2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
33 #include <linux/aer.h>
36 const char *pci_power_names
[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 EXPORT_SYMBOL_GPL(pci_power_names
);
41 int isa_dma_bridge_buggy
;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
45 EXPORT_SYMBOL(pci_pci_problems
);
47 unsigned int pci_pm_d3_delay
;
49 static void pci_pme_list_scan(struct work_struct
*work
);
51 static LIST_HEAD(pci_pme_list
);
52 static DEFINE_MUTEX(pci_pme_list_mutex
);
53 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
55 struct pci_pme_device
{
56 struct list_head list
;
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
64 unsigned int delay
= dev
->d3_delay
;
66 if (delay
< pci_pm_d3_delay
)
67 delay
= pci_pm_d3_delay
;
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported
= 1;
76 #define DEFAULT_CARDBUS_IO_SIZE (256)
77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
80 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
82 #define DEFAULT_HOTPLUG_IO_SIZE (256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
86 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
88 #define DEFAULT_HOTPLUG_BUS_SIZE 1
89 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
91 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
99 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
100 u8 pci_cache_line_size
;
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
106 unsigned int pcibios_max_latency
= 255;
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled
;
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable
;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force
;
116 static int __init
pcie_port_pm_setup(char *str
)
118 if (!strcmp(str
, "off"))
119 pci_bridge_d3_disable
= true;
120 else if (!strcmp(str
, "force"))
121 pci_bridge_d3_force
= true;
124 __setup("pcie_port_pm=", pcie_port_pm_setup
);
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
133 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
136 unsigned char max
, n
;
138 max
= bus
->busn_res
.end
;
139 list_for_each_entry(tmp
, &bus
->children
, node
) {
140 n
= pci_bus_max_busnr(tmp
);
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
151 struct resource
*res
= &pdev
->resource
[bar
];
154 * Make sure the BAR is actually a memory resource, not an IO resource
156 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
157 dev_warn(&pdev
->dev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
160 return ioremap_nocache(res
->start
, resource_size(res
));
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
164 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
167 * Make sure the BAR is actually a memory resource, not an IO resource
169 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
173 return ioremap_wc(pci_resource_start(pdev
, bar
),
174 pci_resource_len(pdev
, bar
));
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
180 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
181 u8 pos
, int cap
, int *ttl
)
186 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
192 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
204 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
207 int ttl
= PCI_FIND_CAP_TTL
;
209 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
212 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
214 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
215 pos
+ PCI_CAP_LIST_NEXT
, cap
);
217 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
219 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
220 unsigned int devfn
, u8 hdr_type
)
224 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
225 if (!(status
& PCI_STATUS_CAP_LIST
))
229 case PCI_HEADER_TYPE_NORMAL
:
230 case PCI_HEADER_TYPE_BRIDGE
:
231 return PCI_CAPABILITY_LIST
;
232 case PCI_HEADER_TYPE_CARDBUS
:
233 return PCI_CB_CAPABILITY_LIST
;
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
258 int pci_find_capability(struct pci_dev
*dev
, int cap
)
262 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
264 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
268 EXPORT_SYMBOL(pci_find_capability
);
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
283 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
288 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
290 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
292 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
296 EXPORT_SYMBOL(pci_bus_find_capability
);
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
309 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
313 int pos
= PCI_CFG_SPACE_SIZE
;
315 /* minimum 8 bytes per capability */
316 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
318 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
324 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
335 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
338 pos
= PCI_EXT_CAP_NEXT(header
);
339 if (pos
< PCI_CFG_SPACE_SIZE
)
342 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
366 return pci_find_next_ext_capability(dev
, 0, cap
);
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
370 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
372 int rc
, ttl
= PCI_FIND_CAP_TTL
;
375 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
376 mask
= HT_3BIT_CAP_MASK
;
378 mask
= HT_5BIT_CAP_MASK
;
380 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
381 PCI_CAP_ID_HT
, &ttl
);
383 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
384 if (rc
!= PCIBIOS_SUCCESSFUL
)
387 if ((cap
& mask
) == ht_cap
)
390 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
391 pos
+ PCI_CAP_LIST_NEXT
,
392 PCI_CAP_ID_HT
, &ttl
);
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
410 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
412 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
427 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
431 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
433 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
447 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
448 struct resource
*res
)
450 const struct pci_bus
*bus
= dev
->bus
;
454 pci_bus_for_each_resource(bus
, r
, i
) {
457 if (res
->start
&& resource_contains(r
, res
)) {
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
463 if (r
->flags
& IORESOURCE_PREFETCH
&&
464 !(res
->flags
& IORESOURCE_PREFETCH
))
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
480 EXPORT_SYMBOL(pci_find_parent_resource
);
483 * pci_find_resource - Return matching PCI device resource
484 * @dev: PCI device to query
485 * @res: Resource to look for
487 * Goes over standard PCI resources (BARs) and checks if the given resource
488 * is partially or fully contained in any of them. In that case the
489 * matching resource is returned, %NULL otherwise.
491 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
495 for (i
= 0; i
< PCI_ROM_RESOURCE
; i
++) {
496 struct resource
*r
= &dev
->resource
[i
];
498 if (r
->start
&& resource_contains(r
, res
))
504 EXPORT_SYMBOL(pci_find_resource
);
507 * pci_find_pcie_root_port - return PCIe Root Port
508 * @dev: PCI device to query
510 * Traverse up the parent chain and return the PCIe Root Port PCI Device
511 * for a given PCI Device.
513 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
515 struct pci_dev
*bridge
, *highest_pcie_bridge
= NULL
;
517 bridge
= pci_upstream_bridge(dev
);
518 while (bridge
&& pci_is_pcie(bridge
)) {
519 highest_pcie_bridge
= bridge
;
520 bridge
= pci_upstream_bridge(bridge
);
523 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
526 return highest_pcie_bridge
;
528 EXPORT_SYMBOL(pci_find_pcie_root_port
);
531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532 * @dev: the PCI device to operate on
533 * @pos: config space offset of status word
534 * @mask: mask of bit(s) to care about in status word
536 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
538 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
542 /* Wait for Transaction Pending bit clean */
543 for (i
= 0; i
< 4; i
++) {
546 msleep((1 << (i
- 1)) * 100);
548 pci_read_config_word(dev
, pos
, &status
);
549 if (!(status
& mask
))
557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558 * @dev: PCI device to have its BARs restored
560 * Restore the BAR values for a given device, so as to make it
561 * accessible by its driver.
563 static void pci_restore_bars(struct pci_dev
*dev
)
567 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
568 pci_update_resource(dev
, i
);
571 static const struct pci_platform_pm_ops
*pci_platform_pm
;
573 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
575 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->get_state
||
576 !ops
->choose_state
|| !ops
->sleep_wake
|| !ops
->run_wake
||
579 pci_platform_pm
= ops
;
583 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
585 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
588 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
591 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
594 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
596 return pci_platform_pm
? pci_platform_pm
->get_state(dev
) : PCI_UNKNOWN
;
599 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
601 return pci_platform_pm
?
602 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
605 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
607 return pci_platform_pm
?
608 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
611 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
613 return pci_platform_pm
?
614 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
617 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
619 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
625 * @dev: PCI device to handle.
626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
629 * -EINVAL if the requested state is invalid.
630 * -EIO if device does not support PCI PM or its PM capabilities register has a
631 * wrong version, or device doesn't support the requested state.
632 * 0 if device already is in the requested state.
633 * 0 if device's power state has been successfully changed.
635 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
638 bool need_restore
= false;
640 /* Check if we're already there */
641 if (dev
->current_state
== state
)
647 if (state
< PCI_D0
|| state
> PCI_D3hot
)
650 /* Validate current state:
651 * Can enter D0 from any state, but if we can only go deeper
652 * to sleep if we're already in a low power state
654 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
655 && dev
->current_state
> state
) {
656 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
657 dev
->current_state
, state
);
661 /* check if this device supports the desired state */
662 if ((state
== PCI_D1
&& !dev
->d1_support
)
663 || (state
== PCI_D2
&& !dev
->d2_support
))
666 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
668 /* If we're (effectively) in D3, force entire word to 0.
669 * This doesn't affect PME_Status, disables PME_En, and
670 * sets PowerState to 0.
672 switch (dev
->current_state
) {
676 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
681 case PCI_UNKNOWN
: /* Boot-up */
682 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
683 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
685 /* Fall-through: force to D0 */
691 /* enter specified state */
692 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
694 /* Mandatory power management transition delays */
695 /* see PCI PM 1.1 5.6.1 table 18 */
696 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
697 pci_dev_d3_sleep(dev
);
698 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
699 udelay(PCI_PM_D2_DELAY
);
701 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
702 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
703 if (dev
->current_state
!= state
&& printk_ratelimit())
704 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 * from D3hot to D0 _may_ perform an internal reset, thereby
711 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 * For example, at least some versions of the 3c905B and the
713 * 3c556B exhibit this behaviour.
715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 * devices in a D3hot state at boot. Consequently, we need to
717 * restore at least the BARs so that the device will be
718 * accessible to its driver.
721 pci_restore_bars(dev
);
724 pcie_aspm_pm_state_change(dev
->bus
->self
);
730 * pci_update_current_state - Read power state of given device and cache it
731 * @dev: PCI device to handle.
732 * @state: State to cache in case the device doesn't have the PM capability
734 * The power state is read from the PMCSR register, which however is
735 * inaccessible in D3cold. The platform firmware is therefore queried first
736 * to detect accessibility of the register. In case the platform firmware
737 * reports an incorrect state or the device isn't power manageable by the
738 * platform at all, we try to detect D3cold by testing accessibility of the
739 * vendor ID in config space.
741 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
743 if (platform_pci_get_power_state(dev
) == PCI_D3cold
||
744 !pci_device_is_present(dev
)) {
745 dev
->current_state
= PCI_D3cold
;
746 } else if (dev
->pm_cap
) {
749 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
750 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
752 dev
->current_state
= state
;
757 * pci_power_up - Put the given device into D0 forcibly
758 * @dev: PCI device to power up
760 void pci_power_up(struct pci_dev
*dev
)
762 if (platform_pci_power_manageable(dev
))
763 platform_pci_set_power_state(dev
, PCI_D0
);
765 pci_raw_set_power_state(dev
, PCI_D0
);
766 pci_update_current_state(dev
, PCI_D0
);
770 * pci_platform_power_transition - Use platform to change device power state
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
774 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
778 if (platform_pci_power_manageable(dev
)) {
779 error
= platform_pci_set_power_state(dev
, state
);
781 pci_update_current_state(dev
, state
);
785 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
786 dev
->current_state
= PCI_D0
;
792 * pci_wakeup - Wake up a PCI device
793 * @pci_dev: Device to handle.
794 * @ign: ignored parameter
796 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
798 pci_wakeup_event(pci_dev
);
799 pm_request_resume(&pci_dev
->dev
);
804 * pci_wakeup_bus - Walk given bus and wake up devices on it
805 * @bus: Top bus of the subtree to walk.
807 static void pci_wakeup_bus(struct pci_bus
*bus
)
810 pci_walk_bus(bus
, pci_wakeup
, NULL
);
814 * __pci_start_power_transition - Start power transition of a PCI device
815 * @dev: PCI device to handle.
816 * @state: State to put the device into.
818 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
820 if (state
== PCI_D0
) {
821 pci_platform_power_transition(dev
, PCI_D0
);
823 * Mandatory power management transition delays, see
824 * PCI Express Base Specification Revision 2.0 Section
825 * 6.6.1: Conventional Reset. Do not delay for
826 * devices powered on/off by corresponding bridge,
827 * because have already delayed for the bridge.
829 if (dev
->runtime_d3cold
) {
830 msleep(dev
->d3cold_delay
);
832 * When powering on a bridge from D3cold, the
833 * whole hierarchy may be powered on into
834 * D0uninitialized state, resume them to give
835 * them a chance to suspend again
837 pci_wakeup_bus(dev
->subordinate
);
843 * __pci_dev_set_current_state - Set current state of a PCI device
844 * @dev: Device to handle
845 * @data: pointer to state to be set
847 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
849 pci_power_t state
= *(pci_power_t
*)data
;
851 dev
->current_state
= state
;
856 * __pci_bus_set_current_state - Walk given bus and set current state of devices
857 * @bus: Top bus of the subtree to walk.
858 * @state: state to be set
860 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
863 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
867 * __pci_complete_power_transition - Complete power transition of a PCI device
868 * @dev: PCI device to handle.
869 * @state: State to put the device into.
871 * This function should not be called directly by device drivers.
873 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
879 ret
= pci_platform_power_transition(dev
, state
);
880 /* Power off the bridge may power off the whole hierarchy */
881 if (!ret
&& state
== PCI_D3cold
)
882 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
885 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
888 * pci_set_power_state - Set the power state of a PCI device
889 * @dev: PCI device to handle.
890 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
892 * Transition a device to a new power state, using the platform firmware and/or
893 * the device's PCI PM registers.
896 * -EINVAL if the requested state is invalid.
897 * -EIO if device does not support PCI PM or its PM capabilities register has a
898 * wrong version, or device doesn't support the requested state.
899 * 0 if device already is in the requested state.
900 * 0 if device's power state has been successfully changed.
902 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
906 /* bound the state we're entering */
907 if (state
> PCI_D3cold
)
909 else if (state
< PCI_D0
)
911 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
913 * If the device or the parent bridge do not support PCI PM,
914 * ignore the request if we're doing anything other than putting
915 * it into D0 (which would only happen on boot).
