2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
32 #include <trace/events/block.h>
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
38 #define BIO_INLINE_VECS 4
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs
[BIOVEC_NR_POOLS
] __read_mostly
= {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
55 struct bio_set
*fs_bio_set
;
56 EXPORT_SYMBOL(fs_bio_set
);
59 * Our slab pool management
62 struct kmem_cache
*slab
;
63 unsigned int slab_ref
;
64 unsigned int slab_size
;
67 static DEFINE_MUTEX(bio_slab_lock
);
68 static struct bio_slab
*bio_slabs
;
69 static unsigned int bio_slab_nr
, bio_slab_max
;
71 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
73 unsigned int sz
= sizeof(struct bio
) + extra_size
;
74 struct kmem_cache
*slab
= NULL
;
75 struct bio_slab
*bslab
, *new_bio_slabs
;
76 unsigned int new_bio_slab_max
;
77 unsigned int i
, entry
= -1;
79 mutex_lock(&bio_slab_lock
);
82 while (i
< bio_slab_nr
) {
83 bslab
= &bio_slabs
[i
];
85 if (!bslab
->slab
&& entry
== -1)
87 else if (bslab
->slab_size
== sz
) {
98 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
99 new_bio_slab_max
= bio_slab_max
<< 1;
100 new_bio_slabs
= krealloc(bio_slabs
,
101 new_bio_slab_max
* sizeof(struct bio_slab
),
105 bio_slab_max
= new_bio_slab_max
;
106 bio_slabs
= new_bio_slabs
;
109 entry
= bio_slab_nr
++;
111 bslab
= &bio_slabs
[entry
];
113 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
114 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
115 SLAB_HWCACHE_ALIGN
, NULL
);
121 bslab
->slab_size
= sz
;
123 mutex_unlock(&bio_slab_lock
);
127 static void bio_put_slab(struct bio_set
*bs
)
129 struct bio_slab
*bslab
= NULL
;
132 mutex_lock(&bio_slab_lock
);
134 for (i
= 0; i
< bio_slab_nr
; i
++) {
135 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
136 bslab
= &bio_slabs
[i
];
141 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
144 WARN_ON(!bslab
->slab_ref
);
146 if (--bslab
->slab_ref
)
149 kmem_cache_destroy(bslab
->slab
);
153 mutex_unlock(&bio_slab_lock
);
156 unsigned int bvec_nr_vecs(unsigned short idx
)
158 return bvec_slabs
[idx
].nr_vecs
;
161 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
163 BIO_BUG_ON(idx
>= BIOVEC_NR_POOLS
);
165 if (idx
== BIOVEC_MAX_IDX
)
166 mempool_free(bv
, pool
);
168 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
170 kmem_cache_free(bvs
->slab
, bv
);
174 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
180 * see comment near bvec_array define!
198 case 129 ... BIO_MAX_PAGES
:
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
209 if (*idx
== BIOVEC_MAX_IDX
) {
211 bvl
= mempool_alloc(pool
, gfp_mask
);
213 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
214 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
221 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
227 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
228 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
229 *idx
= BIOVEC_MAX_IDX
;
237 static void __bio_free(struct bio
*bio
)
239 bio_disassociate_task(bio
);
241 if (bio_integrity(bio
))
242 bio_integrity_free(bio
);
245 static void bio_free(struct bio
*bio
)
247 struct bio_set
*bs
= bio
->bi_pool
;
253 if (bio_flagged(bio
, BIO_OWNS_VEC
))
254 bvec_free(bs
->bvec_pool
, bio
->bi_io_vec
, BIO_POOL_IDX(bio
));
257 * If we have front padding, adjust the bio pointer before freeing
262 mempool_free(p
, bs
->bio_pool
);
264 /* Bio was allocated by bio_kmalloc() */
269 void bio_init(struct bio
*bio
)
271 memset(bio
, 0, sizeof(*bio
));
272 atomic_set(&bio
->__bi_remaining
, 1);
273 atomic_set(&bio
->__bi_cnt
, 1);
275 EXPORT_SYMBOL(bio_init
);
278 * bio_reset - reinitialize a bio
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
287 void bio_reset(struct bio
*bio
)
289 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
293 memset(bio
, 0, BIO_RESET_BYTES
);
294 bio
->bi_flags
= flags
;
295 atomic_set(&bio
->__bi_remaining
, 1);
297 EXPORT_SYMBOL(bio_reset
);
299 static void bio_chain_endio(struct bio
*bio
)
301 struct bio
*parent
= bio
->bi_private
;
303 parent
->bi_error
= bio
->bi_error
;
309 * Increment chain count for the bio. Make sure the CHAIN flag update
310 * is visible before the raised count.
312 static inline void bio_inc_remaining(struct bio
*bio
)
314 bio_set_flag(bio
, BIO_CHAIN
);
315 smp_mb__before_atomic();
316 atomic_inc(&bio
->__bi_remaining
);
320 * bio_chain - chain bio completions
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
328 * The caller must not set bi_private or bi_end_io in @bio.
330 void bio_chain(struct bio
*bio
, struct bio
*parent
)
332 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
334 bio
->bi_private
= parent
;
335 bio
->bi_end_io
= bio_chain_endio
;
336 bio_inc_remaining(parent
);
338 EXPORT_SYMBOL(bio_chain
);
340 static void bio_alloc_rescue(struct work_struct
*work
)
342 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
346 spin_lock(&bs
->rescue_lock
);
347 bio
= bio_list_pop(&bs
->rescue_list
);
348 spin_unlock(&bs
->rescue_lock
);
353 generic_make_request(bio
);
357 static void punt_bios_to_rescuer(struct bio_set
*bs
)
359 struct bio_list punt
, nopunt
;
363 * In order to guarantee forward progress we must punt only bios that
364 * were allocated from this bio_set; otherwise, if there was a bio on
365 * there for a stacking driver higher up in the stack, processing it
366 * could require allocating bios from this bio_set, and doing that from
367 * our own rescuer would be bad.
