249 static bool pci_bridge_d3_possible(struct pci_dev *bridge)
2251 unsigned int year;
2253 if (!pci_is_pcie(bridge))
2254 return false;
2256 switch (pci_pcie_type(bridge)) {
2257 case PCI_EXP_TYPE_ROOT_PORT:
2258 case PCI_EXP_TYPE_UPSTREAM:
2259 case PCI_EXP_TYPE_DOWNSTREAM:
2260 if (pci_bridge_d3_disable)
2261 return false;
2262 if (pci_bridge_d3_force)
2263 return true;
2266 * It should be safe to put PCIe ports from 2015 or newer
2267 * to D3.
2269 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2270 year >= 2015) {
2271 return true;
2273 break;
2276 return false;
2279 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2281 bool *d3cold_ok = data;
2282 bool no_d3cold;
2285 * The device needs to be allowed to go D3cold and if it is wake
2286 * capable to do so from D3cold.
2288 no_d3cold = dev->no_d3cold || !dev->d3cold_allowed ||
2289 (device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) ||
2290 !pci_power_manageable(dev);
2292 *d3cold_ok = !no_d3cold;
2294 return no_d3cold;
2298 * pci_bridge_d3_update - Update bridge D3 capabilities
2299 * @dev: PCI device which is changed
2300 * @remove: Is the device being removed
2302 * Update upstream bridge PM capabilities accordingly depending on if the
2303 * device PM configuration was changed or the device is being removed. The
2304 * change is also propagated upstream.
2306 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove)
2308 struct pci_dev *bridge;
2309 bool d3cold_ok = true;
2311 bridge = pci_upstream_bridge(dev);
2312 if (!bridge || !pci_bridge_d3_possible(bridge))
2313 return;
2315 pci_dev_get(bridge);
2317 * If the device is removed we do not care about its D3cold
2318 * capabilities.
2320 if (!remove)
2321 pci_dev_check_d3cold(dev, &d3cold_ok);
2323 if (d3cold_ok) {
2325 * We need to go through all children to find out if all of
2326 * them can still go to D3cold.
2328 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2329 &d3cold_ok);
2332 if (bridge->bridge_d3 != d3cold_ok) {
2333 bridge->bridge_d3 = d3cold_ok;
2334 /* Propagate change to upstream bridges */
2335 pci_bridge_d3_update(bridge, false);
2338 pci_dev_put(bridge);
2342 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2343 * @dev: PCI device that was changed
2345 * If a device is added or its PM configuration, such as is it allowed to
2346 * enter D3cold, is changed this function updates upstream bridge PM
2347 * capabilities accordingly.
2349 void pci_bridge_d3_device_changed(struct pci_dev *dev)
2351 pci_bridge_d3_update(dev, false);
2355 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2356 * @dev: PCI device being removed
2358 * Function updates upstream bridge PM capabilities based on other devices
2359 * still left on the bus.
2361 void pci_bridge_d3_device_removed(struct pci_dev *dev)
2363 pci_bridge_d3_update(dev, true);
2367 * pci_d3cold_enable - Enable D3cold for device
2368 * @dev: PCI device to handle
2370 * This function can be used in drivers to enable D3cold from the device
2371 * they handle. It also updates upstream PCI bridge PM capabilities
2372 * accordingly.
2374 void pci_d3cold_enable(struct pci_dev *dev)
2376 if (dev->no_d3cold) {
2377 dev->no_d3cold = false;
2378 pci_bridge_d3_device_changed(dev);
2381 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2384 * pci_d3cold_disable - Disable D3cold for device
2385 * @dev: PCI device to handle
2387 * This function can be used in drivers to disable D3cold from the device
2388 * they handle. It also updates upstream PCI bridge PM capabilities
2389 * accordingly.
2391 void pci_d3cold_disable(struct pci_dev *dev)
2393 if (!dev->no_d3cold) {
2394 dev->no_d3cold = true;
2395 pci_bridge_d3_device_changed(dev);
2398 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2401 * pci_pm_init - Initialize PM functions of given PCI device
2402 * @dev: PCI device to handle.
2404 void pci_pm_init(struct pci_dev *dev)
2406 int pm;
2407 u16 pmc;
2409 pm_runtime_forbid(&dev->dev);
2410 pm_runtime_set_active(&dev->dev);
2411 pm_runtime_enable(&dev->dev);
2412 device_enable_async_suspend(&dev->dev);
2413 dev->wakeup_prepared = false;
2415 dev->pm_cap = 0;
2416 dev->pme_support = 0;
2418 /* find PCI PM capability in list */
2419 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2420 if (!pm)
2421 return;
2422 /* Check device's ability to generate PME# */
2423 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2425 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2426 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2427 pmc & PCI_PM_CAP_VER_MASK);
2428 return;
2431 dev->pm_cap = pm;
2432 dev->d3_delay = PCI_PM_D3_WAIT;
2433 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2434 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2435 dev->d3cold_allowed = true;
2437 dev->d1_support = false;
2438 dev->d2_support = false;
2439 if (!pci_no_d1d2(dev)) {
2440 if (pmc & PCI_PM_CAP_D1)
2441 dev->d1_support = true;
2442 if (pmc & PCI_PM_CAP_D2)
2443 dev->d2_support = true;
2445 if (dev->d1_support || dev->d2_support)
2446 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2447 dev->d1_support ? " D1" : "",
2448 dev->d2_support ? " D2" : "");
2451 pmc &= PCI_PM_CAP_PME_MASK;
2452 if (pmc) {
2453 dev_printk(KERN_DEBUG, &dev->dev,
2454 "PME# supported from%s%s%s%s%s\n",
2455 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2456 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2457 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2458 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2459 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2460 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2461 dev->pme_poll = true;
2463 * Make device's PM flags reflect the wake-up capability, but
2464 * let the user space enable it to wake up the system as needed.
2466 device_set_wakeup_capable(&dev->dev, true);
2467 /* Disable the PME# generation functionality */
2468 pci_pme_active(dev, false);
2472 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2474 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2476 switch (prop) {
2477 case PCI_EA_P_MEM:
2478 case PCI_EA_P_VF_MEM:
2479 flags |= IORESOURCE_MEM;
2480 break;
2481 case PCI_EA_P_MEM_PREFETCH:
2482 case PCI_EA_P_VF_MEM_PREFETCH:
2483 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2484 break;
2485 case PCI_EA_P_IO:
2486 flags |= IORESOURCE_IO;
2487 break;
2488 default:
2489 return 0;
2492 return flags;
2495 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2496 u8 prop)
2498 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2499 return &dev->resource[bei];
2500 #ifdef CONFIG_PCI_IOV
2501 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2502 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2503 return &dev->resource[PCI_IOV_RESOURCES +
2504 bei - PCI_EA_BEI_VF_BAR0];
2505 #endif
2506 else if (bei == PCI_EA_BEI_ROM)
2507 return &dev->resource[PCI_ROM_RESOURCE];
2508 else
2509 return NULL;
2512 /* Read an Enhanced Allocation (EA) entry */
2513 static int pci_ea_read(struct pci_dev *dev, int offset)
2515 struct resource *res;
2516 int ent_size, ent_offset = offset;
2517 resource_size_t start, end;
2518 unsigned long flags;
2519 u32 dw0, bei, base, max_offset;
2520 u8 prop;
2521 bool support_64 = (sizeof(resource_size_t) >= 8);
2523 pci_read_config_dword(dev, ent_offset, &dw0);
2524 ent_offset += 4;
2526 /* Entry size field indicates DWORDs after 1st */
2527 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2529 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2530 goto out;
2532 bei = (dw0 & PCI_EA_BEI) >> 4;
2533 prop = (dw0 & PCI_EA_PP) >> 8;
2536 * If the Property is in the reserved range, try the Secondary
2537 * Property instead.