919 /* Check if we're already there */
920 if (dev
->current_state
== state
)
923 __pci_start_power_transition(dev
, state
);
925 /* This device is quirked not to be put into D3, so
926 don't put it in D3 */
927 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
931 * To put device in D3cold, we put device into D3hot in native
932 * way, then put device into D3cold with platform ops
934 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
937 if (!__pci_complete_power_transition(dev
, state
))
942 EXPORT_SYMBOL(pci_set_power_state
);
945 * pci_choose_state - Choose the power state of a PCI device
946 * @dev: PCI device to be suspended
947 * @state: target sleep state for the whole system. This is the value
948 * that is passed to suspend() function.
950 * Returns PCI power state suitable for given device and given system
954 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
961 ret
= platform_pci_choose_state(dev
);
962 if (ret
!= PCI_POWER_ERROR
)
965 switch (state
.event
) {
968 case PM_EVENT_FREEZE
:
969 case PM_EVENT_PRETHAW
:
970 /* REVISIT both freeze and pre-thaw "should" use D0 */
971 case PM_EVENT_SUSPEND
:
972 case PM_EVENT_HIBERNATE
:
975 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
981 EXPORT_SYMBOL(pci_choose_state
);
983 #define PCI_EXP_SAVE_REGS 7
985 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
986 u16 cap
, bool extended
)
988 struct pci_cap_saved_state
*tmp
;
990 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
991 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
997 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
999 return _pci_find_saved_cap(dev
, cap
, false);
1002 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1004 return _pci_find_saved_cap(dev
, cap
, true);
1007 static int pci_save_pcie_state(struct pci_dev
*dev
)
1010 struct pci_cap_saved_state
*save_state
;
1013 if (!pci_is_pcie(dev
))
1016 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1018 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
1022 cap
= (u16
*)&save_state
->cap
.data
[0];
1023 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1024 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1025 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1026 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1027 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1028 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1029 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1034 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1037 struct pci_cap_saved_state
*save_state
;
1040 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1044 cap
= (u16
*)&save_state
->cap
.data
[0];
1045 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1046 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1047 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1048 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1049 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1050 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1051 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1055 static int pci_save_pcix_state(struct pci_dev
*dev
)
1058 struct pci_cap_saved_state
*save_state
;
1060 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1064 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1066 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
1070 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1071 (u16
*)save_state
->cap
.data
);
1076 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1079 struct pci_cap_saved_state
*save_state
;
1082 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1083 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1084 if (!save_state
|| !pos
)
1086 cap
= (u16
*)&save_state
->cap
.data
[0];
1088 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1093 * pci_save_state - save the PCI configuration space of a device before suspending
1094 * @dev: - PCI device that we're dealing with
1096 int pci_save_state(struct pci_dev
*dev
)
1099 /* XXX: 100% dword access ok here? */
1100 for (i
= 0; i
< 16; i
++)
1101 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1102 dev
->state_saved
= true;
1104 i
= pci_save_pcie_state(dev
);
1108 i
= pci_save_pcix_state(dev
);
1112 return pci_save_vc_state(dev
);
1114 EXPORT_SYMBOL(pci_save_state
);
1116 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1117 u32 saved_val
, int retry
, bool force
)
1121 pci_read_config_dword(pdev
, offset
, &val
);
1122 if (!force
&& val
== saved_val
)
1126 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127 offset
, val
, saved_val
);
1128 pci_write_config_dword(pdev
, offset
, saved_val
);
1132 pci_read_config_dword(pdev
, offset
, &val
);
1133 if (val
== saved_val
)
1140 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1141 int start
, int end
, int retry
,
1146 for (index
= end
; index
>= start
; index
--)
1147 pci_restore_config_dword(pdev
, 4 * index
,
1148 pdev
->saved_config_space
[index
],
1152 static void pci_restore_config_space(struct pci_dev
*pdev
)
1154 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1155 pci_restore_config_space_range(pdev
, 10, 15, 0, false);
1156 /* Restore BARs before the command register. */
1157 pci_restore_config_space_range(pdev
, 4, 9, 10, false);
1158 pci_restore_config_space_range(pdev
, 0, 3, 0, false);
1159 } else if (pdev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1160 pci_restore_config_space_range(pdev
, 12, 15, 0, false);
1163 * Force rewriting of prefetch registers to avoid S3 resume
1164 * issues on Intel PCI bridges that occur when these
1165 * registers are not explicitly written.
1167 pci_restore_config_space_range(pdev
, 9, 11, 0, true);
1168 pci_restore_config_space_range(pdev
, 0, 8, 0, false);
1170 pci_restore_config_space_range(pdev
, 0, 15, 0, false);
1175 * pci_restore_state - Restore the saved state of a PCI device
1176 * @dev: - PCI device that we're dealing with
1178 void pci_restore_state(struct pci_dev
*dev
)
1180 if (!dev
->state_saved
)
1183 /* PCI Express register must be restored first */
1184 pci_restore_pcie_state(dev
);
1185 pci_restore_ats_state(dev
);
1186 pci_restore_vc_state(dev
);
1188 pci_cleanup_aer_error_status_regs(dev
);
1190 pci_restore_config_space(dev
);
1192 pci_restore_pcix_state(dev
);
1193 pci_restore_msi_state(dev
);
1195 /* Restore ACS and IOV configuration state */
1196 pci_enable_acs(dev
);
1197 pci_restore_iov_state(dev
);
1199 dev
->state_saved
= false;
1201 EXPORT_SYMBOL(pci_restore_state
);
1203 struct pci_saved_state
{
1204 u32 config_space
[16];
1205 struct pci_cap_saved_data cap
[0];
1209 * pci_store_saved_state - Allocate and return an opaque struct containing
1210 * the device saved state.
1211 * @dev: PCI device that we're dealing with
1213 * Return NULL if no state or error.
1215 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1217 struct pci_saved_state
*state
;
1218 struct pci_cap_saved_state
*tmp
;
1219 struct pci_cap_saved_data
*cap
;
1222 if (!dev
->state_saved
)
1225 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1227 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1228 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1230 state
= kzalloc(size
, GFP_KERNEL
);
1234 memcpy(state
->config_space
, dev
->saved_config_space
,
1235 sizeof(state
->config_space
));
1238 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1239 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1240 memcpy(cap
, &tmp
->cap
, len
);
1241 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1243 /* Empty cap_save terminates list */
1247 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1250 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1251 * @dev: PCI device that we're dealing with
1252 * @state: Saved state returned from pci_store_saved_state()
1254 int pci_load_saved_state(struct pci_dev
*dev
,
1255 struct pci_saved_state
*state
)
1257 struct pci_cap_saved_data
*cap
;
1259 dev
->state_saved
= false;
1264 memcpy(dev
->saved_config_space
, state
->config_space
,
1265 sizeof(state
->config_space
));
1269 struct pci_cap_saved_state
*tmp
;
1271 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1272 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1275 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1276 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1277 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1280 dev
->state_saved
= true;
1283 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1286 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1287 * and free the memory allocated for it.
1288 * @dev: PCI device that we're dealing with
1289 * @state: Pointer to saved state returned from pci_store_saved_state()
1291 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1292 struct pci_saved_state
**state
)
1294 int ret
= pci_load_saved_state(dev
, *state
);
1299 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1301 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1303 return pci_enable_resources(dev
, bars
);
1306 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1309 struct pci_dev
*bridge
;
1313 err
= pci_set_power_state(dev
, PCI_D0
);
1314 if (err
< 0 && err
!= -EIO
)
1317 bridge
= pci_upstream_bridge(dev
);
1319 pcie_aspm_powersave_config_link(bridge
);
1321 err
= pcibios_enable_device(dev
, bars
);
1324 pci_fixup_device(pci_fixup_enable
, dev
);
1326 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1329 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1331 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1332 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1333 pci_write_config_word(dev
, PCI_COMMAND
,
1334 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1341 * pci_reenable_device - Resume abandoned device
1342 * @dev: PCI device to be resumed
1344 * Note this function is a backend of pci_default_resume and is not supposed
1345 * to be called by normal code, write proper resume handler and use it instead.
1347 int pci_reenable_device(struct pci_dev
*dev
)
1349 if (pci_is_enabled(dev
))
1350 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1353 EXPORT_SYMBOL(pci_reenable_device
);
1355 static void pci_enable_bridge(struct pci_dev
*dev
)
1357 struct pci_dev
*bridge
;
1360 bridge
= pci_upstream_bridge(dev
);
1362 pci_enable_bridge(bridge
);
1364 if (pci_is_enabled(dev
)) {
1365 if (!dev
->is_busmaster
)
1366 pci_set_master(dev
);
1370 retval
= pci_enable_device(dev
);
1372 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1374 pci_set_master(dev
);
1377 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1379 struct pci_dev
*bridge
;
1384 * Power state could be unknown at this point, either due to a fresh
1385 * boot or a device removal call. So get the current power state
1386 * so that things like MSI message writing will behave as expected
1387 * (e.g. if the device really is in D0 at enable time).
1391 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1392 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1395 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1396 return 0; /* already enabled */
1398 bridge
= pci_upstream_bridge(dev
);
1400 pci_enable_bridge(bridge
);
1402 /* only skip sriov related */
1403 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1404 if (dev
->resource
[i
].flags
& flags
)
1406 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1407 if (dev
->resource
[i
].flags
& flags
)
1410 err
= do_pci_enable_device(dev
, bars
);
1412 atomic_dec(&dev
->enable_cnt
);
1417 * pci_enable_device_io - Initialize a device for use with IO space
1418 * @dev: PCI device to be initialized
1420 * Initialize device before it's used by a driver. Ask low-level code
1421 * to enable I/O resources. Wake up the device if it was suspended.
1422 * Beware, this function can fail.
1424 int pci_enable_device_io(struct pci_dev
*dev
)
1426 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1428 EXPORT_SYMBOL(pci_enable_device_io
);
1431 * pci_enable_device_mem - Initialize a device for use with Memory space
1432 * @dev: PCI device to be initialized
1434 * Initialize device before it's used by a driver. Ask low-level code
1435 * to enable Memory resources. Wake up the device if it was suspended.
1436 * Beware, this function can fail.
1438 int pci_enable_device_mem(struct pci_dev
*dev
)
1440 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1442 EXPORT_SYMBOL(pci_enable_device_mem
);
1445 * pci_enable_device - Initialize device before it's used by a driver.
1446 * @dev: PCI device to be initialized
1448 * Initialize device before it's used by a driver. Ask low-level code
1449 * to enable I/O and memory. Wake up the device if it was suspended.
1450 * Beware, this function can fail.
1452 * Note we don't actually enable the device many times if we call
1453 * this function repeatedly (we just increment the count).
1455 int pci_enable_device(struct pci_dev
*dev
)
1457 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1459 EXPORT_SYMBOL(pci_enable_device
);
1462 * Managed PCI resources. This manages device on/off, intx/msi/msix
1463 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1464 * there's no need to track it separately. pci_devres is initialized
1465 * when a device is enabled using managed PCI device enable interface.
1468 unsigned int enabled
:1;
1469 unsigned int pinned
:1;
1470 unsigned int orig_intx
:1;
1471 unsigned int restore_intx
:1;
1475 static void pcim_release(struct device
*gendev
, void *res
)
1477 struct pci_dev
*dev
= to_pci_dev(gendev
);
1478 struct pci_devres
*this = res
;
1481 if (dev
->msi_enabled
)
1482 pci_disable_msi(dev
);
1483 if (dev
->msix_enabled
)
1484 pci_disable_msix(dev
);
1486 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1487 if (this->region_mask
& (1 << i
))
1488 pci_release_region(dev
, i
);
1490 if (this->restore_intx
)
1491 pci_intx(dev
, this->orig_intx
);
1493 if (this->enabled
&& !this->pinned
)
1494 pci_disable_device(dev
);
1497 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1499 struct pci_devres
*dr
, *new_dr
;
1501 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1505 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1508 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1511 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1513 if (pci_is_managed(pdev
))
1514 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1519 * pcim_enable_device - Managed pci_enable_device()
1520 * @pdev: PCI device to be initialized
1522 * Managed pci_enable_device().
1524 int pcim_enable_device(struct pci_dev
*pdev
)
1526 struct pci_devres
*dr
;
1529 dr
= get_pci_dr(pdev
);
1535 rc
= pci_enable_device(pdev
);
1537 pdev
->is_managed
= 1;
1542 EXPORT_SYMBOL(pcim_enable_device
);
1545 * pcim_pin_device - Pin managed PCI device
1546 * @pdev: PCI device to pin
1548 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1549 * driver detach. @pdev must have been enabled with
1550 * pcim_enable_device().
1552 void pcim_pin_device(struct pci_dev
*pdev
)
1554 struct pci_devres
*dr
;
1556 dr
= find_pci_dr(pdev
);
1557 WARN_ON(!dr
|| !dr
->enabled
);
1561 EXPORT_SYMBOL(pcim_pin_device
);
1564 * pcibios_add_device - provide arch specific hooks when adding device dev
1565 * @dev: the PCI device being added
1567 * Permits the platform to provide architecture specific functionality when
1568 * devices are added. This is the default implementation. Architecture
1569 * implementations can override this.
1571 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1577 * pcibios_release_device - provide arch specific hooks when releasing device dev
1578 * @dev: the PCI device being released
1580 * Permits the platform to provide architecture specific functionality when
1581 * devices are released. This is the default implementation. Architecture
1582 * implementations can override this.
1584 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1587 * pcibios_disable_device - disable arch specific PCI resources for device dev
1588 * @dev: the PCI device to disable
1590 * Disables architecture specific PCI resources for the device. This
1591 * is the default implementation. Architecture implementations can
1594 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1597 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1598 * @irq: ISA IRQ to penalize
1599 * @active: IRQ active or not
1601 * Permits the platform to provide architecture-specific functionality when
1602 * penalizing ISA IRQs. This is the default implementation. Architecture
1603 * implementations can override this.