369 * Since bio lists are singly linked, pop them all instead of trying to
370 * remove from the middle of the list:
373 bio_list_init(&punt
);
374 bio_list_init(&nopunt
);
376 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
377 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
378 current
->bio_list
[0] = nopunt
;
380 bio_list_init(&nopunt
);
381 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
382 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
383 current
->bio_list
[1] = nopunt
;
385 spin_lock(&bs
->rescue_lock
);
386 bio_list_merge(&bs
->rescue_list
, &punt
);
387 spin_unlock(&bs
->rescue_lock
);
389 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
393 * bio_alloc_bioset - allocate a bio for I/O
394 * @gfp_mask: the GFP_ mask given to the slab allocator
395 * @nr_iovecs: number of iovecs to pre-allocate
396 * @bs: the bio_set to allocate from.
399 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
400 * backed by the @bs's mempool.
402 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
403 * always be able to allocate a bio. This is due to the mempool guarantees.
404 * To make this work, callers must never allocate more than 1 bio at a time
405 * from this pool. Callers that need to allocate more than 1 bio must always
406 * submit the previously allocated bio for IO before attempting to allocate
407 * a new one. Failure to do so can cause deadlocks under memory pressure.
409 * Note that when running under generic_make_request() (i.e. any block
410 * driver), bios are not submitted until after you return - see the code in
411 * generic_make_request() that converts recursion into iteration, to prevent
414 * This would normally mean allocating multiple bios under
415 * generic_make_request() would be susceptible to deadlocks, but we have
416 * deadlock avoidance code that resubmits any blocked bios from a rescuer
419 * However, we do not guarantee forward progress for allocations from other
420 * mempools. Doing multiple allocations from the same mempool under
421 * generic_make_request() should be avoided - instead, use bio_set's front_pad
422 * for per bio allocations.
425 * Pointer to new bio on success, NULL on failure.
427 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
429 gfp_t saved_gfp
= gfp_mask
;
431 unsigned inline_vecs
;
432 unsigned long idx
= BIO_POOL_NONE
;
433 struct bio_vec
*bvl
= NULL
;
438 if (nr_iovecs
> UIO_MAXIOV
)
441 p
= kmalloc(sizeof(struct bio
) +
442 nr_iovecs
* sizeof(struct bio_vec
),
445 inline_vecs
= nr_iovecs
;
447 /* should not use nobvec bioset for nr_iovecs > 0 */
448 if (WARN_ON_ONCE(!bs
->bvec_pool
&& nr_iovecs
> 0))
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
471 if (current
->bio_list
&&
472 (!bio_list_empty(¤t
->bio_list
[0]) ||
473 !bio_list_empty(¤t
->bio_list
[1])))
474 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
476 p
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
477 if (!p
&& gfp_mask
!= saved_gfp
) {
478 punt_bios_to_rescuer(bs
);
479 gfp_mask
= saved_gfp
;
480 p
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
483 front_pad
= bs
->front_pad
;
484 inline_vecs
= BIO_INLINE_VECS
;
493 if (nr_iovecs
> inline_vecs
) {
494 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, bs
->bvec_pool
);
495 if (!bvl
&& gfp_mask
!= saved_gfp
) {
496 punt_bios_to_rescuer(bs
);
497 gfp_mask
= saved_gfp
;
498 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, bs
->bvec_pool
);
504 bio_set_flag(bio
, BIO_OWNS_VEC
);
505 } else if (nr_iovecs
) {
506 bvl
= bio
->bi_inline_vecs
;
510 bio
->bi_flags
|= idx
<< BIO_POOL_OFFSET
;
511 bio
->bi_max_vecs
= nr_iovecs
;
512 bio
->bi_io_vec
= bvl
;
516 mempool_free(p
, bs
->bio_pool
);
519 EXPORT_SYMBOL(bio_alloc_bioset
);
521 void zero_fill_bio(struct bio
*bio
)
525 struct bvec_iter iter
;
527 bio_for_each_segment(bv
, bio
, iter
) {
528 char *data
= bvec_kmap_irq(&bv
, &flags
);
529 memset(data
, 0, bv
.bv_len
);
530 flush_dcache_page(bv
.bv_page
);
531 bvec_kunmap_irq(data
, &flags
);
534 EXPORT_SYMBOL(zero_fill_bio
);
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
541 * Put a reference to a &struct bio, either one you have gotten with
542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
544 void bio_put(struct bio
*bio
)
546 if (!bio_flagged(bio
, BIO_REFFED
))
549 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
554 if (atomic_dec_and_test(&bio
->__bi_cnt
))
558 EXPORT_SYMBOL(bio_put
);
560 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
562 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
563 blk_recount_segments(q
, bio
);
565 return bio
->bi_phys_segments
;
567 EXPORT_SYMBOL(bio_phys_segments
);
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
578 * Caller must ensure that @bio_src is not freed before @bio.