2539 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2540 prop = (dw0 & PCI_EA_SP) >> 16;
2541 if (prop > PCI_EA_P_BRIDGE_IO)
2542 goto out;
2544 res = pci_ea_get_resource(dev, bei, prop);
2545 if (!res) {
2546 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2547 goto out;
2550 flags = pci_ea_flags(dev, prop);
2551 if (!flags) {
2552 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2553 goto out;
2556 /* Read Base */
2557 pci_read_config_dword(dev, ent_offset, &base);
2558 start = (base & PCI_EA_FIELD_MASK);
2559 ent_offset += 4;
2561 /* Read MaxOffset */
2562 pci_read_config_dword(dev, ent_offset, &max_offset);
2563 ent_offset += 4;
2565 /* Read Base MSBs (if 64-bit entry) */
2566 if (base & PCI_EA_IS_64) {
2567 u32 base_upper;
2569 pci_read_config_dword(dev, ent_offset, &base_upper);
2570 ent_offset += 4;
2572 flags |= IORESOURCE_MEM_64;
2574 /* entry starts above 32-bit boundary, can't use */
2575 if (!support_64 && base_upper)
2576 goto out;
2578 if (support_64)
2579 start |= ((u64)base_upper << 32);
2582 end = start + (max_offset | 0x03);
2584 /* Read MaxOffset MSBs (if 64-bit entry) */
2585 if (max_offset & PCI_EA_IS_64) {
2586 u32 max_offset_upper;
2588 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2589 ent_offset += 4;
2591 flags |= IORESOURCE_MEM_64;
2593 /* entry too big, can't use */
2594 if (!support_64 && max_offset_upper)
2595 goto out;
2597 if (support_64)
2598 end += ((u64)max_offset_upper << 32);
2601 if (end < start) {
2602 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2603 goto out;
2606 if (ent_size != ent_offset - offset) {
2607 dev_err(&dev->dev,
2608 "EA Entry Size (%d) does not match length read (%d)\n",
2609 ent_size, ent_offset - offset);
2610 goto out;
2613 res->name = pci_name(dev);
2614 res->start = start;
2615 res->end = end;
2616 res->flags = flags;
2618 if (bei <= PCI_EA_BEI_BAR5)
2619 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2620 bei, res, prop);
2621 else if (bei == PCI_EA_BEI_ROM)
2622 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2623 res, prop);
2624 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2625 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2626 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2627 else
2628 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2629 bei, res, prop);
2631 out:
2632 return offset + ent_size;
2635 /* Enhanced Allocation Initialization */
2636 void pci_ea_init(struct pci_dev *dev)
2638 int ea;
2639 u8 num_ent;
2640 int offset;
2641 int i;
2643 /* find PCI EA capability in list */
2644 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2645 if (!ea)
2646 return;
2648 /* determine the number of entries */
2649 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2650 &num_ent);
2651 num_ent &= PCI_EA_NUM_ENT_MASK;
2653 offset = ea + PCI_EA_FIRST_ENT;
2655 /* Skip DWORD 2 for type 1 functions */
2656 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2657 offset += 4;
2659 /* parse each EA entry */
2660 for (i = 0; i < num_ent; ++i)
2661 offset = pci_ea_read(dev, offset);
2664 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2665 struct pci_cap_saved_state *new_cap)
2667 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2671 * _pci_add_cap_save_buffer - allocate buffer for saving given
2672 * capability registers
2673 * @dev: the PCI device
2674 * @cap: the capability to allocate the buffer for
2675 * @extended: Standard or Extended capability ID
2676 * @size: requested size of the buffer
2678 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2679 bool extended, unsigned int size)
2681 int pos;
2682 struct pci_cap_saved_state *save_state;
2684 if (extended)
2685 pos = pci_find_ext_capability(dev, cap);
2686 else
2687 pos = pci_find_capability(dev, cap);
2689 if (!pos)
2690 return 0;
2692 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2693 if (!save_state)
2694 return -ENOMEM;
2696 save_state->cap.cap_nr = cap;
2697 save_state->cap.cap_extended = extended;
2698 save_state->cap.size = size;
2699 pci_add_saved_cap(dev, save_state);
2701 return 0;
2704 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2706 return _pci_add_cap_save_buffer(dev, cap, false, size);
2709 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2711 return _pci_add_cap_save_buffer(dev, cap, true, size);
2715 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2716 * @dev: the PCI device
2718 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2720 int error;
2722 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2723 PCI_EXP_SAVE_REGS * sizeof(u16));
2724 if (error)
2725 dev_err(&dev->dev,
2726 "unable to preallocate PCI Express save buffer\n");
2728 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2729 if (error)
2730 dev_err(&dev->dev,
2731 "unable to preallocate PCI-X save buffer\n");
2733 pci_allocate_vc_save_buffers(dev);
2736 void pci_free_cap_save_buffers(struct pci_dev *dev)
2738 struct pci_cap_saved_state *tmp;
2739 struct hlist_node *n;
2741 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2742 kfree(tmp);
2746 * pci_configure_ari - enable or disable ARI forwarding
2747 * @dev: the PCI device
2749 * If @dev and its upstream bridge both support ARI, enable ARI in the
2750 * bridge. Otherwise, disable ARI in the bridge.
2752 void pci_configure_ari(struct pci_dev *dev)
2754 u32 cap;
2755 struct pci_dev *bridge;
2757 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2758 return;
2760 bridge = dev->bus->self;
2761 if (!bridge)
2762 return;
2764 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2765 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2766 return;
2768 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2769 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2770 PCI_EXP_DEVCTL2_ARI);
2771 bridge->ari_enabled = 1;
2772 } else {
2773 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2774 PCI_EXP_DEVCTL2_ARI);
2775 bridge->ari_enabled = 0;
2779 static int pci_acs_enable;
2782 * pci_request_acs - ask for ACS to be enabled if supported
2784 void pci_request_acs(void)
2786 pci_acs_enable = 1;
2790 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2791 * @dev: the PCI device
2793 static void pci_std_enable_acs(struct pci_dev *dev)
2795 int pos;
2796 u16 cap;
2797 u16 ctrl;
2799 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2800 if (!pos)
2801 return;
2803 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2804 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2806 /* Source Validation */
2807 ctrl |= (cap & PCI_ACS_SV);
2809 /* P2P Request Redirect */
2810 ctrl |= (cap & PCI_ACS_RR);
2812 /* P2P Completion Redirect */
2813 ctrl |= (cap & PCI_ACS_CR);
2815 /* Upstream Forwarding */
2816 ctrl |= (cap & PCI_ACS_UF);
2818 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2822 * pci_enable_acs - enable ACS if hardware support it
2823 * @dev: the PCI device
2825 void pci_enable_acs(struct pci_dev *dev)
2827 if (!pci_acs_enable)
2828 return;
2830 if (!pci_dev_specific_enable_acs(dev))
2831 return;
2833 pci_std_enable_acs(dev);
2836 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2838 int pos;
2839 u16 cap, ctrl;
2841 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2842 if (!pos)
2843 return false;
2846 * Except for egress control, capabilities are either required
2847 * or only required if controllable. Features missing from the
2848 * capability field can therefore be assumed as hard-wired enabled.
2850 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2851 acs_flags &= (cap | PCI_ACS_EC);
2853 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2854 return (ctrl & acs_flags) == acs_flags;
2858 * pci_acs_enabled - test ACS against required flags for a given device
2859 * @pdev: device to test
2860 * @acs_flags: required PCI ACS flags
2862 * Return true if the device supports the provided flags. Automatically
2863 * filters out flags that are not implemented on multifunction devices.
2865 * Note that this interface checks the effective ACS capabilities of the
2866 * device rather than the actual capabilities. For instance, most single
2867 * function endpoints are not required to support ACS because they have no
2868 * opportunity for peer-to-peer access. We therefore return 'true'
2869 * regardless of whether the device exposes an ACS capability. This makes
2870 * it much easier for callers of this function to ignore the actual type
2871 * or topology of the device when testing ACS support.
2873 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2875 int ret;
2877 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2878 if (ret >= 0)
2879 return ret > 0;
2882 * Conventional PCI and PCI-X devices never support ACS, either
2883 * effectively or actually. The shared bus topology implies that
2884 * any device on the bus can receive or snoop DMA.
2886 if (!pci_is_pcie(pdev))
2887 return false;
2889 switch (pci_pcie_type(pdev)) {
2891 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2892 * but since their primary interface is PCI/X, we conservatively
2893 * handle them as we would a non-PCIe device.
2895 case PCI_EXP_TYPE_PCIE_BRIDGE:
2897 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2898 * applicable... must never implement an ACS Extended Capability...".
2899 * This seems arbitrary, but we take a conservative interpretation
2900 * of this statement.
2902 case PCI_EXP_TYPE_PCI_BRIDGE:
2903 case PCI_EXP_TYPE_RC_EC:
2904 return false;
2906 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2907 * implement ACS in order to indicate their peer-to-peer capabilities,
2908 * regardless of whether they are single- or multi-function devices.
2910 case PCI_EXP_TYPE_DOWNSTREAM:
2911 case PCI_EXP_TYPE_ROOT_PORT:
2912 return pci_acs_flags_enabled(pdev, acs_flags);
2914 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2915 * implemented by the remaining PCIe types to indicate peer-to-peer
2916 * capabilities, but only when they are part of a multifunction
2917 * device. The footnote for section 6.12 indicates the specific
2918 * PCIe types included here.
2920 case PCI_EXP_TYPE_ENDPOINT:
2921 case PCI_EXP_TYPE_UPSTREAM:
2922 case PCI_EXP_TYPE_LEG_END:
2923 case PCI_EXP_TYPE_RC_END:
2924 if (!pdev->multifunction)
2925 break;
2927 return pci_acs_flags_enabled(pdev, acs_flags);
2931 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2932 * to single function devices with the exception of downstream ports.
2934 return true;
2938 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2939 * @start: starting downstream device
2940 * @end: ending upstream device or NULL to search to the root bus
2941 * @acs_flags: required flags
2943 * Walk up a device tree from start to end testing PCI ACS support. If
2944 * any step along the way does not support the required flags, return false.
2946 bool pci_acs_path_enabled(struct pci_dev *start,
2947 struct pci_dev *end, u16 acs_flags)
2949 struct pci_dev *pdev, *parent = start;
2951 do {
2952 pdev = parent;
2954 if (!pci_acs_enabled(pdev, acs_flags))
2955 return false;
2957 if (pci_is_root_bus(pdev->bus))
2958 return (end == NULL);
2960 parent = pdev->bus->self;
2961 } while (pdev != end);
2963 return true;
2967 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2968 * @dev: the PCI device
2969 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2971 * Perform INTx swizzling for a device behind one level of bridge. This is
2972 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2973 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2974 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2975 * the PCI Express Base Specification, Revision 2.1)
2977 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2979 int slot;
2981 if (pci_ari_enabled(dev->bus))
2982 slot = 0;
2983 else
2984 slot = PCI_SLOT(dev->devfn);
2986 return (((pin - 1) + slot) % 4) + 1;
2989 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2991 u8 pin;
2993 pin = dev->pin;
2994 if (!pin)
2995 return -1;
2997 while (!pci_is_root_bus(dev->bus)) {
2998 pin = pci_swizzle_interrupt_pin(dev, pin);
2999 dev = dev->bus->self;
3001 *bridge = dev;
3002 return pin;
3006 * pci_common_swizzle - swizzle INTx all the way to root bridge
3007 * @dev: the PCI device
3008 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3010 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3011 * bridges all the way up to a PCI root bus.
3013 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3015 u8 pin = *pinp;
3017 while (!pci_is_root_bus(dev->bus)) {
3018 pin = pci_swizzle_interrupt_pin(dev, pin);
3019 dev = dev->bus->self;
3021 *pinp = pin;
3022 return PCI_SLOT(dev->devfn);
3024 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3027 * pci_release_region - Release a PCI bar
3028 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3029 * @bar: BAR to release
3031 * Releases the PCI I/O and memory resources previously reserved by a
3032 * successful call to pci_request_region. Call this function only
3033 * after all use of the PCI regions has ceased.
