2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/list.h>
27 #include <linux/list_sort.h>
28 #include <linux/log2.h>
30 #include <linux/msi.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_pci.h>
35 #include <linux/of_platform.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/syscore_ops.h>
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/arm-gic-v3.h>
42 #include <linux/irqchip/arm-gic-v4.h>
44 #include <asm/cputype.h>
45 #include <asm/exception.h>
47 #include "irq-gic-common.h"
49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
52 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3)
54 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
56 static u32 lpi_id_bits
;
59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60 * deal with (one configuration byte per interrupt). PENDBASE has to
61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
63 #define LPI_NRBITS lpi_id_bits
64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
67 #define LPI_PROP_DEFAULT_PRIO 0xa0
70 * Collection structure - just an ID, and a redistributor address to
71 * ping. We use one per CPU as a bag of interrupts assigned to this
74 struct its_collection
{
80 * The ITS_BASER structure - contains memory information, cached
81 * value of BASER register configuration and ITS page size.
93 * The ITS structure - contains most of the infrastructure, with the
94 * top-level MSI domain, the command queue, the collections, and the
95 * list of devices writing to it.
99 struct list_head entry
;
101 phys_addr_t phys_base
;
102 struct its_cmd_block
*cmd_base
;
103 struct its_cmd_block
*cmd_write
;
104 struct its_baser tables
[GITS_BASER_NR_REGS
];
105 struct its_collection
*collections
;
106 struct fwnode_handle
*fwnode_handle
;
107 u64 (*get_msi_base
)(struct its_device
*its_dev
);
110 struct list_head its_device_list
;
112 unsigned long list_nr
;
116 unsigned int msi_domain_flags
;
117 u32 pre_its_base
; /* for Socionext Synquacer */
119 int vlpi_redist_offset
;
122 #define ITS_ITT_ALIGN SZ_256
124 /* The maximum number of VPEID bits supported by VLPI commands */
125 #define ITS_MAX_VPEID_BITS (16)
126 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
128 /* Convert page order to size in bytes */
129 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
131 struct event_lpi_map
{
132 unsigned long *lpi_map
;
134 irq_hw_number_t lpi_base
;
136 struct mutex vlpi_lock
;
138 struct its_vlpi_map
*vlpi_maps
;
143 * The ITS view of a device - belongs to an ITS, owns an interrupt
144 * translation table, and a list of interrupts. If it some of its
145 * LPIs are injected into a guest (GICv4), the event_map.vm field
146 * indicates which one.
149 struct list_head entry
;
150 struct its_node
*its
;
151 struct event_lpi_map event_map
;
159 struct its_device
*dev
;
160 struct its_vpe
**vpes
;
164 static LIST_HEAD(its_nodes
);
165 static DEFINE_RAW_SPINLOCK(its_lock
);
166 static struct rdists
*gic_rdists
;
167 static struct irq_domain
*its_parent
;
169 static unsigned long its_list_map
;
170 static u16 vmovp_seq_num
;
171 static DEFINE_RAW_SPINLOCK(vmovp_lock
);
173 static DEFINE_IDA(its_vpeid_ida
);
175 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
176 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
177 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
179 static struct its_collection
*dev_event_to_col(struct its_device
*its_dev
,
182 struct its_node
*its
= its_dev
->its
;
184 return its
->collections
+ its_dev
->event_map
.col_map
[event
];
187 static struct its_collection
*valid_col(struct its_collection
*col
)
189 if (WARN_ON_ONCE(col
->target_address
& GENMASK_ULL(0, 15)))
195 static struct its_vpe
*valid_vpe(struct its_node
*its
, struct its_vpe
*vpe
)
197 if (valid_col(its
->collections
+ vpe
->col_idx
))
204 * ITS command descriptors - parameters to be encoded in a command
207 struct its_cmd_desc
{
210 struct its_device
*dev
;
215 struct its_device
*dev
;
220 struct its_device
*dev
;
225 struct its_device
*dev
;
230 struct its_collection
*col
;
235 struct its_device
*dev
;
241 struct its_device
*dev
;
242 struct its_collection
*col
;
247 struct its_device
*dev
;
252 struct its_collection
*col
;
261 struct its_collection
*col
;
267 struct its_device
*dev
;
275 struct its_device
*dev
;
282 struct its_collection
*col
;
290 * The ITS command block, which is what the ITS actually parses.
292 struct its_cmd_block
{
296 #define ITS_CMD_QUEUE_SZ SZ_64K
297 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
299 typedef struct its_collection
*(*its_cmd_builder_t
)(struct its_node
*,
300 struct its_cmd_block
*,
301 struct its_cmd_desc
*);
303 typedef struct its_vpe
*(*its_cmd_vbuilder_t
)(struct its_node
*,
304 struct its_cmd_block
*,
305 struct its_cmd_desc
*);
307 static void its_mask_encode(u64
*raw_cmd
, u64 val
, int h
, int l
)
309 u64 mask
= GENMASK_ULL(h
, l
);
311 *raw_cmd
|= (val
<< l
) & mask
;
314 static void its_encode_cmd(struct its_cmd_block
*cmd
, u8 cmd_nr
)
316 its_mask_encode(&cmd
->raw_cmd
[0], cmd_nr
, 7, 0);
319 static void its_encode_devid(struct its_cmd_block
*cmd
, u32 devid
)
321 its_mask_encode(&cmd
->raw_cmd
[0], devid
, 63, 32);
324 static void its_encode_event_id(struct its_cmd_block
*cmd
, u32 id
)
326 its_mask_encode(&cmd
->raw_cmd
[1], id
, 31, 0);
329 static void its_encode_phys_id(struct its_cmd_block
*cmd
, u32 phys_id
)
331 its_mask_encode(&cmd
->raw_cmd
[1], phys_id
, 63, 32);
334 static void its_encode_size(struct its_cmd_block
*cmd
, u8 size
)
336 its_mask_encode(&cmd
->raw_cmd
[1], size
, 4, 0);
339 static void its_encode_itt(struct its_cmd_block
*cmd
, u64 itt_addr
)
341 its_mask_encode(&cmd
->raw_cmd
[2], itt_addr
>> 8, 51, 8);
344 static void its_encode_valid(struct its_cmd_block
*cmd
, int valid
)
346 its_mask_encode(&cmd
->raw_cmd
[2], !!valid
, 63, 63);
349 static void its_encode_target(struct its_cmd_block
*cmd
, u64 target_addr
)
351 its_mask_encode(&cmd
->raw_cmd
[2], target_addr
>> 16, 51, 16);
354 static void its_encode_collection(struct its_cmd_block
*cmd
, u16 col
)
356 its_mask_encode(&cmd
->raw_cmd
[2], col
, 15, 0);
359 static void its_encode_vpeid(struct its_cmd_block
*cmd
, u16 vpeid
)
361 its_mask_encode(&cmd
->raw_cmd
[1], vpeid
, 47, 32);
364 static void its_encode_virt_id(struct its_cmd_block
*cmd
, u32 virt_id
)
366 its_mask_encode(&cmd
->raw_cmd
[2], virt_id
, 31, 0);
369 static void its_encode_db_phys_id(struct its_cmd_block
*cmd
, u32 db_phys_id
)
371 its_mask_encode(&cmd
->raw_cmd
[2], db_phys_id
, 63, 32);
374 static void its_encode_db_valid(struct its_cmd_block
*cmd
, bool db_valid
)
376 its_mask_encode(&cmd
->raw_cmd
[2], db_valid
, 0, 0);
379 static void its_encode_seq_num(struct its_cmd_block
*cmd
, u16 seq_num
)
381 its_mask_encode(&cmd
->raw_cmd
[0], seq_num
, 47, 32);
384 static void its_encode_its_list(struct its_cmd_block
*cmd
, u16 its_list
)
386 its_mask_encode(&cmd
->raw_cmd
[1], its_list
, 15, 0);
389 static void its_encode_vpt_addr(struct its_cmd_block
*cmd
, u64 vpt_pa
)
391 its_mask_encode(&cmd
->raw_cmd
[3], vpt_pa
>> 16, 51, 16);
394 static void its_encode_vpt_size(struct its_cmd_block
*cmd
, u8 vpt_size
)
396 its_mask_encode(&cmd
->raw_cmd
[3], vpt_size
, 4, 0);
399 static inline void its_fixup_cmd(struct its_cmd_block
*cmd
)
401 /* Let's fixup BE commands */
402 cmd
->raw_cmd
[0] = cpu_to_le64(cmd
->raw_cmd
[0]);
403 cmd
->raw_cmd
[1] = cpu_to_le64(cmd
->raw_cmd
[1]);
404 cmd
->raw_cmd
[2] = cpu_to_le64(cmd
->raw_cmd
[2]);
405 cmd
->raw_cmd
[3] = cpu_to_le64(cmd
->raw_cmd
[3]);
408 static struct its_collection
*its_build_mapd_cmd(struct its_node
*its
,
409 struct its_cmd_block
*cmd
,
410 struct its_cmd_desc
*desc
)
412 unsigned long itt_addr
;
413 u8 size
= ilog2(desc
->its_mapd_cmd
.dev
->nr_ites
);
415 itt_addr
= virt_to_phys(desc
->its_mapd_cmd
.dev
->itt
);
416 itt_addr
= ALIGN(itt_addr
, ITS_ITT_ALIGN
);
418 its_encode_cmd(cmd
, GITS_CMD_MAPD
);
419 its_encode_devid(cmd
, desc
->its_mapd_cmd
.dev
->device_id
);
420 its_encode_size(cmd
, size
- 1);
421 its_encode_itt(cmd
, itt_addr
);
422 its_encode_valid(cmd
, desc
->its_mapd_cmd
.valid
);
429 static struct its_collection
*its_build_mapc_cmd(struct its_node
*its
,
430 struct its_cmd_block
*cmd
,
431 struct its_cmd_desc
*desc
)
433 its_encode_cmd(cmd
, GITS_CMD_MAPC
);
434 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
435 its_encode_target(cmd
, desc
->its_mapc_cmd
.col
->target_address
);
436 its_encode_valid(cmd
, desc
->its_mapc_cmd
.valid
);
440 return desc
->its_mapc_cmd
.col
;
443 static struct its_collection
*its_build_mapti_cmd(struct its_node
*its
,
444 struct its_cmd_block
*cmd
,
445 struct its_cmd_desc
*desc
)
447 struct its_collection
*col
;
449 col
= dev_event_to_col(desc
->its_mapti_cmd
.dev
,
450 desc
->its_mapti_cmd
.event_id
);
452 its_encode_cmd(cmd
, GITS_CMD_MAPTI
);
453 its_encode_devid(cmd
, desc
->its_mapti_cmd
.dev
->device_id
);
454 its_encode_event_id(cmd
, desc
->its_mapti_cmd
.event_id
);
455 its_encode_phys_id(cmd
, desc
->its_mapti_cmd
.phys_id
);
456 its_encode_collection(cmd
, col
->col_id
);
460 return valid_col(col
);
463 static struct its_collection
*its_build_movi_cmd(struct its_node
*its
,
464 struct its_cmd_block
*cmd
,
465 struct its_cmd_desc
*desc
)
467 struct its_collection
*col
;
469 col
= dev_event_to_col(desc
->its_movi_cmd
.dev
,
470 desc
->its_movi_cmd
.event_id
);
472 its_encode_cmd(cmd
, GITS_CMD_MOVI
);
473 its_encode_devid(cmd
, desc
->its_movi_cmd
.dev
->device_id
);
474 its_encode_event_id(cmd
, desc
->its_movi_cmd
.event_id
);
475 its_encode_collection(cmd
, desc
->its_movi_cmd
.col
->col_id
);
479 return valid_col(col
);
482 static struct its_collection
*its_build_discard_cmd(struct its_node
*its
,
483 struct its_cmd_block
*cmd
,
484 struct its_cmd_desc
*desc
)
486 struct its_collection
*col
;
488 col
= dev_event_to_col(desc
->its_discard_cmd
.dev
,
489 desc
->its_discard_cmd
.event_id
);
491 its_encode_cmd(cmd
, GITS_CMD_DISCARD
);
492 its_encode_devid(cmd
, desc
->its_discard_cmd
.dev
->device_id
);
493 its_encode_event_id(cmd
, desc
->its_discard_cmd
.event_id
);
497 return valid_col(col
);
500 static struct its_collection
*its_build_inv_cmd(struct its_node
*its
,
501 struct its_cmd_block
*cmd
,
502 struct its_cmd_desc
*desc
)
504 struct its_collection
*col
;
506 col
= dev_event_to_col(desc
->its_inv_cmd
.dev
,
507 desc
->its_inv_cmd
.event_id
);
509 its_encode_cmd(cmd
, GITS_CMD_INV
);
510 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
511 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
515 return valid_col(col
);
518 static struct its_collection
*its_build_int_cmd(struct its_node
*its
,
519 struct its_cmd_block
*cmd
,
520 struct its_cmd_desc
*desc
)
522 struct its_collection
*col
;
524 col
= dev_event_to_col(desc
->its_int_cmd
.dev
,
525 desc
->its_int_cmd
.event_id
);
527 its_encode_cmd(cmd
, GITS_CMD_INT
);
528 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
529 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
533 return valid_col(col
);
536 static struct its_collection
*its_build_clear_cmd(struct its_node
*its
,
537 struct its_cmd_block
*cmd
,
538 struct its_cmd_desc
*desc
)