1605 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1607 static void do_pci_disable_device(struct pci_dev
*dev
)
1611 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1612 if (pci_command
& PCI_COMMAND_MASTER
) {
1613 pci_command
&= ~PCI_COMMAND_MASTER
;
1614 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1617 pcibios_disable_device(dev
);
1621 * pci_disable_enabled_device - Disable device without updating enable_cnt
1622 * @dev: PCI device to disable
1624 * NOTE: This function is a backend of PCI power management routines and is
1625 * not supposed to be called drivers.
1627 void pci_disable_enabled_device(struct pci_dev
*dev
)
1629 if (pci_is_enabled(dev
))
1630 do_pci_disable_device(dev
);
1634 * pci_disable_device - Disable PCI device after use
1635 * @dev: PCI device to be disabled
1637 * Signal to the system that the PCI device is not in use by the system
1638 * anymore. This only involves disabling PCI bus-mastering, if active.
1640 * Note we don't actually disable the device until all callers of
1641 * pci_enable_device() have called pci_disable_device().
1643 void pci_disable_device(struct pci_dev
*dev
)
1645 struct pci_devres
*dr
;
1647 dr
= find_pci_dr(dev
);
1651 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1652 "disabling already-disabled device");
1654 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1657 do_pci_disable_device(dev
);
1659 dev
->is_busmaster
= 0;
1661 EXPORT_SYMBOL(pci_disable_device
);
1664 * pcibios_set_pcie_reset_state - set reset state for device dev
1665 * @dev: the PCIe device reset
1666 * @state: Reset state to enter into
1669 * Sets the PCIe reset state for the device. This is the default
1670 * implementation. Architecture implementations can override this.
1672 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1673 enum pcie_reset_state state
)
1679 * pci_set_pcie_reset_state - set reset state for device dev
1680 * @dev: the PCIe device reset
1681 * @state: Reset state to enter into
1684 * Sets the PCI reset state for the device.
1686 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1688 return pcibios_set_pcie_reset_state(dev
, state
);
1690 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1693 * pci_check_pme_status - Check if given device has generated PME.
1694 * @dev: Device to check.
1696 * Check the PME status of the device and if set, clear it and clear PME enable
1697 * (if set). Return 'true' if PME status and PME enable were both set or
1698 * 'false' otherwise.
1700 bool pci_check_pme_status(struct pci_dev
*dev
)
1709 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1710 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1711 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1714 /* Clear PME status. */
1715 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1716 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1717 /* Disable PME to avoid interrupt flood. */
1718 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1722 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1728 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1729 * @dev: Device to handle.
1730 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1732 * Check if @dev has generated PME and queue a resume request for it in that
1735 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1737 if (pme_poll_reset
&& dev
->pme_poll
)
1738 dev
->pme_poll
= false;
1740 if (pci_check_pme_status(dev
)) {
1741 pci_wakeup_event(dev
);
1742 pm_request_resume(&dev
->dev
);
1748 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1749 * @bus: Top bus of the subtree to walk.
1751 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1754 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1759 * pci_pme_capable - check the capability of PCI device to generate PME#
1760 * @dev: PCI device to handle.
1761 * @state: PCI state from which device will issue PME#.
1763 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1768 return !!(dev
->pme_support
& (1 << state
));
1770 EXPORT_SYMBOL(pci_pme_capable
);
1772 static void pci_pme_list_scan(struct work_struct
*work
)
1774 struct pci_pme_device
*pme_dev
, *n
;
1776 mutex_lock(&pci_pme_list_mutex
);
1777 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1778 if (pme_dev
->dev
->pme_poll
) {
1779 struct pci_dev
*bridge
;
1781 bridge
= pme_dev
->dev
->bus
->self
;
1783 * If bridge is in low power state, the
1784 * configuration space of subordinate devices
1785 * may be not accessible
1787 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1790 * If the device is in D3cold it should not be
1793 if (pme_dev
->dev
->current_state
== PCI_D3cold
)
1796 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1798 list_del(&pme_dev
->list
);
1802 if (!list_empty(&pci_pme_list
))
1803 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
1804 msecs_to_jiffies(PME_TIMEOUT
));
1805 mutex_unlock(&pci_pme_list_mutex
);
1808 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
1812 if (!dev
->pme_support
)
1815 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1816 /* Clear PME_Status by writing 1 to it and enable PME# */
1817 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1819 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1821 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1825 * pci_pme_active - enable or disable PCI device's PME# function
1826 * @dev: PCI device to handle.
1827 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1829 * The caller must verify that the device is capable of generating PME# before
1830 * calling this function with @enable equal to 'true'.
1832 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1834 __pci_pme_active(dev
, enable
);
1837 * PCI (as opposed to PCIe) PME requires that the device have
1838 * its PME# line hooked up correctly. Not all hardware vendors
1839 * do this, so the PME never gets delivered and the device
1840 * remains asleep. The easiest way around this is to
1841 * periodically walk the list of suspended devices and check
1842 * whether any have their PME flag set. The assumption is that
1843 * we'll wake up often enough anyway that this won't be a huge
1844 * hit, and the power savings from the devices will still be a
1847 * Although PCIe uses in-band PME message instead of PME# line
1848 * to report PME, PME does not work for some PCIe devices in
1849 * reality. For example, there are devices that set their PME
1850 * status bits, but don't really bother to send a PME message;
1851 * there are PCI Express Root Ports that don't bother to
1852 * trigger interrupts when they receive PME messages from the
1853 * devices below. So PME poll is used for PCIe devices too.
1856 if (dev
->pme_poll
) {
1857 struct pci_pme_device
*pme_dev
;
1859 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1862 dev_warn(&dev
->dev
, "can't enable PME#\n");
1866 mutex_lock(&pci_pme_list_mutex
);
1867 list_add(&pme_dev
->list
, &pci_pme_list
);
1868 if (list_is_singular(&pci_pme_list
))
1869 queue_delayed_work(system_freezable_wq
,
1871 msecs_to_jiffies(PME_TIMEOUT
));
1872 mutex_unlock(&pci_pme_list_mutex
);
1874 mutex_lock(&pci_pme_list_mutex
);
1875 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1876 if (pme_dev
->dev
== dev
) {
1877 list_del(&pme_dev
->list
);
1882 mutex_unlock(&pci_pme_list_mutex
);
1886 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1888 EXPORT_SYMBOL(pci_pme_active
);
1891 * __pci_enable_wake - enable PCI device as wakeup event source
1892 * @dev: PCI device affected
1893 * @state: PCI state from which device will issue wakeup events
1894 * @runtime: True if the events are to be generated at run time
1895 * @enable: True to enable event generation; false to disable
1897 * This enables the device as a wakeup event source, or disables it.
1898 * When such events involves platform-specific hooks, those hooks are
1899 * called automatically by this routine.
1901 * Devices with legacy power management (no standard PCI PM capabilities)
1902 * always require such platform hooks.
1905 * 0 is returned on success
1906 * -EINVAL is returned if device is not supposed to wake up the system
1907 * Error code depending on the platform is returned if both the platform and
1908 * the native mechanism fail to enable the generation of wake-up events
1910 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1911 bool runtime
, bool enable
)
1915 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1918 /* Don't do the same thing twice in a row for one device. */
1919 if (!!enable
== !!dev
->wakeup_prepared
)
1923 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1924 * Anderson we should be doing PME# wake enable followed by ACPI wake
1925 * enable. To disable wake-up we call the platform first, for symmetry.
1931 if (pci_pme_capable(dev
, state
))
1932 pci_pme_active(dev
, true);
1935 error
= runtime
? platform_pci_run_wake(dev
, true) :
1936 platform_pci_sleep_wake(dev
, true);
1940 dev
->wakeup_prepared
= true;
1943 platform_pci_run_wake(dev
, false);
1945 platform_pci_sleep_wake(dev
, false);
1946 pci_pme_active(dev
, false);
1947 dev
->wakeup_prepared
= false;
1952 EXPORT_SYMBOL(__pci_enable_wake
);
1955 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1956 * @dev: PCI device to prepare
1957 * @enable: True to enable wake-up event generation; false to disable
1959 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1960 * and this function allows them to set that up cleanly - pci_enable_wake()
1961 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1962 * ordering constraints.
1964 * This function only returns error code if the device is not capable of
1965 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1966 * enable wake-up power for it.
1968 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1970 return pci_pme_capable(dev
, PCI_D3cold
) ?
1971 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1972 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1974 EXPORT_SYMBOL(pci_wake_from_d3
);
1977 * pci_target_state - find an appropriate low power state for a given PCI dev
1980 * Use underlying platform code to find a supported low power state for @dev.
1981 * If the platform can't manage @dev, return the deepest state from which it
1982 * can generate wake events, based on any available PME info.
1984 static pci_power_t
pci_target_state(struct pci_dev
*dev
)
1986 pci_power_t target_state
= PCI_D3hot
;
1988 if (platform_pci_power_manageable(dev
)) {
1990 * Call the platform to choose the target state of the device
1991 * and enable wake-up from this state if supported.
1993 pci_power_t state
= platform_pci_choose_state(dev
);
1996 case PCI_POWER_ERROR
:
2001 if (pci_no_d1d2(dev
))
2004 target_state
= state
;
2007 return target_state
;
2011 target_state
= PCI_D0
;
2014 * If the device is in D3cold even though it's not power-manageable by
2015 * the platform, it may have been powered down by non-standard means.
2016 * Best to let it slumber.
2018 if (dev
->current_state
== PCI_D3cold
)
2019 target_state
= PCI_D3cold
;
2021 if (device_may_wakeup(&dev
->dev
)) {
2023 * Find the deepest state from which the device can generate
2024 * wake-up events, make it the target state and enable device
2027 if (dev
->pme_support
) {
2029 && !(dev
->pme_support
& (1 << target_state
)))
2034 return target_state
;
2038 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2039 * @dev: Device to handle.
2041 * Choose the power state appropriate for the device depending on whether
2042 * it can wake up the system and/or is power manageable by the platform
2043 * (PCI_D3hot is the default) and put the device into that state.
2045 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2047 pci_power_t target_state
= pci_target_state(dev
);
2050 if (target_state
== PCI_POWER_ERROR
)
2053 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
2055 error
= pci_set_power_state(dev
, target_state
);
2058 pci_enable_wake(dev
, target_state
, false);
2062 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2065 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2066 * @dev: Device to handle.
2068 * Disable device's system wake-up capability and put it into D0.
2070 int pci_back_from_sleep(struct pci_dev
*dev
)
2072 pci_enable_wake(dev
, PCI_D0
, false);
2073 return pci_set_power_state(dev
, PCI_D0
);
2075 EXPORT_SYMBOL(pci_back_from_sleep
);
2078 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2079 * @dev: PCI device being suspended.
2081 * Prepare @dev to generate wake-up events at run time and put it into a low
2084 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2086 pci_power_t target_state
= pci_target_state(dev
);
2089 if (target_state
== PCI_POWER_ERROR
)
2092 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2094 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
2096 error
= pci_set_power_state(dev
, target_state
);
2099 __pci_enable_wake(dev
, target_state
, true, false);
2100 dev
->runtime_d3cold
= false;
2107 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2108 * @dev: Device to check.
2110 * Return true if the device itself is capable of generating wake-up events
2111 * (through the platform or using the native PCIe PME) or if the device supports
2112 * PME and one of its upstream bridges can generate wake-up events.
2114 bool pci_dev_run_wake(struct pci_dev
*dev
)
2116 struct pci_bus
*bus
= dev
->bus
;
2118 if (device_run_wake(&dev
->dev
))
2121 if (!dev
->pme_support
)
2124 /* PME-capable in principle, but not from the intended sleep state */
2125 if (!pci_pme_capable(dev
, pci_target_state(dev
)))
2128 while (bus
->parent
) {
2129 struct pci_dev
*bridge
= bus
->self
;
2131 if (device_run_wake(&bridge
->dev
))
2137 /* We have reached the root bus. */
2139 return device_run_wake(bus
->bridge
);
2143 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2146 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2147 * @pci_dev: Device to check.
2149 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2150 * reconfigured due to wakeup settings difference between system and runtime
2151 * suspend and the current power state of it is suitable for the upcoming
2152 * (system) transition.
2154 * If the device is not configured for system wakeup, disable PME for it before
2155 * returning 'true' to prevent it from waking up the system unnecessarily.
2157 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2159 struct device
*dev
= &pci_dev
->dev
;
2161 if (!pm_runtime_suspended(dev
)
2162 || pci_target_state(pci_dev
) != pci_dev
->current_state
2163 || platform_pci_need_resume(pci_dev
)
2164 || (pci_dev
->dev_flags
& PCI_DEV_FLAGS_NEEDS_RESUME
))
2168 * At this point the device is good to go unless it's been configured
2169 * to generate PME at the runtime suspend time, but it is not supposed
2170 * to wake up the system. In that case, simply disable PME for it
2171 * (it will have to be re-enabled on exit from system resume).
2173 * If the device's power state is D3cold and the platform check above
2174 * hasn't triggered, the device's configuration is suitable and we don't
2175 * need to manipulate it at all.
2177 spin_lock_irq(&dev
->power
.lock
);
2179 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
&&
2180 !device_may_wakeup(dev
))
2181 __pci_pme_active(pci_dev
, false);
2183 spin_unlock_irq(&dev
->power
.lock
);
2188 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2189 * @pci_dev: Device to handle.
2191 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2192 * it might have been disabled during the prepare phase of system suspend if
2193 * the device was not configured for system wakeup.