3035 void pci_release_region(struct pci_dev *pdev, int bar)
3037 struct pci_devres *dr;
3039 if (pci_resource_len(pdev, bar) == 0)
3040 return;
3041 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3042 release_region(pci_resource_start(pdev, bar),
3043 pci_resource_len(pdev, bar));
3044 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3045 release_mem_region(pci_resource_start(pdev, bar),
3046 pci_resource_len(pdev, bar));
3048 dr = find_pci_dr(pdev);
3049 if (dr)
3050 dr->region_mask &= ~(1 << bar);
3052 EXPORT_SYMBOL(pci_release_region);
3055 * __pci_request_region - Reserved PCI I/O and memory resource
3056 * @pdev: PCI device whose resources are to be reserved
3057 * @bar: BAR to be reserved
3058 * @res_name: Name to be associated with resource.
3059 * @exclusive: whether the region access is exclusive or not
3061 * Mark the PCI region associated with PCI device @pdev BR @bar as
3062 * being reserved by owner @res_name. Do not access any
3063 * address inside the PCI regions unless this call returns
3064 * successfully.
3066 * If @exclusive is set, then the region is marked so that userspace
3067 * is explicitly not allowed to map the resource via /dev/mem or
3068 * sysfs MMIO access.
3070 * Returns 0 on success, or %EBUSY on error. A warning
3071 * message is also printed on failure.
3073 static int __pci_request_region(struct pci_dev *pdev, int bar,
3074 const char *res_name, int exclusive)
3076 struct pci_devres *dr;
3078 if (pci_resource_len(pdev, bar) == 0)
3079 return 0;
3081 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3082 if (!request_region(pci_resource_start(pdev, bar),
3083 pci_resource_len(pdev, bar), res_name))
3084 goto err_out;
3085 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3086 if (!__request_mem_region(pci_resource_start(pdev, bar),
3087 pci_resource_len(pdev, bar), res_name,
3088 exclusive))
3089 goto err_out;
3092 dr = find_pci_dr(pdev);
3093 if (dr)
3094 dr->region_mask |= 1 << bar;
3096 return 0;
3098 err_out:
3099 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3100 &pdev->resource[bar]);
3101 return -EBUSY;
3105 * pci_request_region - Reserve PCI I/O and memory resource
3106 * @pdev: PCI device whose resources are to be reserved
3107 * @bar: BAR to be reserved
3108 * @res_name: Name to be associated with resource
3110 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3111 * being reserved by owner @res_name. Do not access any
3112 * address inside the PCI regions unless this call returns
3113 * successfully.
3115 * Returns 0 on success, or %EBUSY on error. A warning
3116 * message is also printed on failure.
3118 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3120 return __pci_request_region(pdev, bar, res_name, 0);
3122 EXPORT_SYMBOL(pci_request_region);
3125 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3126 * @pdev: PCI device whose resources are to be reserved
3127 * @bar: BAR to be reserved
3128 * @res_name: Name to be associated with resource.
3130 * Mark the PCI region associated with PCI device @pdev BR @bar as
3131 * being reserved by owner @res_name. Do not access any
3132 * address inside the PCI regions unless this call returns
3133 * successfully.
3135 * Returns 0 on success, or %EBUSY on error. A warning
3136 * message is also printed on failure.
3138 * The key difference that _exclusive makes it that userspace is
3139 * explicitly not allowed to map the resource via /dev/mem or
3140 * sysfs.
3142 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3143 const char *res_name)
3145 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3147 EXPORT_SYMBOL(pci_request_region_exclusive);
3150 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3151 * @pdev: PCI device whose resources were previously reserved
3152 * @bars: Bitmask of BARs to be released
3154 * Release selected PCI I/O and memory resources previously reserved.
3155 * Call this function only after all use of the PCI regions has ceased.
3157 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3159 int i;
3161 for (i = 0; i < 6; i++)
3162 if (bars & (1 << i))
3163 pci_release_region(pdev, i);
3165 EXPORT_SYMBOL(pci_release_selected_regions);
3167 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3168 const char *res_name, int excl)
3170 int i;
3172 for (i = 0; i < 6; i++)
3173 if (bars & (1 << i))
3174 if (__pci_request_region(pdev, i, res_name, excl))
3175 goto err_out;
3176 return 0;
3178 err_out:
3179 while (--i >= 0)
3180 if (bars & (1 << i))
3181 pci_release_region(pdev, i);
3183 return -EBUSY;
3188 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3189 * @pdev: PCI device whose resources are to be reserved
3190 * @bars: Bitmask of BARs to be requested
3191 * @res_name: Name to be associated with resource
3193 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3194 const char *res_name)
3196 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3198 EXPORT_SYMBOL(pci_request_selected_regions);
3200 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3201 const char *res_name)
3203 return __pci_request_selected_regions(pdev, bars, res_name,
3204 IORESOURCE_EXCLUSIVE);
3206 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3209 * pci_release_regions - Release reserved PCI I/O and memory resources
3210 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3212 * Releases all PCI I/O and memory resources previously reserved by a
3213 * successful call to pci_request_regions. Call this function only
3214 * after all use of the PCI regions has ceased.
3217 void pci_release_regions(struct pci_dev *pdev)
3219 pci_release_selected_regions(pdev, (1 << 6) - 1);
3221 EXPORT_SYMBOL(pci_release_regions);
3224 * pci_request_regions - Reserved PCI I/O and memory resources
3225 * @pdev: PCI device whose resources are to be reserved
3226 * @res_name: Name to be associated with resource.
3228 * Mark all PCI regions associated with PCI device @pdev as
3229 * being reserved by owner @res_name. Do not access any
3230 * address inside the PCI regions unless this call returns
3231 * successfully.
3233 * Returns 0 on success, or %EBUSY on error. A warning
3234 * message is also printed on failure.
3236 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3238 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3240 EXPORT_SYMBOL(pci_request_regions);
3243 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3244 * @pdev: PCI device whose resources are to be reserved
3245 * @res_name: Name to be associated with resource.
3247 * Mark all PCI regions associated with PCI device @pdev as
3248 * being reserved by owner @res_name. Do not access any
3249 * address inside the PCI regions unless this call returns
3250 * successfully.
3252 * pci_request_regions_exclusive() will mark the region so that
3253 * /dev/mem and the sysfs MMIO access will not be allowed.
3255 * Returns 0 on success, or %EBUSY on error. A warning
3256 * message is also printed on failure.
3258 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3260 return pci_request_selected_regions_exclusive(pdev,
3261 ((1 << 6) - 1), res_name);
3263 EXPORT_SYMBOL(pci_request_regions_exclusive);
3265 #ifdef PCI_IOBASE
3266 struct io_range {
3267 struct list_head list;
3268 phys_addr_t start;
3269 resource_size_t size;
3272 static LIST_HEAD(io_range_list);
3273 static DEFINE_SPINLOCK(io_range_lock);
3274 #endif
3277 * Record the PCI IO range (expressed as CPU physical address + size).
3278 * Return a negative value if an error has occured, zero otherwise
3280 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3282 int err = 0;
3284 #ifdef PCI_IOBASE
3285 struct io_range *range;
3286 resource_size_t allocated_size = 0;
3288 /* check if the range hasn't been previously recorded */
3289 spin_lock(&io_range_lock);
3290 list_for_each_entry(range, &io_range_list, list) {
3291 if (addr >= range->start && addr + size <= range->start + size) {
3292 /* range already registered, bail out */
3293 goto end_register;
3295 allocated_size += range->size;
3298 /* range not registed yet, check for available space */
3299 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3300 /* if it's too big check if 64K space can be reserved */
3301 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3302 err = -E2BIG;
3303 goto end_register;
3306 size = SZ_64K;
3307 pr_warn("Requested IO range too big, new size set to 64K\n");
3310 /* add the range to the list */
3311 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3312 if (!range) {
3313 err = -ENOMEM;
3314 goto end_register;
3317 range->start = addr;
3318 range->size = size;
3320 list_add_tail(&range->list, &io_range_list);
3322 end_register:
3323 spin_unlock(&io_range_lock);
3324 #endif
3326 return err;
3329 phys_addr_t pci_pio_to_address(unsigned long pio)
3331 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3333 #ifdef PCI_IOBASE
3334 struct io_range *range;
3335 resource_size_t allocated_size = 0;
3337 if (pio > IO_SPACE_LIMIT)
3338 return address;
3340 spin_lock(&io_range_lock);
3341 list_for_each_entry(range, &io_range_list, list) {
3342 if (pio >= allocated_size && pio < allocated_size + range->size) {
3343 address = range->start + pio - allocated_size;
3344 break;
3346 allocated_size += range->size;
3348 spin_unlock(&io_range_lock);
3349 #endif
3351 return address;
3354 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3356 #ifdef PCI_IOBASE
3357 struct io_range *res;
3358 resource_size_t offset = 0;
3359 unsigned long addr = -1;
3361 spin_lock(&io_range_lock);
3362 list_for_each_entry(res, &io_range_list, list) {
3363 if (address >= res->start && address < res->start + res->size) {
3364 addr = address - res->start + offset;
3365 break;
3367 offset += res->size;
3369 spin_unlock(&io_range_lock);
3371 return addr;
3372 #else
3373 if (address > IO_SPACE_LIMIT)
3374 return (unsigned long)-1;
3376 return (unsigned long) address;
3377 #endif
3381 * pci_remap_iospace - Remap the memory mapped I/O space
3382 * @res: Resource describing the I/O space
3383 * @phys_addr: physical address of range to be mapped
3385 * Remap the memory mapped I/O space described by the @res
3386 * and the CPU physical address @phys_addr into virtual address space.
3387 * Only architectures that have memory mapped IO functions defined
3388 * (and the PCI_IOBASE value defined) should call this function.