540 struct its_collection
*col
;
542 col
= dev_event_to_col(desc
->its_clear_cmd
.dev
,
543 desc
->its_clear_cmd
.event_id
);
545 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
546 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
547 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
551 return valid_col(col
);
554 static struct its_collection
*its_build_invall_cmd(struct its_node
*its
,
555 struct its_cmd_block
*cmd
,
556 struct its_cmd_desc
*desc
)
558 its_encode_cmd(cmd
, GITS_CMD_INVALL
);
559 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
566 static struct its_vpe
*its_build_vinvall_cmd(struct its_node
*its
,
567 struct its_cmd_block
*cmd
,
568 struct its_cmd_desc
*desc
)
570 its_encode_cmd(cmd
, GITS_CMD_VINVALL
);
571 its_encode_vpeid(cmd
, desc
->its_vinvall_cmd
.vpe
->vpe_id
);
575 return valid_vpe(its
, desc
->its_vinvall_cmd
.vpe
);
578 static struct its_vpe
*its_build_vmapp_cmd(struct its_node
*its
,
579 struct its_cmd_block
*cmd
,
580 struct its_cmd_desc
*desc
)
582 unsigned long vpt_addr
;
585 vpt_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->vpt_page
));
586 target
= desc
->its_vmapp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
588 its_encode_cmd(cmd
, GITS_CMD_VMAPP
);
589 its_encode_vpeid(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_id
);
590 its_encode_valid(cmd
, desc
->its_vmapp_cmd
.valid
);
591 its_encode_target(cmd
, target
);
592 its_encode_vpt_addr(cmd
, vpt_addr
);
593 its_encode_vpt_size(cmd
, LPI_NRBITS
- 1);
597 return valid_vpe(its
, desc
->its_vmapp_cmd
.vpe
);
600 static struct its_vpe
*its_build_vmapti_cmd(struct its_node
*its
,
601 struct its_cmd_block
*cmd
,
602 struct its_cmd_desc
*desc
)
606 if (desc
->its_vmapti_cmd
.db_enabled
)
607 db
= desc
->its_vmapti_cmd
.vpe
->vpe_db_lpi
;
611 its_encode_cmd(cmd
, GITS_CMD_VMAPTI
);
612 its_encode_devid(cmd
, desc
->its_vmapti_cmd
.dev
->device_id
);
613 its_encode_vpeid(cmd
, desc
->its_vmapti_cmd
.vpe
->vpe_id
);
614 its_encode_event_id(cmd
, desc
->its_vmapti_cmd
.event_id
);
615 its_encode_db_phys_id(cmd
, db
);
616 its_encode_virt_id(cmd
, desc
->its_vmapti_cmd
.virt_id
);
620 return valid_vpe(its
, desc
->its_vmapti_cmd
.vpe
);
623 static struct its_vpe
*its_build_vmovi_cmd(struct its_node
*its
,
624 struct its_cmd_block
*cmd
,
625 struct its_cmd_desc
*desc
)
629 if (desc
->its_vmovi_cmd
.db_enabled
)
630 db
= desc
->its_vmovi_cmd
.vpe
->vpe_db_lpi
;
634 its_encode_cmd(cmd
, GITS_CMD_VMOVI
);
635 its_encode_devid(cmd
, desc
->its_vmovi_cmd
.dev
->device_id
);
636 its_encode_vpeid(cmd
, desc
->its_vmovi_cmd
.vpe
->vpe_id
);
637 its_encode_event_id(cmd
, desc
->its_vmovi_cmd
.event_id
);
638 its_encode_db_phys_id(cmd
, db
);
639 its_encode_db_valid(cmd
, true);
643 return valid_vpe(its
, desc
->its_vmovi_cmd
.vpe
);
646 static struct its_vpe
*its_build_vmovp_cmd(struct its_node
*its
,
647 struct its_cmd_block
*cmd
,
648 struct its_cmd_desc
*desc
)
652 target
= desc
->its_vmovp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
653 its_encode_cmd(cmd
, GITS_CMD_VMOVP
);
654 its_encode_seq_num(cmd
, desc
->its_vmovp_cmd
.seq_num
);
655 its_encode_its_list(cmd
, desc
->its_vmovp_cmd
.its_list
);
656 its_encode_vpeid(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_id
);
657 its_encode_target(cmd
, target
);
661 return valid_vpe(its
, desc
->its_vmovp_cmd
.vpe
);
664 static u64
its_cmd_ptr_to_offset(struct its_node
*its
,
665 struct its_cmd_block
*ptr
)
667 return (ptr
- its
->cmd_base
) * sizeof(*ptr
);
670 static int its_queue_full(struct its_node
*its
)
675 widx
= its
->cmd_write
- its
->cmd_base
;
676 ridx
= readl_relaxed(its
->base
+ GITS_CREADR
) / sizeof(struct its_cmd_block
);
678 /* This is incredibly unlikely to happen, unless the ITS locks up. */
679 if (((widx
+ 1) % ITS_CMD_QUEUE_NR_ENTRIES
) == ridx
)
685 static struct its_cmd_block
*its_allocate_entry(struct its_node
*its
)
687 struct its_cmd_block
*cmd
;
688 u32 count
= 1000000; /* 1s! */
690 while (its_queue_full(its
)) {
693 pr_err_ratelimited("ITS queue not draining\n");
700 cmd
= its
->cmd_write
++;
702 /* Handle queue wrapping */
703 if (its
->cmd_write
== (its
->cmd_base
+ ITS_CMD_QUEUE_NR_ENTRIES
))
704 its
->cmd_write
= its
->cmd_base
;
715 static struct its_cmd_block
*its_post_commands(struct its_node
*its
)
717 u64 wr
= its_cmd_ptr_to_offset(its
, its
->cmd_write
);
719 writel_relaxed(wr
, its
->base
+ GITS_CWRITER
);
721 return its
->cmd_write
;
724 static void its_flush_cmd(struct its_node
*its
, struct its_cmd_block
*cmd
)
727 * Make sure the commands written to memory are observable by
730 if (its
->flags
& ITS_FLAGS_CMDQ_NEEDS_FLUSHING
)
731 gic_flush_dcache_to_poc(cmd
, sizeof(*cmd
));
736 static int its_wait_for_range_completion(struct its_node
*its
,
737 struct its_cmd_block
*from
,
738 struct its_cmd_block
*to
)
740 u64 rd_idx
, from_idx
, to_idx
;
741 u32 count
= 1000000; /* 1s! */
743 from_idx
= its_cmd_ptr_to_offset(its
, from
);
744 to_idx
= its_cmd_ptr_to_offset(its
, to
);
747 rd_idx
= readl_relaxed(its
->base
+ GITS_CREADR
);
750 if (from_idx
< to_idx
&& rd_idx
>= to_idx
)
754 if (from_idx
>= to_idx
&& rd_idx
>= to_idx
&& rd_idx
< from_idx
)
759 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
760 from_idx
, to_idx
, rd_idx
);
770 /* Warning, macro hell follows */
771 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
772 void name(struct its_node *its, \
774 struct its_cmd_desc *desc) \
776 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
777 synctype *sync_obj; \
778 unsigned long flags; \
780 raw_spin_lock_irqsave(&its->lock, flags); \
782 cmd = its_allocate_entry(its); \
783 if (!cmd) { /* We're soooooo screewed... */ \
784 raw_spin_unlock_irqrestore(&its->lock, flags); \
787 sync_obj = builder(its, cmd, desc); \
788 its_flush_cmd(its, cmd); \
791 sync_cmd = its_allocate_entry(its); \
795 buildfn(its, sync_cmd, sync_obj); \
796 its_flush_cmd(its, sync_cmd); \
800 next_cmd = its_post_commands(its); \
801 raw_spin_unlock_irqrestore(&its->lock, flags); \
803 if (its_wait_for_range_completion(its, cmd, next_cmd)) \
804 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
807 static void its_build_sync_cmd(struct its_node
*its
,
808 struct its_cmd_block
*sync_cmd
,
809 struct its_collection
*sync_col
)
811 its_encode_cmd(sync_cmd
, GITS_CMD_SYNC
);
812 its_encode_target(sync_cmd
, sync_col
->target_address
);
814 its_fixup_cmd(sync_cmd
);
817 static BUILD_SINGLE_CMD_FUNC(its_send_single_command
, its_cmd_builder_t
,
818 struct its_collection
, its_build_sync_cmd
)
820 static void its_build_vsync_cmd(struct its_node
*its
,
821 struct its_cmd_block
*sync_cmd
,
822 struct its_vpe
*sync_vpe
)
824 its_encode_cmd(sync_cmd
, GITS_CMD_VSYNC
);
825 its_encode_vpeid(sync_cmd
, sync_vpe
->vpe_id
);
827 its_fixup_cmd(sync_cmd
);
830 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand
, its_cmd_vbuilder_t
,
831 struct its_vpe
, its_build_vsync_cmd
)
833 static void its_send_int(struct its_device
*dev
, u32 event_id
)
835 struct its_cmd_desc desc
;
837 desc
.its_int_cmd
.dev
= dev
;
838 desc
.its_int_cmd
.event_id
= event_id
;
840 its_send_single_command(dev
->its
, its_build_int_cmd
, &desc
);
843 static void its_send_clear(struct its_device
*dev
, u32 event_id
)
845 struct its_cmd_desc desc
;
847 desc
.its_clear_cmd
.dev
= dev
;
848 desc
.its_clear_cmd
.event_id
= event_id
;
850 its_send_single_command(dev
->its
, its_build_clear_cmd
, &desc
);
853 static void its_send_inv(struct its_device
*dev
, u32 event_id
)
855 struct its_cmd_desc desc
;
857 desc
.its_inv_cmd
.dev
= dev
;
858 desc
.its_inv_cmd
.event_id
= event_id
;
860 its_send_single_command(dev
->its
, its_build_inv_cmd
, &desc
);
863 static void its_send_mapd(struct its_device
*dev
, int valid
)
865 struct its_cmd_desc desc
;
867 desc
.its_mapd_cmd
.dev
= dev
;
868 desc
.its_mapd_cmd
.valid
= !!valid
;
870 its_send_single_command(dev
->its
, its_build_mapd_cmd
, &desc
);
873 static void its_send_mapc(struct its_node
*its
, struct its_collection
*col
,
876 struct its_cmd_desc desc
;
878 desc
.its_mapc_cmd
.col
= col
;
879 desc
.its_mapc_cmd
.valid
= !!valid
;
881 its_send_single_command(its
, its_build_mapc_cmd
, &desc
);
884 static void its_send_mapti(struct its_device
*dev
, u32 irq_id
, u32 id
)
886 struct its_cmd_desc desc
;
888 desc
.its_mapti_cmd
.dev
= dev
;
889 desc
.its_mapti_cmd
.phys_id
= irq_id
;
890 desc
.its_mapti_cmd
.event_id
= id
;
892 its_send_single_command(dev
->its
, its_build_mapti_cmd
, &desc
);
895 static void its_send_movi(struct its_device
*dev
,
896 struct its_collection
*col
, u32 id
)
898 struct its_cmd_desc desc
;
900 desc
.its_movi_cmd
.dev
= dev
;
901 desc
.its_movi_cmd
.col
= col
;
902 desc
.its_movi_cmd
.event_id
= id
;
904 its_send_single_command(dev
->its
, its_build_movi_cmd
, &desc
);
907 static void its_send_discard(struct its_device
*dev
, u32 id
)
909 struct its_cmd_desc desc
;
911 desc
.its_discard_cmd
.dev
= dev
;
912 desc
.its_discard_cmd
.event_id
= id
;
914 its_send_single_command(dev
->its
, its_build_discard_cmd
, &desc
);
917 static void its_send_invall(struct its_node
*its
, struct its_collection
*col
)
919 struct its_cmd_desc desc
;
921 desc
.its_invall_cmd
.col
= col
;
923 its_send_single_command(its
, its_build_invall_cmd
, &desc
);
926 static void its_send_vmapti(struct its_device
*dev
, u32 id
)
928 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
929 struct its_cmd_desc desc
;
931 desc
.its_vmapti_cmd
.vpe
= map
->vpe
;
932 desc
.its_vmapti_cmd
.dev
= dev
;
933 desc
.its_vmapti_cmd
.virt_id
= map
->vintid
;
934 desc
.its_vmapti_cmd
.event_id
= id
;
935 desc
.its_vmapti_cmd
.db_enabled
= map
->db_enabled
;
937 its_send_single_vcommand(dev
->its
, its_build_vmapti_cmd
, &desc
);
940 static void its_send_vmovi(struct its_device
*dev
, u32 id
)
942 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
943 struct its_cmd_desc desc
;
945 desc
.its_vmovi_cmd
.vpe
= map
->vpe
;
946 desc
.its_vmovi_cmd
.dev
= dev
;
947 desc
.its_vmovi_cmd
.event_id
= id
;
948 desc
.its_vmovi_cmd
.db_enabled
= map
->db_enabled
;
950 its_send_single_vcommand(dev
->its
, its_build_vmovi_cmd
, &desc
);
953 static void its_send_vmapp(struct its_node
*its
,
954 struct its_vpe
*vpe
, bool valid
)
956 struct its_cmd_desc desc
;
958 desc
.its_vmapp_cmd
.vpe
= vpe
;
959 desc
.its_vmapp_cmd
.valid
= valid
;
960 desc
.its_vmapp_cmd
.col
= &its
->collections
[vpe
->col_idx
];
962 its_send_single_vcommand(its
, its_build_vmapp_cmd
, &desc
);
965 static void its_send_vmovp(struct its_vpe
*vpe
)
967 struct its_cmd_desc desc
;
968 struct its_node
*its
;
970 int col_id
= vpe
->col_idx
;
972 desc
.its_vmovp_cmd
.vpe
= vpe
;
973 desc
.its_vmovp_cmd
.its_list
= (u16
)its_list_map
;
976 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
977 desc
.its_vmovp_cmd
.seq_num
= 0;
978 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
979 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
984 * Yet another marvel of the architecture. If using the
985 * its_list "feature", we need to make sure that all ITSs
986 * receive all VMOVP commands in the same order. The only way
987 * to guarantee this is to make vmovp a serialization point.