2195 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2197 struct device
*dev
= &pci_dev
->dev
;
2199 if (!pci_dev_run_wake(pci_dev
))
2202 spin_lock_irq(&dev
->power
.lock
);
2204 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2205 __pci_pme_active(pci_dev
, true);
2207 spin_unlock_irq(&dev
->power
.lock
);
2210 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2212 struct device
*dev
= &pdev
->dev
;
2213 struct device
*parent
= dev
->parent
;
2216 pm_runtime_get_sync(parent
);
2217 pm_runtime_get_noresume(dev
);
2219 * pdev->current_state is set to PCI_D3cold during suspending,
2220 * so wait until suspending completes
2222 pm_runtime_barrier(dev
);
2224 * Only need to resume devices in D3cold, because config
2225 * registers are still accessible for devices suspended but
2228 if (pdev
->current_state
== PCI_D3cold
)
2229 pm_runtime_resume(dev
);
2232 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2234 struct device
*dev
= &pdev
->dev
;
2235 struct device
*parent
= dev
->parent
;
2237 pm_runtime_put(dev
);
2239 pm_runtime_put_sync(parent
);
2243 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2244 * @bridge: Bridge to check
2246 * This function checks if it is possible to move the bridge to D3.
2247 * Currently we only allow D3 for recent enough PCIe ports.
2249 static bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2253 if (!pci_is_pcie(bridge
))
2256 switch (pci_pcie_type(bridge
)) {
2257 case PCI_EXP_TYPE_ROOT_PORT
:
2258 case PCI_EXP_TYPE_UPSTREAM
:
2259 case PCI_EXP_TYPE_DOWNSTREAM
:
2260 if (pci_bridge_d3_disable
)
2262 if (pci_bridge_d3_force
)
2266 * It should be safe to put PCIe ports from 2015 or newer
2269 if (dmi_get_date(DMI_BIOS_DATE
, &year
, NULL
, NULL
) &&
2279 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2281 bool *d3cold_ok
= data
;
2285 * The device needs to be allowed to go D3cold and if it is wake
2286 * capable to do so from D3cold.
2288 no_d3cold
= dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2289 (device_may_wakeup(&dev
->dev
) && !pci_pme_capable(dev
, PCI_D3cold
)) ||
2290 !pci_power_manageable(dev
);
2292 *d3cold_ok
= !no_d3cold
;
2298 * pci_bridge_d3_update - Update bridge D3 capabilities
2299 * @dev: PCI device which is changed
2300 * @remove: Is the device being removed
2302 * Update upstream bridge PM capabilities accordingly depending on if the
2303 * device PM configuration was changed or the device is being removed. The
2304 * change is also propagated upstream.
2306 static void pci_bridge_d3_update(struct pci_dev
*dev
, bool remove
)
2308 struct pci_dev
*bridge
;
2309 bool d3cold_ok
= true;
2311 bridge
= pci_upstream_bridge(dev
);
2312 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2315 pci_dev_get(bridge
);
2317 * If the device is removed we do not care about its D3cold
2321 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2325 * We need to go through all children to find out if all of
2326 * them can still go to D3cold.
2328 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2332 if (bridge
->bridge_d3
!= d3cold_ok
) {
2333 bridge
->bridge_d3
= d3cold_ok
;
2334 /* Propagate change to upstream bridges */
2335 pci_bridge_d3_update(bridge
, false);
2338 pci_dev_put(bridge
);
2342 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2343 * @dev: PCI device that was changed
2345 * If a device is added or its PM configuration, such as is it allowed to
2346 * enter D3cold, is changed this function updates upstream bridge PM
2347 * capabilities accordingly.
2349 void pci_bridge_d3_device_changed(struct pci_dev
*dev
)
2351 pci_bridge_d3_update(dev
, false);
2355 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2356 * @dev: PCI device being removed
2358 * Function updates upstream bridge PM capabilities based on other devices
2359 * still left on the bus.
2361 void pci_bridge_d3_device_removed(struct pci_dev
*dev
)
2363 pci_bridge_d3_update(dev
, true);
2367 * pci_d3cold_enable - Enable D3cold for device
2368 * @dev: PCI device to handle
2370 * This function can be used in drivers to enable D3cold from the device
2371 * they handle. It also updates upstream PCI bridge PM capabilities
2374 void pci_d3cold_enable(struct pci_dev
*dev
)
2376 if (dev
->no_d3cold
) {
2377 dev
->no_d3cold
= false;
2378 pci_bridge_d3_device_changed(dev
);
2381 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
2384 * pci_d3cold_disable - Disable D3cold for device
2385 * @dev: PCI device to handle
2387 * This function can be used in drivers to disable D3cold from the device
2388 * they handle. It also updates upstream PCI bridge PM capabilities
2391 void pci_d3cold_disable(struct pci_dev
*dev
)
2393 if (!dev
->no_d3cold
) {
2394 dev
->no_d3cold
= true;
2395 pci_bridge_d3_device_changed(dev
);
2398 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
2401 * pci_pm_init - Initialize PM functions of given PCI device
2402 * @dev: PCI device to handle.
2404 void pci_pm_init(struct pci_dev
*dev
)
2409 pm_runtime_forbid(&dev
->dev
);
2410 pm_runtime_set_active(&dev
->dev
);
2411 pm_runtime_enable(&dev
->dev
);
2412 device_enable_async_suspend(&dev
->dev
);
2413 dev
->wakeup_prepared
= false;
2416 dev
->pme_support
= 0;
2418 /* find PCI PM capability in list */
2419 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2422 /* Check device's ability to generate PME# */
2423 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2425 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2426 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2427 pmc
& PCI_PM_CAP_VER_MASK
);
2432 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2433 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2434 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
2435 dev
->d3cold_allowed
= true;
2437 dev
->d1_support
= false;
2438 dev
->d2_support
= false;
2439 if (!pci_no_d1d2(dev
)) {
2440 if (pmc
& PCI_PM_CAP_D1
)
2441 dev
->d1_support
= true;
2442 if (pmc
& PCI_PM_CAP_D2
)
2443 dev
->d2_support
= true;
2445 if (dev
->d1_support
|| dev
->d2_support
)
2446 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2447 dev
->d1_support
? " D1" : "",
2448 dev
->d2_support
? " D2" : "");
2451 pmc
&= PCI_PM_CAP_PME_MASK
;
2453 dev_printk(KERN_DEBUG
, &dev
->dev
,
2454 "PME# supported from%s%s%s%s%s\n",
2455 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2456 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2457 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2458 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2459 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2460 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2461 dev
->pme_poll
= true;
2463 * Make device's PM flags reflect the wake-up capability, but
2464 * let the user space enable it to wake up the system as needed.
2466 device_set_wakeup_capable(&dev
->dev
, true);
2467 /* Disable the PME# generation functionality */
2468 pci_pme_active(dev
, false);
2472 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2474 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2478 case PCI_EA_P_VF_MEM
:
2479 flags
|= IORESOURCE_MEM
;
2481 case PCI_EA_P_MEM_PREFETCH
:
2482 case PCI_EA_P_VF_MEM_PREFETCH
:
2483 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2486 flags
|= IORESOURCE_IO
;
2495 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2498 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2499 return &dev
->resource
[bei
];
2500 #ifdef CONFIG_PCI_IOV
2501 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2502 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2503 return &dev
->resource
[PCI_IOV_RESOURCES
+
2504 bei
- PCI_EA_BEI_VF_BAR0
];
2506 else if (bei
== PCI_EA_BEI_ROM
)
2507 return &dev
->resource
[PCI_ROM_RESOURCE
];
2512 /* Read an Enhanced Allocation (EA) entry */
2513 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2515 struct resource
*res
;
2516 int ent_size
, ent_offset
= offset
;
2517 resource_size_t start
, end
;
2518 unsigned long flags
;
2519 u32 dw0
, bei
, base
, max_offset
;
2521 bool support_64
= (sizeof(resource_size_t
) >= 8);
2523 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2526 /* Entry size field indicates DWORDs after 1st */
2527 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2529 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2532 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2533 prop
= (dw0
& PCI_EA_PP
) >> 8;
2536 * If the Property is in the reserved range, try the Secondary
2539 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2540 prop
= (dw0
& PCI_EA_SP
) >> 16;
2541 if (prop
> PCI_EA_P_BRIDGE_IO
)
2544 res
= pci_ea_get_resource(dev
, bei
, prop
);
2546 dev_err(&dev
->dev
, "Unsupported EA entry BEI: %u\n", bei
);
2550 flags
= pci_ea_flags(dev
, prop
);
2552 dev_err(&dev
->dev
, "Unsupported EA properties: %#x\n", prop
);
2557 pci_read_config_dword(dev
, ent_offset
, &base
);
2558 start
= (base
& PCI_EA_FIELD_MASK
);
2561 /* Read MaxOffset */
2562 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2565 /* Read Base MSBs (if 64-bit entry) */
2566 if (base
& PCI_EA_IS_64
) {
2569 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2572 flags
|= IORESOURCE_MEM_64
;
2574 /* entry starts above 32-bit boundary, can't use */
2575 if (!support_64
&& base_upper
)
2579 start
|= ((u64
)base_upper
<< 32);
2582 end
= start
+ (max_offset
| 0x03);
2584 /* Read MaxOffset MSBs (if 64-bit entry) */
2585 if (max_offset
& PCI_EA_IS_64
) {
2586 u32 max_offset_upper
;
2588 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2591 flags
|= IORESOURCE_MEM_64
;
2593 /* entry too big, can't use */
2594 if (!support_64
&& max_offset_upper
)
2598 end
+= ((u64
)max_offset_upper
<< 32);
2602 dev_err(&dev
->dev
, "EA Entry crosses address boundary\n");
2606 if (ent_size
!= ent_offset
- offset
) {
2608 "EA Entry Size (%d) does not match length read (%d)\n",
2609 ent_size
, ent_offset
- offset
);
2613 res
->name
= pci_name(dev
);
2618 if (bei
<= PCI_EA_BEI_BAR5
)
2619 dev_printk(KERN_DEBUG
, &dev
->dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2621 else if (bei
== PCI_EA_BEI_ROM
)
2622 dev_printk(KERN_DEBUG
, &dev
->dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2624 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
2625 dev_printk(KERN_DEBUG
, &dev
->dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2626 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
2628 dev_printk(KERN_DEBUG
, &dev
->dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2632 return offset
+ ent_size
;
2635 /* Enhanced Allocation Initialization */
2636 void pci_ea_init(struct pci_dev
*dev
)
2643 /* find PCI EA capability in list */
2644 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
2648 /* determine the number of entries */
2649 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
2651 num_ent
&= PCI_EA_NUM_ENT_MASK
;
2653 offset
= ea
+ PCI_EA_FIRST_ENT
;
2655 /* Skip DWORD 2 for type 1 functions */
2656 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
2659 /* parse each EA entry */
2660 for (i
= 0; i
< num_ent
; ++i
)
2661 offset
= pci_ea_read(dev
, offset
);
2664 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2665 struct pci_cap_saved_state
*new_cap
)
2667 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2671 * _pci_add_cap_save_buffer - allocate buffer for saving given
2672 * capability registers
2673 * @dev: the PCI device
2674 * @cap: the capability to allocate the buffer for
2675 * @extended: Standard or Extended capability ID
2676 * @size: requested size of the buffer
2678 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2679 bool extended
, unsigned int size
)
2682 struct pci_cap_saved_state
*save_state
;
2685 pos
= pci_find_ext_capability(dev
, cap
);
2687 pos
= pci_find_capability(dev
, cap
);
2692 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2696 save_state
->cap
.cap_nr
= cap
;
2697 save_state
->cap
.cap_extended
= extended
;
2698 save_state
->cap
.size
= size
;
2699 pci_add_saved_cap(dev
, save_state
);
2704 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2706 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2709 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2711 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2715 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2716 * @dev: the PCI device
2718 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2722 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2723 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2726 "unable to preallocate PCI Express save buffer\n");
2728 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2731 "unable to preallocate PCI-X save buffer\n");
2733 pci_allocate_vc_save_buffers(dev
);
2736 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2738 struct pci_cap_saved_state
*tmp
;
2739 struct hlist_node
*n
;
2741 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2746 * pci_configure_ari - enable or disable ARI forwarding
2747 * @dev: the PCI device
2749 * If @dev and its upstream bridge both support ARI, enable ARI in the
2750 * bridge. Otherwise, disable ARI in the bridge.
2752 void pci_configure_ari(struct pci_dev
*dev
)
2755 struct pci_dev
*bridge
;
2757 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2760 bridge
= dev
->bus
->self
;
2764 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2765 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2768 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2769 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2770 PCI_EXP_DEVCTL2_ARI
);
2771 bridge
->ari_enabled
= 1;
2773 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2774 PCI_EXP_DEVCTL2_ARI
);
2775 bridge
->ari_enabled
= 0;
2779 static int pci_acs_enable
;
2782 * pci_request_acs - ask for ACS to be enabled if supported
2784 void pci_request_acs(void)
2790 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2791 * @dev: the PCI device
2793 static void pci_std_enable_acs(struct pci_dev
*dev
)
2799 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2803 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2804 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2806 /* Source Validation */
2807 ctrl
|= (cap
& PCI_ACS_SV
);
2809 /* P2P Request Redirect */
2810 ctrl
|= (cap
& PCI_ACS_RR
);
2812 /* P2P Completion Redirect */
2813 ctrl
|= (cap
& PCI_ACS_CR
);
2815 /* Upstream Forwarding */
2816 ctrl
|= (cap
& PCI_ACS_UF
);
2818 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2822 * pci_enable_acs - enable ACS if hardware support it
2823 * @dev: the PCI device
2825 void pci_enable_acs(struct pci_dev
*dev
)
2827 if (!pci_acs_enable
)
2830 if (!pci_dev_specific_enable_acs(dev
))
2833 pci_std_enable_acs(dev
);
2836 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2841 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2846 * Except for egress control, capabilities are either required
2847 * or only required if controllable. Features missing from the
2848 * capability field can therefore be assumed as hard-wired enabled.