3390 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3392 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3393 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3395 if (!(res->flags & IORESOURCE_IO))
3396 return -EINVAL;
3398 if (res->end > IO_SPACE_LIMIT)
3399 return -EINVAL;
3401 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3402 pgprot_device(PAGE_KERNEL));
3403 #else
3404 /* this architecture does not have memory mapped I/O space,
3405 so this function should never be called */
3406 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3407 return -ENODEV;
3408 #endif
3412 * pci_unmap_iospace - Unmap the memory mapped I/O space
3413 * @res: resource to be unmapped
3415 * Unmap the CPU virtual address @res from virtual address space.
3416 * Only architectures that have memory mapped IO functions defined
3417 * (and the PCI_IOBASE value defined) should call this function.
3419 void pci_unmap_iospace(struct resource *res)
3421 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3422 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3424 unmap_kernel_range(vaddr, resource_size(res));
3425 #endif
3428 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3430 struct resource **res = ptr;
3432 pci_unmap_iospace(*res);
3436 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3437 * @dev: Generic device to remap IO address for
3438 * @res: Resource describing the I/O space
3439 * @phys_addr: physical address of range to be mapped
3441 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3442 * detach.
3444 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3445 phys_addr_t phys_addr)
3447 const struct resource **ptr;
3448 int error;
3450 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3451 if (!ptr)
3452 return -ENOMEM;
3454 error = pci_remap_iospace(res, phys_addr);
3455 if (error) {
3456 devres_free(ptr);
3457 } else {
3458 *ptr = res;
3459 devres_add(dev, ptr);
3462 return error;
3464 EXPORT_SYMBOL(devm_pci_remap_iospace);
3466 static void __pci_set_master(struct pci_dev *dev, bool enable)
3468 u16 old_cmd, cmd;
3470 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3471 if (enable)
3472 cmd = old_cmd | PCI_COMMAND_MASTER;
3473 else
3474 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3475 if (cmd != old_cmd) {
3476 dev_dbg(&dev->dev, "%s bus mastering\n",
3477 enable ? "enabling" : "disabling");
3478 pci_write_config_word(dev, PCI_COMMAND, cmd);
3480 dev->is_busmaster = enable;
3484 * pcibios_setup - process "pci=" kernel boot arguments
3485 * @str: string used to pass in "pci=" kernel boot arguments
3487 * Process kernel boot arguments. This is the default implementation.
3488 * Architecture specific implementations can override this as necessary.
3490 char * __weak __init pcibios_setup(char *str)
3492 return str;
3496 * pcibios_set_master - enable PCI bus-mastering for device dev
3497 * @dev: the PCI device to enable
3499 * Enables PCI bus-mastering for the device. This is the default
3500 * implementation. Architecture specific implementations can override
3501 * this if necessary.
3503 void __weak pcibios_set_master(struct pci_dev *dev)
3505 u8 lat;
3507 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3508 if (pci_is_pcie(dev))
3509 return;
3511 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3512 if (lat < 16)
3513 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3514 else if (lat > pcibios_max_latency)
3515 lat = pcibios_max_latency;
3516 else
3517 return;
3519 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3523 * pci_set_master - enables bus-mastering for device dev
3524 * @dev: the PCI device to enable
3526 * Enables bus-mastering on the device and calls pcibios_set_master()
3527 * to do the needed arch specific settings.
3529 void pci_set_master(struct pci_dev *dev)
3531 __pci_set_master(dev, true);
3532 pcibios_set_master(dev);
3534 EXPORT_SYMBOL(pci_set_master);
3537 * pci_clear_master - disables bus-mastering for device dev
3538 * @dev: the PCI device to disable
3540 void pci_clear_master(struct pci_dev *dev)
3542 __pci_set_master(dev, false);
3544 EXPORT_SYMBOL(pci_clear_master);
3547 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3548 * @dev: the PCI device for which MWI is to be enabled
3550 * Helper function for pci_set_mwi.
3551 * Originally copied from drivers/net/acenic.c.
3552 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3554 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3556 int pci_set_cacheline_size(struct pci_dev *dev)
3558 u8 cacheline_size;
3560 if (!pci_cache_line_size)
3561 return -EINVAL;
3563 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3564 equal to or multiple of the right value. */
3565 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3566 if (cacheline_size >= pci_cache_line_size &&
3567 (cacheline_size % pci_cache_line_size) == 0)
3568 return 0;
3570 /* Write the correct value. */
3571 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3572 /* Read it back. */
3573 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3574 if (cacheline_size == pci_cache_line_size)
3575 return 0;
3577 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3578 pci_cache_line_size << 2);
3580 return -EINVAL;
3582 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3585 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3586 * @dev: the PCI device for which MWI is enabled
3588 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3590 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3592 int pci_set_mwi(struct pci_dev *dev)
3594 #ifdef PCI_DISABLE_MWI
3595 return 0;
3596 #else
3597 int rc;
3598 u16 cmd;
3600 rc = pci_set_cacheline_size(dev);
3601 if (rc)
3602 return rc;
3604 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3605 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3606 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3607 cmd |= PCI_COMMAND_INVALIDATE;
3608 pci_write_config_word(dev, PCI_COMMAND, cmd);
3610 return 0;
3611 #endif
3613 EXPORT_SYMBOL(pci_set_mwi);
3616 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3617 * @dev: the PCI device for which MWI is enabled
3619 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3620 * Callers are not required to check the return value.
3622 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3624 int pci_try_set_mwi(struct pci_dev *dev)
3626 #ifdef PCI_DISABLE_MWI
3627 return 0;
3628 #else
3629 return pci_set_mwi(dev);
3630 #endif
3632 EXPORT_SYMBOL(pci_try_set_mwi);
3635 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3636 * @dev: the PCI device to disable
3638 * Disables PCI Memory-Write-Invalidate transaction on the device
3640 void pci_clear_mwi(struct pci_dev *dev)
3642 #ifndef PCI_DISABLE_MWI
3643 u16 cmd;
3645 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3646 if (cmd & PCI_COMMAND_INVALIDATE) {
3647 cmd &= ~PCI_COMMAND_INVALIDATE;
3648 pci_write_config_word(dev, PCI_COMMAND, cmd);
3650 #endif
3652 EXPORT_SYMBOL(pci_clear_mwi);
3655 * pci_intx - enables/disables PCI INTx for device dev
3656 * @pdev: the PCI device to operate on
3657 * @enable: boolean: whether to enable or disable PCI INTx
3659 * Enables/disables PCI INTx for device dev
3661 void pci_intx(struct pci_dev *pdev, int enable)
3663 u16 pci_command, new;
3665 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3667 if (enable)
3668 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3669 else
3670 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3672 if (new != pci_command) {
3673 struct pci_devres *dr;
3675 pci_write_config_word(pdev, PCI_COMMAND, new);
3677 dr = find_pci_dr(pdev);
3678 if (dr && !dr->restore_intx) {
3679 dr->restore_intx = 1;
3680 dr->orig_intx = !enable;
3684 EXPORT_SYMBOL_GPL(pci_intx);
3687 * pci_intx_mask_supported - probe for INTx masking support
3688 * @dev: the PCI device to operate on
3690 * Check if the device dev support INTx masking via the config space
3691 * command word.
3693 bool pci_intx_mask_supported(struct pci_dev *dev)
3695 bool mask_supported = false;
3696 u16 orig, new;
3698 if (dev->broken_intx_masking)
3699 return false;
3701 pci_cfg_access_lock(dev);
3703 pci_read_config_word(dev, PCI_COMMAND, &orig);
3704 pci_write_config_word(dev, PCI_COMMAND,
3705 orig ^ PCI_COMMAND_INTX_DISABLE);
3706 pci_read_config_word(dev, PCI_COMMAND, &new);
3709 * There's no way to protect against hardware bugs or detect them
3710 * reliably, but as long as we know what the value should be, let's
3711 * go ahead and check it.
3713 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3714 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3715 orig, new);
3716 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3717 mask_supported = true;
3718 pci_write_config_word(dev, PCI_COMMAND, orig);
3721 pci_cfg_access_unlock(dev);
3722 return mask_supported;
3724 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3726 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3728 struct pci_bus *bus = dev->bus;
3729 bool mask_updated = true;
3730 u32 cmd_status_dword;
3731 u16 origcmd, newcmd;
3732 unsigned long flags;
3733 bool irq_pending;
3736 * We do a single dword read to retrieve both command and status.
3737 * Document assumptions that make this possible.
3739 BUILD_BUG_ON(PCI_COMMAND % 4);
3740 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3742 raw_spin_lock_irqsave(&pci_lock, flags);
3744 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3746 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3749 * Check interrupt status register to see whether our device
3750 * triggered the interrupt (when masking) or the next IRQ is
3751 * already pending (when unmasking).
3753 if (mask != irq_pending) {
3754 mask_updated = false;
3755 goto done;
3758 origcmd = cmd_status_dword;
3759 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3760 if (mask)
3761 newcmd |= PCI_COMMAND_INTX_DISABLE;
3762 if (newcmd != origcmd)
3763 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3765 done:
3766 raw_spin_unlock_irqrestore(&pci_lock, flags);
3768 return mask_updated;
3772 * pci_check_and_mask_intx - mask INTx on pending interrupt
3773 * @dev: the PCI device to operate on
3775 * Check if the device dev has its INTx line asserted, mask it and
3776 * return true in that case. False is returned if not interrupt was
3777 * pending.
3779 bool pci_check_and_mask_intx(struct pci_dev *dev)
3781 return pci_check_and_set_intx_mask(dev, true);
3783 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3786 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3787 * @dev: the PCI device to operate on
3789 * Check if the device dev has its INTx line asserted, unmask it if not
3790 * and return true. False is returned and the mask remains active if
3791 * there was still an interrupt pending.
3793 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3795 return pci_check_and_set_intx_mask(dev, false);
3797 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3800 * pci_wait_for_pending_transaction - waits for pending transaction
3801 * @dev: the PCI device to operate on
3803 * Return 0 if transaction is pending 1 otherwise.