991 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
993 desc
.its_vmovp_cmd
.seq_num
= vmovp_seq_num
++;
996 list_for_each_entry(its
, &its_nodes
, entry
) {
1000 if (!vpe
->its_vm
->vlpi_count
[its
->list_nr
])
1003 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
1004 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
1007 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1010 static void its_send_vinvall(struct its_node
*its
, struct its_vpe
*vpe
)
1012 struct its_cmd_desc desc
;
1014 desc
.its_vinvall_cmd
.vpe
= vpe
;
1015 its_send_single_vcommand(its
, its_build_vinvall_cmd
, &desc
);
1019 * irqchip functions - assumes MSI, mostly.
1022 static inline u32
its_get_event_id(struct irq_data
*d
)
1024 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1025 return d
->hwirq
- its_dev
->event_map
.lpi_base
;
1028 static void lpi_write_config(struct irq_data
*d
, u8 clr
, u8 set
)
1030 irq_hw_number_t hwirq
;
1031 struct page
*prop_page
;
1034 if (irqd_is_forwarded_to_vcpu(d
)) {
1035 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1036 u32 event
= its_get_event_id(d
);
1037 struct its_vlpi_map
*map
;
1039 prop_page
= its_dev
->event_map
.vm
->vprop_page
;
1040 map
= &its_dev
->event_map
.vlpi_maps
[event
];
1041 hwirq
= map
->vintid
;
1043 /* Remember the updated property */
1044 map
->properties
&= ~clr
;
1045 map
->properties
|= set
| LPI_PROP_GROUP1
;
1047 prop_page
= gic_rdists
->prop_page
;
1051 cfg
= page_address(prop_page
) + hwirq
- 8192;
1053 *cfg
|= set
| LPI_PROP_GROUP1
;
1056 * Make the above write visible to the redistributors.
1057 * And yes, we're flushing exactly: One. Single. Byte.
1060 if (gic_rdists
->flags
& RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
)
1061 gic_flush_dcache_to_poc(cfg
, sizeof(*cfg
));
1066 static void lpi_update_config(struct irq_data
*d
, u8 clr
, u8 set
)
1068 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1070 lpi_write_config(d
, clr
, set
);
1071 its_send_inv(its_dev
, its_get_event_id(d
));
1074 static void its_vlpi_set_doorbell(struct irq_data
*d
, bool enable
)
1076 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1077 u32 event
= its_get_event_id(d
);
1079 if (its_dev
->event_map
.vlpi_maps
[event
].db_enabled
== enable
)
1082 its_dev
->event_map
.vlpi_maps
[event
].db_enabled
= enable
;
1085 * More fun with the architecture:
1087 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1088 * value or to 1023, depending on the enable bit. But that
1089 * would be issueing a mapping for an /existing/ DevID+EventID
1090 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1091 * to the /same/ vPE, using this opportunity to adjust the
1092 * doorbell. Mouahahahaha. We loves it, Precious.
1094 its_send_vmovi(its_dev
, event
);
1097 static void its_mask_irq(struct irq_data
*d
)
1099 if (irqd_is_forwarded_to_vcpu(d
))
1100 its_vlpi_set_doorbell(d
, false);
1102 lpi_update_config(d
, LPI_PROP_ENABLED
, 0);
1105 static void its_unmask_irq(struct irq_data
*d
)
1107 if (irqd_is_forwarded_to_vcpu(d
))
1108 its_vlpi_set_doorbell(d
, true);
1110 lpi_update_config(d
, 0, LPI_PROP_ENABLED
);
1113 static int its_set_affinity(struct irq_data
*d
, const struct cpumask
*mask_val
,
1117 const struct cpumask
*cpu_mask
= cpu_online_mask
;
1118 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1119 struct its_collection
*target_col
;
1120 u32 id
= its_get_event_id(d
);
1122 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1123 if (irqd_is_forwarded_to_vcpu(d
))
1126 /* lpi cannot be routed to a redistributor that is on a foreign node */
1127 if (its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
1128 if (its_dev
->its
->numa_node
>= 0) {
1129 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
1130 if (!cpumask_intersects(mask_val
, cpu_mask
))
1135 cpu
= cpumask_any_and(mask_val
, cpu_mask
);
1137 if (cpu
>= nr_cpu_ids
)
1140 /* don't set the affinity when the target cpu is same as current one */
1141 if (cpu
!= its_dev
->event_map
.col_map
[id
]) {
1142 target_col
= &its_dev
->its
->collections
[cpu
];
1143 its_send_movi(its_dev
, target_col
, id
);
1144 its_dev
->event_map
.col_map
[id
] = cpu
;
1145 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
1148 return IRQ_SET_MASK_OK_DONE
;
1151 static u64
its_irq_get_msi_base(struct its_device
*its_dev
)
1153 struct its_node
*its
= its_dev
->its
;
1155 return its
->phys_base
+ GITS_TRANSLATER
;
1158 static void its_irq_compose_msi_msg(struct irq_data
*d
, struct msi_msg
*msg
)
1160 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1161 struct its_node
*its
;
1165 addr
= its
->get_msi_base(its_dev
);
1167 msg
->address_lo
= lower_32_bits(addr
);
1168 msg
->address_hi
= upper_32_bits(addr
);
1169 msg
->data
= its_get_event_id(d
);
1171 iommu_dma_map_msi_msg(d
->irq
, msg
);
1174 static int its_irq_set_irqchip_state(struct irq_data
*d
,
1175 enum irqchip_irq_state which
,
1178 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1179 u32 event
= its_get_event_id(d
);
1181 if (which
!= IRQCHIP_STATE_PENDING
)
1185 its_send_int(its_dev
, event
);
1187 its_send_clear(its_dev
, event
);
1192 static void its_map_vm(struct its_node
*its
, struct its_vm
*vm
)
1194 unsigned long flags
;
1196 /* Not using the ITS list? Everything is always mapped. */
1200 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1203 * If the VM wasn't mapped yet, iterate over the vpes and get
1206 vm
->vlpi_count
[its
->list_nr
]++;
1208 if (vm
->vlpi_count
[its
->list_nr
] == 1) {
1211 for (i
= 0; i
< vm
->nr_vpes
; i
++) {
1212 struct its_vpe
*vpe
= vm
->vpes
[i
];
1213 struct irq_data
*d
= irq_get_irq_data(vpe
->irq
);
1215 /* Map the VPE to the first possible CPU */
1216 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
1217 its_send_vmapp(its
, vpe
, true);
1218 its_send_vinvall(its
, vpe
);
1219 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
1223 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1226 static void its_unmap_vm(struct its_node
*its
, struct its_vm
*vm
)
1228 unsigned long flags
;
1230 /* Not using the ITS list? Everything is always mapped. */
1234 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1236 if (!--vm
->vlpi_count
[its
->list_nr
]) {
1239 for (i
= 0; i
< vm
->nr_vpes
; i
++)
1240 its_send_vmapp(its
, vm
->vpes
[i
], false);
1243 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1246 static int its_vlpi_map(struct irq_data
*d
, struct its_cmd_info
*info
)
1248 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1249 u32 event
= its_get_event_id(d
);
1255 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1257 if (!its_dev
->event_map
.vm
) {
1258 struct its_vlpi_map
*maps
;
1260 maps
= kcalloc(its_dev
->event_map
.nr_lpis
, sizeof(*maps
),
1267 its_dev
->event_map
.vm
= info
->map
->vm
;
1268 its_dev
->event_map
.vlpi_maps
= maps
;
1269 } else if (its_dev
->event_map
.vm
!= info
->map
->vm
) {
1274 /* Get our private copy of the mapping information */
1275 its_dev
->event_map
.vlpi_maps
[event
] = *info
->map
;
1277 if (irqd_is_forwarded_to_vcpu(d
)) {
1278 /* Already mapped, move it around */
1279 its_send_vmovi(its_dev
, event
);
1281 /* Ensure all the VPEs are mapped on this ITS */
1282 its_map_vm(its_dev
->its
, info
->map
->vm
);
1285 * Flag the interrupt as forwarded so that we can
1286 * start poking the virtual property table.
1288 irqd_set_forwarded_to_vcpu(d
);
1290 /* Write out the property to the prop table */
1291 lpi_write_config(d
, 0xff, info
->map
->properties
);
1293 /* Drop the physical mapping */
1294 its_send_discard(its_dev
, event
);
1296 /* and install the virtual one */
1297 its_send_vmapti(its_dev
, event
);
1299 /* Increment the number of VLPIs */
1300 its_dev
->event_map
.nr_vlpis
++;
1304 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1308 static int its_vlpi_get(struct irq_data
*d
, struct its_cmd_info
*info
)
1310 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1311 u32 event
= its_get_event_id(d
);
1314 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1316 if (!its_dev
->event_map
.vm
||
1317 !its_dev
->event_map
.vlpi_maps
[event
].vm
) {
1322 /* Copy our mapping information to the incoming request */
1323 *info
->map
= its_dev
->event_map
.vlpi_maps
[event
];
1326 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1330 static int its_vlpi_unmap(struct irq_data
*d
)
1332 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1333 u32 event
= its_get_event_id(d
);
1336 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1338 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
)) {
1343 /* Drop the virtual mapping */
1344 its_send_discard(its_dev
, event
);
1346 /* and restore the physical one */
1347 irqd_clr_forwarded_to_vcpu(d
);
1348 its_send_mapti(its_dev
, d
->hwirq
, event
);
1349 lpi_update_config(d
, 0xff, (LPI_PROP_DEFAULT_PRIO
|
1353 /* Potentially unmap the VM from this ITS */
1354 its_unmap_vm(its_dev
->its
, its_dev
->event_map
.vm
);
1357 * Drop the refcount and make the device available again if
1358 * this was the last VLPI.
1360 if (!--its_dev
->event_map
.nr_vlpis
) {
1361 its_dev
->event_map
.vm
= NULL
;
1362 kfree(its_dev
->event_map
.vlpi_maps
);
1366 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1370 static int its_vlpi_prop_update(struct irq_data
*d
, struct its_cmd_info
*info
)
1372 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1374 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
))
1377 if (info
->cmd_type
== PROP_UPDATE_AND_INV_VLPI
)
1378 lpi_update_config(d
, 0xff, info
->config
);
1380 lpi_write_config(d
, 0xff, info
->config
);
1381 its_vlpi_set_doorbell(d
, !!(info
->config
& LPI_PROP_ENABLED
));
1386 static int its_irq_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
1388 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1389 struct its_cmd_info
*info
= vcpu_info
;
1392 if (!its_dev
->its
->is_v4
)
1395 /* Unmap request? */
1397 return its_vlpi_unmap(d
);
1399 switch (info
->cmd_type
) {
1401 return its_vlpi_map(d
, info
);
1404 return its_vlpi_get(d
, info
);
1406 case PROP_UPDATE_VLPI
:
1407 case PROP_UPDATE_AND_INV_VLPI
:
1408 return its_vlpi_prop_update(d
, info
);
1415 static struct irq_chip its_irq_chip
= {
1417 .irq_mask
= its_mask_irq
,
1418 .irq_unmask
= its_unmask_irq
,
1419 .irq_eoi
= irq_chip_eoi_parent
,
1420 .irq_set_affinity
= its_set_affinity
,
1421 .irq_compose_msi_msg
= its_irq_compose_msi_msg
,
1422 .irq_set_irqchip_state
= its_irq_set_irqchip_state
,
1423 .irq_set_vcpu_affinity
= its_irq_set_vcpu_affinity
,
1428 * How we allocate LPIs:
1430 * lpi_range_list contains ranges of LPIs that are to available to
1431 * allocate from. To allocate LPIs, just pick the first range that
1432 * fits the required allocation, and reduce it by the required
1433 * amount. Once empty, remove the range from the list.