580 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
582 BUG_ON(bio
->bi_pool
&& BIO_POOL_IDX(bio
) != BIO_POOL_NONE
);
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
588 bio
->bi_bdev
= bio_src
->bi_bdev
;
589 bio_set_flag(bio
, BIO_CLONED
);
590 bio
->bi_rw
= bio_src
->bi_rw
;
591 bio
->bi_iter
= bio_src
->bi_iter
;
592 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
594 bio_clone_blkcg_association(bio
, bio_src
);
596 EXPORT_SYMBOL(__bio_clone_fast
);
599 * bio_clone_fast - clone a bio that shares the original bio's biovec
601 * @gfp_mask: allocation priority
602 * @bs: bio_set to allocate from
604 * Like __bio_clone_fast, only also allocates the returned bio
606 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
610 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
614 __bio_clone_fast(b
, bio
);
616 if (bio_integrity(bio
)) {
619 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
629 EXPORT_SYMBOL(bio_clone_fast
);
632 * bio_clone_bioset - clone a bio
633 * @bio_src: bio to clone
634 * @gfp_mask: allocation priority
635 * @bs: bio_set to allocate from
637 * Clone bio. Caller will own the returned bio, but not the actual data it
638 * points to. Reference count of returned bio will be one.
640 struct bio
*bio_clone_bioset(struct bio
*bio_src
, gfp_t gfp_mask
,
643 struct bvec_iter iter
;
648 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
649 * bio_src->bi_io_vec to bio->bi_io_vec.
651 * We can't do that anymore, because:
653 * - The point of cloning the biovec is to produce a bio with a biovec
654 * the caller can modify: bi_idx and bi_bvec_done should be 0.
656 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
657 * we tried to clone the whole thing bio_alloc_bioset() would fail.
658 * But the clone should succeed as long as the number of biovecs we
659 * actually need to allocate is fewer than BIO_MAX_PAGES.
661 * - Lastly, bi_vcnt should not be looked at or relied upon by code
662 * that does not own the bio - reason being drivers don't use it for
663 * iterating over the biovec anymore, so expecting it to be kept up
664 * to date (i.e. for clones that share the parent biovec) is just
665 * asking for trouble and would force extra work on
666 * __bio_clone_fast() anyways.
669 bio
= bio_alloc_bioset(gfp_mask
, bio_segments(bio_src
), bs
);
673 bio
->bi_bdev
= bio_src
->bi_bdev
;
674 bio
->bi_rw
= bio_src
->bi_rw
;
675 bio
->bi_iter
.bi_sector
= bio_src
->bi_iter
.bi_sector
;
676 bio
->bi_iter
.bi_size
= bio_src
->bi_iter
.bi_size
;
678 if (bio
->bi_rw
& REQ_DISCARD
)
679 goto integrity_clone
;
681 if (bio
->bi_rw
& REQ_WRITE_SAME
) {
682 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bio_src
->bi_io_vec
[0];
683 goto integrity_clone
;
686 bio_for_each_segment(bv
, bio_src
, iter
)
687 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bv
;
690 if (bio_integrity(bio_src
)) {
693 ret
= bio_integrity_clone(bio
, bio_src
, gfp_mask
);
700 bio_clone_blkcg_association(bio
, bio_src
);
704 EXPORT_SYMBOL(bio_clone_bioset
);
707 * bio_add_pc_page - attempt to add page to bio
708 * @q: the target queue
709 * @bio: destination bio
711 * @len: vec entry length
712 * @offset: vec entry offset
714 * Attempt to add a page to the bio_vec maplist. This can fail for a
715 * number of reasons, such as the bio being full or target block device
716 * limitations. The target block device must allow bio's up to PAGE_SIZE,
717 * so it is always possible to add a single page to an empty bio.
719 * This should only be used by REQ_PC bios.
721 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
722 *page
, unsigned int len
, unsigned int offset
)
724 int retried_segments
= 0;
725 struct bio_vec
*bvec
;
728 * cloned bio must not modify vec list
730 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
733 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
737 * For filesystems with a blocksize smaller than the pagesize
738 * we will often be called with the same page as last time and
739 * a consecutive offset. Optimize this special case.
741 if (bio
->bi_vcnt
> 0) {
742 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
744 if (page
== prev
->bv_page
&&
745 offset
== prev
->bv_offset
+ prev
->bv_len
) {
747 bio
->bi_iter
.bi_size
+= len
;
752 * If the queue doesn't support SG gaps and adding this
753 * offset would create a gap, disallow it.
755 if (bvec_gap_to_prev(q
, prev
, offset
))
759 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
763 * setup the new entry, we might clear it again later if we
764 * cannot add the page
766 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
767 bvec
->bv_page
= page
;
769 bvec
->bv_offset
= offset
;
771 bio
->bi_phys_segments
++;
772 bio
->bi_iter
.bi_size
+= len
;
775 * Perform a recount if the number of segments is greater
776 * than queue_max_segments(q).
779 while (bio
->bi_phys_segments
> queue_max_segments(q
)) {
781 if (retried_segments
)
784 retried_segments
= 1;
785 blk_recount_segments(q
, bio
);
788 /* If we may be able to merge these biovecs, force a recount */
789 if (bio
->bi_vcnt
> 1 && (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
)))
790 bio_clear_flag(bio
, BIO_SEG_VALID
);
796 bvec
->bv_page
= NULL
;
800 bio
->bi_iter
.bi_size
-= len
;
801 blk_recount_segments(q
, bio
);
804 EXPORT_SYMBOL(bio_add_pc_page
);
807 * bio_add_page - attempt to add page to bio
808 * @bio: destination bio
810 * @len: vec entry length
811 * @offset: vec entry offset
813 * Attempt to add a page to the bio_vec maplist. This will only fail
814 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
816 int bio_add_page(struct bio
*bio
, struct page
*page
,
817 unsigned int len
, unsigned int offset
)
822 * cloned bio must not modify vec list
824 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
828 * For filesystems with a blocksize smaller than the pagesize
829 * we will often be called with the same page as last time and
830 * a consecutive offset. Optimize this special case.