3805 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3807 if (!pci_is_pcie(dev))
3808 return 1;
3810 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3811 PCI_EXP_DEVSTA_TRPND);
3813 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3815 static void pci_flr_wait(struct pci_dev *dev)
3817 int delay = 1, timeout = 60000;
3818 u32 id;
3821 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3822 * 100ms, but may silently discard requests while the FLR is in
3823 * progress. Wait 100ms before trying to access the device.
3825 msleep(100);
3828 * After 100ms, the device should not silently discard config
3829 * requests, but it may still indicate that it needs more time by
3830 * responding to them with CRS completions. The Root Port will
3831 * generally synthesize ~0 data to complete the read (except when
3832 * CRS SV is enabled and the read was for the Vendor ID; in that
3833 * case it synthesizes 0x0001 data).
3835 * Wait for the device to return a non-CRS completion. Read the
3836 * Command register instead of Vendor ID so we don't have to
3837 * contend with the CRS SV value.
3839 pci_read_config_dword(dev, PCI_COMMAND, &id);
3840 while (id == ~0) {
3841 if (delay > timeout) {
3842 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3843 100 + delay - 1);
3844 return;
3847 if (delay > 1000)
3848 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3849 100 + delay - 1);
3851 msleep(delay);
3852 delay *= 2;
3853 pci_read_config_dword(dev, PCI_COMMAND, &id);
3856 if (delay > 1000)
3857 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3860 static int pcie_flr(struct pci_dev *dev, int probe)
3862 u32 cap;
3864 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3865 if (!(cap & PCI_EXP_DEVCAP_FLR))
3866 return -ENOTTY;
3868 if (probe)
3869 return 0;
3871 if (!pci_wait_for_pending_transaction(dev))
3872 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3874 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3875 pci_flr_wait(dev);
3876 return 0;
3879 static int pci_af_flr(struct pci_dev *dev, int probe)
3881 int pos;
3882 u8 cap;
3884 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3885 if (!pos)
3886 return -ENOTTY;
3888 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3889 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3890 return -ENOTTY;
3892 if (probe)
3893 return 0;
3896 * Wait for Transaction Pending bit to clear. A word-aligned test
3897 * is used, so we use the conrol offset rather than status and shift
3898 * the test bit to match.
3900 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3901 PCI_AF_STATUS_TP << 8))
3902 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3904 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3905 pci_flr_wait(dev);
3906 return 0;
3910 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3911 * @dev: Device to reset.
3912 * @probe: If set, only check if the device can be reset this way.
3914 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3915 * unset, it will be reinitialized internally when going from PCI_D3hot to
3916 * PCI_D0. If that's the case and the device is not in a low-power state
3917 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3919 * NOTE: This causes the caller to sleep for twice the device power transition
3920 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3921 * by default (i.e. unless the @dev's d3_delay field has a different value).
3922 * Moreover, only devices in D0 can be reset by this function.
3924 static int pci_pm_reset(struct pci_dev *dev, int probe)
3926 u16 csr;
3928 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3929 return -ENOTTY;
3931 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3932 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3933 return -ENOTTY;
3935 if (probe)
3936 return 0;
3938 if (dev->current_state != PCI_D0)
3939 return -EINVAL;
3941 csr &= ~PCI_PM_CTRL_STATE_MASK;
3942 csr |= PCI_D3hot;
3943 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3944 pci_dev_d3_sleep(dev);
3946 csr &= ~PCI_PM_CTRL_STATE_MASK;
3947 csr |= PCI_D0;
3948 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3949 pci_dev_d3_sleep(dev);
3951 return 0;
3954 void pci_reset_secondary_bus(struct pci_dev *dev)
3956 u16 ctrl;
3958 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3959 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3960 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3962 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3963 * this to 2ms to ensure that we meet the minimum requirement.
3965 msleep(2);
3967 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3968 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3971 * Trhfa for conventional PCI is 2^25 clock cycles.
3972 * Assuming a minimum 33MHz clock this results in a 1s
3973 * delay before we can consider subordinate devices to
3974 * be re-initialized. PCIe has some ways to shorten this,
3975 * but we don't make use of them yet.
3977 ssleep(1);
3980 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3982 pci_reset_secondary_bus(dev);
3986 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3987 * @dev: Bridge device
3989 * Use the bridge control register to assert reset on the secondary bus.
3990 * Devices on the secondary bus are left in power-on state.
3992 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3994 pcibios_reset_secondary_bus(dev);
3996 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3998 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4000 struct pci_dev *pdev;
4002 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4003 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4004 return -ENOTTY;
4006 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4007 if (pdev != dev)
4008 return -ENOTTY;
4010 if (probe)
4011 return 0;
4013 pci_reset_bridge_secondary_bus(dev->bus->self);
4015 return 0;
4018 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4020 int rc = -ENOTTY;
4022 if (!hotplug || !try_module_get(hotplug->ops->owner))
4023 return rc;
4025 if (hotplug->ops->reset_slot)
4026 rc = hotplug->ops->reset_slot(hotplug, probe);
4028 module_put(hotplug->ops->owner);
4030 return rc;
4033 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4035 struct pci_dev *pdev;
4037 if (dev->subordinate || !dev->slot ||
4038 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4039 return -ENOTTY;
4041 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4042 if (pdev != dev && pdev->slot == dev->slot)
4043 return -ENOTTY;
4045 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4048 static int __pci_dev_reset(struct pci_dev *dev, int probe)
4050 int rc;
4052 might_sleep();
4054 rc = pci_dev_specific_reset(dev, probe);
4055 if (rc != -ENOTTY)
4056 goto done;
4058 rc = pcie_flr(dev, probe);
4059 if (rc != -ENOTTY)
4060 goto done;
4062 rc = pci_af_flr(dev, probe);
4063 if (rc != -ENOTTY)
4064 goto done;
4066 rc = pci_pm_reset(dev, probe);
4067 if (rc != -ENOTTY)
4068 goto done;
4070 rc = pci_dev_reset_slot_function(dev, probe);
4071 if (rc != -ENOTTY)
4072 goto done;
4074 rc = pci_parent_bus_reset(dev, probe);
4075 done:
4076 return rc;
4079 static void pci_dev_lock(struct pci_dev *dev)
4081 pci_cfg_access_lock(dev);
4082 /* block PM suspend, driver probe, etc. */
4083 device_lock(&dev->dev);
4086 /* Return 1 on successful lock, 0 on contention */
4087 static int pci_dev_trylock(struct pci_dev *dev)
4089 if (pci_cfg_access_trylock(dev)) {
4090 if (device_trylock(&dev->dev))
4091 return 1;
4092 pci_cfg_access_unlock(dev);
4095 return 0;
4098 static void pci_dev_unlock(struct pci_dev *dev)
4100 device_unlock(&dev->dev);
4101 pci_cfg_access_unlock(dev);
4105 * pci_reset_notify - notify device driver of reset
4106 * @dev: device to be notified of reset
4107 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4108 * completed
4110 * Must be called prior to device access being disabled and after device
4111 * access is restored.
4113 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4115 const struct pci_error_handlers *err_handler =
4116 dev->driver ? dev->driver->err_handler : NULL;
4117 if (err_handler && err_handler->reset_notify)
4118 err_handler->reset_notify(dev, prepare);
4121 static void pci_dev_save_and_disable(struct pci_dev *dev)
4123 pci_reset_notify(dev, true);
4126 * Wake-up device prior to save. PM registers default to D0 after
4127 * reset and a simple register restore doesn't reliably return
4128 * to a non-D0 state anyway.
4130 pci_set_power_state(dev, PCI_D0);
4132 pci_save_state(dev);
4134 * Disable the device by clearing the Command register, except for
4135 * INTx-disable which is set. This not only disables MMIO and I/O port
4136 * BARs, but also prevents the device from being Bus Master, preventing
4137 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4138 * compliant devices, INTx-disable prevents legacy interrupts.
4140 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4143 static void pci_dev_restore(struct pci_dev *dev)
4145 pci_restore_state(dev);
4146 pci_reset_notify(dev, false);
4149 static int pci_dev_reset(struct pci_dev *dev, int probe)
4151 int rc;
4153 if (!probe)
4154 pci_dev_lock(dev);
4156 rc = __pci_dev_reset(dev, probe);
4158 if (!probe)
4159 pci_dev_unlock(dev);
4161 return rc;
4165 * __pci_reset_function - reset a PCI device function
4166 * @dev: PCI device to reset
4168 * Some devices allow an individual function to be reset without affecting
4169 * other functions in the same device. The PCI device must be responsive
4170 * to PCI config space in order to use this function.
4172 * The device function is presumed to be unused when this function is called.
4173 * Resetting the device will make the contents of PCI configuration space
4174 * random, so any caller of this must be prepared to reinitialise the
4175 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4176 * etc.
4178 * Returns 0 if the device function was successfully reset or negative if the
4179 * device doesn't support resetting a single function.
4181 int __pci_reset_function(struct pci_dev *dev)
4183 return pci_dev_reset(dev, 0);
4185 EXPORT_SYMBOL_GPL(__pci_reset_function);
4188 * __pci_reset_function_locked - reset a PCI device function while holding
4189 * the @dev mutex lock.
4190 * @dev: PCI device to reset
4192 * Some devices allow an individual function to be reset without affecting
4193 * other functions in the same device. The PCI device must be responsive
4194 * to PCI config space in order to use this function.
4196 * The device function is presumed to be unused and the caller is holding
4197 * the device mutex lock when this function is called.
4198 * Resetting the device will make the contents of PCI configuration space
4199 * random, so any caller of this must be prepared to reinitialise the
4200 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4201 * etc.
4203 * Returns 0 if the device function was successfully reset or negative if the
4204 * device doesn't support resetting a single function.