1435 * To free a range of LPIs, add a free range to the list, sort it and
1436 * merge the result if the new range happens to be adjacent to an
1437 * already free block.
1439 * The consequence of the above is that allocation is cost is low, but
1440 * freeing is expensive. We assumes that freeing rarely occurs.
1442 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1444 static DEFINE_MUTEX(lpi_range_lock
);
1445 static LIST_HEAD(lpi_range_list
);
1448 struct list_head entry
;
1453 static struct lpi_range
*mk_lpi_range(u32 base
, u32 span
)
1455 struct lpi_range
*range
;
1457 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
1459 INIT_LIST_HEAD(&range
->entry
);
1460 range
->base_id
= base
;
1467 static int lpi_range_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1469 struct lpi_range
*ra
, *rb
;
1471 ra
= container_of(a
, struct lpi_range
, entry
);
1472 rb
= container_of(b
, struct lpi_range
, entry
);
1474 return rb
->base_id
- ra
->base_id
;
1477 static void merge_lpi_ranges(void)
1479 struct lpi_range
*range
, *tmp
;
1481 list_for_each_entry_safe(range
, tmp
, &lpi_range_list
, entry
) {
1482 if (!list_is_last(&range
->entry
, &lpi_range_list
) &&
1483 (tmp
->base_id
== (range
->base_id
+ range
->span
))) {
1484 tmp
->base_id
= range
->base_id
;
1485 tmp
->span
+= range
->span
;
1486 list_del(&range
->entry
);
1492 static int alloc_lpi_range(u32 nr_lpis
, u32
*base
)
1494 struct lpi_range
*range
, *tmp
;
1497 mutex_lock(&lpi_range_lock
);
1499 list_for_each_entry_safe(range
, tmp
, &lpi_range_list
, entry
) {
1500 if (range
->span
>= nr_lpis
) {
1501 *base
= range
->base_id
;
1502 range
->base_id
+= nr_lpis
;
1503 range
->span
-= nr_lpis
;
1505 if (range
->span
== 0) {
1506 list_del(&range
->entry
);
1515 mutex_unlock(&lpi_range_lock
);
1517 pr_debug("ITS: alloc %u:%u\n", *base
, nr_lpis
);
1521 static int free_lpi_range(u32 base
, u32 nr_lpis
)
1523 struct lpi_range
*new;
1526 mutex_lock(&lpi_range_lock
);
1528 new = mk_lpi_range(base
, nr_lpis
);
1534 list_add(&new->entry
, &lpi_range_list
);
1535 list_sort(NULL
, &lpi_range_list
, lpi_range_cmp
);
1538 mutex_unlock(&lpi_range_lock
);
1542 static int __init
its_lpi_init(u32 id_bits
)
1544 u32 lpis
= (1UL << id_bits
) - 8192;
1548 numlpis
= 1UL << GICD_TYPER_NUM_LPIS(gic_rdists
->gicd_typer
);
1550 if (numlpis
> 2 && !WARN_ON(numlpis
> lpis
)) {
1552 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1557 * Initializing the allocator is just the same as freeing the
1558 * full range of LPIs.
1560 err
= free_lpi_range(8192, lpis
);
1561 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis
);
1565 static unsigned long *its_lpi_alloc(int nr_irqs
, u32
*base
, int *nr_ids
)
1567 unsigned long *bitmap
= NULL
;
1571 err
= alloc_lpi_range(nr_irqs
, base
);
1576 } while (nr_irqs
> 0);
1581 bitmap
= kcalloc(BITS_TO_LONGS(nr_irqs
), sizeof (long), GFP_ATOMIC
);
1589 *base
= *nr_ids
= 0;
1594 static void its_lpi_free(unsigned long *bitmap
, u32 base
, u32 nr_ids
)
1596 WARN_ON(free_lpi_range(base
, nr_ids
));
1600 static struct page
*its_allocate_prop_table(gfp_t gfp_flags
)
1602 struct page
*prop_page
;
1604 prop_page
= alloc_pages(gfp_flags
, get_order(LPI_PROPBASE_SZ
));
1608 /* Priority 0xa0, Group-1, disabled */
1609 memset(page_address(prop_page
),
1610 LPI_PROP_DEFAULT_PRIO
| LPI_PROP_GROUP1
,
1613 /* Make sure the GIC will observe the written configuration */
1614 gic_flush_dcache_to_poc(page_address(prop_page
), LPI_PROPBASE_SZ
);
1619 static void its_free_prop_table(struct page
*prop_page
)
1621 free_pages((unsigned long)page_address(prop_page
),
1622 get_order(LPI_PROPBASE_SZ
));
1625 static int __init
its_alloc_lpi_tables(void)
1629 lpi_id_bits
= min_t(u32
, GICD_TYPER_ID_BITS(gic_rdists
->gicd_typer
),
1630 ITS_MAX_LPI_NRBITS
);
1631 gic_rdists
->prop_page
= its_allocate_prop_table(GFP_NOWAIT
);
1632 if (!gic_rdists
->prop_page
) {
1633 pr_err("Failed to allocate PROPBASE\n");
1637 paddr
= page_to_phys(gic_rdists
->prop_page
);
1638 pr_info("GIC: using LPI property table @%pa\n", &paddr
);
1640 return its_lpi_init(lpi_id_bits
);
1643 static const char *its_base_type_string
[] = {
1644 [GITS_BASER_TYPE_DEVICE
] = "Devices",
1645 [GITS_BASER_TYPE_VCPU
] = "Virtual CPUs",
1646 [GITS_BASER_TYPE_RESERVED3
] = "Reserved (3)",
1647 [GITS_BASER_TYPE_COLLECTION
] = "Interrupt Collections",
1648 [GITS_BASER_TYPE_RESERVED5
] = "Reserved (5)",
1649 [GITS_BASER_TYPE_RESERVED6
] = "Reserved (6)",
1650 [GITS_BASER_TYPE_RESERVED7
] = "Reserved (7)",
1653 static u64
its_read_baser(struct its_node
*its
, struct its_baser
*baser
)
1655 u32 idx
= baser
- its
->tables
;
1657 return gits_read_baser(its
->base
+ GITS_BASER
+ (idx
<< 3));
1660 static void its_write_baser(struct its_node
*its
, struct its_baser
*baser
,
1663 u32 idx
= baser
- its
->tables
;
1665 gits_write_baser(val
, its
->base
+ GITS_BASER
+ (idx
<< 3));
1666 baser
->val
= its_read_baser(its
, baser
);
1669 static int its_setup_baser(struct its_node
*its
, struct its_baser
*baser
,
1670 u64 cache
, u64 shr
, u32 psz
, u32 order
,
1673 u64 val
= its_read_baser(its
, baser
);
1674 u64 esz
= GITS_BASER_ENTRY_SIZE(val
);
1675 u64 type
= GITS_BASER_TYPE(val
);
1676 u64 baser_phys
, tmp
;
1681 alloc_pages
= (PAGE_ORDER_TO_SIZE(order
) / psz
);
1682 if (alloc_pages
> GITS_BASER_PAGES_MAX
) {
1683 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1684 &its
->phys_base
, its_base_type_string
[type
],
1685 alloc_pages
, GITS_BASER_PAGES_MAX
);
1686 alloc_pages
= GITS_BASER_PAGES_MAX
;
1687 order
= get_order(GITS_BASER_PAGES_MAX
* psz
);
1690 base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, order
);
1694 baser_phys
= virt_to_phys(base
);
1696 /* Check if the physical address of the memory is above 48bits */
1697 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES
) && (baser_phys
>> 48)) {
1699 /* 52bit PA is supported only when PageSize=64K */
1700 if (psz
!= SZ_64K
) {
1701 pr_err("ITS: no 52bit PA support when psz=%d\n", psz
);
1702 free_pages((unsigned long)base
, order
);
1706 /* Convert 52bit PA to 48bit field */
1707 baser_phys
= GITS_BASER_PHYS_52_to_48(baser_phys
);
1712 (type
<< GITS_BASER_TYPE_SHIFT
) |
1713 ((esz
- 1) << GITS_BASER_ENTRY_SIZE_SHIFT
) |
1714 ((alloc_pages
- 1) << GITS_BASER_PAGES_SHIFT
) |
1719 val
|= indirect
? GITS_BASER_INDIRECT
: 0x0;
1723 val
|= GITS_BASER_PAGE_SIZE_4K
;
1726 val
|= GITS_BASER_PAGE_SIZE_16K
;
1729 val
|= GITS_BASER_PAGE_SIZE_64K
;
1733 its_write_baser(its
, baser
, val
);
1736 if ((val
^ tmp
) & GITS_BASER_SHAREABILITY_MASK
) {
1738 * Shareability didn't stick. Just use
1739 * whatever the read reported, which is likely
1740 * to be the only thing this redistributor
1741 * supports. If that's zero, make it
1742 * non-cacheable as well.
1744 shr
= tmp
& GITS_BASER_SHAREABILITY_MASK
;
1746 cache
= GITS_BASER_nC
;
1747 gic_flush_dcache_to_poc(base
, PAGE_ORDER_TO_SIZE(order
));
1752 if ((val
^ tmp
) & GITS_BASER_PAGE_SIZE_MASK
) {
1754 * Page size didn't stick. Let's try a smaller
1755 * size and retry. If we reach 4K, then
1756 * something is horribly wrong...
1758 free_pages((unsigned long)base
, order
);
1764 goto retry_alloc_baser
;
1767 goto retry_alloc_baser
;
1772 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1773 &its
->phys_base
, its_base_type_string
[type
],
1775 free_pages((unsigned long)base
, order
);
1779 baser
->order
= order
;
1782 tmp
= indirect
? GITS_LVL1_ENTRY_SIZE
: esz
;
1784 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1785 &its
->phys_base
, (int)(PAGE_ORDER_TO_SIZE(order
) / (int)tmp
),
1786 its_base_type_string
[type
],
1787 (unsigned long)virt_to_phys(base
),
1788 indirect
? "indirect" : "flat", (int)esz
,
1789 psz
/ SZ_1K
, (int)shr
>> GITS_BASER_SHAREABILITY_SHIFT
);
1794 static bool its_parse_indirect_baser(struct its_node
*its
,
1795 struct its_baser
*baser
,
1796 u32 psz
, u32
*order
, u32 ids
)
1798 u64 tmp
= its_read_baser(its
, baser
);
1799 u64 type
= GITS_BASER_TYPE(tmp
);
1800 u64 esz
= GITS_BASER_ENTRY_SIZE(tmp
);
1801 u64 val
= GITS_BASER_InnerShareable
| GITS_BASER_RaWaWb
;
1802 u32 new_order
= *order
;
1803 bool indirect
= false;
1805 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1806 if ((esz
<< ids
) > (psz
* 2)) {
1808 * Find out whether hw supports a single or two-level table by
1809 * table by reading bit at offset '62' after writing '1' to it.
1811 its_write_baser(its
, baser
, val
| GITS_BASER_INDIRECT
);
1812 indirect
= !!(baser
->val
& GITS_BASER_INDIRECT
);
1816 * The size of the lvl2 table is equal to ITS page size
1817 * which is 'psz'. For computing lvl1 table size,
1818 * subtract ID bits that sparse lvl2 table from 'ids'
1819 * which is reported by ITS hardware times lvl1 table
1822 ids
-= ilog2(psz
/ (int)esz
);
1823 esz
= GITS_LVL1_ENTRY_SIZE
;
1828 * Allocate as many entries as required to fit the
1829 * range of device IDs that the ITS can grok... The ID
1830 * space being incredibly sparse, this results in a
1831 * massive waste of memory if two-level device table
1832 * feature is not supported by hardware.