832 if (bio
->bi_vcnt
> 0) {
833 bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
835 if (page
== bv
->bv_page
&&
836 offset
== bv
->bv_offset
+ bv
->bv_len
) {
842 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
845 bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
848 bv
->bv_offset
= offset
;
852 bio
->bi_iter
.bi_size
+= len
;
855 EXPORT_SYMBOL(bio_add_page
);
857 struct submit_bio_ret
{
858 struct completion event
;
862 static void submit_bio_wait_endio(struct bio
*bio
)
864 struct submit_bio_ret
*ret
= bio
->bi_private
;
866 ret
->error
= bio
->bi_error
;
867 complete(&ret
->event
);
871 * submit_bio_wait - submit a bio, and wait until it completes
872 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
873 * @bio: The &struct bio which describes the I/O
875 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
876 * bio_endio() on failure.
878 int submit_bio_wait(int rw
, struct bio
*bio
)
880 struct submit_bio_ret ret
;
883 init_completion(&ret
.event
);
884 bio
->bi_private
= &ret
;
885 bio
->bi_end_io
= submit_bio_wait_endio
;
887 wait_for_completion(&ret
.event
);
891 EXPORT_SYMBOL(submit_bio_wait
);
894 * bio_advance - increment/complete a bio by some number of bytes
895 * @bio: bio to advance
896 * @bytes: number of bytes to complete
898 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
899 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
900 * be updated on the last bvec as well.
902 * @bio will then represent the remaining, uncompleted portion of the io.
904 void bio_advance(struct bio
*bio
, unsigned bytes
)
906 if (bio_integrity(bio
))
907 bio_integrity_advance(bio
, bytes
);
909 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
911 EXPORT_SYMBOL(bio_advance
);
914 * bio_alloc_pages - allocates a single page for each bvec in a bio
915 * @bio: bio to allocate pages for
916 * @gfp_mask: flags for allocation
918 * Allocates pages up to @bio->bi_vcnt.
920 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
923 int bio_alloc_pages(struct bio
*bio
, gfp_t gfp_mask
)
928 bio_for_each_segment_all(bv
, bio
, i
) {
929 bv
->bv_page
= alloc_page(gfp_mask
);
931 while (--bv
>= bio
->bi_io_vec
)
932 __free_page(bv
->bv_page
);
939 EXPORT_SYMBOL(bio_alloc_pages
);
942 * bio_copy_data - copy contents of data buffers from one chain of bios to
944 * @src: source bio list
945 * @dst: destination bio list
947 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
948 * @src and @dst as linked lists of bios.
950 * Stops when it reaches the end of either @src or @dst - that is, copies
951 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
953 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
955 struct bvec_iter src_iter
, dst_iter
;
956 struct bio_vec src_bv
, dst_bv
;
960 src_iter
= src
->bi_iter
;
961 dst_iter
= dst
->bi_iter
;
964 if (!src_iter
.bi_size
) {
969 src_iter
= src
->bi_iter
;
972 if (!dst_iter
.bi_size
) {
977 dst_iter
= dst
->bi_iter
;
980 src_bv
= bio_iter_iovec(src
, src_iter
);
981 dst_bv
= bio_iter_iovec(dst
, dst_iter
);
983 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
985 src_p
= kmap_atomic(src_bv
.bv_page
);
986 dst_p
= kmap_atomic(dst_bv
.bv_page
);
988 memcpy(dst_p
+ dst_bv
.bv_offset
,
989 src_p
+ src_bv
.bv_offset
,
992 kunmap_atomic(dst_p
);
993 kunmap_atomic(src_p
);
995 bio_advance_iter(src
, &src_iter
, bytes
);
996 bio_advance_iter(dst
, &dst_iter
, bytes
);
999 EXPORT_SYMBOL(bio_copy_data
);
1001 struct bio_map_data
{
1003 struct iov_iter iter
;
1007 static struct bio_map_data
*bio_alloc_map_data(unsigned int iov_count
,
1010 if (iov_count
> UIO_MAXIOV
)
1013 return kmalloc(sizeof(struct bio_map_data
) +
1014 sizeof(struct iovec
) * iov_count
, gfp_mask
);
1018 * bio_copy_from_iter - copy all pages from iov_iter to bio
1019 * @bio: The &struct bio which describes the I/O as destination
1020 * @iter: iov_iter as source
1022 * Copy all pages from iov_iter to bio.
1023 * Returns 0 on success, or error on failure.
1025 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter iter
)
1028 struct bio_vec
*bvec
;
1030 bio_for_each_segment_all(bvec
, bio
, i
) {
1033 ret
= copy_page_from_iter(bvec
->bv_page
,
1038 if (!iov_iter_count(&iter
))
1041 if (ret
< bvec
->bv_len
)
1049 * bio_copy_to_iter - copy all pages from bio to iov_iter
1050 * @bio: The &struct bio which describes the I/O as source
1051 * @iter: iov_iter as destination
1053 * Copy all pages from bio to iov_iter.
1054 * Returns 0 on success, or error on failure.
1056 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1059 struct bio_vec
*bvec
;
1061 bio_for_each_segment_all(bvec
, bio
, i
) {
1064 ret
= copy_page_to_iter(bvec
->bv_page
,
1069 if (!iov_iter_count(&iter
))
1072 if (ret
< bvec
->bv_len
)
1079 static void bio_free_pages(struct bio
*bio
)
1081 struct bio_vec
*bvec
;
1084 bio_for_each_segment_all(bvec
, bio
, i
)
1085 __free_page(bvec
->bv_page
);
1089 * bio_uncopy_user - finish previously mapped bio
1090 * @bio: bio being terminated
1092 * Free pages allocated from bio_copy_user_iov() and write back data
1093 * to user space in case of a read.