2850 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2851 acs_flags
&= (cap
| PCI_ACS_EC
);
2853 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2854 return (ctrl
& acs_flags
) == acs_flags
;
2858 * pci_acs_enabled - test ACS against required flags for a given device
2859 * @pdev: device to test
2860 * @acs_flags: required PCI ACS flags
2862 * Return true if the device supports the provided flags. Automatically
2863 * filters out flags that are not implemented on multifunction devices.
2865 * Note that this interface checks the effective ACS capabilities of the
2866 * device rather than the actual capabilities. For instance, most single
2867 * function endpoints are not required to support ACS because they have no
2868 * opportunity for peer-to-peer access. We therefore return 'true'
2869 * regardless of whether the device exposes an ACS capability. This makes
2870 * it much easier for callers of this function to ignore the actual type
2871 * or topology of the device when testing ACS support.
2873 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2877 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2882 * Conventional PCI and PCI-X devices never support ACS, either
2883 * effectively or actually. The shared bus topology implies that
2884 * any device on the bus can receive or snoop DMA.
2886 if (!pci_is_pcie(pdev
))
2889 switch (pci_pcie_type(pdev
)) {
2891 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2892 * but since their primary interface is PCI/X, we conservatively
2893 * handle them as we would a non-PCIe device.
2895 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2897 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2898 * applicable... must never implement an ACS Extended Capability...".
2899 * This seems arbitrary, but we take a conservative interpretation
2900 * of this statement.
2902 case PCI_EXP_TYPE_PCI_BRIDGE
:
2903 case PCI_EXP_TYPE_RC_EC
:
2906 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2907 * implement ACS in order to indicate their peer-to-peer capabilities,
2908 * regardless of whether they are single- or multi-function devices.
2910 case PCI_EXP_TYPE_DOWNSTREAM
:
2911 case PCI_EXP_TYPE_ROOT_PORT
:
2912 return pci_acs_flags_enabled(pdev
, acs_flags
);
2914 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2915 * implemented by the remaining PCIe types to indicate peer-to-peer
2916 * capabilities, but only when they are part of a multifunction
2917 * device. The footnote for section 6.12 indicates the specific
2918 * PCIe types included here.
2920 case PCI_EXP_TYPE_ENDPOINT
:
2921 case PCI_EXP_TYPE_UPSTREAM
:
2922 case PCI_EXP_TYPE_LEG_END
:
2923 case PCI_EXP_TYPE_RC_END
:
2924 if (!pdev
->multifunction
)
2927 return pci_acs_flags_enabled(pdev
, acs_flags
);
2931 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2932 * to single function devices with the exception of downstream ports.
2938 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2939 * @start: starting downstream device
2940 * @end: ending upstream device or NULL to search to the root bus
2941 * @acs_flags: required flags
2943 * Walk up a device tree from start to end testing PCI ACS support. If
2944 * any step along the way does not support the required flags, return false.
2946 bool pci_acs_path_enabled(struct pci_dev
*start
,
2947 struct pci_dev
*end
, u16 acs_flags
)
2949 struct pci_dev
*pdev
, *parent
= start
;
2954 if (!pci_acs_enabled(pdev
, acs_flags
))
2957 if (pci_is_root_bus(pdev
->bus
))
2958 return (end
== NULL
);
2960 parent
= pdev
->bus
->self
;
2961 } while (pdev
!= end
);
2967 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2968 * @dev: the PCI device
2969 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2971 * Perform INTx swizzling for a device behind one level of bridge. This is
2972 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2973 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2974 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2975 * the PCI Express Base Specification, Revision 2.1)
2977 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2981 if (pci_ari_enabled(dev
->bus
))
2984 slot
= PCI_SLOT(dev
->devfn
);
2986 return (((pin
- 1) + slot
) % 4) + 1;
2989 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2997 while (!pci_is_root_bus(dev
->bus
)) {
2998 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2999 dev
= dev
->bus
->self
;
3006 * pci_common_swizzle - swizzle INTx all the way to root bridge
3007 * @dev: the PCI device
3008 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3010 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3011 * bridges all the way up to a PCI root bus.
3013 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
3017 while (!pci_is_root_bus(dev
->bus
)) {
3018 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3019 dev
= dev
->bus
->self
;
3022 return PCI_SLOT(dev
->devfn
);
3024 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
3027 * pci_release_region - Release a PCI bar
3028 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3029 * @bar: BAR to release
3031 * Releases the PCI I/O and memory resources previously reserved by a
3032 * successful call to pci_request_region. Call this function only
3033 * after all use of the PCI regions has ceased.
3035 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3037 struct pci_devres
*dr
;
3039 if (pci_resource_len(pdev
, bar
) == 0)
3041 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3042 release_region(pci_resource_start(pdev
, bar
),
3043 pci_resource_len(pdev
, bar
));
3044 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3045 release_mem_region(pci_resource_start(pdev
, bar
),
3046 pci_resource_len(pdev
, bar
));
3048 dr
= find_pci_dr(pdev
);
3050 dr
->region_mask
&= ~(1 << bar
);
3052 EXPORT_SYMBOL(pci_release_region
);
3055 * __pci_request_region - Reserved PCI I/O and memory resource
3056 * @pdev: PCI device whose resources are to be reserved
3057 * @bar: BAR to be reserved
3058 * @res_name: Name to be associated with resource.
3059 * @exclusive: whether the region access is exclusive or not
3061 * Mark the PCI region associated with PCI device @pdev BR @bar as
3062 * being reserved by owner @res_name. Do not access any
3063 * address inside the PCI regions unless this call returns
3066 * If @exclusive is set, then the region is marked so that userspace
3067 * is explicitly not allowed to map the resource via /dev/mem or
3068 * sysfs MMIO access.
3070 * Returns 0 on success, or %EBUSY on error. A warning
3071 * message is also printed on failure.
3073 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3074 const char *res_name
, int exclusive
)
3076 struct pci_devres
*dr
;
3078 if (pci_resource_len(pdev
, bar
) == 0)
3081 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3082 if (!request_region(pci_resource_start(pdev
, bar
),
3083 pci_resource_len(pdev
, bar
), res_name
))
3085 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3086 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3087 pci_resource_len(pdev
, bar
), res_name
,
3092 dr
= find_pci_dr(pdev
);
3094 dr
->region_mask
|= 1 << bar
;
3099 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
3100 &pdev
->resource
[bar
]);
3105 * pci_request_region - Reserve PCI I/O and memory resource
3106 * @pdev: PCI device whose resources are to be reserved
3107 * @bar: BAR to be reserved
3108 * @res_name: Name to be associated with resource
3110 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3111 * being reserved by owner @res_name. Do not access any
3112 * address inside the PCI regions unless this call returns
3115 * Returns 0 on success, or %EBUSY on error. A warning
3116 * message is also printed on failure.
3118 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3120 return __pci_request_region(pdev
, bar
, res_name
, 0);
3122 EXPORT_SYMBOL(pci_request_region
);
3125 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3126 * @pdev: PCI device whose resources are to be reserved
3127 * @bar: BAR to be reserved
3128 * @res_name: Name to be associated with resource.
3130 * Mark the PCI region associated with PCI device @pdev BR @bar as
3131 * being reserved by owner @res_name. Do not access any
3132 * address inside the PCI regions unless this call returns
3135 * Returns 0 on success, or %EBUSY on error. A warning
3136 * message is also printed on failure.
3138 * The key difference that _exclusive makes it that userspace is
3139 * explicitly not allowed to map the resource via /dev/mem or
3142 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
3143 const char *res_name
)
3145 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
3147 EXPORT_SYMBOL(pci_request_region_exclusive
);
3150 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3151 * @pdev: PCI device whose resources were previously reserved
3152 * @bars: Bitmask of BARs to be released
3154 * Release selected PCI I/O and memory resources previously reserved.
3155 * Call this function only after all use of the PCI regions has ceased.
3157 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3161 for (i
= 0; i
< 6; i
++)
3162 if (bars
& (1 << i
))
3163 pci_release_region(pdev
, i
);
3165 EXPORT_SYMBOL(pci_release_selected_regions
);
3167 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3168 const char *res_name
, int excl
)
3172 for (i
= 0; i
< 6; i
++)
3173 if (bars
& (1 << i
))
3174 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3180 if (bars
& (1 << i
))
3181 pci_release_region(pdev
, i
);
3188 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3189 * @pdev: PCI device whose resources are to be reserved
3190 * @bars: Bitmask of BARs to be requested
3191 * @res_name: Name to be associated with resource
3193 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3194 const char *res_name
)
3196 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3198 EXPORT_SYMBOL(pci_request_selected_regions
);
3200 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3201 const char *res_name
)
3203 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3204 IORESOURCE_EXCLUSIVE
);
3206 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3209 * pci_release_regions - Release reserved PCI I/O and memory resources
3210 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3212 * Releases all PCI I/O and memory resources previously reserved by a
3213 * successful call to pci_request_regions. Call this function only
3214 * after all use of the PCI regions has ceased.
3217 void pci_release_regions(struct pci_dev
*pdev
)
3219 pci_release_selected_regions(pdev
, (1 << 6) - 1);
3221 EXPORT_SYMBOL(pci_release_regions
);
3224 * pci_request_regions - Reserved PCI I/O and memory resources
3225 * @pdev: PCI device whose resources are to be reserved
3226 * @res_name: Name to be associated with resource.
3228 * Mark all PCI regions associated with PCI device @pdev as
3229 * being reserved by owner @res_name. Do not access any
3230 * address inside the PCI regions unless this call returns
3233 * Returns 0 on success, or %EBUSY on error. A warning
3234 * message is also printed on failure.
3236 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3238 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
3240 EXPORT_SYMBOL(pci_request_regions
);
3243 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3244 * @pdev: PCI device whose resources are to be reserved
3245 * @res_name: Name to be associated with resource.
3247 * Mark all PCI regions associated with PCI device @pdev as
3248 * being reserved by owner @res_name. Do not access any
3249 * address inside the PCI regions unless this call returns
3252 * pci_request_regions_exclusive() will mark the region so that
3253 * /dev/mem and the sysfs MMIO access will not be allowed.
3255 * Returns 0 on success, or %EBUSY on error. A warning
3256 * message is also printed on failure.
3258 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3260 return pci_request_selected_regions_exclusive(pdev
,
3261 ((1 << 6) - 1), res_name
);
3263 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3267 struct list_head list
;
3269 resource_size_t size
;
3272 static LIST_HEAD(io_range_list
);
3273 static DEFINE_SPINLOCK(io_range_lock
);
3277 * Record the PCI IO range (expressed as CPU physical address + size).
3278 * Return a negative value if an error has occured, zero otherwise
3280 int __weak
pci_register_io_range(phys_addr_t addr
, resource_size_t size
)
3285 struct io_range
*range
;
3286 resource_size_t allocated_size
= 0;
3288 /* check if the range hasn't been previously recorded */
3289 spin_lock(&io_range_lock
);
3290 list_for_each_entry(range
, &io_range_list
, list
) {
3291 if (addr
>= range
->start
&& addr
+ size
<= range
->start
+ size
) {
3292 /* range already registered, bail out */
3295 allocated_size
+= range
->size
;
3298 /* range not registed yet, check for available space */
3299 if (allocated_size
+ size
- 1 > IO_SPACE_LIMIT
) {
3300 /* if it's too big check if 64K space can be reserved */
3301 if (allocated_size
+ SZ_64K
- 1 > IO_SPACE_LIMIT
) {
3307 pr_warn("Requested IO range too big, new size set to 64K\n");
3310 /* add the range to the list */
3311 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3317 range
->start
= addr
;
3320 list_add_tail(&range
->list
, &io_range_list
);
3323 spin_unlock(&io_range_lock
);
3329 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3331 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
3334 struct io_range
*range
;
3335 resource_size_t allocated_size
= 0;
3337 if (pio
> IO_SPACE_LIMIT
)
3340 spin_lock(&io_range_lock
);
3341 list_for_each_entry(range
, &io_range_list
, list
) {
3342 if (pio
>= allocated_size
&& pio
< allocated_size
+ range
->size
) {
3343 address
= range
->start
+ pio
- allocated_size
;
3346 allocated_size
+= range
->size
;
3348 spin_unlock(&io_range_lock
);
3354 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
3357 struct io_range
*res
;
3358 resource_size_t offset
= 0;
3359 unsigned long addr
= -1;
3361 spin_lock(&io_range_lock
);
3362 list_for_each_entry(res
, &io_range_list
, list
) {
3363 if (address
>= res
->start
&& address
< res
->start
+ res
->size
) {
3364 addr
= address
- res
->start
+ offset
;
3367 offset
+= res
->size
;
3369 spin_unlock(&io_range_lock
);
3373 if (address
> IO_SPACE_LIMIT
)
3374 return (unsigned long)-1;
3376 return (unsigned long) address
;
3381 * pci_remap_iospace - Remap the memory mapped I/O space
3382 * @res: Resource describing the I/O space
3383 * @phys_addr: physical address of range to be mapped
3385 * Remap the memory mapped I/O space described by the @res
3386 * and the CPU physical address @phys_addr into virtual address space.
3387 * Only architectures that have memory mapped IO functions defined
3388 * (and the PCI_IOBASE value defined) should call this function.