1834 new_order
= max_t(u32
, get_order(esz
<< ids
), new_order
);
1835 if (new_order
>= MAX_ORDER
) {
1836 new_order
= MAX_ORDER
- 1;
1837 ids
= ilog2(PAGE_ORDER_TO_SIZE(new_order
) / (int)esz
);
1838 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1839 &its
->phys_base
, its_base_type_string
[type
],
1840 its
->device_ids
, ids
);
1848 static void its_free_tables(struct its_node
*its
)
1852 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1853 if (its
->tables
[i
].base
) {
1854 free_pages((unsigned long)its
->tables
[i
].base
,
1855 its
->tables
[i
].order
);
1856 its
->tables
[i
].base
= NULL
;
1861 static int its_alloc_tables(struct its_node
*its
)
1863 u64 shr
= GITS_BASER_InnerShareable
;
1864 u64 cache
= GITS_BASER_RaWaWb
;
1868 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_22375
)
1869 /* erratum 24313: ignore memory access type */
1870 cache
= GITS_BASER_nCnB
;
1872 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1873 struct its_baser
*baser
= its
->tables
+ i
;
1874 u64 val
= its_read_baser(its
, baser
);
1875 u64 type
= GITS_BASER_TYPE(val
);
1876 u32 order
= get_order(psz
);
1877 bool indirect
= false;
1880 case GITS_BASER_TYPE_NONE
:
1883 case GITS_BASER_TYPE_DEVICE
:
1884 indirect
= its_parse_indirect_baser(its
, baser
,
1887 case GITS_BASER_TYPE_VCPU
:
1888 indirect
= its_parse_indirect_baser(its
, baser
,
1890 ITS_MAX_VPEID_BITS
);
1894 err
= its_setup_baser(its
, baser
, cache
, shr
, psz
, order
, indirect
);
1896 its_free_tables(its
);
1900 /* Update settings which will be used for next BASERn */
1902 cache
= baser
->val
& GITS_BASER_CACHEABILITY_MASK
;
1903 shr
= baser
->val
& GITS_BASER_SHAREABILITY_MASK
;
1909 static int its_alloc_collections(struct its_node
*its
)
1913 its
->collections
= kcalloc(nr_cpu_ids
, sizeof(*its
->collections
),
1915 if (!its
->collections
)
1918 for (i
= 0; i
< nr_cpu_ids
; i
++)
1919 its
->collections
[i
].target_address
= ~0ULL;
1924 static struct page
*its_allocate_pending_table(gfp_t gfp_flags
)
1926 struct page
*pend_page
;
1928 * The pending pages have to be at least 64kB aligned,
1929 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1931 pend_page
= alloc_pages(gfp_flags
| __GFP_ZERO
,
1932 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1936 /* Make sure the GIC will observe the zero-ed page */
1937 gic_flush_dcache_to_poc(page_address(pend_page
), LPI_PENDBASE_SZ
);
1942 static void its_free_pending_table(struct page
*pt
)
1944 free_pages((unsigned long)page_address(pt
),
1945 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1948 static void its_cpu_init_lpis(void)
1950 void __iomem
*rbase
= gic_data_rdist_rd_base();
1951 struct page
*pend_page
;
1954 /* If we didn't allocate the pending table yet, do it now */
1955 pend_page
= gic_data_rdist()->pend_page
;
1959 pend_page
= its_allocate_pending_table(GFP_NOWAIT
);
1961 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1962 smp_processor_id());
1966 paddr
= page_to_phys(pend_page
);
1967 pr_info("CPU%d: using LPI pending table @%pa\n",
1968 smp_processor_id(), &paddr
);
1969 gic_data_rdist()->pend_page
= pend_page
;
1973 val
= (page_to_phys(gic_rdists
->prop_page
) |
1974 GICR_PROPBASER_InnerShareable
|
1975 GICR_PROPBASER_RaWaWb
|
1976 ((LPI_NRBITS
- 1) & GICR_PROPBASER_IDBITS_MASK
));
1978 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
1979 tmp
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
1981 if ((tmp
^ val
) & GICR_PROPBASER_SHAREABILITY_MASK
) {
1982 if (!(tmp
& GICR_PROPBASER_SHAREABILITY_MASK
)) {
1984 * The HW reports non-shareable, we must
1985 * remove the cacheability attributes as
1988 val
&= ~(GICR_PROPBASER_SHAREABILITY_MASK
|
1989 GICR_PROPBASER_CACHEABILITY_MASK
);
1990 val
|= GICR_PROPBASER_nC
;
1991 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
1993 pr_info_once("GIC: using cache flushing for LPI property table\n");
1994 gic_rdists
->flags
|= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
;
1998 val
= (page_to_phys(pend_page
) |
1999 GICR_PENDBASER_InnerShareable
|
2000 GICR_PENDBASER_RaWaWb
);
2002 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
2003 tmp
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
2005 if (!(tmp
& GICR_PENDBASER_SHAREABILITY_MASK
)) {
2007 * The HW reports non-shareable, we must remove the
2008 * cacheability attributes as well.
2010 val
&= ~(GICR_PENDBASER_SHAREABILITY_MASK
|
2011 GICR_PENDBASER_CACHEABILITY_MASK
);
2012 val
|= GICR_PENDBASER_nC
;
2013 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
2017 val
= readl_relaxed(rbase
+ GICR_CTLR
);
2018 val
|= GICR_CTLR_ENABLE_LPIS
;
2019 writel_relaxed(val
, rbase
+ GICR_CTLR
);
2021 /* Make sure the GIC has seen the above */
2025 static void its_cpu_init_collection(struct its_node
*its
)
2027 int cpu
= smp_processor_id();
2030 /* avoid cross node collections and its mapping */
2031 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
2032 struct device_node
*cpu_node
;
2034 cpu_node
= of_get_cpu_node(cpu
, NULL
);
2035 if (its
->numa_node
!= NUMA_NO_NODE
&&
2036 its
->numa_node
!= of_node_to_nid(cpu_node
))
2041 * We now have to bind each collection to its target
2044 if (gic_read_typer(its
->base
+ GITS_TYPER
) & GITS_TYPER_PTA
) {
2046 * This ITS wants the physical address of the
2049 target
= gic_data_rdist()->phys_base
;
2051 /* This ITS wants a linear CPU number. */
2052 target
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
2053 target
= GICR_TYPER_CPU_NUMBER(target
) << 16;
2056 /* Perform collection mapping */
2057 its
->collections
[cpu
].target_address
= target
;
2058 its
->collections
[cpu
].col_id
= cpu
;
2060 its_send_mapc(its
, &its
->collections
[cpu
], 1);
2061 its_send_invall(its
, &its
->collections
[cpu
]);
2064 static void its_cpu_init_collections(void)
2066 struct its_node
*its
;
2068 raw_spin_lock(&its_lock
);
2070 list_for_each_entry(its
, &its_nodes
, entry
)
2071 its_cpu_init_collection(its
);
2073 raw_spin_unlock(&its_lock
);
2076 static struct its_device
*its_find_device(struct its_node
*its
, u32 dev_id
)
2078 struct its_device
*its_dev
= NULL
, *tmp
;
2079 unsigned long flags
;
2081 raw_spin_lock_irqsave(&its
->lock
, flags
);
2083 list_for_each_entry(tmp
, &its
->its_device_list
, entry
) {
2084 if (tmp
->device_id
== dev_id
) {
2090 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
2095 static struct its_baser
*its_get_baser(struct its_node
*its
, u32 type
)
2099 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
2100 if (GITS_BASER_TYPE(its
->tables
[i
].val
) == type
)
2101 return &its
->tables
[i
];
2107 static bool its_alloc_table_entry(struct its_baser
*baser
, u32 id
)
2113 /* Don't allow device id that exceeds single, flat table limit */
2114 esz
= GITS_BASER_ENTRY_SIZE(baser
->val
);
2115 if (!(baser
->val
& GITS_BASER_INDIRECT
))
2116 return (id
< (PAGE_ORDER_TO_SIZE(baser
->order
) / esz
));
2118 /* Compute 1st level table index & check if that exceeds table limit */
2119 idx
= id
>> ilog2(baser
->psz
/ esz
);
2120 if (idx
>= (PAGE_ORDER_TO_SIZE(baser
->order
) / GITS_LVL1_ENTRY_SIZE
))
2123 table
= baser
->base
;
2125 /* Allocate memory for 2nd level table */
2127 page
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, get_order(baser
->psz
));
2131 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2132 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
2133 gic_flush_dcache_to_poc(page_address(page
), baser
->psz
);
2135 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
2137 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2138 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
2139 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
2141 /* Ensure updated table contents are visible to ITS hardware */
2148 static bool its_alloc_device_table(struct its_node
*its
, u32 dev_id
)
2150 struct its_baser
*baser
;
2152 baser
= its_get_baser(its
, GITS_BASER_TYPE_DEVICE
);
2154 /* Don't allow device id that exceeds ITS hardware limit */
2156 return (ilog2(dev_id
) < its
->device_ids
);
2158 return its_alloc_table_entry(baser
, dev_id
);
2161 static bool its_alloc_vpe_table(u32 vpe_id
)
2163 struct its_node
*its
;
2166 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2167 * could try and only do it on ITSs corresponding to devices
2168 * that have interrupts targeted at this VPE, but the
2169 * complexity becomes crazy (and you have tons of memory
2172 list_for_each_entry(its
, &its_nodes
, entry
) {
2173 struct its_baser
*baser
;
2178 baser
= its_get_baser(its
, GITS_BASER_TYPE_VCPU
);
2182 if (!its_alloc_table_entry(baser
, vpe_id
))
2189 static struct its_device
*its_create_device(struct its_node
*its
, u32 dev_id
,
2190 int nvecs
, bool alloc_lpis
)
2192 struct its_device
*dev
;
2193 unsigned long *lpi_map
= NULL
;
2194 unsigned long flags
;
2195 u16
*col_map
= NULL
;
2202 if (!its_alloc_device_table(its
, dev_id
))
2205 if (WARN_ON(!is_power_of_2(nvecs
)))
2206 nvecs
= roundup_pow_of_two(nvecs
);
2208 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2210 * Even if the device wants a single LPI, the ITT must be
2211 * sized as a power of two (and you need at least one bit...).
2213 nr_ites
= max(2, nvecs
);
2214 sz
= nr_ites
* its
->ite_size
;
2215 sz
= max(sz
, ITS_ITT_ALIGN
) + ITS_ITT_ALIGN
- 1;
2216 itt
= kzalloc(sz
, GFP_KERNEL
);
2218 lpi_map
= its_lpi_alloc(nvecs
, &lpi_base
, &nr_lpis
);
2220 col_map
= kcalloc(nr_lpis
, sizeof(*col_map
),
2223 col_map
= kcalloc(nr_ites
, sizeof(*col_map
), GFP_KERNEL
);
2228 if (!dev
|| !itt
|| !col_map
|| (!lpi_map
&& alloc_lpis
)) {
2236 gic_flush_dcache_to_poc(itt
, sz
);
2240 dev
->nr_ites
= nr_ites
;
2241 dev
->event_map
.lpi_map
= lpi_map
;
2242 dev
->event_map
.col_map
= col_map
;
2243 dev
->event_map
.lpi_base
= lpi_base
;
2244 dev
->event_map
.nr_lpis
= nr_lpis
;
2245 mutex_init(&dev
->event_map
.vlpi_lock
);
2246 dev
->device_id
= dev_id
;
2247 INIT_LIST_HEAD(&dev
->entry
);
2249 raw_spin_lock_irqsave(&its
->lock
, flags
);
2250 list_add(&dev
->entry
, &its
->its_device_list
);
2251 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
2253 /* Map device to its ITT */
2254 its_send_mapd(dev
, 1);
2259 static void its_free_device(struct its_device
*its_dev
)
2261 unsigned long flags
;
2263 raw_spin_lock_irqsave(&its_dev
->its
->lock
, flags
);
2264 list_del(&its_dev
->entry
);
2265 raw_spin_unlock_irqrestore(&its_dev
->its
->lock
, flags
);
2266 kfree(its_dev
->itt
);
2270 static int its_alloc_device_irq(struct its_device
*dev
, irq_hw_number_t
*hwirq
)
2274 idx
= find_first_zero_bit(dev
->event_map
.lpi_map
,
2275 dev
->event_map
.nr_lpis
);
2276 if (idx
== dev
->event_map
.nr_lpis
)
2279 *hwirq
= dev
->event_map
.lpi_base
+ idx
;
2280 set_bit(idx
, dev
->event_map
.lpi_map
);
2285 static int its_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
2286 int nvec
, msi_alloc_info_t
*info
)
2288 struct its_node
*its
;
2289 struct its_device
*its_dev
;
2290 struct msi_domain_info
*msi_info
;
2294 * We ignore "dev" entierely, and rely on the dev_id that has
2295 * been passed via the scratchpad. This limits this domain's
2296 * usefulness to upper layers that definitely know that they
2297 * are built on top of the ITS.
2299 dev_id
= info
->scratchpad
[0].ul
;
2301 msi_info
= msi_get_domain_info(domain
);
2302 its
= msi_info
->data
;
2304 if (!gic_rdists
->has_direct_lpi
&&
2306 vpe_proxy
.dev
->its
== its
&&
2307 dev_id
== vpe_proxy
.dev
->device_id
) {
2308 /* Bad luck. Get yourself a better implementation */
2309 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2314 its_dev
= its_find_device(its
, dev_id
);
2317 * We already have seen this ID, probably through
2318 * another alias (PCI bridge of some sort). No need to
2319 * create the device.