1095 int bio_uncopy_user(struct bio
*bio
)
1097 struct bio_map_data
*bmd
= bio
->bi_private
;
1100 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1102 * if we're in a workqueue, the request is orphaned, so
1103 * don't copy into a random user address space, just free
1104 * and return -EINTR so user space doesn't expect any data.
1108 else if (bio_data_dir(bio
) == READ
)
1109 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1110 if (bmd
->is_our_pages
)
1111 bio_free_pages(bio
);
1117 EXPORT_SYMBOL(bio_uncopy_user
);
1120 * bio_copy_user_iov - copy user data to bio
1121 * @q: destination block queue
1122 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1123 * @iter: iovec iterator
1124 * @gfp_mask: memory allocation flags
1126 * Prepares and returns a bio for indirect user io, bouncing data
1127 * to/from kernel pages as necessary. Must be paired with
1128 * call bio_uncopy_user() on io completion.
1130 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1131 struct rq_map_data
*map_data
,
1132 const struct iov_iter
*iter
,
1135 struct bio_map_data
*bmd
;
1140 unsigned int len
= iter
->count
;
1141 unsigned int offset
= map_data
? map_data
->offset
& ~PAGE_MASK
: 0;
1143 for (i
= 0; i
< iter
->nr_segs
; i
++) {
1144 unsigned long uaddr
;
1146 unsigned long start
;
1148 uaddr
= (unsigned long) iter
->iov
[i
].iov_base
;
1149 end
= (uaddr
+ iter
->iov
[i
].iov_len
+ PAGE_SIZE
- 1)
1151 start
= uaddr
>> PAGE_SHIFT
;
1157 return ERR_PTR(-EINVAL
);
1159 nr_pages
+= end
- start
;
1165 bmd
= bio_alloc_map_data(iter
->nr_segs
, gfp_mask
);
1167 return ERR_PTR(-ENOMEM
);
1170 * We need to do a deep copy of the iov_iter including the iovecs.
1171 * The caller provided iov might point to an on-stack or otherwise
1174 bmd
->is_our_pages
= map_data
? 0 : 1;
1175 memcpy(bmd
->iov
, iter
->iov
, sizeof(struct iovec
) * iter
->nr_segs
);
1176 iov_iter_init(&bmd
->iter
, iter
->type
, bmd
->iov
,
1177 iter
->nr_segs
, iter
->count
);
1180 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1184 if (iter
->type
& WRITE
)
1185 bio
->bi_rw
|= REQ_WRITE
;
1190 nr_pages
= 1 << map_data
->page_order
;
1191 i
= map_data
->offset
/ PAGE_SIZE
;
1194 unsigned int bytes
= PAGE_SIZE
;
1202 if (i
== map_data
->nr_entries
* nr_pages
) {
1207 page
= map_data
->pages
[i
/ nr_pages
];
1208 page
+= (i
% nr_pages
);
1212 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1219 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
)
1232 if (((iter
->type
& WRITE
) && (!map_data
|| !map_data
->null_mapped
)) ||
1233 (map_data
&& map_data
->from_user
)) {
1234 ret
= bio_copy_from_iter(bio
, *iter
);
1239 bio
->bi_private
= bmd
;
1243 bio_free_pages(bio
);
1247 return ERR_PTR(ret
);
1251 * bio_map_user_iov - map user iovec into bio
1252 * @q: the struct request_queue for the bio
1253 * @iter: iovec iterator
1254 * @gfp_mask: memory allocation flags
1256 * Map the user space address into a bio suitable for io to a block
1257 * device. Returns an error pointer in case of error.
1259 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1260 const struct iov_iter
*iter
,
1265 struct page
**pages
;
1272 iov_for_each(iov
, i
, *iter
) {
1273 unsigned long uaddr
= (unsigned long) iov
.iov_base
;
1274 unsigned long len
= iov
.iov_len
;
1275 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1276 unsigned long start
= uaddr
>> PAGE_SHIFT
;
1282 return ERR_PTR(-EINVAL
);
1284 nr_pages
+= end
- start
;
1286 * buffer must be aligned to at least hardsector size for now
1288 if (uaddr
& queue_dma_alignment(q
))
1289 return ERR_PTR(-EINVAL
);
1293 return ERR_PTR(-EINVAL
);
1295 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1297 return ERR_PTR(-ENOMEM
);
1300 pages
= kcalloc(nr_pages
, sizeof(struct page
*), gfp_mask
);
1304 iov_for_each(iov
, i
, *iter
) {
1305 unsigned long uaddr
= (unsigned long) iov
.iov_base
;
1306 unsigned long len
= iov
.iov_len
;
1307 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1308 unsigned long start
= uaddr
>> PAGE_SHIFT
;
1309 const int local_nr_pages
= end
- start
;
1310 const int page_limit
= cur_page
+ local_nr_pages
;
1312 ret
= get_user_pages_fast(uaddr
, local_nr_pages
,
1313 (iter
->type
& WRITE
) != WRITE
,
1315 if (ret
< local_nr_pages
) {
1320 offset
= uaddr
& ~PAGE_MASK
;
1321 for (j
= cur_page
; j
< page_limit
; j
++) {
1322 unsigned int bytes
= PAGE_SIZE
- offset
;
1333 if (bio_add_pc_page(q
, bio
, pages
[j
], bytes
, offset
) <
1343 * release the pages we didn't map into the bio, if any
1345 while (j
< page_limit
)
1346 page_cache_release(pages
[j
++]);
1352 * set data direction, and check if mapped pages need bouncing
1354 if (iter
->type
& WRITE
)
1355 bio
->bi_rw
|= REQ_WRITE
;
1357 bio_set_flag(bio
, BIO_USER_MAPPED
);
1360 * subtle -- if __bio_map_user() ended up bouncing a bio,
1361 * it would normally disappear when its bi_end_io is run.