4206 int __pci_reset_function_locked(struct pci_dev *dev)
4208 return __pci_dev_reset(dev, 0);
4210 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4213 * pci_probe_reset_function - check whether the device can be safely reset
4214 * @dev: PCI device to reset
4216 * Some devices allow an individual function to be reset without affecting
4217 * other functions in the same device. The PCI device must be responsive
4218 * to PCI config space in order to use this function.
4220 * Returns 0 if the device function can be reset or negative if the
4221 * device doesn't support resetting a single function.
4223 int pci_probe_reset_function(struct pci_dev *dev)
4225 return pci_dev_reset(dev, 1);
4229 * pci_reset_function - quiesce and reset a PCI device function
4230 * @dev: PCI device to reset
4232 * Some devices allow an individual function to be reset without affecting
4233 * other functions in the same device. The PCI device must be responsive
4234 * to PCI config space in order to use this function.
4236 * This function does not just reset the PCI portion of a device, but
4237 * clears all the state associated with the device. This function differs
4238 * from __pci_reset_function in that it saves and restores device state
4239 * over the reset.
4241 * Returns 0 if the device function was successfully reset or negative if the
4242 * device doesn't support resetting a single function.
4244 int pci_reset_function(struct pci_dev *dev)
4246 int rc;
4248 rc = pci_dev_reset(dev, 1);
4249 if (rc)
4250 return rc;
4252 pci_dev_save_and_disable(dev);
4254 rc = pci_dev_reset(dev, 0);
4256 pci_dev_restore(dev);
4258 return rc;
4260 EXPORT_SYMBOL_GPL(pci_reset_function);
4263 * pci_try_reset_function - quiesce and reset a PCI device function
4264 * @dev: PCI device to reset
4266 * Same as above, except return -EAGAIN if unable to lock device.
4268 int pci_try_reset_function(struct pci_dev *dev)
4270 int rc;
4272 rc = pci_dev_reset(dev, 1);
4273 if (rc)
4274 return rc;
4276 pci_dev_save_and_disable(dev);
4278 if (pci_dev_trylock(dev)) {
4279 rc = __pci_dev_reset(dev, 0);
4280 pci_dev_unlock(dev);
4281 } else
4282 rc = -EAGAIN;
4284 pci_dev_restore(dev);
4286 return rc;
4288 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4290 /* Do any devices on or below this bus prevent a bus reset? */
4291 static bool pci_bus_resetable(struct pci_bus *bus)
4293 struct pci_dev *dev;
4296 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4297 return false;
4299 list_for_each_entry(dev, &bus->devices, bus_list) {
4300 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4301 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4302 return false;
4305 return true;
4308 /* Lock devices from the top of the tree down */
4309 static void pci_bus_lock(struct pci_bus *bus)
4311 struct pci_dev *dev;
4313 list_for_each_entry(dev, &bus->devices, bus_list) {
4314 pci_dev_lock(dev);
4315 if (dev->subordinate)
4316 pci_bus_lock(dev->subordinate);
4320 /* Unlock devices from the bottom of the tree up */
4321 static void pci_bus_unlock(struct pci_bus *bus)
4323 struct pci_dev *dev;
4325 list_for_each_entry(dev, &bus->devices, bus_list) {
4326 if (dev->subordinate)
4327 pci_bus_unlock(dev->subordinate);
4328 pci_dev_unlock(dev);
4332 /* Return 1 on successful lock, 0 on contention */
4333 static int pci_bus_trylock(struct pci_bus *bus)
4335 struct pci_dev *dev;
4337 list_for_each_entry(dev, &bus->devices, bus_list) {
4338 if (!pci_dev_trylock(dev))
4339 goto unlock;
4340 if (dev->subordinate) {
4341 if (!pci_bus_trylock(dev->subordinate)) {
4342 pci_dev_unlock(dev);
4343 goto unlock;
4347 return 1;
4349 unlock:
4350 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4351 if (dev->subordinate)
4352 pci_bus_unlock(dev->subordinate);
4353 pci_dev_unlock(dev);
4355 return 0;
4358 /* Do any devices on or below this slot prevent a bus reset? */
4359 static bool pci_slot_resetable(struct pci_slot *slot)
4361 struct pci_dev *dev;
4363 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4364 if (!dev->slot || dev->slot != slot)
4365 continue;
4366 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4367 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4368 return false;
4371 return true;
4374 /* Lock devices from the top of the tree down */
4375 static void pci_slot_lock(struct pci_slot *slot)
4377 struct pci_dev *dev;
4379 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4380 if (!dev->slot || dev->slot != slot)
4381 continue;
4382 pci_dev_lock(dev);
4383 if (dev->subordinate)
4384 pci_bus_lock(dev->subordinate);
4388 /* Unlock devices from the bottom of the tree up */
4389 static void pci_slot_unlock(struct pci_slot *slot)
4391 struct pci_dev *dev;
4393 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4394 if (!dev->slot || dev->slot != slot)
4395 continue;
4396 if (dev->subordinate)
4397 pci_bus_unlock(dev->subordinate);
4398 pci_dev_unlock(dev);
4402 /* Return 1 on successful lock, 0 on contention */
4403 static int pci_slot_trylock(struct pci_slot *slot)
4405 struct pci_dev *dev;
4407 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4408 if (!dev->slot || dev->slot != slot)
4409 continue;
4410 if (!pci_dev_trylock(dev))
4411 goto unlock;
4412 if (dev->subordinate) {
4413 if (!pci_bus_trylock(dev->subordinate)) {
4414 pci_dev_unlock(dev);
4415 goto unlock;
4419 return 1;
4421 unlock:
4422 list_for_each_entry_continue_reverse(dev,
4423 &slot->bus->devices, bus_list) {
4424 if (!dev->slot || dev->slot != slot)
4425 continue;
4426 if (dev->subordinate)
4427 pci_bus_unlock(dev->subordinate);
4428 pci_dev_unlock(dev);
4430 return 0;
4433 /* Save and disable devices from the top of the tree down */
4434 static void pci_bus_save_and_disable(struct pci_bus *bus)
4436 struct pci_dev *dev;
4438 list_for_each_entry(dev, &bus->devices, bus_list) {
4439 pci_dev_save_and_disable(dev);
4440 if (dev->subordinate)
4441 pci_bus_save_and_disable(dev->subordinate);
4446 * Restore devices from top of the tree down - parent bridges need to be
4447 * restored before we can get to subordinate devices.
4449 static void pci_bus_restore(struct pci_bus *bus)
4451 struct pci_dev *dev;
4453 list_for_each_entry(dev, &bus->devices, bus_list) {
4454 pci_dev_restore(dev);
4455 if (dev->subordinate)
4456 pci_bus_restore(dev->subordinate);
4460 /* Save and disable devices from the top of the tree down */
4461 static void pci_slot_save_and_disable(struct pci_slot *slot)
4463 struct pci_dev *dev;
4465 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4466 if (!dev->slot || dev->slot != slot)
4467 continue;
4468 pci_dev_save_and_disable(dev);
4469 if (dev->subordinate)
4470 pci_bus_save_and_disable(dev->subordinate);
4475 * Restore devices from top of the tree down - parent bridges need to be
4476 * restored before we can get to subordinate devices.
4478 static void pci_slot_restore(struct pci_slot *slot)
4480 struct pci_dev *dev;
4482 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4483 if (!dev->slot || dev->slot != slot)
4484 continue;
4485 pci_dev_restore(dev);
4486 if (dev->subordinate)
4487 pci_bus_restore(dev->subordinate);
4491 static int pci_slot_reset(struct pci_slot *slot, int probe)
4493 int rc;
4495 if (!slot || !pci_slot_resetable(slot))
4496 return -ENOTTY;
4498 if (!probe)
4499 pci_slot_lock(slot);
4501 might_sleep();
4503 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4505 if (!probe)
4506 pci_slot_unlock(slot);
4508 return rc;
4512 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4513 * @slot: PCI slot to probe
4515 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4517 int pci_probe_reset_slot(struct pci_slot *slot)
4519 return pci_slot_reset(slot, 1);
4521 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4524 * pci_reset_slot - reset a PCI slot
4525 * @slot: PCI slot to reset
4527 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4528 * independent of other slots. For instance, some slots may support slot power
4529 * control. In the case of a 1:1 bus to slot architecture, this function may
4530 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4531 * Generally a slot reset should be attempted before a bus reset. All of the
4532 * function of the slot and any subordinate buses behind the slot are reset
4533 * through this function. PCI config space of all devices in the slot and
4534 * behind the slot is saved before and restored after reset.
4536 * Return 0 on success, non-zero on error.
4538 int pci_reset_slot(struct pci_slot *slot)
4540 int rc;
4542 rc = pci_slot_reset(slot, 1);
4543 if (rc)
4544 return rc;
4546 pci_slot_save_and_disable(slot);
4548 rc = pci_slot_reset(slot, 0);
4550 pci_slot_restore(slot);
4552 return rc;
4554 EXPORT_SYMBOL_GPL(pci_reset_slot);
4557 * pci_try_reset_slot - Try to reset a PCI slot
4558 * @slot: PCI slot to reset
4560 * Same as above except return -EAGAIN if the slot cannot be locked
4562 int pci_try_reset_slot(struct pci_slot *slot)
4564 int rc;
4566 rc = pci_slot_reset(slot, 1);
4567 if (rc)
4568 return rc;
4570 pci_slot_save_and_disable(slot);
4572 if (pci_slot_trylock(slot)) {
4573 might_sleep();
4574 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4575 pci_slot_unlock(slot);
4576 } else
4577 rc = -EAGAIN;
4579 pci_slot_restore(slot);
4581 return rc;
4583 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4585 static int pci_bus_reset(struct pci_bus *bus, int probe)
4587 if (!bus->self || !pci_bus_resetable(bus))
4588 return -ENOTTY;
4590 if (probe)
4591 return 0;
4593 pci_bus_lock(bus);
4595 might_sleep();
4597 pci_reset_bridge_secondary_bus(bus->self);
4599 pci_bus_unlock(bus);
4601 return 0;
4605 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4606 * @bus: PCI bus to probe
4608 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4610 int pci_probe_reset_bus(struct pci_bus *bus)
4612 return pci_bus_reset(bus, 1);
4614 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4617 * pci_reset_bus - reset a PCI bus
4618 * @bus: top level PCI bus to reset
4620 * Do a bus reset on the given bus and any subordinate buses, saving
4621 * and restoring state of all devices.