2321 pr_debug("Reusing ITT for devID %x\n", dev_id
);
2325 its_dev
= its_create_device(its
, dev_id
, nvec
, true);
2329 pr_debug("ITT %d entries, %d bits\n", nvec
, ilog2(nvec
));
2331 info
->scratchpad
[0].ptr
= its_dev
;
2335 static struct msi_domain_ops its_msi_domain_ops
= {
2336 .msi_prepare
= its_msi_prepare
,
2339 static int its_irq_gic_domain_alloc(struct irq_domain
*domain
,
2341 irq_hw_number_t hwirq
)
2343 struct irq_fwspec fwspec
;
2345 if (irq_domain_get_of_node(domain
->parent
)) {
2346 fwspec
.fwnode
= domain
->parent
->fwnode
;
2347 fwspec
.param_count
= 3;
2348 fwspec
.param
[0] = GIC_IRQ_TYPE_LPI
;
2349 fwspec
.param
[1] = hwirq
;
2350 fwspec
.param
[2] = IRQ_TYPE_EDGE_RISING
;
2351 } else if (is_fwnode_irqchip(domain
->parent
->fwnode
)) {
2352 fwspec
.fwnode
= domain
->parent
->fwnode
;
2353 fwspec
.param_count
= 2;
2354 fwspec
.param
[0] = hwirq
;
2355 fwspec
.param
[1] = IRQ_TYPE_EDGE_RISING
;
2360 return irq_domain_alloc_irqs_parent(domain
, virq
, 1, &fwspec
);
2363 static int its_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2364 unsigned int nr_irqs
, void *args
)
2366 msi_alloc_info_t
*info
= args
;
2367 struct its_device
*its_dev
= info
->scratchpad
[0].ptr
;
2368 irq_hw_number_t hwirq
;
2372 for (i
= 0; i
< nr_irqs
; i
++) {
2373 err
= its_alloc_device_irq(its_dev
, &hwirq
);
2377 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
, hwirq
);
2381 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
,
2382 hwirq
, &its_irq_chip
, its_dev
);
2383 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq
+ i
)));
2384 pr_debug("ID:%d pID:%d vID:%d\n",
2385 (int)(hwirq
- its_dev
->event_map
.lpi_base
),
2386 (int) hwirq
, virq
+ i
);
2392 static int its_irq_domain_activate(struct irq_domain
*domain
,
2393 struct irq_data
*d
, bool reserve
)
2395 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2396 u32 event
= its_get_event_id(d
);
2397 const struct cpumask
*cpu_mask
= cpu_online_mask
;
2400 /* get the cpu_mask of local node */
2401 if (its_dev
->its
->numa_node
>= 0)
2402 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
2404 /* Bind the LPI to the first possible CPU */
2405 cpu
= cpumask_first_and(cpu_mask
, cpu_online_mask
);
2406 if (cpu
>= nr_cpu_ids
) {
2407 if (its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
)
2410 cpu
= cpumask_first(cpu_online_mask
);
2413 its_dev
->event_map
.col_map
[event
] = cpu
;
2414 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
2416 /* Map the GIC IRQ and event to the device */
2417 its_send_mapti(its_dev
, d
->hwirq
, event
);
2421 static void its_irq_domain_deactivate(struct irq_domain
*domain
,
2424 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2425 u32 event
= its_get_event_id(d
);
2427 /* Stop the delivery of interrupts */
2428 its_send_discard(its_dev
, event
);
2431 static void its_irq_domain_free(struct irq_domain
*domain
, unsigned int virq
,
2432 unsigned int nr_irqs
)
2434 struct irq_data
*d
= irq_domain_get_irq_data(domain
, virq
);
2435 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2438 for (i
= 0; i
< nr_irqs
; i
++) {
2439 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2441 u32 event
= its_get_event_id(data
);
2443 /* Mark interrupt index as unused */
2444 clear_bit(event
, its_dev
->event_map
.lpi_map
);
2446 /* Nuke the entry in the domain */
2447 irq_domain_reset_irq_data(data
);
2450 /* If all interrupts have been freed, start mopping the floor */
2451 if (bitmap_empty(its_dev
->event_map
.lpi_map
,
2452 its_dev
->event_map
.nr_lpis
)) {
2453 its_lpi_free(its_dev
->event_map
.lpi_map
,
2454 its_dev
->event_map
.lpi_base
,
2455 its_dev
->event_map
.nr_lpis
);
2456 kfree(its_dev
->event_map
.col_map
);
2458 /* Unmap device/itt */
2459 its_send_mapd(its_dev
, 0);
2460 its_free_device(its_dev
);
2463 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2466 static const struct irq_domain_ops its_domain_ops
= {
2467 .alloc
= its_irq_domain_alloc
,
2468 .free
= its_irq_domain_free
,
2469 .activate
= its_irq_domain_activate
,
2470 .deactivate
= its_irq_domain_deactivate
,
2476 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2477 * likely), the only way to perform an invalidate is to use a fake
2478 * device to issue an INV command, implying that the LPI has first
2479 * been mapped to some event on that device. Since this is not exactly
2480 * cheap, we try to keep that mapping around as long as possible, and
2481 * only issue an UNMAP if we're short on available slots.
2483 * Broken by design(tm).
2485 static void its_vpe_db_proxy_unmap_locked(struct its_vpe
*vpe
)
2487 /* Already unmapped? */
2488 if (vpe
->vpe_proxy_event
== -1)
2491 its_send_discard(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2492 vpe_proxy
.vpes
[vpe
->vpe_proxy_event
] = NULL
;
2495 * We don't track empty slots at all, so let's move the
2496 * next_victim pointer if we can quickly reuse that slot
2497 * instead of nuking an existing entry. Not clear that this is
2498 * always a win though, and this might just generate a ripple
2499 * effect... Let's just hope VPEs don't migrate too often.
2501 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2502 vpe_proxy
.next_victim
= vpe
->vpe_proxy_event
;
2504 vpe
->vpe_proxy_event
= -1;
2507 static void its_vpe_db_proxy_unmap(struct its_vpe
*vpe
)
2509 if (!gic_rdists
->has_direct_lpi
) {
2510 unsigned long flags
;
2512 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2513 its_vpe_db_proxy_unmap_locked(vpe
);
2514 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2518 static void its_vpe_db_proxy_map_locked(struct its_vpe
*vpe
)
2520 /* Already mapped? */
2521 if (vpe
->vpe_proxy_event
!= -1)
2524 /* This slot was already allocated. Kick the other VPE out. */
2525 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2526 its_vpe_db_proxy_unmap_locked(vpe_proxy
.vpes
[vpe_proxy
.next_victim
]);
2528 /* Map the new VPE instead */
2529 vpe_proxy
.vpes
[vpe_proxy
.next_victim
] = vpe
;
2530 vpe
->vpe_proxy_event
= vpe_proxy
.next_victim
;
2531 vpe_proxy
.next_victim
= (vpe_proxy
.next_victim
+ 1) % vpe_proxy
.dev
->nr_ites
;
2533 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = vpe
->col_idx
;
2534 its_send_mapti(vpe_proxy
.dev
, vpe
->vpe_db_lpi
, vpe
->vpe_proxy_event
);
2537 static void its_vpe_db_proxy_move(struct its_vpe
*vpe
, int from
, int to
)
2539 unsigned long flags
;
2540 struct its_collection
*target_col
;
2542 if (gic_rdists
->has_direct_lpi
) {
2543 void __iomem
*rdbase
;
2545 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, from
)->rd_base
;
2546 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2547 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2553 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2555 its_vpe_db_proxy_map_locked(vpe
);
2557 target_col
= &vpe_proxy
.dev
->its
->collections
[to
];
2558 its_send_movi(vpe_proxy
.dev
, target_col
, vpe
->vpe_proxy_event
);
2559 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = to
;
2561 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2564 static int its_vpe_set_affinity(struct irq_data
*d
,
2565 const struct cpumask
*mask_val
,
2568 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2569 int cpu
= cpumask_first(mask_val
);
2572 * Changing affinity is mega expensive, so let's be as lazy as
2573 * we can and only do it if we really have to. Also, if mapped
2574 * into the proxy device, we need to move the doorbell
2575 * interrupt to its new location.
2577 if (vpe
->col_idx
!= cpu
) {
2578 int from
= vpe
->col_idx
;
2581 its_send_vmovp(vpe
);
2582 its_vpe_db_proxy_move(vpe
, from
, cpu
);
2585 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
2587 return IRQ_SET_MASK_OK_DONE
;
2590 static void its_vpe_schedule(struct its_vpe
*vpe
)
2592 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
2595 /* Schedule the VPE */
2596 val
= virt_to_phys(page_address(vpe
->its_vm
->vprop_page
)) &
2597 GENMASK_ULL(51, 12);
2598 val
|= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
2599 val
|= GICR_VPROPBASER_RaWb
;
2600 val
|= GICR_VPROPBASER_InnerShareable
;
2601 gits_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2603 val
= virt_to_phys(page_address(vpe
->vpt_page
)) &
2604 GENMASK_ULL(51, 16);
2605 val
|= GICR_VPENDBASER_RaWaWb
;
2606 val
|= GICR_VPENDBASER_NonShareable
;
2608 * There is no good way of finding out if the pending table is
2609 * empty as we can race against the doorbell interrupt very
2610 * easily. So in the end, vpe->pending_last is only an
2611 * indication that the vcpu has something pending, not one
2612 * that the pending table is empty. A good implementation
2613 * would be able to read its coarse map pretty quickly anyway,
2614 * making this a tolerable issue.
2616 val
|= GICR_VPENDBASER_PendingLast
;
2617 val
|= vpe
->idai
? GICR_VPENDBASER_IDAI
: 0;
2618 val
|= GICR_VPENDBASER_Valid
;
2619 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
2622 static void its_vpe_deschedule(struct its_vpe
*vpe
)
2624 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
2625 u32 count
= 1000000; /* 1s! */
2629 /* We're being scheduled out */
2630 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
2631 val
&= ~GICR_VPENDBASER_Valid
;
2632 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
2635 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
2636 clean
= !(val
& GICR_VPENDBASER_Dirty
);
2642 } while (!clean
&& count
);
2644 if (unlikely(!clean
&& !count
)) {
2645 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2647 vpe
->pending_last
= true;
2649 vpe
->idai
= !!(val
& GICR_VPENDBASER_IDAI
);
2650 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
2654 static void its_vpe_invall(struct its_vpe
*vpe
)
2656 struct its_node
*its
;
2658 list_for_each_entry(its
, &its_nodes
, entry
) {
2662 if (its_list_map
&& !vpe
->its_vm
->vlpi_count
[its
->list_nr
])
2666 * Sending a VINVALL to a single ITS is enough, as all
2667 * we need is to reach the redistributors.
2669 its_send_vinvall(its
, vpe
);
2674 static int its_vpe_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
2676 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2677 struct its_cmd_info
*info
= vcpu_info
;
2679 switch (info
->cmd_type
) {
2681 its_vpe_schedule(vpe
);
2684 case DESCHEDULE_VPE
:
2685 its_vpe_deschedule(vpe
);
2689 its_vpe_invall(vpe
);
2697 static void its_vpe_send_cmd(struct its_vpe
*vpe
,
2698 void (*cmd
)(struct its_device
*, u32
))
2700 unsigned long flags
;
2702 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2704 its_vpe_db_proxy_map_locked(vpe
);
2705 cmd(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2707 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2710 static void its_vpe_send_inv(struct irq_data
*d
)
2712 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2714 if (gic_rdists
->has_direct_lpi
) {
2715 void __iomem
*rdbase
;
2717 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2718 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_INVLPIR
);
2719 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2722 its_vpe_send_cmd(vpe
, its_send_inv
);
2726 static void its_vpe_mask_irq(struct irq_data
*d
)
2729 * We need to unmask the LPI, which is described by the parent
2730 * irq_data. Instead of calling into the parent (which won't
2731 * exactly do the right thing, let's simply use the
2732 * parent_data pointer. Yes, I'm naughty.