1362 * however, we need it for the unmap, so grab an extra
1369 for (j
= 0; j
< nr_pages
; j
++) {
1372 page_cache_release(pages
[j
]);
1377 return ERR_PTR(ret
);
1380 static void __bio_unmap_user(struct bio
*bio
)
1382 struct bio_vec
*bvec
;
1386 * make sure we dirty pages we wrote to
1388 bio_for_each_segment_all(bvec
, bio
, i
) {
1389 if (bio_data_dir(bio
) == READ
)
1390 set_page_dirty_lock(bvec
->bv_page
);
1392 page_cache_release(bvec
->bv_page
);
1399 * bio_unmap_user - unmap a bio
1400 * @bio: the bio being unmapped
1402 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1403 * a process context.
1405 * bio_unmap_user() may sleep.
1407 void bio_unmap_user(struct bio
*bio
)
1409 __bio_unmap_user(bio
);
1412 EXPORT_SYMBOL(bio_unmap_user
);
1414 static void bio_map_kern_endio(struct bio
*bio
)
1420 * bio_map_kern - map kernel address into bio
1421 * @q: the struct request_queue for the bio
1422 * @data: pointer to buffer to map
1423 * @len: length in bytes
1424 * @gfp_mask: allocation flags for bio allocation
1426 * Map the kernel address into a bio suitable for io to a block
1427 * device. Returns an error pointer in case of error.
1429 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1432 unsigned long kaddr
= (unsigned long)data
;
1433 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1434 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1435 const int nr_pages
= end
- start
;
1439 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1441 return ERR_PTR(-ENOMEM
);
1443 offset
= offset_in_page(kaddr
);
1444 for (i
= 0; i
< nr_pages
; i
++) {
1445 unsigned int bytes
= PAGE_SIZE
- offset
;
1453 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
1455 /* we don't support partial mappings */
1457 return ERR_PTR(-EINVAL
);
1465 bio
->bi_end_io
= bio_map_kern_endio
;
1468 EXPORT_SYMBOL(bio_map_kern
);
1470 static void bio_copy_kern_endio(struct bio
*bio
)
1472 bio_free_pages(bio
);
1476 static void bio_copy_kern_endio_read(struct bio
*bio
)
1478 char *p
= bio
->bi_private
;
1479 struct bio_vec
*bvec
;
1482 bio_for_each_segment_all(bvec
, bio
, i
) {
1483 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1487 bio_copy_kern_endio(bio
);
1491 * bio_copy_kern - copy kernel address into bio
1492 * @q: the struct request_queue for the bio
1493 * @data: pointer to buffer to copy
1494 * @len: length in bytes
1495 * @gfp_mask: allocation flags for bio and page allocation
1496 * @reading: data direction is READ
1498 * copy the kernel address into a bio suitable for io to a block
1499 * device. Returns an error pointer in case of error.
1501 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1502 gfp_t gfp_mask
, int reading
)
1504 unsigned long kaddr
= (unsigned long)data
;
1505 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1506 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1515 return ERR_PTR(-EINVAL
);
1517 nr_pages
= end
- start
;
1518 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1520 return ERR_PTR(-ENOMEM
);
1524 unsigned int bytes
= PAGE_SIZE
;
1529 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1534 memcpy(page_address(page
), p
, bytes
);
1536 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1544 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1545 bio
->bi_private
= data
;
1547 bio
->bi_end_io
= bio_copy_kern_endio
;
1548 bio
->bi_rw
|= REQ_WRITE
;
1554 bio_free_pages(bio
);
1556 return ERR_PTR(-ENOMEM
);
1558 EXPORT_SYMBOL(bio_copy_kern
);
1561 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1562 * for performing direct-IO in BIOs.
1564 * The problem is that we cannot run set_page_dirty() from interrupt context
1565 * because the required locks are not interrupt-safe. So what we can do is to
1566 * mark the pages dirty _before_ performing IO. And in interrupt context,
1567 * check that the pages are still dirty. If so, fine. If not, redirty them
1568 * in process context.
1570 * We special-case compound pages here: normally this means reads into hugetlb
1571 * pages. The logic in here doesn't really work right for compound pages
1572 * because the VM does not uniformly chase down the head page in all cases.
1573 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1574 * handle them at all. So we skip compound pages here at an early stage.
1576 * Note that this code is very hard to test under normal circumstances because
1577 * direct-io pins the pages with get_user_pages(). This makes
1578 * is_page_cache_freeable return false, and the VM will not clean the pages.
1579 * But other code (eg, flusher threads) could clean the pages if they are mapped
1582 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1583 * deferred bio dirtying paths.
1587 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1589 void bio_set_pages_dirty(struct bio
*bio
)
1591 struct bio_vec
*bvec
;
1594 bio_for_each_segment_all(bvec
, bio
, i
) {
1595 struct page
*page
= bvec
->bv_page
;
1597 if (page
&& !PageCompound(page
))
1598 set_page_dirty_lock(page
);
1602 static void bio_release_pages(struct bio
*bio
)
1604 struct bio_vec
*bvec
;
1607 bio_for_each_segment_all(bvec
, bio
, i
) {
1608 struct page
*page
= bvec
->bv_page
;
1616 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1617 * If they are, then fine. If, however, some pages are clean then they must
1618 * have been written out during the direct-IO read. So we take another ref on
1619 * the BIO and the offending pages and re-dirty the pages in process context.