3390 int __weak
pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3392 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3393 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3395 if (!(res
->flags
& IORESOURCE_IO
))
3398 if (res
->end
> IO_SPACE_LIMIT
)
3401 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3402 pgprot_device(PAGE_KERNEL
));
3404 /* this architecture does not have memory mapped I/O space,
3405 so this function should never be called */
3406 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3412 * pci_unmap_iospace - Unmap the memory mapped I/O space
3413 * @res: resource to be unmapped
3415 * Unmap the CPU virtual address @res from virtual address space.
3416 * Only architectures that have memory mapped IO functions defined
3417 * (and the PCI_IOBASE value defined) should call this function.
3419 void pci_unmap_iospace(struct resource
*res
)
3421 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3422 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3424 unmap_kernel_range(vaddr
, resource_size(res
));
3428 static void devm_pci_unmap_iospace(struct device
*dev
, void *ptr
)
3430 struct resource
**res
= ptr
;
3432 pci_unmap_iospace(*res
);
3436 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3437 * @dev: Generic device to remap IO address for
3438 * @res: Resource describing the I/O space
3439 * @phys_addr: physical address of range to be mapped
3441 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3444 int devm_pci_remap_iospace(struct device
*dev
, const struct resource
*res
,
3445 phys_addr_t phys_addr
)
3447 const struct resource
**ptr
;
3450 ptr
= devres_alloc(devm_pci_unmap_iospace
, sizeof(*ptr
), GFP_KERNEL
);
3454 error
= pci_remap_iospace(res
, phys_addr
);
3459 devres_add(dev
, ptr
);
3464 EXPORT_SYMBOL(devm_pci_remap_iospace
);
3466 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
3470 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
3472 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
3474 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
3475 if (cmd
!= old_cmd
) {
3476 dev_dbg(&dev
->dev
, "%s bus mastering\n",
3477 enable
? "enabling" : "disabling");
3478 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3480 dev
->is_busmaster
= enable
;
3484 * pcibios_setup - process "pci=" kernel boot arguments
3485 * @str: string used to pass in "pci=" kernel boot arguments
3487 * Process kernel boot arguments. This is the default implementation.
3488 * Architecture specific implementations can override this as necessary.
3490 char * __weak __init
pcibios_setup(char *str
)
3496 * pcibios_set_master - enable PCI bus-mastering for device dev
3497 * @dev: the PCI device to enable
3499 * Enables PCI bus-mastering for the device. This is the default
3500 * implementation. Architecture specific implementations can override
3501 * this if necessary.
3503 void __weak
pcibios_set_master(struct pci_dev
*dev
)
3507 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3508 if (pci_is_pcie(dev
))
3511 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
3513 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
3514 else if (lat
> pcibios_max_latency
)
3515 lat
= pcibios_max_latency
;
3519 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
3523 * pci_set_master - enables bus-mastering for device dev
3524 * @dev: the PCI device to enable
3526 * Enables bus-mastering on the device and calls pcibios_set_master()
3527 * to do the needed arch specific settings.
3529 void pci_set_master(struct pci_dev
*dev
)
3531 __pci_set_master(dev
, true);
3532 pcibios_set_master(dev
);
3534 EXPORT_SYMBOL(pci_set_master
);
3537 * pci_clear_master - disables bus-mastering for device dev
3538 * @dev: the PCI device to disable
3540 void pci_clear_master(struct pci_dev
*dev
)
3542 __pci_set_master(dev
, false);
3544 EXPORT_SYMBOL(pci_clear_master
);
3547 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3548 * @dev: the PCI device for which MWI is to be enabled
3550 * Helper function for pci_set_mwi.
3551 * Originally copied from drivers/net/acenic.c.
3552 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3554 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3556 int pci_set_cacheline_size(struct pci_dev
*dev
)
3560 if (!pci_cache_line_size
)
3563 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3564 equal to or multiple of the right value. */
3565 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3566 if (cacheline_size
>= pci_cache_line_size
&&
3567 (cacheline_size
% pci_cache_line_size
) == 0)
3570 /* Write the correct value. */
3571 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
3573 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3574 if (cacheline_size
== pci_cache_line_size
)
3577 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
3578 pci_cache_line_size
<< 2);
3582 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
3585 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3586 * @dev: the PCI device for which MWI is enabled
3588 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3590 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3592 int pci_set_mwi(struct pci_dev
*dev
)
3594 #ifdef PCI_DISABLE_MWI
3600 rc
= pci_set_cacheline_size(dev
);
3604 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3605 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
3606 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
3607 cmd
|= PCI_COMMAND_INVALIDATE
;
3608 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3613 EXPORT_SYMBOL(pci_set_mwi
);
3616 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3617 * @dev: the PCI device for which MWI is enabled
3619 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3620 * Callers are not required to check the return value.
3622 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3624 int pci_try_set_mwi(struct pci_dev
*dev
)
3626 #ifdef PCI_DISABLE_MWI
3629 return pci_set_mwi(dev
);
3632 EXPORT_SYMBOL(pci_try_set_mwi
);
3635 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3636 * @dev: the PCI device to disable
3638 * Disables PCI Memory-Write-Invalidate transaction on the device
3640 void pci_clear_mwi(struct pci_dev
*dev
)
3642 #ifndef PCI_DISABLE_MWI
3645 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3646 if (cmd
& PCI_COMMAND_INVALIDATE
) {
3647 cmd
&= ~PCI_COMMAND_INVALIDATE
;
3648 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3652 EXPORT_SYMBOL(pci_clear_mwi
);
3655 * pci_intx - enables/disables PCI INTx for device dev
3656 * @pdev: the PCI device to operate on
3657 * @enable: boolean: whether to enable or disable PCI INTx
3659 * Enables/disables PCI INTx for device dev
3661 void pci_intx(struct pci_dev
*pdev
, int enable
)
3663 u16 pci_command
, new;
3665 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
3668 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
3670 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
3672 if (new != pci_command
) {
3673 struct pci_devres
*dr
;
3675 pci_write_config_word(pdev
, PCI_COMMAND
, new);
3677 dr
= find_pci_dr(pdev
);
3678 if (dr
&& !dr
->restore_intx
) {
3679 dr
->restore_intx
= 1;
3680 dr
->orig_intx
= !enable
;
3684 EXPORT_SYMBOL_GPL(pci_intx
);
3687 * pci_intx_mask_supported - probe for INTx masking support
3688 * @dev: the PCI device to operate on
3690 * Check if the device dev support INTx masking via the config space
3693 bool pci_intx_mask_supported(struct pci_dev
*dev
)
3695 bool mask_supported
= false;
3698 if (dev
->broken_intx_masking
)
3701 pci_cfg_access_lock(dev
);
3703 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
3704 pci_write_config_word(dev
, PCI_COMMAND
,
3705 orig
^ PCI_COMMAND_INTX_DISABLE
);
3706 pci_read_config_word(dev
, PCI_COMMAND
, &new);
3709 * There's no way to protect against hardware bugs or detect them
3710 * reliably, but as long as we know what the value should be, let's
3711 * go ahead and check it.
3713 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
3714 dev_err(&dev
->dev
, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3716 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
3717 mask_supported
= true;
3718 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
3721 pci_cfg_access_unlock(dev
);
3722 return mask_supported
;
3724 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
3726 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3728 struct pci_bus
*bus
= dev
->bus
;
3729 bool mask_updated
= true;
3730 u32 cmd_status_dword
;
3731 u16 origcmd
, newcmd
;
3732 unsigned long flags
;
3736 * We do a single dword read to retrieve both command and status.
3737 * Document assumptions that make this possible.
3739 BUILD_BUG_ON(PCI_COMMAND
% 4);
3740 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3742 raw_spin_lock_irqsave(&pci_lock
, flags
);
3744 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3746 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3749 * Check interrupt status register to see whether our device
3750 * triggered the interrupt (when masking) or the next IRQ is
3751 * already pending (when unmasking).
3753 if (mask
!= irq_pending
) {
3754 mask_updated
= false;
3758 origcmd
= cmd_status_dword
;
3759 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3761 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3762 if (newcmd
!= origcmd
)
3763 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3766 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3768 return mask_updated
;
3772 * pci_check_and_mask_intx - mask INTx on pending interrupt
3773 * @dev: the PCI device to operate on
3775 * Check if the device dev has its INTx line asserted, mask it and
3776 * return true in that case. False is returned if not interrupt was
3779 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3781 return pci_check_and_set_intx_mask(dev
, true);
3783 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3786 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3787 * @dev: the PCI device to operate on
3789 * Check if the device dev has its INTx line asserted, unmask it if not
3790 * and return true. False is returned and the mask remains active if
3791 * there was still an interrupt pending.
3793 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3795 return pci_check_and_set_intx_mask(dev
, false);
3797 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3800 * pci_wait_for_pending_transaction - waits for pending transaction
3801 * @dev: the PCI device to operate on
3803 * Return 0 if transaction is pending 1 otherwise.
3805 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3807 if (!pci_is_pcie(dev
))
3810 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3811 PCI_EXP_DEVSTA_TRPND
);
3813 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3815 static void pci_flr_wait(struct pci_dev
*dev
)
3817 int delay
= 1, timeout
= 60000;
3821 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3822 * 100ms, but may silently discard requests while the FLR is in
3823 * progress. Wait 100ms before trying to access the device.
3828 * After 100ms, the device should not silently discard config
3829 * requests, but it may still indicate that it needs more time by
3830 * responding to them with CRS completions. The Root Port will
3831 * generally synthesize ~0 data to complete the read (except when
3832 * CRS SV is enabled and the read was for the Vendor ID; in that
3833 * case it synthesizes 0x0001 data).
3835 * Wait for the device to return a non-CRS completion. Read the
3836 * Command register instead of Vendor ID so we don't have to
3837 * contend with the CRS SV value.
3839 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
3841 if (delay
> timeout
) {
3842 dev_warn(&dev
->dev
, "not ready %dms after FLR; giving up\n",
3848 dev_info(&dev
->dev
, "not ready %dms after FLR; waiting\n",
3853 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
3857 dev_info(&dev
->dev
, "ready %dms after FLR\n", 100 + delay
- 1);
3860 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3864 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3865 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3871 if (!pci_wait_for_pending_transaction(dev
))
3872 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3874 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3879 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3884 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3888 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3889 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3896 * Wait for Transaction Pending bit to clear. A word-aligned test
3897 * is used, so we use the conrol offset rather than status and shift
3898 * the test bit to match.
3900 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3901 PCI_AF_STATUS_TP
<< 8))
3902 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3904 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3910 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3911 * @dev: Device to reset.
3912 * @probe: If set, only check if the device can be reset this way.
3914 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3915 * unset, it will be reinitialized internally when going from PCI_D3hot to
3916 * PCI_D0. If that's the case and the device is not in a low-power state
3917 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3919 * NOTE: This causes the caller to sleep for twice the device power transition
3920 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3921 * by default (i.e. unless the @dev's d3_delay field has a different value).
3922 * Moreover, only devices in D0 can be reset by this function.
3924 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3928 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
3931 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3932 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3938 if (dev
->current_state
!= PCI_D0
)
3941 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3943 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3944 pci_dev_d3_sleep(dev
);
3946 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3948 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3949 pci_dev_d3_sleep(dev
);
3954 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3958 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3959 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3960 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3962 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3963 * this to 2ms to ensure that we meet the minimum requirement.
3967 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3968 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3971 * Trhfa for conventional PCI is 2^25 clock cycles.
3972 * Assuming a minimum 33MHz clock this results in a 1s
3973 * delay before we can consider subordinate devices to
3974 * be re-initialized. PCIe has some ways to shorten this,
3975 * but we don't make use of them yet.
3980 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
3982 pci_reset_secondary_bus(dev
);
3986 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3987 * @dev: Bridge device
3989 * Use the bridge control register to assert reset on the secondary bus.
3990 * Devices on the secondary bus are left in power-on state.
3992 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
3994 pcibios_reset_secondary_bus(dev
);
3996 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
3998 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
4000 struct pci_dev
*pdev
;
4002 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
4003 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4006 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4013 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
4018 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
4022 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
4025 if (hotplug
->ops
->reset_slot
)
4026 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
4028 module_put(hotplug
->ops
->owner
);
4033 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
4035 struct pci_dev
*pdev
;
4037 if (dev
->subordinate
|| !dev
->slot
||
4038 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4041 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4042 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
4045 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
4048 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
4054 rc
= pci_dev_specific_reset(dev
, probe
);
4058 rc
= pcie_flr(dev
, probe
);
4062 rc
= pci_af_flr(dev
, probe
);
4066 rc
= pci_pm_reset(dev
, probe
);
4070 rc
= pci_dev_reset_slot_function(dev
, probe
);
4074 rc
= pci_parent_bus_reset(dev
, probe
);
4079 static void pci_dev_lock(struct pci_dev
*dev
)
4081 pci_cfg_access_lock(dev
);
4082 /* block PM suspend, driver probe, etc. */
4083 device_lock(&dev
->dev
);
4086 /* Return 1 on successful lock, 0 on contention */
4087 static int pci_dev_trylock(struct pci_dev
*dev
)
4089 if (pci_cfg_access_trylock(dev
)) {
4090 if (device_trylock(&dev
->dev
))
4092 pci_cfg_access_unlock(dev
);
4098 static void pci_dev_unlock(struct pci_dev
*dev
)
4100 device_unlock(&dev
->dev
);
4101 pci_cfg_access_unlock(dev
);
4105 * pci_reset_notify - notify device driver of reset
4106 * @dev: device to be notified of reset
4107 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4110 * Must be called prior to device access being disabled and after device
4111 * access is restored.
