USB: dwc2: Remove redundant license text
[linux/fpc-iii.git] / fs / btrfs / root-tree.c
blob95bcc3cce78f80e4096d470d97d41f7b6df89329
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/err.h>
20 #include <linux/uuid.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "print-tree.h"
27 * Read a root item from the tree. In case we detect a root item smaller then
28 * sizeof(root_item), we know it's an old version of the root structure and
29 * initialize all new fields to zero. The same happens if we detect mismatching
30 * generation numbers as then we know the root was once mounted with an older
31 * kernel that was not aware of the root item structure change.
33 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
34 struct btrfs_root_item *item)
36 uuid_le uuid;
37 int len;
38 int need_reset = 0;
40 len = btrfs_item_size_nr(eb, slot);
41 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
42 min_t(int, len, (int)sizeof(*item)));
43 if (len < sizeof(*item))
44 need_reset = 1;
45 if (!need_reset && btrfs_root_generation(item)
46 != btrfs_root_generation_v2(item)) {
47 if (btrfs_root_generation_v2(item) != 0) {
48 btrfs_warn(eb->fs_info,
49 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
51 need_reset = 1;
53 if (need_reset) {
54 memset(&item->generation_v2, 0,
55 sizeof(*item) - offsetof(struct btrfs_root_item,
56 generation_v2));
58 uuid_le_gen(&uuid);
59 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
64 * btrfs_find_root - lookup the root by the key.
65 * root: the root of the root tree
66 * search_key: the key to search
67 * path: the path we search
68 * root_item: the root item of the tree we look for
69 * root_key: the root key of the tree we look for
71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
72 * of the search key, just lookup the root with the highest offset for a
73 * given objectid.
75 * If we find something return 0, otherwise > 0, < 0 on error.
77 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
78 struct btrfs_path *path, struct btrfs_root_item *root_item,
79 struct btrfs_key *root_key)
81 struct btrfs_key found_key;
82 struct extent_buffer *l;
83 int ret;
84 int slot;
86 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
87 if (ret < 0)
88 return ret;
90 if (search_key->offset != -1ULL) { /* the search key is exact */
91 if (ret > 0)
92 goto out;
93 } else {
94 BUG_ON(ret == 0); /* Logical error */
95 if (path->slots[0] == 0)
96 goto out;
97 path->slots[0]--;
98 ret = 0;
101 l = path->nodes[0];
102 slot = path->slots[0];
104 btrfs_item_key_to_cpu(l, &found_key, slot);
105 if (found_key.objectid != search_key->objectid ||
106 found_key.type != BTRFS_ROOT_ITEM_KEY) {
107 ret = 1;
108 goto out;
111 if (root_item)
112 btrfs_read_root_item(l, slot, root_item);
113 if (root_key)
114 memcpy(root_key, &found_key, sizeof(found_key));
115 out:
116 btrfs_release_path(path);
117 return ret;
120 void btrfs_set_root_node(struct btrfs_root_item *item,
121 struct extent_buffer *node)
123 btrfs_set_root_bytenr(item, node->start);
124 btrfs_set_root_level(item, btrfs_header_level(node));
125 btrfs_set_root_generation(item, btrfs_header_generation(node));
129 * copy the data in 'item' into the btree
131 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
132 *root, struct btrfs_key *key, struct btrfs_root_item
133 *item)
135 struct btrfs_fs_info *fs_info = root->fs_info;
136 struct btrfs_path *path;
137 struct extent_buffer *l;
138 int ret;
139 int slot;
140 unsigned long ptr;
141 u32 old_len;
143 path = btrfs_alloc_path();
144 if (!path)
145 return -ENOMEM;
147 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
148 if (ret < 0) {
149 btrfs_abort_transaction(trans, ret);
150 goto out;
153 if (ret != 0) {
154 btrfs_print_leaf(path->nodes[0]);
155 btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
156 key->objectid, key->type, key->offset);
157 BUG_ON(1);
160 l = path->nodes[0];
161 slot = path->slots[0];
162 ptr = btrfs_item_ptr_offset(l, slot);
163 old_len = btrfs_item_size_nr(l, slot);
166 * If this is the first time we update the root item which originated
167 * from an older kernel, we need to enlarge the item size to make room
168 * for the added fields.