1621 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1622 * here on. It will run one page_cache_release() against each page and will
1623 * run one bio_put() against the BIO.
1626 static void bio_dirty_fn(struct work_struct
*work
);
1628 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1629 static DEFINE_SPINLOCK(bio_dirty_lock
);
1630 static struct bio
*bio_dirty_list
;
1633 * This runs in process context
1635 static void bio_dirty_fn(struct work_struct
*work
)
1637 unsigned long flags
;
1640 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1641 bio
= bio_dirty_list
;
1642 bio_dirty_list
= NULL
;
1643 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1646 struct bio
*next
= bio
->bi_private
;
1648 bio_set_pages_dirty(bio
);
1649 bio_release_pages(bio
);
1655 void bio_check_pages_dirty(struct bio
*bio
)
1657 struct bio_vec
*bvec
;
1658 int nr_clean_pages
= 0;
1661 bio_for_each_segment_all(bvec
, bio
, i
) {
1662 struct page
*page
= bvec
->bv_page
;
1664 if (PageDirty(page
) || PageCompound(page
)) {
1665 page_cache_release(page
);
1666 bvec
->bv_page
= NULL
;
1672 if (nr_clean_pages
) {
1673 unsigned long flags
;
1675 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1676 bio
->bi_private
= bio_dirty_list
;
1677 bio_dirty_list
= bio
;
1678 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1679 schedule_work(&bio_dirty_work
);
1685 void generic_start_io_acct(int rw
, unsigned long sectors
,
1686 struct hd_struct
*part
)
1688 int cpu
= part_stat_lock();
1690 part_round_stats(cpu
, part
);
1691 part_stat_inc(cpu
, part
, ios
[rw
]);
1692 part_stat_add(cpu
, part
, sectors
[rw
], sectors
);
1693 part_inc_in_flight(part
, rw
);
1697 EXPORT_SYMBOL(generic_start_io_acct
);
1699 void generic_end_io_acct(int rw
, struct hd_struct
*part
,
1700 unsigned long start_time
)
1702 unsigned long duration
= jiffies
- start_time
;
1703 int cpu
= part_stat_lock();
1705 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1706 part_round_stats(cpu
, part
);
1707 part_dec_in_flight(part
, rw
);
1711 EXPORT_SYMBOL(generic_end_io_acct
);
1713 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1714 void bio_flush_dcache_pages(struct bio
*bi
)
1716 struct bio_vec bvec
;
1717 struct bvec_iter iter
;
1719 bio_for_each_segment(bvec
, bi
, iter
)
1720 flush_dcache_page(bvec
.bv_page
);
1722 EXPORT_SYMBOL(bio_flush_dcache_pages
);
1725 static inline bool bio_remaining_done(struct bio
*bio
)
1728 * If we're not chaining, then ->__bi_remaining is always 1 and
1729 * we always end io on the first invocation.
1731 if (!bio_flagged(bio
, BIO_CHAIN
))
1734 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1736 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1737 bio_clear_flag(bio
, BIO_CHAIN
);
1745 * bio_endio - end I/O on a bio
1749 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1750 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1751 * bio unless they own it and thus know that it has an end_io function.
1753 void bio_endio(struct bio
*bio
)
1756 if (unlikely(!bio_remaining_done(bio
)))
1760 * Need to have a real endio function for chained bios,
1761 * otherwise various corner cases will break (like stacking
1762 * block devices that save/restore bi_end_io) - however, we want
1763 * to avoid unbounded recursion and blowing the stack. Tail call
1764 * optimization would handle this, but compiling with frame
1765 * pointers also disables gcc's sibling call optimization.
1767 if (bio
->bi_end_io
== bio_chain_endio
) {
1768 struct bio
*parent
= bio
->bi_private
;
1769 parent
->bi_error
= bio
->bi_error
;
1774 bio
->bi_end_io(bio
);
1779 EXPORT_SYMBOL(bio_endio
);
1782 * bio_split - split a bio
1783 * @bio: bio to split
1784 * @sectors: number of sectors to split from the front of @bio
1786 * @bs: bio set to allocate from
1788 * Allocates and returns a new bio which represents @sectors from the start of
1789 * @bio, and updates @bio to represent the remaining sectors.
1791 * Unless this is a discard request the newly allocated bio will point
1792 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1793 * @bio is not freed before the split.
1795 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1796 gfp_t gfp
, struct bio_set
*bs
)
1798 struct bio
*split
= NULL
;
1800 BUG_ON(sectors
<= 0);
1801 BUG_ON(sectors
>= bio_sectors(bio
));
1804 * Discards need a mutable bio_vec to accommodate the payload
1805 * required by the DSM TRIM and UNMAP commands.
1807 if (bio
->bi_rw
& REQ_DISCARD
)
1808 split
= bio_clone_bioset(bio
, gfp
, bs
);
1810 split
= bio_clone_fast(bio
, gfp
, bs
);
1815 split
->bi_iter
.bi_size
= sectors
<< 9;
1817 if (bio_integrity(split
))
1818 bio_integrity_trim(split
, 0, sectors
);
1820 bio_advance(bio
, split
->bi_iter
.bi_size
);
1824 EXPORT_SYMBOL(bio_split
);
1827 * bio_trim - trim a bio
1829 * @offset: number of sectors to trim from the front of @bio
1830 * @size: size we want to trim @bio to, in sectors
1832 void bio_trim(struct bio
*bio
, int offset
, int size
)
1834 /* 'bio' is a cloned bio which we need to trim to match
1835 * the given offset and size.