4113 static void pci_reset_notify(struct pci_dev
*dev
, bool prepare
)
4115 const struct pci_error_handlers
*err_handler
=
4116 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4117 if (err_handler
&& err_handler
->reset_notify
)
4118 err_handler
->reset_notify(dev
, prepare
);
4121 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
4123 pci_reset_notify(dev
, true);
4126 * Wake-up device prior to save. PM registers default to D0 after
4127 * reset and a simple register restore doesn't reliably return
4128 * to a non-D0 state anyway.
4130 pci_set_power_state(dev
, PCI_D0
);
4132 pci_save_state(dev
);
4134 * Disable the device by clearing the Command register, except for
4135 * INTx-disable which is set. This not only disables MMIO and I/O port
4136 * BARs, but also prevents the device from being Bus Master, preventing
4137 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4138 * compliant devices, INTx-disable prevents legacy interrupts.
4140 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
4143 static void pci_dev_restore(struct pci_dev
*dev
)
4145 pci_restore_state(dev
);
4146 pci_reset_notify(dev
, false);
4149 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
4156 rc
= __pci_dev_reset(dev
, probe
);
4159 pci_dev_unlock(dev
);
4165 * __pci_reset_function - reset a PCI device function
4166 * @dev: PCI device to reset
4168 * Some devices allow an individual function to be reset without affecting
4169 * other functions in the same device. The PCI device must be responsive
4170 * to PCI config space in order to use this function.
4172 * The device function is presumed to be unused when this function is called.
4173 * Resetting the device will make the contents of PCI configuration space
4174 * random, so any caller of this must be prepared to reinitialise the
4175 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4178 * Returns 0 if the device function was successfully reset or negative if the
4179 * device doesn't support resetting a single function.
4181 int __pci_reset_function(struct pci_dev
*dev
)
4183 return pci_dev_reset(dev
, 0);
4185 EXPORT_SYMBOL_GPL(__pci_reset_function
);
4188 * __pci_reset_function_locked - reset a PCI device function while holding
4189 * the @dev mutex lock.
4190 * @dev: PCI device to reset
4192 * Some devices allow an individual function to be reset without affecting
4193 * other functions in the same device. The PCI device must be responsive
4194 * to PCI config space in order to use this function.
4196 * The device function is presumed to be unused and the caller is holding
4197 * the device mutex lock when this function is called.
4198 * Resetting the device will make the contents of PCI configuration space
4199 * random, so any caller of this must be prepared to reinitialise the
4200 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4203 * Returns 0 if the device function was successfully reset or negative if the
4204 * device doesn't support resetting a single function.
4206 int __pci_reset_function_locked(struct pci_dev
*dev
)
4208 return __pci_dev_reset(dev
, 0);
4210 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
4213 * pci_probe_reset_function - check whether the device can be safely reset
4214 * @dev: PCI device to reset
4216 * Some devices allow an individual function to be reset without affecting
4217 * other functions in the same device. The PCI device must be responsive
4218 * to PCI config space in order to use this function.
4220 * Returns 0 if the device function can be reset or negative if the
4221 * device doesn't support resetting a single function.
4223 int pci_probe_reset_function(struct pci_dev
*dev
)
4225 return pci_dev_reset(dev
, 1);
4229 * pci_reset_function - quiesce and reset a PCI device function
4230 * @dev: PCI device to reset
4232 * Some devices allow an individual function to be reset without affecting
4233 * other functions in the same device. The PCI device must be responsive
4234 * to PCI config space in order to use this function.
4236 * This function does not just reset the PCI portion of a device, but
4237 * clears all the state associated with the device. This function differs
4238 * from __pci_reset_function in that it saves and restores device state
4241 * Returns 0 if the device function was successfully reset or negative if the
4242 * device doesn't support resetting a single function.
4244 int pci_reset_function(struct pci_dev
*dev
)
4248 rc
= pci_dev_reset(dev
, 1);
4252 pci_dev_save_and_disable(dev
);
4254 rc
= pci_dev_reset(dev
, 0);
4256 pci_dev_restore(dev
);
4260 EXPORT_SYMBOL_GPL(pci_reset_function
);
4263 * pci_try_reset_function - quiesce and reset a PCI device function
4264 * @dev: PCI device to reset
4266 * Same as above, except return -EAGAIN if unable to lock device.
4268 int pci_try_reset_function(struct pci_dev
*dev
)
4272 rc
= pci_dev_reset(dev
, 1);
4276 pci_dev_save_and_disable(dev
);
4278 if (pci_dev_trylock(dev
)) {
4279 rc
= __pci_dev_reset(dev
, 0);
4280 pci_dev_unlock(dev
);
4284 pci_dev_restore(dev
);
4288 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
4290 /* Do any devices on or below this bus prevent a bus reset? */
4291 static bool pci_bus_resetable(struct pci_bus
*bus
)
4293 struct pci_dev
*dev
;
4296 if (bus
->self
&& (bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
4299 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4300 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4301 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4308 /* Lock devices from the top of the tree down */
4309 static void pci_bus_lock(struct pci_bus
*bus
)
4311 struct pci_dev
*dev
;
4313 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4315 if (dev
->subordinate
)
4316 pci_bus_lock(dev
->subordinate
);
4320 /* Unlock devices from the bottom of the tree up */
4321 static void pci_bus_unlock(struct pci_bus
*bus
)
4323 struct pci_dev
*dev
;
4325 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4326 if (dev
->subordinate
)
4327 pci_bus_unlock(dev
->subordinate
);
4328 pci_dev_unlock(dev
);
4332 /* Return 1 on successful lock, 0 on contention */
4333 static int pci_bus_trylock(struct pci_bus
*bus
)
4335 struct pci_dev
*dev
;
4337 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4338 if (!pci_dev_trylock(dev
))
4340 if (dev
->subordinate
) {
4341 if (!pci_bus_trylock(dev
->subordinate
)) {
4342 pci_dev_unlock(dev
);
4350 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
4351 if (dev
->subordinate
)
4352 pci_bus_unlock(dev
->subordinate
);
4353 pci_dev_unlock(dev
);
4358 /* Do any devices on or below this slot prevent a bus reset? */
4359 static bool pci_slot_resetable(struct pci_slot
*slot
)
4361 struct pci_dev
*dev
;
4363 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4364 if (!dev
->slot
|| dev
->slot
!= slot
)
4366 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4367 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4374 /* Lock devices from the top of the tree down */
4375 static void pci_slot_lock(struct pci_slot
*slot
)
4377 struct pci_dev
*dev
;
4379 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4380 if (!dev
->slot
|| dev
->slot
!= slot
)
4383 if (dev
->subordinate
)
4384 pci_bus_lock(dev
->subordinate
);
4388 /* Unlock devices from the bottom of the tree up */
4389 static void pci_slot_unlock(struct pci_slot
*slot
)
4391 struct pci_dev
*dev
;
4393 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4394 if (!dev
->slot
|| dev
->slot
!= slot
)
4396 if (dev
->subordinate
)
4397 pci_bus_unlock(dev
->subordinate
);
4398 pci_dev_unlock(dev
);
4402 /* Return 1 on successful lock, 0 on contention */
4403 static int pci_slot_trylock(struct pci_slot
*slot
)
4405 struct pci_dev
*dev
;
4407 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4408 if (!dev
->slot
|| dev
->slot
!= slot
)
4410 if (!pci_dev_trylock(dev
))
4412 if (dev
->subordinate
) {
4413 if (!pci_bus_trylock(dev
->subordinate
)) {
4414 pci_dev_unlock(dev
);
4422 list_for_each_entry_continue_reverse(dev
,
4423 &slot
->bus
->devices
, bus_list
) {
4424 if (!dev
->slot
|| dev
->slot
!= slot
)
4426 if (dev
->subordinate
)
4427 pci_bus_unlock(dev
->subordinate
);
4428 pci_dev_unlock(dev
);
4433 /* Save and disable devices from the top of the tree down */
4434 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
4436 struct pci_dev
*dev
;
4438 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4439 pci_dev_save_and_disable(dev
);
4440 if (dev
->subordinate
)
4441 pci_bus_save_and_disable(dev
->subordinate
);
4446 * Restore devices from top of the tree down - parent bridges need to be
4447 * restored before we can get to subordinate devices.
4449 static void pci_bus_restore(struct pci_bus
*bus
)
4451 struct pci_dev
*dev
;
4453 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4454 pci_dev_restore(dev
);
4455 if (dev
->subordinate
)
4456 pci_bus_restore(dev
->subordinate
);
4460 /* Save and disable devices from the top of the tree down */
4461 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
4463 struct pci_dev
*dev
;
4465 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4466 if (!dev
->slot
|| dev
->slot
!= slot
)
4468 pci_dev_save_and_disable(dev
);
4469 if (dev
->subordinate
)
4470 pci_bus_save_and_disable(dev
->subordinate
);
4475 * Restore devices from top of the tree down - parent bridges need to be
4476 * restored before we can get to subordinate devices.
4478 static void pci_slot_restore(struct pci_slot
*slot
)
4480 struct pci_dev
*dev
;
4482 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4483 if (!dev
->slot
|| dev
->slot
!= slot
)
4485 pci_dev_restore(dev
);
4486 if (dev
->subordinate
)
4487 pci_bus_restore(dev
->subordinate
);
4491 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
4495 if (!slot
|| !pci_slot_resetable(slot
))
4499 pci_slot_lock(slot
);
4503 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
4506 pci_slot_unlock(slot
);
4512 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4513 * @slot: PCI slot to probe
4515 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4517 int pci_probe_reset_slot(struct pci_slot
*slot
)
4519 return pci_slot_reset(slot
, 1);
4521 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
4524 * pci_reset_slot - reset a PCI slot
4525 * @slot: PCI slot to reset
4527 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4528 * independent of other slots. For instance, some slots may support slot power
4529 * control. In the case of a 1:1 bus to slot architecture, this function may
4530 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4531 * Generally a slot reset should be attempted before a bus reset. All of the
4532 * function of the slot and any subordinate buses behind the slot are reset
4533 * through this function. PCI config space of all devices in the slot and
4534 * behind the slot is saved before and restored after reset.
4536 * Return 0 on success, non-zero on error.
4538 int pci_reset_slot(struct pci_slot
*slot
)
4542 rc
= pci_slot_reset(slot
, 1);
4546 pci_slot_save_and_disable(slot
);
4548 rc
= pci_slot_reset(slot
, 0);
4550 pci_slot_restore(slot
);
4554 EXPORT_SYMBOL_GPL(pci_reset_slot
);
4557 * pci_try_reset_slot - Try to reset a PCI slot
4558 * @slot: PCI slot to reset
4560 * Same as above except return -EAGAIN if the slot cannot be locked
4562 int pci_try_reset_slot(struct pci_slot
*slot
)
4566 rc
= pci_slot_reset(slot
, 1);
4570 pci_slot_save_and_disable(slot
);
4572 if (pci_slot_trylock(slot
)) {
4574 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
4575 pci_slot_unlock(slot
);
4579 pci_slot_restore(slot
);
4583 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
4585 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
4587 if (!bus
->self
|| !pci_bus_resetable(bus
))
4597 pci_reset_bridge_secondary_bus(bus
->self
);
4599 pci_bus_unlock(bus
);
4605 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4606 * @bus: PCI bus to probe
4608 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4610 int pci_probe_reset_bus(struct pci_bus
*bus
)
4612 return pci_bus_reset(bus
, 1);
4614 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
4617 * pci_reset_bus - reset a PCI bus
4618 * @bus: top level PCI bus to reset
4620 * Do a bus reset on the given bus and any subordinate buses, saving
4621 * and restoring state of all devices.
4623 * Return 0 on success, non-zero on error.
4625 int pci_reset_bus(struct pci_bus
*bus
)
4629 rc
= pci_bus_reset(bus
, 1);
4633 pci_bus_save_and_disable(bus
);
4635 rc
= pci_bus_reset(bus
, 0);
4637 pci_bus_restore(bus
);
4641 EXPORT_SYMBOL_GPL(pci_reset_bus
);
4644 * pci_try_reset_bus - Try to reset a PCI bus
4645 * @bus: top level PCI bus to reset
4647 * Same as above except return -EAGAIN if the bus cannot be locked
4649 int pci_try_reset_bus(struct pci_bus
*bus
)
4653 rc
= pci_bus_reset(bus
, 1);
4657 pci_bus_save_and_disable(bus
);
4659 if (pci_bus_trylock(bus
)) {
4661 pci_reset_bridge_secondary_bus(bus
->self
);
4662 pci_bus_unlock(bus
);
4666 pci_bus_restore(bus
);
4670 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
4673 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4674 * @dev: PCI device to query
4676 * Returns mmrbc: maximum designed memory read count in bytes
4677 * or appropriate error value.
4679 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
4684 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4688 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4691 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
4693 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
4696 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4697 * @dev: PCI device to query
4699 * Returns mmrbc: maximum memory read count in bytes
4700 * or appropriate error value.
4702 int pcix_get_mmrbc(struct pci_dev
*dev
)
4707 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4711 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4714 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
4716 EXPORT_SYMBOL(pcix_get_mmrbc
);
4719 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4720 * @dev: PCI device to query
4721 * @mmrbc: maximum memory read count in bytes
4722 * valid values are 512, 1024, 2048, 4096
4724 * If possible sets maximum memory read byte count, some bridges have erratas
4725 * that prevent this.
4727 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
4733 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
4736 v
= ffs(mmrbc
) - 10;
4738 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4742 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4745 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
4748 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4751 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
4753 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
4756 cmd
&= ~PCI_X_CMD_MAX_READ
;
4758 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
4763 EXPORT_SYMBOL(pcix_set_mmrbc
);
4766 * pcie_get_readrq - get PCI Express read request size
4767 * @dev: PCI device to query
4769 * Returns maximum memory read request in bytes
4770 * or appropriate error value.