170 if (old_len < sizeof(*item)) {
171 btrfs_release_path(path);
172 ret = btrfs_search_slot(trans, root, key, path,
173 -1, 1);
174 if (ret < 0) {
175 btrfs_abort_transaction(trans, ret);
176 goto out;
179 ret = btrfs_del_item(trans, root, path);
180 if (ret < 0) {
181 btrfs_abort_transaction(trans, ret);
182 goto out;
184 btrfs_release_path(path);
185 ret = btrfs_insert_empty_item(trans, root, path,
186 key, sizeof(*item));
187 if (ret < 0) {
188 btrfs_abort_transaction(trans, ret);
189 goto out;
191 l = path->nodes[0];
192 slot = path->slots[0];
193 ptr = btrfs_item_ptr_offset(l, slot);
197 * Update generation_v2 so at the next mount we know the new root
198 * fields are valid.
200 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
202 write_extent_buffer(l, item, ptr, sizeof(*item));
203 btrfs_mark_buffer_dirty(path->nodes[0]);
204 out:
205 btrfs_free_path(path);
206 return ret;
209 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
210 const struct btrfs_key *key, struct btrfs_root_item *item)
213 * Make sure generation v1 and v2 match. See update_root for details.
215 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
216 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
219 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
221 struct btrfs_root *tree_root = fs_info->tree_root;
222 struct extent_buffer *leaf;
223 struct btrfs_path *path;
224 struct btrfs_key key;
225 struct btrfs_key root_key;
226 struct btrfs_root *root;
227 int err = 0;
228 int ret;
229 bool can_recover = true;
231 if (sb_rdonly(fs_info->sb))
232 can_recover = false;
234 path = btrfs_alloc_path();
235 if (!path)
236 return -ENOMEM;
238 key.objectid = BTRFS_ORPHAN_OBJECTID;
239 key.type = BTRFS_ORPHAN_ITEM_KEY;
240 key.offset = 0;
242 root_key.type = BTRFS_ROOT_ITEM_KEY;
243 root_key.offset = (u64)-1;
245 while (1) {
246 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
247 if (ret < 0) {
248 err = ret;
249 break;
252 leaf = path->nodes[0];
253 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
254 ret = btrfs_next_leaf(tree_root, path);
255 if (ret < 0)
256 err = ret;
257 if (ret != 0)
258 break;
259 leaf = path->nodes[0];
262 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
263 btrfs_release_path(path);
265 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
266 key.type != BTRFS_ORPHAN_ITEM_KEY)
267 break;
269 root_key.objectid = key.offset;
270 key.offset++;
273 * The root might have been inserted already, as before we look
274 * for orphan roots, log replay might have happened, which
275 * triggers a transaction commit and qgroup accounting, which
276 * in turn reads and inserts fs roots while doing backref
277 * walking.
279 root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
280 if (root) {
281 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
282 &root->state));
283 if (btrfs_root_refs(&root->root_item) == 0)
284 btrfs_add_dead_root(root);
285 continue;
288 root = btrfs_read_fs_root(tree_root, &root_key);
289 err = PTR_ERR_OR_ZERO(root);
290 if (err && err != -ENOENT) {
291 break;
292 } else if (err == -ENOENT) {
293 struct btrfs_trans_handle *trans;
295 btrfs_release_path(path);
297 trans = btrfs_join_transaction(tree_root);
298 if (IS_ERR(trans)) {
299 err = PTR_ERR(trans);
300 btrfs_handle_fs_error(fs_info, err,
301 "Failed to start trans to delete orphan item");
302 break;
304 err = btrfs_del_orphan_item(trans, tree_root,
305 root_key.objectid);
306 btrfs_end_transaction(trans);
307 if (err) {
308 btrfs_handle_fs_error(fs_info, err,
309 "Failed to delete root orphan item");
310 break;
312 continue;
315 err = btrfs_init_fs_root(root);
316 if (err) {
317 btrfs_free_fs_root(root);
318 break;
321 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
323 err = btrfs_insert_fs_root(fs_info, root);
324 if (err) {
325 BUG_ON(err == -EEXIST);
326 btrfs_free_fs_root(root);
327 break;
330 if (btrfs_root_refs(&root->root_item) == 0)
331 btrfs_add_dead_root(root);
334 btrfs_free_path(path);
335 return err;
338 /* drop the root item for 'key' from the tree root */
339 int btrfs_del_root(struct btrfs_trans_handle *trans,
340 struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
342 struct btrfs_root *root = fs_info->tree_root;
343 struct btrfs_path *path;
344 int ret;
346 path = btrfs_alloc_path();
347 if (!path)
348 return -ENOMEM;
349 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
350 if (ret < 0)
351 goto out;
353 BUG_ON(ret != 0);
355 ret = btrfs_del_item(trans, root, path);
356 out:
357 btrfs_free_path(path);
358 return ret;
361 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
362 struct btrfs_fs_info *fs_info,
363 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
364 const char *name, int name_len)
367 struct btrfs_root *tree_root = fs_info->tree_root;
368 struct btrfs_path *path;
369 struct btrfs_root_ref *ref;
370 struct extent_buffer *leaf;
371 struct btrfs_key key;
372 unsigned long ptr;
373 int err = 0;
374 int ret;
376 path = btrfs_alloc_path();
377 if (!path)
378 return -ENOMEM;
380 key.objectid = root_id;
381 key.type = BTRFS_ROOT_BACKREF_KEY;
382 key.offset = ref_id;
383 again:
384 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
385 BUG_ON(ret < 0);
386 if (ret == 0) {
387 leaf = path->nodes[0];
388 ref = btrfs_item_ptr(leaf, path->slots[0],
389 struct btrfs_root_ref);
391 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
392 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
393 ptr = (unsigned long)(ref + 1);
394 ret = btrfs_is_name_len_valid(leaf, path->slots[0], ptr,
395 name_len);
396 if (!ret) {
397 err = -EIO;
398 goto out;
401 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
402 *sequence = btrfs_root_ref_sequence(leaf, ref);
404 ret = btrfs_del_item(trans, tree_root, path);
405 if (ret) {
406 err = ret;
407 goto out;
409 } else
410 err = -ENOENT;
412 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
413 btrfs_release_path(path);
414 key.objectid = ref_id;
415 key.type = BTRFS_ROOT_REF_KEY;
416 key.offset = root_id;
417 goto again;
420 out:
421 btrfs_free_path(path);
422 return err;
426 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
427 * or BTRFS_ROOT_BACKREF_KEY.
429 * The dirid, sequence, name and name_len refer to the directory entry
430 * that is referencing the root.
432 * For a forward ref, the root_id is the id of the tree referencing
433 * the root and ref_id is the id of the subvol or snapshot.
435 * For a back ref the root_id is the id of the subvol or snapshot and
436 * ref_id is the id of the tree referencing it.
438 * Will return 0, -ENOMEM, or anything from the CoW path
440 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
441 struct btrfs_fs_info *fs_info,
442 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
443 const char *name, int name_len)
445 struct btrfs_root *tree_root = fs_info->tree_root;
446 struct btrfs_key key;
447 int ret;
448 struct btrfs_path *path;
449 struct btrfs_root_ref *ref;
450 struct extent_buffer *leaf;
451 unsigned long ptr;
453 path = btrfs_alloc_path();
454 if (!path)
455 return -ENOMEM;
457 key.objectid = root_id;
458 key.type = BTRFS_ROOT_BACKREF_KEY;
459 key.offset = ref_id;
460 again:
461 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
462 sizeof(*ref) + name_len);
463 if (ret) {
464 btrfs_abort_transaction(trans, ret);
465 btrfs_free_path(path);
466 return ret;
469 leaf = path->nodes[0];
470 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
471 btrfs_set_root_ref_dirid(leaf, ref, dirid);
472 btrfs_set_root_ref_sequence(leaf, ref, sequence);
473 btrfs_set_root_ref_name_len(leaf, ref, name_len);
474 ptr = (unsigned long)(ref + 1);
475 write_extent_buffer(leaf, name, ptr, name_len);
476 btrfs_mark_buffer_dirty(leaf);
478 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
479 btrfs_release_path(path);
480 key.objectid = ref_id;
481 key.type = BTRFS_ROOT_REF_KEY;
482 key.offset = root_id;
483 goto again;
486 btrfs_free_path(path);
487 return 0;
491 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
492 * for subvolumes. To work around this problem, we steal a bit from
493 * root_item->inode_item->flags, and use it to indicate if those fields
494 * have been properly initialized.
496 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
498 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
500 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
501 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
502 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
503 btrfs_set_root_flags(root_item, 0);
504 btrfs_set_root_limit(root_item, 0);
508 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
509 struct btrfs_root *root)
511 struct btrfs_root_item *item = &root->root_item;
512 struct timespec ct;
514 ktime_get_real_ts(&ct);
515 spin_lock(&root->root_item_lock);
516 btrfs_set_root_ctransid(item, trans->transid);
517 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
518 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
519 spin_unlock(&root->root_item_lock);