4623 * Return 0 on success, non-zero on error.
4625 int pci_reset_bus(struct pci_bus *bus)
4627 int rc;
4629 rc = pci_bus_reset(bus, 1);
4630 if (rc)
4631 return rc;
4633 pci_bus_save_and_disable(bus);
4635 rc = pci_bus_reset(bus, 0);
4637 pci_bus_restore(bus);
4639 return rc;
4641 EXPORT_SYMBOL_GPL(pci_reset_bus);
4644 * pci_try_reset_bus - Try to reset a PCI bus
4645 * @bus: top level PCI bus to reset
4647 * Same as above except return -EAGAIN if the bus cannot be locked
4649 int pci_try_reset_bus(struct pci_bus *bus)
4651 int rc;
4653 rc = pci_bus_reset(bus, 1);
4654 if (rc)
4655 return rc;
4657 pci_bus_save_and_disable(bus);
4659 if (pci_bus_trylock(bus)) {
4660 might_sleep();
4661 pci_reset_bridge_secondary_bus(bus->self);
4662 pci_bus_unlock(bus);
4663 } else
4664 rc = -EAGAIN;
4666 pci_bus_restore(bus);
4668 return rc;
4670 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4673 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4674 * @dev: PCI device to query
4676 * Returns mmrbc: maximum designed memory read count in bytes
4677 * or appropriate error value.
4679 int pcix_get_max_mmrbc(struct pci_dev *dev)
4681 int cap;
4682 u32 stat;
4684 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4685 if (!cap)
4686 return -EINVAL;
4688 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4689 return -EINVAL;
4691 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4693 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4696 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4697 * @dev: PCI device to query
4699 * Returns mmrbc: maximum memory read count in bytes
4700 * or appropriate error value.
4702 int pcix_get_mmrbc(struct pci_dev *dev)
4704 int cap;
4705 u16 cmd;
4707 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4708 if (!cap)
4709 return -EINVAL;
4711 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4712 return -EINVAL;
4714 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4716 EXPORT_SYMBOL(pcix_get_mmrbc);
4719 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4720 * @dev: PCI device to query
4721 * @mmrbc: maximum memory read count in bytes
4722 * valid values are 512, 1024, 2048, 4096
4724 * If possible sets maximum memory read byte count, some bridges have erratas
4725 * that prevent this.
4727 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4729 int cap;
4730 u32 stat, v, o;
4731 u16 cmd;
4733 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4734 return -EINVAL;
4736 v = ffs(mmrbc) - 10;
4738 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4739 if (!cap)
4740 return -EINVAL;
4742 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4743 return -EINVAL;
4745 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4746 return -E2BIG;
4748 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4749 return -EINVAL;
4751 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4752 if (o != v) {
4753 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4754 return -EIO;
4756 cmd &= ~PCI_X_CMD_MAX_READ;
4757 cmd |= v << 2;
4758 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4759 return -EIO;
4761 return 0;
4763 EXPORT_SYMBOL(pcix_set_mmrbc);
4766 * pcie_get_readrq - get PCI Express read request size
4767 * @dev: PCI device to query
4769 * Returns maximum memory read request in bytes
4770 * or appropriate error value.
4772 int pcie_get_readrq(struct pci_dev *dev)
4774 u16 ctl;
4776 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4778 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4780 EXPORT_SYMBOL(pcie_get_readrq);
4783 * pcie_set_readrq - set PCI Express maximum memory read request
4784 * @dev: PCI device to query
4785 * @rq: maximum memory read count in bytes
4786 * valid values are 128, 256, 512, 1024, 2048, 4096
4788 * If possible sets maximum memory read request in bytes
4790 int pcie_set_readrq(struct pci_dev *dev, int rq)
4792 u16 v;
4794 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4795 return -EINVAL;
4798 * If using the "performance" PCIe config, we clamp the
4799 * read rq size to the max packet size to prevent the
4800 * host bridge generating requests larger than we can
4801 * cope with
4803 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4804 int mps = pcie_get_mps(dev);
4806 if (mps < rq)
4807 rq = mps;
4810 v = (ffs(rq) - 8) << 12;
4812 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4813 PCI_EXP_DEVCTL_READRQ, v);
4815 EXPORT_SYMBOL(pcie_set_readrq);
4818 * pcie_get_mps - get PCI Express maximum payload size
4819 * @dev: PCI device to query
4821 * Returns maximum payload size in bytes
4823 int pcie_get_mps(struct pci_dev *dev)
4825 u16 ctl;
4827 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4829 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4831 EXPORT_SYMBOL(pcie_get_mps);
4834 * pcie_set_mps - set PCI Express maximum payload size
4835 * @dev: PCI device to query
4836 * @mps: maximum payload size in bytes
4837 * valid values are 128, 256, 512, 1024, 2048, 4096
4839 * If possible sets maximum payload size
4841 int pcie_set_mps(struct pci_dev *dev, int mps)
4843 u16 v;
4845 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4846 return -EINVAL;
4848 v = ffs(mps) - 8;
4849 if (v > dev->pcie_mpss)
4850 return -EINVAL;
4851 v <<= 5;
4853 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4854 PCI_EXP_DEVCTL_PAYLOAD, v);
4856 EXPORT_SYMBOL(pcie_set_mps);
4859 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4860 * @dev: PCI device to query
4861 * @speed: storage for minimum speed
4862 * @width: storage for minimum width
4864 * This function will walk up the PCI device chain and determine the minimum
4865 * link width and speed of the device.
4867 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4868 enum pcie_link_width *width)
4870 int ret;
4872 *speed = PCI_SPEED_UNKNOWN;
4873 *width = PCIE_LNK_WIDTH_UNKNOWN;
4875 while (dev) {
4876 u16 lnksta;
4877 enum pci_bus_speed next_speed;
4878 enum pcie_link_width next_width;
4880 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4881 if (ret)
4882 return ret;
4884 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4885 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4886 PCI_EXP_LNKSTA_NLW_SHIFT;
4888 if (next_speed < *speed)
4889 *speed = next_speed;
4891 if (next_width < *width)
4892 *width = next_width;
4894 dev = dev->bus->self;
4897 return 0;
4899 EXPORT_SYMBOL(pcie_get_minimum_link);
4902 * pci_select_bars - Make BAR mask from the type of resource
4903 * @dev: the PCI device for which BAR mask is made
4904 * @flags: resource type mask to be selected
4906 * This helper routine makes bar mask from the type of resource.
4908 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4910 int i, bars = 0;
4911 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4912 if (pci_resource_flags(dev, i) & flags)
4913 bars |= (1 << i);
4914 return bars;
4916 EXPORT_SYMBOL(pci_select_bars);
4918 /* Some architectures require additional programming to enable VGA */
4919 static arch_set_vga_state_t arch_set_vga_state;
4921 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4923 arch_set_vga_state = func; /* NULL disables */
4926 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4927 unsigned int command_bits, u32 flags)
4929 if (arch_set_vga_state)
4930 return arch_set_vga_state(dev, decode, command_bits,
4931 flags);
4932 return 0;
4936 * pci_set_vga_state - set VGA decode state on device and parents if requested
4937 * @dev: the PCI device
4938 * @decode: true = enable decoding, false = disable decoding
4939 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4940 * @flags: traverse ancestors and change bridges
4941 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4943 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4944 unsigned int command_bits, u32 flags)
4946 struct pci_bus *bus;
4947 struct pci_dev *bridge;
4948 u16 cmd;
4949 int rc;
4951 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4953 /* ARCH specific VGA enables */
4954 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4955 if (rc)
4956 return rc;
4958 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4959 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4960 if (decode == true)
4961 cmd |= command_bits;
4962 else
4963 cmd &= ~command_bits;
4964 pci_write_config_word(dev, PCI_COMMAND, cmd);
4967 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4968 return 0;
4970 bus = dev->bus;
4971 while (bus) {
4972 bridge = bus->self;
4973 if (bridge) {
4974 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4975 &cmd);
4976 if (decode == true)
4977 cmd |= PCI_BRIDGE_CTL_VGA;
4978 else
4979 cmd &= ~PCI_BRIDGE_CTL_VGA;
4980 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4981 cmd);
4983 bus = bus->parent;
4985 return 0;
4989 * pci_add_dma_alias - Add a DMA devfn alias for a device
4990 * @dev: the PCI device for which alias is added
4991 * @devfn: alias slot and function
4993 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4994 * It should be called early, preferably as PCI fixup header quirk.
4996 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4998 if (!dev->dma_alias_mask)
4999 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5000 sizeof(long), GFP_KERNEL);
5001 if (!dev->dma_alias_mask) {
5002 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5003 return;
5006 set_bit(devfn, dev->dma_alias_mask);
5007 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5008 PCI_SLOT(devfn), PCI_FUNC(devfn));
5011 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5013 return (dev1->dma_alias_mask &&
5014 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5015 (dev2->dma_alias_mask &&
5016 test_bit(dev1->devfn, dev2->dma_alias_mask));
5019 bool pci_device_is_present(struct pci_dev *pdev)
5021 u32 v;
5023 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5025 EXPORT_SYMBOL_GPL(pci_device_is_present);
5027 void pci_ignore_hotplug(struct pci_dev *dev)
5029 struct pci_dev *bridge = dev->bus->self;
5031 dev->ignore_hotplug = 1;
5032 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5033 if (bridge)
5034 bridge->ignore_hotplug = 1;
5036 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5038 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5039 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5040 static DEFINE_SPINLOCK(resource_alignment_lock);
5043 * pci_specified_resource_alignment - get resource alignment specified by user.