2734 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
2735 its_vpe_send_inv(d
);
2738 static void its_vpe_unmask_irq(struct irq_data
*d
)
2740 /* Same hack as above... */
2741 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
2742 its_vpe_send_inv(d
);
2745 static int its_vpe_set_irqchip_state(struct irq_data
*d
,
2746 enum irqchip_irq_state which
,
2749 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2751 if (which
!= IRQCHIP_STATE_PENDING
)
2754 if (gic_rdists
->has_direct_lpi
) {
2755 void __iomem
*rdbase
;
2757 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2759 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_SETLPIR
);
2761 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2762 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2767 its_vpe_send_cmd(vpe
, its_send_int
);
2769 its_vpe_send_cmd(vpe
, its_send_clear
);
2775 static struct irq_chip its_vpe_irq_chip
= {
2776 .name
= "GICv4-vpe",
2777 .irq_mask
= its_vpe_mask_irq
,
2778 .irq_unmask
= its_vpe_unmask_irq
,
2779 .irq_eoi
= irq_chip_eoi_parent
,
2780 .irq_set_affinity
= its_vpe_set_affinity
,
2781 .irq_set_irqchip_state
= its_vpe_set_irqchip_state
,
2782 .irq_set_vcpu_affinity
= its_vpe_set_vcpu_affinity
,
2785 static int its_vpe_id_alloc(void)
2787 return ida_simple_get(&its_vpeid_ida
, 0, ITS_MAX_VPEID
, GFP_KERNEL
);
2790 static void its_vpe_id_free(u16 id
)
2792 ida_simple_remove(&its_vpeid_ida
, id
);
2795 static int its_vpe_init(struct its_vpe
*vpe
)
2797 struct page
*vpt_page
;
2800 /* Allocate vpe_id */
2801 vpe_id
= its_vpe_id_alloc();
2806 vpt_page
= its_allocate_pending_table(GFP_KERNEL
);
2808 its_vpe_id_free(vpe_id
);
2812 if (!its_alloc_vpe_table(vpe_id
)) {
2813 its_vpe_id_free(vpe_id
);
2814 its_free_pending_table(vpe
->vpt_page
);
2818 vpe
->vpe_id
= vpe_id
;
2819 vpe
->vpt_page
= vpt_page
;
2820 vpe
->vpe_proxy_event
= -1;
2825 static void its_vpe_teardown(struct its_vpe
*vpe
)
2827 its_vpe_db_proxy_unmap(vpe
);
2828 its_vpe_id_free(vpe
->vpe_id
);
2829 its_free_pending_table(vpe
->vpt_page
);
2832 static void its_vpe_irq_domain_free(struct irq_domain
*domain
,
2834 unsigned int nr_irqs
)
2836 struct its_vm
*vm
= domain
->host_data
;
2839 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2841 for (i
= 0; i
< nr_irqs
; i
++) {
2842 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2844 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(data
);
2846 BUG_ON(vm
!= vpe
->its_vm
);
2848 clear_bit(data
->hwirq
, vm
->db_bitmap
);
2849 its_vpe_teardown(vpe
);
2850 irq_domain_reset_irq_data(data
);
2853 if (bitmap_empty(vm
->db_bitmap
, vm
->nr_db_lpis
)) {
2854 its_lpi_free(vm
->db_bitmap
, vm
->db_lpi_base
, vm
->nr_db_lpis
);
2855 its_free_prop_table(vm
->vprop_page
);
2859 static int its_vpe_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2860 unsigned int nr_irqs
, void *args
)
2862 struct its_vm
*vm
= args
;
2863 unsigned long *bitmap
;
2864 struct page
*vprop_page
;
2865 int base
, nr_ids
, i
, err
= 0;
2869 bitmap
= its_lpi_alloc(roundup_pow_of_two(nr_irqs
), &base
, &nr_ids
);
2873 if (nr_ids
< nr_irqs
) {
2874 its_lpi_free(bitmap
, base
, nr_ids
);
2878 vprop_page
= its_allocate_prop_table(GFP_KERNEL
);
2880 its_lpi_free(bitmap
, base
, nr_ids
);
2884 vm
->db_bitmap
= bitmap
;
2885 vm
->db_lpi_base
= base
;
2886 vm
->nr_db_lpis
= nr_ids
;
2887 vm
->vprop_page
= vprop_page
;
2889 for (i
= 0; i
< nr_irqs
; i
++) {
2890 vm
->vpes
[i
]->vpe_db_lpi
= base
+ i
;
2891 err
= its_vpe_init(vm
->vpes
[i
]);
2894 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
,
2895 vm
->vpes
[i
]->vpe_db_lpi
);
2898 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
2899 &its_vpe_irq_chip
, vm
->vpes
[i
]);
2905 its_vpe_irq_domain_free(domain
, virq
, i
- 1);
2907 its_lpi_free(bitmap
, base
, nr_ids
);
2908 its_free_prop_table(vprop_page
);
2914 static int its_vpe_irq_domain_activate(struct irq_domain
*domain
,
2915 struct irq_data
*d
, bool reserve
)
2917 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2918 struct its_node
*its
;
2920 /* If we use the list map, we issue VMAPP on demand... */
2924 /* Map the VPE to the first possible CPU */
2925 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
2927 list_for_each_entry(its
, &its_nodes
, entry
) {
2931 its_send_vmapp(its
, vpe
, true);
2932 its_send_vinvall(its
, vpe
);
2935 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
2940 static void its_vpe_irq_domain_deactivate(struct irq_domain
*domain
,
2943 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2944 struct its_node
*its
;
2947 * If we use the list map, we unmap the VPE once no VLPIs are
2948 * associated with the VM.
2953 list_for_each_entry(its
, &its_nodes
, entry
) {
2957 its_send_vmapp(its
, vpe
, false);
2961 static const struct irq_domain_ops its_vpe_domain_ops
= {
2962 .alloc
= its_vpe_irq_domain_alloc
,
2963 .free
= its_vpe_irq_domain_free
,
2964 .activate
= its_vpe_irq_domain_activate
,
2965 .deactivate
= its_vpe_irq_domain_deactivate
,
2968 static int its_force_quiescent(void __iomem
*base
)
2970 u32 count
= 1000000; /* 1s */
2973 val
= readl_relaxed(base
+ GITS_CTLR
);
2975 * GIC architecture specification requires the ITS to be both
2976 * disabled and quiescent for writes to GITS_BASER<n> or
2977 * GITS_CBASER to not have UNPREDICTABLE results.
2979 if ((val
& GITS_CTLR_QUIESCENT
) && !(val
& GITS_CTLR_ENABLE
))
2982 /* Disable the generation of all interrupts to this ITS */
2983 val
&= ~(GITS_CTLR_ENABLE
| GITS_CTLR_ImDe
);
2984 writel_relaxed(val
, base
+ GITS_CTLR
);
2986 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2988 val
= readl_relaxed(base
+ GITS_CTLR
);
2989 if (val
& GITS_CTLR_QUIESCENT
)
3001 static bool __maybe_unused
its_enable_quirk_cavium_22375(void *data
)
3003 struct its_node
*its
= data
;
3005 /* erratum 22375: only alloc 8MB table size */
3006 its
->device_ids
= 0x14; /* 20 bits, 8MB */
3007 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_22375
;
3012 static bool __maybe_unused
its_enable_quirk_cavium_23144(void *data
)
3014 struct its_node
*its
= data
;
3016 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_23144
;
3021 static bool __maybe_unused
its_enable_quirk_qdf2400_e0065(void *data
)
3023 struct its_node
*its
= data
;
3025 /* On QDF2400, the size of the ITE is 16Bytes */
3031 static u64
its_irq_get_msi_base_pre_its(struct its_device
*its_dev
)
3033 struct its_node
*its
= its_dev
->its
;
3036 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3037 * which maps 32-bit writes targeted at a separate window of
3038 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3039 * with device ID taken from bits [device_id_bits + 1:2] of
3040 * the window offset.
3042 return its
->pre_its_base
+ (its_dev
->device_id
<< 2);
3045 static bool __maybe_unused
its_enable_quirk_socionext_synquacer(void *data
)
3047 struct its_node
*its
= data
;
3048 u32 pre_its_window
[2];
3051 if (!fwnode_property_read_u32_array(its
->fwnode_handle
,
3052 "socionext,synquacer-pre-its",
3054 ARRAY_SIZE(pre_its_window
))) {
3056 its
->pre_its_base
= pre_its_window
[0];
3057 its
->get_msi_base
= its_irq_get_msi_base_pre_its
;
3059 ids
= ilog2(pre_its_window
[1]) - 2;
3060 if (its
->device_ids
> ids
)
3061 its
->device_ids
= ids
;
3063 /* the pre-ITS breaks isolation, so disable MSI remapping */
3064 its
->msi_domain_flags
&= ~IRQ_DOMAIN_FLAG_MSI_REMAP
;
3070 static bool __maybe_unused
its_enable_quirk_hip07_161600802(void *data
)
3072 struct its_node
*its
= data
;
3075 * Hip07 insists on using the wrong address for the VLPI
3076 * page. Trick it into doing the right thing...
3078 its
->vlpi_redist_offset
= SZ_128K
;
3082 static const struct gic_quirk its_quirks
[] = {
3083 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3085 .desc
= "ITS: Cavium errata 22375, 24313",
3086 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
3088 .init
= its_enable_quirk_cavium_22375
,
3091 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3093 .desc
= "ITS: Cavium erratum 23144",
3094 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
3096 .init
= its_enable_quirk_cavium_23144
,
3099 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3101 .desc
= "ITS: QDF2400 erratum 0065",
3102 .iidr
= 0x00001070, /* QDF2400 ITS rev 1.x */
3104 .init
= its_enable_quirk_qdf2400_e0065
,
3107 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3110 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3111 * implementation, but with a 'pre-ITS' added that requires
3112 * special handling in software.
3114 .desc
= "ITS: Socionext Synquacer pre-ITS",
3117 .init
= its_enable_quirk_socionext_synquacer
,
3120 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3122 .desc
= "ITS: Hip07 erratum 161600802",
3125 .init
= its_enable_quirk_hip07_161600802
,
3132 static void its_enable_quirks(struct its_node
*its
)
3134 u32 iidr
= readl_relaxed(its
->base
+ GITS_IIDR
);
3136 gic_enable_quirks(iidr
, its_quirks
, its
);
3139 static int its_save_disable(void)
3141 struct its_node
*its
;
3144 raw_spin_lock(&its_lock
);
3145 list_for_each_entry(its
, &its_nodes
, entry
) {
3148 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
3152 its
->ctlr_save
= readl_relaxed(base
+ GITS_CTLR
);
3153 err
= its_force_quiescent(base
);
3155 pr_err("ITS@%pa: failed to quiesce: %d\n",
3156 &its
->phys_base
, err
);
3157 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
3161 its
->cbaser_save
= gits_read_cbaser(base
+ GITS_CBASER
);
3166 list_for_each_entry_continue_reverse(its
, &its_nodes
, entry
) {
3169 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
3173 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
3176 raw_spin_unlock(&its_lock
);
3181 static void its_restore_enable(void)
3183 struct its_node
*its
;
3186 raw_spin_lock(&its_lock
);
3187 list_for_each_entry(its
, &its_nodes
, entry
) {
3191 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
3197 * Make sure that the ITS is disabled. If it fails to quiesce,
3198 * don't restore it since writing to CBASER or BASER<n>
3199 * registers is undefined according to the GIC v3 ITS
3202 ret
= its_force_quiescent(base
);
3204 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3205 &its
->phys_base
, ret
);
3209 gits_write_cbaser(its
->cbaser_save
, base
+ GITS_CBASER
);
3212 * Writing CBASER resets CREADR to 0, so make CWRITER and
3213 * cmd_write line up with it.
3215 its
->cmd_write
= its
->cmd_base
;
3216 gits_write_cwriter(0, base
+ GITS_CWRITER
);
3218 /* Restore GITS_BASER from the value cache. */
3219 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
3220 struct its_baser
*baser
= &its
->tables
[i
];
3222 if (!(baser
->val
& GITS_BASER_VALID
))
3225 its_write_baser(its
, baser
, baser
->val
);
3227 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
3230 * Reinit the collection if it's stored in the ITS. This is
3231 * indicated by the col_id being less than the HCC field.
3232 * CID < HCC as specified in the GIC v3 Documentation.