1839 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1842 bio_clear_flag(bio
, BIO_SEG_VALID
);
1844 bio_advance(bio
, offset
<< 9);
1846 bio
->bi_iter
.bi_size
= size
;
1848 EXPORT_SYMBOL_GPL(bio_trim
);
1851 * create memory pools for biovec's in a bio_set.
1852 * use the global biovec slabs created for general use.
1854 mempool_t
*biovec_create_pool(int pool_entries
)
1856 struct biovec_slab
*bp
= bvec_slabs
+ BIOVEC_MAX_IDX
;
1858 return mempool_create_slab_pool(pool_entries
, bp
->slab
);
1861 void bioset_free(struct bio_set
*bs
)
1863 if (bs
->rescue_workqueue
)
1864 destroy_workqueue(bs
->rescue_workqueue
);
1867 mempool_destroy(bs
->bio_pool
);
1870 mempool_destroy(bs
->bvec_pool
);
1872 bioset_integrity_free(bs
);
1877 EXPORT_SYMBOL(bioset_free
);
1879 static struct bio_set
*__bioset_create(unsigned int pool_size
,
1880 unsigned int front_pad
,
1881 bool create_bvec_pool
)
1883 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1886 bs
= kzalloc(sizeof(*bs
), GFP_KERNEL
);
1890 bs
->front_pad
= front_pad
;
1892 spin_lock_init(&bs
->rescue_lock
);
1893 bio_list_init(&bs
->rescue_list
);
1894 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1896 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
1897 if (!bs
->bio_slab
) {
1902 bs
->bio_pool
= mempool_create_slab_pool(pool_size
, bs
->bio_slab
);
1906 if (create_bvec_pool
) {
1907 bs
->bvec_pool
= biovec_create_pool(pool_size
);
1912 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
1913 if (!bs
->rescue_workqueue
)
1923 * bioset_create - Create a bio_set
1924 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1925 * @front_pad: Number of bytes to allocate in front of the returned bio
1928 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1929 * to ask for a number of bytes to be allocated in front of the bio.
1930 * Front pad allocation is useful for embedding the bio inside
1931 * another structure, to avoid allocating extra data to go with the bio.
1932 * Note that the bio must be embedded at the END of that structure always,
1933 * or things will break badly.
1935 struct bio_set
*bioset_create(unsigned int pool_size
, unsigned int front_pad
)
1937 return __bioset_create(pool_size
, front_pad
, true);
1939 EXPORT_SYMBOL(bioset_create
);
1942 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1943 * @pool_size: Number of bio to cache in the mempool
1944 * @front_pad: Number of bytes to allocate in front of the returned bio
1947 * Same functionality as bioset_create() except that mempool is not
1948 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1950 struct bio_set
*bioset_create_nobvec(unsigned int pool_size
, unsigned int front_pad
)
1952 return __bioset_create(pool_size
, front_pad
, false);
1954 EXPORT_SYMBOL(bioset_create_nobvec
);
1956 #ifdef CONFIG_BLK_CGROUP
1959 * bio_associate_blkcg - associate a bio with the specified blkcg
1961 * @blkcg_css: css of the blkcg to associate
1963 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1964 * treat @bio as if it were issued by a task which belongs to the blkcg.
1966 * This function takes an extra reference of @blkcg_css which will be put
1967 * when @bio is released. The caller must own @bio and is responsible for
1968 * synchronizing calls to this function.
1970 int bio_associate_blkcg(struct bio
*bio
, struct cgroup_subsys_state
*blkcg_css
)
1972 if (unlikely(bio
->bi_css
))
1975 bio
->bi_css
= blkcg_css
;
1978 EXPORT_SYMBOL_GPL(bio_associate_blkcg
);
1981 * bio_associate_current - associate a bio with %current
1984 * Associate @bio with %current if it hasn't been associated yet. Block
1985 * layer will treat @bio as if it were issued by %current no matter which
1986 * task actually issues it.
1988 * This function takes an extra reference of @task's io_context and blkcg
1989 * which will be put when @bio is released. The caller must own @bio,
1990 * ensure %current->io_context exists, and is responsible for synchronizing
1991 * calls to this function.
1993 int bio_associate_current(struct bio
*bio
)
1995 struct io_context
*ioc
;
2000 ioc
= current
->io_context
;
2004 get_io_context_active(ioc
);
2006 bio
->bi_css
= task_get_css(current
, io_cgrp_id
);
2009 EXPORT_SYMBOL_GPL(bio_associate_current
);
2012 * bio_disassociate_task - undo bio_associate_current()
2015 void bio_disassociate_task(struct bio
*bio
)
2018 put_io_context(bio
->bi_ioc
);
2022 css_put(bio
->bi_css
);
2028 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2029 * @dst: destination bio
2032 void bio_clone_blkcg_association(struct bio
*dst
, struct bio
*src
)
2035 WARN_ON(bio_associate_blkcg(dst
, src
->bi_css
));
2038 #endif /* CONFIG_BLK_CGROUP */
2040 static void __init
biovec_init_slabs(void)
2044 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
2046 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2048 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2053 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2054 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2055 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2059 static int __init
init_bio(void)
2063 bio_slabs
= kzalloc(bio_slab_max
* sizeof(struct bio_slab
), GFP_KERNEL
);
2065 panic("bio: can't allocate bios\n");
2067 bio_integrity_init();
2068 biovec_init_slabs();
2070 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, 0);
2072 panic("bio: can't allocate bios\n");
2074 if (bioset_integrity_create(fs_bio_set
, BIO_POOL_SIZE
))
2075 panic("bio: can't create integrity pool\n");
2079 subsys_initcall(init_bio
);