5044 * @dev: the PCI device to get
5046 * RETURNS: Resource alignment if it is specified.
5047 * Zero if it is not specified.
5049 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
5051 int seg, bus, slot, func, align_order, count;
5052 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5053 resource_size_t align = 0;
5054 char *p;
5056 spin_lock(&resource_alignment_lock);
5057 p = resource_alignment_param;
5058 if (!*p)
5059 goto out;
5060 if (pci_has_flag(PCI_PROBE_ONLY)) {
5061 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5062 goto out;
5065 while (*p) {
5066 count = 0;
5067 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5068 p[count] == '@') {
5069 p += count + 1;
5070 } else {
5071 align_order = -1;
5073 if (strncmp(p, "pci:", 4) == 0) {
5074 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5075 p += 4;
5076 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5077 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5078 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5079 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5081 break;
5083 subsystem_vendor = subsystem_device = 0;
5085 p += count;
5086 if ((!vendor || (vendor == dev->vendor)) &&
5087 (!device || (device == dev->device)) &&
5088 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5089 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5090 if (align_order == -1)
5091 align = PAGE_SIZE;
5092 else
5093 align = 1 << align_order;
5094 /* Found */
5095 break;
5098 else {
5099 if (sscanf(p, "%x:%x:%x.%x%n",
5100 &seg, &bus, &slot, &func, &count) != 4) {
5101 seg = 0;
5102 if (sscanf(p, "%x:%x.%x%n",
5103 &bus, &slot, &func, &count) != 3) {
5104 /* Invalid format */
5105 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5107 break;
5110 p += count;
5111 if (seg == pci_domain_nr(dev->bus) &&
5112 bus == dev->bus->number &&
5113 slot == PCI_SLOT(dev->devfn) &&
5114 func == PCI_FUNC(dev->devfn)) {
5115 if (align_order == -1)
5116 align = PAGE_SIZE;
5117 else
5118 align = 1 << align_order;
5119 /* Found */
5120 break;
5123 if (*p != ';' && *p != ',') {
5124 /* End of param or invalid format */
5125 break;
5127 p++;
5129 out:
5130 spin_unlock(&resource_alignment_lock);
5131 return align;
5135 * This function disables memory decoding and releases memory resources
5136 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5137 * It also rounds up size to specified alignment.
5138 * Later on, the kernel will assign page-aligned memory resource back
5139 * to the device.
5141 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5143 int i;
5144 struct resource *r;
5145 resource_size_t align, size;
5146 u16 command;
5149 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5150 * 3.4.1.11. Their resources are allocated from the space
5151 * described by the VF BARx register in the PF's SR-IOV capability.
5152 * We can't influence their alignment here.
5154 if (dev->is_virtfn)
5155 return;
5157 /* check if specified PCI is target device to reassign */
5158 align = pci_specified_resource_alignment(dev);
5159 if (!align)
5160 return;
5162 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5163 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5164 dev_warn(&dev->dev,
5165 "Can't reassign resources to host bridge.\n");
5166 return;
5169 dev_info(&dev->dev,
5170 "Disabling memory decoding and releasing memory resources.\n");
5171 pci_read_config_word(dev, PCI_COMMAND, &command);
5172 command &= ~PCI_COMMAND_MEMORY;
5173 pci_write_config_word(dev, PCI_COMMAND, command);
5175 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5176 r = &dev->resource[i];
5177 if (!(r->flags & IORESOURCE_MEM))
5178 continue;
5179 if (r->flags & IORESOURCE_PCI_FIXED) {
5180 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5181 i, r);
5182 continue;
5185 size = resource_size(r);
5186 if (size < align) {
5187 size = align;
5188 dev_info(&dev->dev,
5189 "Rounding up size of resource #%d to %#llx.\n",
5190 i, (unsigned long long)size);
5192 r->flags |= IORESOURCE_UNSET;
5193 r->end = size - 1;
5194 r->start = 0;
5196 /* Need to disable bridge's resource window,
5197 * to enable the kernel to reassign new resource
5198 * window later on.
5200 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5201 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5202 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5203 r = &dev->resource[i];
5204 if (!(r->flags & IORESOURCE_MEM))
5205 continue;
5206 r->flags |= IORESOURCE_UNSET;
5207 r->end = resource_size(r) - 1;
5208 r->start = 0;
5210 pci_disable_bridge_window(dev);
5214 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5216 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5217 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5218 spin_lock(&resource_alignment_lock);
5219 strncpy(resource_alignment_param, buf, count);
5220 resource_alignment_param[count] = '\0';
5221 spin_unlock(&resource_alignment_lock);
5222 return count;
5225 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5227 size_t count;
5228 spin_lock(&resource_alignment_lock);
5229 count = snprintf(buf, size, "%s", resource_alignment_param);
5230 spin_unlock(&resource_alignment_lock);
5231 return count;
5234 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5236 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5239 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5240 const char *buf, size_t count)
5242 return pci_set_resource_alignment_param(buf, count);
5245 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5246 pci_resource_alignment_store);
5248 static int __init pci_resource_alignment_sysfs_init(void)
5250 return bus_create_file(&pci_bus_type,
5251 &bus_attr_resource_alignment);
5253 late_initcall(pci_resource_alignment_sysfs_init);
5255 static void pci_no_domains(void)
5257 #ifdef CONFIG_PCI_DOMAINS
5258 pci_domains_supported = 0;
5259 #endif
5262 #ifdef CONFIG_PCI_DOMAINS
5263 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5265 int pci_get_new_domain_nr(void)
5267 return atomic_inc_return(&__domain_nr);
5270 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5271 static int of_pci_bus_find_domain_nr(struct device *parent)
5273 static int use_dt_domains = -1;
5274 int domain = -1;
5276 if (parent)
5277 domain = of_get_pci_domain_nr(parent->of_node);
5279 * Check DT domain and use_dt_domains values.
5281 * If DT domain property is valid (domain >= 0) and
5282 * use_dt_domains != 0, the DT assignment is valid since this means
5283 * we have not previously allocated a domain number by using
5284 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5285 * 1, to indicate that we have just assigned a domain number from
5286 * DT.
5288 * If DT domain property value is not valid (ie domain < 0), and we
5289 * have not previously assigned a domain number from DT
5290 * (use_dt_domains != 1) we should assign a domain number by
5291 * using the:
5293 * pci_get_new_domain_nr()
5295 * API and update the use_dt_domains value to keep track of method we
5296 * are using to assign domain numbers (use_dt_domains = 0).
5298 * All other combinations imply we have a platform that is trying
5299 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5300 * which is a recipe for domain mishandling and it is prevented by
5301 * invalidating the domain value (domain = -1) and printing a
5302 * corresponding error.
5304 if (domain >= 0 && use_dt_domains) {
5305 use_dt_domains = 1;
5306 } else if (domain < 0 && use_dt_domains != 1) {
5307 use_dt_domains = 0;
5308 domain = pci_get_new_domain_nr();
5309 } else {
5310 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5311 parent->of_node->full_name);
5312 domain = -1;
5315 return domain;
5318 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5320 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5321 acpi_pci_bus_find_domain_nr(bus);
5323 #endif
5324 #endif
5327 * pci_ext_cfg_avail - can we access extended PCI config space?
5329 * Returns 1 if we can access PCI extended config space (offsets
5330 * greater than 0xff). This is the default implementation. Architecture
5331 * implementations can override this.
5333 int __weak pci_ext_cfg_avail(void)
5335 return 1;
5338 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5341 EXPORT_SYMBOL(pci_fixup_cardbus);
5343 static int __init pci_setup(char *str)
5345 while (str) {
5346 char *k = strchr(str, ',');
5347 if (k)
5348 *k++ = 0;
5349 if (*str && (str = pcibios_setup(str)) && *str) {
5350 if (!strcmp(str, "nomsi")) {
5351 pci_no_msi();
5352 } else if (!strcmp(str, "noaer")) {
5353 pci_no_aer();
5354 } else if (!strncmp(str, "realloc=", 8)) {
5355 pci_realloc_get_opt(str + 8);
5356 } else if (!strncmp(str, "realloc", 7)) {
5357 pci_realloc_get_opt("on");
5358 } else if (!strcmp(str, "nodomains")) {
5359 pci_no_domains();
5360 } else if (!strncmp(str, "noari", 5)) {
5361 pcie_ari_disabled = true;
5362 } else if (!strncmp(str, "cbiosize=", 9)) {
5363 pci_cardbus_io_size = memparse(str + 9, &str);
5364 } else if (!strncmp(str, "cbmemsize=", 10)) {
5365 pci_cardbus_mem_size = memparse(str + 10, &str);
5366 } else if (!strncmp(str, "resource_alignment=", 19)) {
5367 pci_set_resource_alignment_param(str + 19,
5368 strlen(str + 19));
5369 } else if (!strncmp(str, "ecrc=", 5)) {
5370 pcie_ecrc_get_policy(str + 5);
5371 } else if (!strncmp(str, "hpiosize=", 9)) {
5372 pci_hotplug_io_size = memparse(str + 9, &str);
5373 } else if (!strncmp(str, "hpmemsize=", 10)) {
5374 pci_hotplug_mem_size = memparse(str + 10, &str);
5375 } else if (!strncmp(str, "hpbussize=", 10)) {
5376 pci_hotplug_bus_size =
5377 simple_strtoul(str + 10, &str, 0);
5378 if (pci_hotplug_bus_size > 0xff)
5379 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5380 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5381 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5382 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5383 pcie_bus_config = PCIE_BUS_SAFE;
5384 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5385 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5386 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5387 pcie_bus_config = PCIE_BUS_PEER2PEER;
5388 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5389 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5390 } else {
5391 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5392 str);
5395 str = k;
5397 return 0;
5399 early_param("pci", pci_setup);