3234 if (its
->collections
[smp_processor_id()].col_id
<
3235 GITS_TYPER_HCC(gic_read_typer(base
+ GITS_TYPER
)))
3236 its_cpu_init_collection(its
);
3238 raw_spin_unlock(&its_lock
);
3241 static struct syscore_ops its_syscore_ops
= {
3242 .suspend
= its_save_disable
,
3243 .resume
= its_restore_enable
,
3246 static int its_init_domain(struct fwnode_handle
*handle
, struct its_node
*its
)
3248 struct irq_domain
*inner_domain
;
3249 struct msi_domain_info
*info
;
3251 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
3255 inner_domain
= irq_domain_create_tree(handle
, &its_domain_ops
, its
);
3256 if (!inner_domain
) {
3261 inner_domain
->parent
= its_parent
;
3262 irq_domain_update_bus_token(inner_domain
, DOMAIN_BUS_NEXUS
);
3263 inner_domain
->flags
|= its
->msi_domain_flags
;
3264 info
->ops
= &its_msi_domain_ops
;
3266 inner_domain
->host_data
= info
;
3271 static int its_init_vpe_domain(void)
3273 struct its_node
*its
;
3277 if (gic_rdists
->has_direct_lpi
) {
3278 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3282 /* Any ITS will do, even if not v4 */
3283 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
3285 entries
= roundup_pow_of_two(nr_cpu_ids
);
3286 vpe_proxy
.vpes
= kcalloc(entries
, sizeof(*vpe_proxy
.vpes
),
3288 if (!vpe_proxy
.vpes
) {
3289 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3293 /* Use the last possible DevID */
3294 devid
= GENMASK(its
->device_ids
- 1, 0);
3295 vpe_proxy
.dev
= its_create_device(its
, devid
, entries
, false);
3296 if (!vpe_proxy
.dev
) {
3297 kfree(vpe_proxy
.vpes
);
3298 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3302 BUG_ON(entries
> vpe_proxy
.dev
->nr_ites
);
3304 raw_spin_lock_init(&vpe_proxy
.lock
);
3305 vpe_proxy
.next_victim
= 0;
3306 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3307 devid
, vpe_proxy
.dev
->nr_ites
);
3312 static int __init
its_compute_its_list_map(struct resource
*res
,
3313 void __iomem
*its_base
)
3319 * This is assumed to be done early enough that we're
3320 * guaranteed to be single-threaded, hence no
3321 * locking. Should this change, we should address
3324 its_number
= find_first_zero_bit(&its_list_map
, GICv4_ITS_LIST_MAX
);
3325 if (its_number
>= GICv4_ITS_LIST_MAX
) {
3326 pr_err("ITS@%pa: No ITSList entry available!\n",
3331 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
3332 ctlr
&= ~GITS_CTLR_ITS_NUMBER
;
3333 ctlr
|= its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
;
3334 writel_relaxed(ctlr
, its_base
+ GITS_CTLR
);
3335 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
3336 if ((ctlr
& GITS_CTLR_ITS_NUMBER
) != (its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
)) {
3337 its_number
= ctlr
& GITS_CTLR_ITS_NUMBER
;
3338 its_number
>>= GITS_CTLR_ITS_NUMBER_SHIFT
;
3341 if (test_and_set_bit(its_number
, &its_list_map
)) {
3342 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3343 &res
->start
, its_number
);
3350 static int __init
its_probe_one(struct resource
*res
,
3351 struct fwnode_handle
*handle
, int numa_node
)
3353 struct its_node
*its
;
3354 void __iomem
*its_base
;
3356 u64 baser
, tmp
, typer
;
3359 its_base
= ioremap(res
->start
, resource_size(res
));
3361 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res
->start
);
3365 val
= readl_relaxed(its_base
+ GITS_PIDR2
) & GIC_PIDR2_ARCH_MASK
;
3366 if (val
!= 0x30 && val
!= 0x40) {
3367 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res
->start
);
3372 err
= its_force_quiescent(its_base
);
3374 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res
->start
);
3378 pr_info("ITS %pR\n", res
);
3380 its
= kzalloc(sizeof(*its
), GFP_KERNEL
);
3386 raw_spin_lock_init(&its
->lock
);
3387 INIT_LIST_HEAD(&its
->entry
);
3388 INIT_LIST_HEAD(&its
->its_device_list
);
3389 typer
= gic_read_typer(its_base
+ GITS_TYPER
);
3390 its
->base
= its_base
;
3391 its
->phys_base
= res
->start
;
3392 its
->ite_size
= GITS_TYPER_ITT_ENTRY_SIZE(typer
);
3393 its
->device_ids
= GITS_TYPER_DEVBITS(typer
);
3394 its
->is_v4
= !!(typer
& GITS_TYPER_VLPIS
);
3396 if (!(typer
& GITS_TYPER_VMOVP
)) {
3397 err
= its_compute_its_list_map(res
, its_base
);
3403 pr_info("ITS@%pa: Using ITS number %d\n",
3406 pr_info("ITS@%pa: Single VMOVP capable\n", &res
->start
);
3410 its
->numa_node
= numa_node
;
3412 its
->cmd_base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
3413 get_order(ITS_CMD_QUEUE_SZ
));
3414 if (!its
->cmd_base
) {
3418 its
->cmd_write
= its
->cmd_base
;
3419 its
->fwnode_handle
= handle
;
3420 its
->get_msi_base
= its_irq_get_msi_base
;
3421 its
->msi_domain_flags
= IRQ_DOMAIN_FLAG_MSI_REMAP
;
3423 its_enable_quirks(its
);
3425 err
= its_alloc_tables(its
);
3429 err
= its_alloc_collections(its
);
3431 goto out_free_tables
;
3433 baser
= (virt_to_phys(its
->cmd_base
) |
3434 GITS_CBASER_RaWaWb
|
3435 GITS_CBASER_InnerShareable
|
3436 (ITS_CMD_QUEUE_SZ
/ SZ_4K
- 1) |
3439 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
3440 tmp
= gits_read_cbaser(its
->base
+ GITS_CBASER
);
3442 if ((tmp
^ baser
) & GITS_CBASER_SHAREABILITY_MASK
) {
3443 if (!(tmp
& GITS_CBASER_SHAREABILITY_MASK
)) {
3445 * The HW reports non-shareable, we must
3446 * remove the cacheability attributes as
3449 baser
&= ~(GITS_CBASER_SHAREABILITY_MASK
|
3450 GITS_CBASER_CACHEABILITY_MASK
);
3451 baser
|= GITS_CBASER_nC
;
3452 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
3454 pr_info("ITS: using cache flushing for cmd queue\n");
3455 its
->flags
|= ITS_FLAGS_CMDQ_NEEDS_FLUSHING
;
3458 gits_write_cwriter(0, its
->base
+ GITS_CWRITER
);
3459 ctlr
= readl_relaxed(its
->base
+ GITS_CTLR
);
3460 ctlr
|= GITS_CTLR_ENABLE
;
3462 ctlr
|= GITS_CTLR_ImDe
;
3463 writel_relaxed(ctlr
, its
->base
+ GITS_CTLR
);
3465 if (GITS_TYPER_HCC(typer
))
3466 its
->flags
|= ITS_FLAGS_SAVE_SUSPEND_STATE
;
3468 err
= its_init_domain(handle
, its
);
3470 goto out_free_tables
;
3472 raw_spin_lock(&its_lock
);
3473 list_add(&its
->entry
, &its_nodes
);
3474 raw_spin_unlock(&its_lock
);
3479 its_free_tables(its
);
3481 free_pages((unsigned long)its
->cmd_base
, get_order(ITS_CMD_QUEUE_SZ
));
3486 pr_err("ITS@%pa: failed probing (%d)\n", &res
->start
, err
);
3490 static bool gic_rdists_supports_plpis(void)
3492 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
) & GICR_TYPER_PLPIS
);
3495 static int redist_disable_lpis(void)
3497 void __iomem
*rbase
= gic_data_rdist_rd_base();
3498 u64 timeout
= USEC_PER_SEC
;
3502 * If coming via a CPU hotplug event, we don't need to disable
3503 * LPIs before trying to re-enable them. They are already
3504 * configured and all is well in the world. Detect this case
3505 * by checking the allocation of the pending table for the
3508 if (gic_data_rdist()->pend_page
)
3511 if (!gic_rdists_supports_plpis()) {
3512 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3516 val
= readl_relaxed(rbase
+ GICR_CTLR
);
3517 if (!(val
& GICR_CTLR_ENABLE_LPIS
))
3520 pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3521 smp_processor_id());
3522 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
3525 val
&= ~GICR_CTLR_ENABLE_LPIS
;
3526 writel_relaxed(val
, rbase
+ GICR_CTLR
);
3528 /* Make sure any change to GICR_CTLR is observable by the GIC */
3532 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3533 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3534 * Error out if we time out waiting for RWP to clear.
3536 while (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_RWP
) {
3538 pr_err("CPU%d: Timeout while disabling LPIs\n",
3539 smp_processor_id());
3547 * After it has been written to 1, it is IMPLEMENTATION
3548 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3549 * cleared to 0. Error out if clearing the bit failed.
3551 if (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_ENABLE_LPIS
) {
3552 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3559 int its_cpu_init(void)
3561 if (!list_empty(&its_nodes
)) {
3564 ret
= redist_disable_lpis();
3568 its_cpu_init_lpis();
3569 its_cpu_init_collections();
3575 static const struct of_device_id its_device_id
[] = {
3576 { .compatible
= "arm,gic-v3-its", },
3580 static int __init
its_of_probe(struct device_node
*node
)
3582 struct device_node
*np
;
3583 struct resource res
;
3585 for (np
= of_find_matching_node(node
, its_device_id
); np
;
3586 np
= of_find_matching_node(np
, its_device_id
)) {
3587 if (!of_device_is_available(np
))
3589 if (!of_property_read_bool(np
, "msi-controller")) {
3590 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3595 if (of_address_to_resource(np
, 0, &res
)) {
3596 pr_warn("%pOF: no regs?\n", np
);
3600 its_probe_one(&res
, &np
->fwnode
, of_node_to_nid(np
));
3607 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3609 #ifdef CONFIG_ACPI_NUMA
3610 struct its_srat_map
{
3617 static struct its_srat_map
*its_srat_maps __initdata
;
3618 static int its_in_srat __initdata
;
3620 static int __init
acpi_get_its_numa_node(u32 its_id
)
3624 for (i
= 0; i
< its_in_srat
; i
++) {
3625 if (its_id
== its_srat_maps
[i
].its_id
)
3626 return its_srat_maps
[i
].numa_node
;
3628 return NUMA_NO_NODE
;
3631 static int __init
gic_acpi_match_srat_its(struct acpi_subtable_header
*header
,
3632 const unsigned long end
)
3637 static int __init
gic_acpi_parse_srat_its(struct acpi_subtable_header
*header
,
3638 const unsigned long end
)
3641 struct acpi_srat_gic_its_affinity
*its_affinity
;
3643 its_affinity
= (struct acpi_srat_gic_its_affinity
*)header
;
3647 if (its_affinity
->header
.length
< sizeof(*its_affinity
)) {
3648 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3649 its_affinity
->header
.length
);
3653 node
= acpi_map_pxm_to_node(its_affinity
->proximity_domain
);
3655 if (node
== NUMA_NO_NODE
|| node
>= MAX_NUMNODES
) {
3656 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node
);
3660 its_srat_maps
[its_in_srat
].numa_node
= node
;
3661 its_srat_maps
[its_in_srat
].its_id
= its_affinity
->its_id
;
3663 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3664 its_affinity
->proximity_domain
, its_affinity
->its_id
, node
);
3669 static void __init
acpi_table_parse_srat_its(void)
3673 count
= acpi_table_parse_entries(ACPI_SIG_SRAT
,
3674 sizeof(struct acpi_table_srat
),
3675 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3676 gic_acpi_match_srat_its
, 0);
3680 its_srat_maps
= kmalloc_array(count
, sizeof(struct its_srat_map
),
3682 if (!its_srat_maps
) {
3683 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3687 acpi_table_parse_entries(ACPI_SIG_SRAT
,
3688 sizeof(struct acpi_table_srat
),
3689 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3690 gic_acpi_parse_srat_its
, 0);
3693 /* free the its_srat_maps after ITS probing */
3694 static void __init
acpi_its_srat_maps_free(void)
3696 kfree(its_srat_maps
);
3699 static void __init
acpi_table_parse_srat_its(void) { }
3700 static int __init
acpi_get_its_numa_node(u32 its_id
) { return NUMA_NO_NODE
; }
3701 static void __init
acpi_its_srat_maps_free(void) { }
3704 static int __init
gic_acpi_parse_madt_its(struct acpi_subtable_header
*header
,
3705 const unsigned long end
)
3707 struct acpi_madt_generic_translator
*its_entry
;
3708 struct fwnode_handle
*dom_handle
;
3709 struct resource res
;
3712 its_entry
= (struct acpi_madt_generic_translator
*)header
;
3713 memset(&res
, 0, sizeof(res
));
3714 res
.start
= its_entry
->base_address
;
3715 res
.end
= its_entry
->base_address
+ ACPI_GICV3_ITS_MEM_SIZE
- 1;
3716 res
.flags
= IORESOURCE_MEM
;
3718 dom_handle
= irq_domain_alloc_fwnode((void *)its_entry
->base_address
);
3720 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3725 err
= iort_register_domain_token(its_entry
->translation_id
, res
.start
,
3728 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3729 &res
.start
, its_entry
->translation_id
);
3733 err
= its_probe_one(&res
, dom_handle
,
3734 acpi_get_its_numa_node(its_entry
->translation_id
));
3738 iort_deregister_domain_token(its_entry
->translation_id
);
3740 irq_domain_free_fwnode(dom_handle
);
3744 static void __init
its_acpi_probe(void)
3746 acpi_table_parse_srat_its();
3747 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR
,
3748 gic_acpi_parse_madt_its
, 0);
3749 acpi_its_srat_maps_free();
3752 static void __init
its_acpi_probe(void) { }
3755 int __init
its_init(struct fwnode_handle
*handle
, struct rdists
*rdists
,
3756 struct irq_domain
*parent_domain
)
3758 struct device_node
*of_node
;
3759 struct its_node
*its
;
3760 bool has_v4
= false;
3763 its_parent
= parent_domain
;
3764 of_node
= to_of_node(handle
);
3766 its_of_probe(of_node
);
3770 if (list_empty(&its_nodes
)) {
3771 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3775 gic_rdists
= rdists
;
3776 err
= its_alloc_lpi_tables();
3780 list_for_each_entry(its
, &its_nodes
, entry
)
3781 has_v4
|= its
->is_v4
;
3783 if (has_v4
& rdists
->has_vlpis
) {
3784 if (its_init_vpe_domain() ||
3785 its_init_v4(parent_domain
, &its_vpe_domain_ops
)) {
3786 rdists
->has_vlpis
= false;
3787 pr_err("ITS: Disabling GICv4 support\n");
3791 register_syscore_ops(&its_syscore_ops
);