4772 int pcie_get_readrq(struct pci_dev
*dev
)
4776 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4778 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4780 EXPORT_SYMBOL(pcie_get_readrq
);
4783 * pcie_set_readrq - set PCI Express maximum memory read request
4784 * @dev: PCI device to query
4785 * @rq: maximum memory read count in bytes
4786 * valid values are 128, 256, 512, 1024, 2048, 4096
4788 * If possible sets maximum memory read request in bytes
4790 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4794 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4798 * If using the "performance" PCIe config, we clamp the
4799 * read rq size to the max packet size to prevent the
4800 * host bridge generating requests larger than we can
4803 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4804 int mps
= pcie_get_mps(dev
);
4810 v
= (ffs(rq
) - 8) << 12;
4812 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4813 PCI_EXP_DEVCTL_READRQ
, v
);
4815 EXPORT_SYMBOL(pcie_set_readrq
);
4818 * pcie_get_mps - get PCI Express maximum payload size
4819 * @dev: PCI device to query
4821 * Returns maximum payload size in bytes
4823 int pcie_get_mps(struct pci_dev
*dev
)
4827 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4829 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4831 EXPORT_SYMBOL(pcie_get_mps
);
4834 * pcie_set_mps - set PCI Express maximum payload size
4835 * @dev: PCI device to query
4836 * @mps: maximum payload size in bytes
4837 * valid values are 128, 256, 512, 1024, 2048, 4096
4839 * If possible sets maximum payload size
4841 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4845 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4849 if (v
> dev
->pcie_mpss
)
4853 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4854 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4856 EXPORT_SYMBOL(pcie_set_mps
);
4859 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4860 * @dev: PCI device to query
4861 * @speed: storage for minimum speed
4862 * @width: storage for minimum width
4864 * This function will walk up the PCI device chain and determine the minimum
4865 * link width and speed of the device.
4867 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4868 enum pcie_link_width
*width
)
4872 *speed
= PCI_SPEED_UNKNOWN
;
4873 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4877 enum pci_bus_speed next_speed
;
4878 enum pcie_link_width next_width
;
4880 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4884 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4885 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4886 PCI_EXP_LNKSTA_NLW_SHIFT
;
4888 if (next_speed
< *speed
)
4889 *speed
= next_speed
;
4891 if (next_width
< *width
)
4892 *width
= next_width
;
4894 dev
= dev
->bus
->self
;
4899 EXPORT_SYMBOL(pcie_get_minimum_link
);
4902 * pci_select_bars - Make BAR mask from the type of resource
4903 * @dev: the PCI device for which BAR mask is made
4904 * @flags: resource type mask to be selected
4906 * This helper routine makes bar mask from the type of resource.
4908 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4911 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4912 if (pci_resource_flags(dev
, i
) & flags
)
4916 EXPORT_SYMBOL(pci_select_bars
);
4918 /* Some architectures require additional programming to enable VGA */
4919 static arch_set_vga_state_t arch_set_vga_state
;
4921 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4923 arch_set_vga_state
= func
; /* NULL disables */
4926 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4927 unsigned int command_bits
, u32 flags
)
4929 if (arch_set_vga_state
)
4930 return arch_set_vga_state(dev
, decode
, command_bits
,
4936 * pci_set_vga_state - set VGA decode state on device and parents if requested
4937 * @dev: the PCI device
4938 * @decode: true = enable decoding, false = disable decoding
4939 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4940 * @flags: traverse ancestors and change bridges
4941 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4943 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
4944 unsigned int command_bits
, u32 flags
)
4946 struct pci_bus
*bus
;
4947 struct pci_dev
*bridge
;
4951 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
4953 /* ARCH specific VGA enables */
4954 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
4958 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
4959 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4961 cmd
|= command_bits
;
4963 cmd
&= ~command_bits
;
4964 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4967 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
4974 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4977 cmd
|= PCI_BRIDGE_CTL_VGA
;
4979 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
4980 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4989 * pci_add_dma_alias - Add a DMA devfn alias for a device
4990 * @dev: the PCI device for which alias is added
4991 * @devfn: alias slot and function
4993 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4994 * It should be called early, preferably as PCI fixup header quirk.
4996 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn
)
4998 if (!dev
->dma_alias_mask
)
4999 dev
->dma_alias_mask
= kcalloc(BITS_TO_LONGS(U8_MAX
),
5000 sizeof(long), GFP_KERNEL
);
5001 if (!dev
->dma_alias_mask
) {
5002 dev_warn(&dev
->dev
, "Unable to allocate DMA alias mask\n");
5006 set_bit(devfn
, dev
->dma_alias_mask
);
5007 dev_info(&dev
->dev
, "Enabling fixed DMA alias to %02x.%d\n",
5008 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
5011 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
5013 return (dev1
->dma_alias_mask
&&
5014 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
5015 (dev2
->dma_alias_mask
&&
5016 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
));
5019 bool pci_device_is_present(struct pci_dev
*pdev
)
5023 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
5025 EXPORT_SYMBOL_GPL(pci_device_is_present
);
5027 void pci_ignore_hotplug(struct pci_dev
*dev
)
5029 struct pci_dev
*bridge
= dev
->bus
->self
;
5031 dev
->ignore_hotplug
= 1;
5032 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5034 bridge
->ignore_hotplug
= 1;
5036 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
5038 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5039 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
5040 static DEFINE_SPINLOCK(resource_alignment_lock
);
5043 * pci_specified_resource_alignment - get resource alignment specified by user.
5044 * @dev: the PCI device to get
5046 * RETURNS: Resource alignment if it is specified.
5047 * Zero if it is not specified.
5049 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
5051 int seg
, bus
, slot
, func
, align_order
, count
;
5052 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
5053 resource_size_t align
= 0;
5056 spin_lock(&resource_alignment_lock
);
5057 p
= resource_alignment_param
;
5060 if (pci_has_flag(PCI_PROBE_ONLY
)) {
5061 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5067 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
5073 if (strncmp(p
, "pci:", 4) == 0) {
5074 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5076 if (sscanf(p
, "%hx:%hx:%hx:%hx%n",
5077 &vendor
, &device
, &subsystem_vendor
, &subsystem_device
, &count
) != 4) {
5078 if (sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
) != 2) {
5079 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: pci:%s\n",
5083 subsystem_vendor
= subsystem_device
= 0;
5086 if ((!vendor
|| (vendor
== dev
->vendor
)) &&
5087 (!device
|| (device
== dev
->device
)) &&
5088 (!subsystem_vendor
|| (subsystem_vendor
== dev
->subsystem_vendor
)) &&
5089 (!subsystem_device
|| (subsystem_device
== dev
->subsystem_device
))) {
5090 if (align_order
== -1)
5093 align
= 1 << align_order
;
5099 if (sscanf(p
, "%x:%x:%x.%x%n",
5100 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
5102 if (sscanf(p
, "%x:%x.%x%n",
5103 &bus
, &slot
, &func
, &count
) != 3) {
5104 /* Invalid format */
5105 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
5111 if (seg
== pci_domain_nr(dev
->bus
) &&
5112 bus
== dev
->bus
->number
&&
5113 slot
== PCI_SLOT(dev
->devfn
) &&
5114 func
== PCI_FUNC(dev
->devfn
)) {
5115 if (align_order
== -1)
5118 align
= 1 << align_order
;
5123 if (*p
!= ';' && *p
!= ',') {
5124 /* End of param or invalid format */
5130 spin_unlock(&resource_alignment_lock
);
5135 * This function disables memory decoding and releases memory resources
5136 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5137 * It also rounds up size to specified alignment.
5138 * Later on, the kernel will assign page-aligned memory resource back
5141 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
5145 resource_size_t align
, size
;
5149 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5150 * 3.4.1.11. Their resources are allocated from the space
5151 * described by the VF BARx register in the PF's SR-IOV capability.
5152 * We can't influence their alignment here.
5157 /* check if specified PCI is target device to reassign */
5158 align
= pci_specified_resource_alignment(dev
);
5162 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
5163 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
5165 "Can't reassign resources to host bridge.\n");
5170 "Disabling memory decoding and releasing memory resources.\n");
5171 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
5172 command
&= ~PCI_COMMAND_MEMORY
;
5173 pci_write_config_word(dev
, PCI_COMMAND
, command
);
5175 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
5176 r
= &dev
->resource
[i
];
5177 if (!(r
->flags
& IORESOURCE_MEM
))
5179 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
5180 dev_info(&dev
->dev
, "Ignoring requested alignment for BAR%d: %pR\n",
5185 size
= resource_size(r
);
5189 "Rounding up size of resource #%d to %#llx.\n",
5190 i
, (unsigned long long)size
);
5192 r
->flags
|= IORESOURCE_UNSET
;
5196 /* Need to disable bridge's resource window,
5197 * to enable the kernel to reassign new resource
5200 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
5201 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
5202 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
5203 r
= &dev
->resource
[i
];
5204 if (!(r
->flags
& IORESOURCE_MEM
))
5206 r
->flags
|= IORESOURCE_UNSET
;
5207 r
->end
= resource_size(r
) - 1;
5210 pci_disable_bridge_window(dev
);
5214 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
5216 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
5217 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
5218 spin_lock(&resource_alignment_lock
);
5219 strncpy(resource_alignment_param
, buf
, count
);
5220 resource_alignment_param
[count
] = '\0';
5221 spin_unlock(&resource_alignment_lock
);
5225 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
5228 spin_lock(&resource_alignment_lock
);
5229 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
5230 spin_unlock(&resource_alignment_lock
);
5234 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
5236 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
5239 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
5240 const char *buf
, size_t count
)
5242 return pci_set_resource_alignment_param(buf
, count
);
5245 static BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
5246 pci_resource_alignment_store
);
5248 static int __init
pci_resource_alignment_sysfs_init(void)
5250 return bus_create_file(&pci_bus_type
,
5251 &bus_attr_resource_alignment
);
5253 late_initcall(pci_resource_alignment_sysfs_init
);
5255 static void pci_no_domains(void)
5257 #ifdef CONFIG_PCI_DOMAINS
5258 pci_domains_supported
= 0;
5262 #ifdef CONFIG_PCI_DOMAINS
5263 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
5265 int pci_get_new_domain_nr(void)
5267 return atomic_inc_return(&__domain_nr
);
5270 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5271 static int of_pci_bus_find_domain_nr(struct device
*parent
)
5273 static int use_dt_domains
= -1;
5277 domain
= of_get_pci_domain_nr(parent
->of_node
);
5279 * Check DT domain and use_dt_domains values.
5281 * If DT domain property is valid (domain >= 0) and
5282 * use_dt_domains != 0, the DT assignment is valid since this means
5283 * we have not previously allocated a domain number by using
5284 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5285 * 1, to indicate that we have just assigned a domain number from
5288 * If DT domain property value is not valid (ie domain < 0), and we
5289 * have not previously assigned a domain number from DT
5290 * (use_dt_domains != 1) we should assign a domain number by
5293 * pci_get_new_domain_nr()
5295 * API and update the use_dt_domains value to keep track of method we
5296 * are using to assign domain numbers (use_dt_domains = 0).
5298 * All other combinations imply we have a platform that is trying
5299 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5300 * which is a recipe for domain mishandling and it is prevented by
5301 * invalidating the domain value (domain = -1) and printing a
5302 * corresponding error.
5304 if (domain
>= 0 && use_dt_domains
) {
5306 } else if (domain
< 0 && use_dt_domains
!= 1) {
5308 domain
= pci_get_new_domain_nr();
5310 dev_err(parent
, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5311 parent
->of_node
->full_name
);
5318 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
5320 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
5321 acpi_pci_bus_find_domain_nr(bus
);
5327 * pci_ext_cfg_avail - can we access extended PCI config space?
5329 * Returns 1 if we can access PCI extended config space (offsets
5330 * greater than 0xff). This is the default implementation. Architecture
5331 * implementations can override this.
5333 int __weak
pci_ext_cfg_avail(void)
5338 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
5341 EXPORT_SYMBOL(pci_fixup_cardbus
);
5343 static int __init
pci_setup(char *str
)
5346 char *k
= strchr(str
, ',');
5349 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
5350 if (!strcmp(str
, "nomsi")) {
5352 } else if (!strcmp(str
, "noaer")) {
5354 } else if (!strncmp(str
, "realloc=", 8)) {
5355 pci_realloc_get_opt(str
+ 8);
5356 } else if (!strncmp(str
, "realloc", 7)) {
5357 pci_realloc_get_opt("on");
5358 } else if (!strcmp(str
, "nodomains")) {
5360 } else if (!strncmp(str
, "noari", 5)) {
5361 pcie_ari_disabled
= true;
5362 } else if (!strncmp(str
, "cbiosize=", 9)) {
5363 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
5364 } else if (!strncmp(str
, "cbmemsize=", 10)) {
5365 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
5366 } else if (!strncmp(str
, "resource_alignment=", 19)) {
5367 pci_set_resource_alignment_param(str
+ 19,
5369 } else if (!strncmp(str
, "ecrc=", 5)) {
5370 pcie_ecrc_get_policy(str
+ 5);
5371 } else if (!strncmp(str
, "hpiosize=", 9)) {
5372 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
5373 } else if (!strncmp(str
, "hpmemsize=", 10)) {
5374 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
5375 } else if (!strncmp(str
, "hpbussize=", 10)) {
5376 pci_hotplug_bus_size
=
5377 simple_strtoul(str
+ 10, &str
, 0);
5378 if (pci_hotplug_bus_size
> 0xff)
5379 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
5380 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
5381 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
5382 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
5383 pcie_bus_config
= PCIE_BUS_SAFE
;
5384 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
5385 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
5386 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
5387 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
5388 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
5389 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
5391 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
5399 early_param("pci", pci_setup
);