Linux 3.16.62
[linux/fpc-iii.git] / mm / huge_memory.c
blob49811050047929c8f3e50f461d0246f7b6111d3a
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74 static struct kmem_cache *mm_slot_cache __read_mostly;
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106 static int set_recommended_min_free_kbytes(void)
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
112 if (!khugepaged_enabled())
113 return 0;
115 for_each_populated_zone(zone)
116 nr_zones++;
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
141 min_free_kbytes = recommended_min;
143 setup_per_zone_wmarks();
144 return 0;
146 late_initcall(set_recommended_min_free_kbytes);
148 static int start_khugepaged(void)
150 int err = 0;
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
170 return err;
173 static atomic_t huge_zero_refcount;
174 static struct page *huge_zero_page __read_mostly;
176 static inline bool is_huge_zero_page(struct page *page)
178 return ACCESS_ONCE(huge_zero_page) == page;
181 static inline bool is_huge_zero_pmd(pmd_t pmd)
183 return is_huge_zero_page(pmd_page(pmd));
186 static struct page *get_huge_zero_page(void)
188 struct page *zero_page;
189 retry:
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
191 return ACCESS_ONCE(huge_zero_page);
193 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
194 HPAGE_PMD_ORDER);
195 if (!zero_page) {
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
197 return NULL;
199 count_vm_event(THP_ZERO_PAGE_ALLOC);
200 preempt_disable();
201 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
202 preempt_enable();
203 __free_pages(zero_page, compound_order(zero_page));
204 goto retry;
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount, 2);
209 preempt_enable();
210 return ACCESS_ONCE(huge_zero_page);
213 static void put_huge_zero_page(void)
216 * Counter should never go to zero here. Only shrinker can put
217 * last reference.
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
222 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 struct shrink_control *sc)
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 struct shrink_control *sc)
232 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
233 struct page *zero_page = xchg(&huge_zero_page, NULL);
234 BUG_ON(zero_page == NULL);
235 __free_pages(zero_page, compound_order(zero_page));
236 return HPAGE_PMD_NR;
239 return 0;
242 static struct shrinker huge_zero_page_shrinker = {
243 .count_objects = shrink_huge_zero_page_count,
244 .scan_objects = shrink_huge_zero_page_scan,
245 .seeks = DEFAULT_SEEKS,
248 #ifdef CONFIG_SYSFS
250 static ssize_t double_flag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf,
252 enum transparent_hugepage_flag enabled,
253 enum transparent_hugepage_flag req_madv)
255 if (test_bit(enabled, &transparent_hugepage_flags)) {
256 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 return sprintf(buf, "[always] madvise never\n");
258 } else if (test_bit(req_madv, &transparent_hugepage_flags))
259 return sprintf(buf, "always [madvise] never\n");
260 else
261 return sprintf(buf, "always madvise [never]\n");
263 static ssize_t double_flag_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count,
266 enum transparent_hugepage_flag enabled,
267 enum transparent_hugepage_flag req_madv)
269 if (!memcmp("always", buf,
270 min(sizeof("always")-1, count))) {
271 set_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else if (!memcmp("madvise", buf,
274 min(sizeof("madvise")-1, count))) {
275 clear_bit(enabled, &transparent_hugepage_flags);
276 set_bit(req_madv, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(enabled, &transparent_hugepage_flags);
280 clear_bit(req_madv, &transparent_hugepage_flags);
281 } else
282 return -EINVAL;
284 return count;
287 static ssize_t enabled_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
290 return double_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
294 static ssize_t enabled_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
298 ssize_t ret;
300 ret = double_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_FLAG,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
304 if (ret > 0) {
305 int err;
307 mutex_lock(&khugepaged_mutex);
308 err = start_khugepaged();
309 mutex_unlock(&khugepaged_mutex);
311 if (err)
312 ret = err;
315 return ret;
317 static struct kobj_attribute enabled_attr =
318 __ATTR(enabled, 0644, enabled_show, enabled_store);
320 static ssize_t single_flag_show(struct kobject *kobj,
321 struct kobj_attribute *attr, char *buf,
322 enum transparent_hugepage_flag flag)
324 return sprintf(buf, "%d\n",
325 !!test_bit(flag, &transparent_hugepage_flags));
328 static ssize_t single_flag_store(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 const char *buf, size_t count,
331 enum transparent_hugepage_flag flag)
333 unsigned long value;
334 int ret;
336 ret = kstrtoul(buf, 10, &value);
337 if (ret < 0)
338 return ret;
339 if (value > 1)
340 return -EINVAL;
342 if (value)
343 set_bit(flag, &transparent_hugepage_flags);
344 else
345 clear_bit(flag, &transparent_hugepage_flags);
347 return count;
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
355 static ssize_t defrag_show(struct kobject *kobj,
356 struct kobj_attribute *attr, char *buf)
358 return double_flag_show(kobj, attr, buf,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 static ssize_t defrag_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
366 return double_flag_store(kobj, attr, buf, count,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
370 static struct kobj_attribute defrag_attr =
371 __ATTR(defrag, 0644, defrag_show, defrag_store);
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
376 return single_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 struct kobj_attribute *attr, const char *buf, size_t count)
382 return single_flag_store(kobj, attr, buf, count,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
385 static struct kobj_attribute use_zero_page_attr =
386 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t debug_cow_show(struct kobject *kobj,
389 struct kobj_attribute *attr, char *buf)
391 return single_flag_show(kobj, attr, buf,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394 static ssize_t debug_cow_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
398 return single_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
401 static struct kobj_attribute debug_cow_attr =
402 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403 #endif /* CONFIG_DEBUG_VM */
405 static struct attribute *hugepage_attr[] = {
406 &enabled_attr.attr,
407 &defrag_attr.attr,
408 &use_zero_page_attr.attr,
409 #ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr.attr,
411 #endif
412 NULL,
415 static struct attribute_group hugepage_attr_group = {
416 .attrs = hugepage_attr,
419 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 char *buf)
423 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
426 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
430 unsigned long msecs;
431 int err;
433 err = kstrtoul(buf, 10, &msecs);
434 if (err || msecs > UINT_MAX)
435 return -EINVAL;
437 khugepaged_scan_sleep_millisecs = msecs;
438 wake_up_interruptible(&khugepaged_wait);
440 return count;
442 static struct kobj_attribute scan_sleep_millisecs_attr =
443 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 scan_sleep_millisecs_store);
446 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 char *buf)
450 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
453 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 struct kobj_attribute *attr,
455 const char *buf, size_t count)
457 unsigned long msecs;
458 int err;
460 err = kstrtoul(buf, 10, &msecs);
461 if (err || msecs > UINT_MAX)
462 return -EINVAL;
464 khugepaged_alloc_sleep_millisecs = msecs;
465 wake_up_interruptible(&khugepaged_wait);
467 return count;
469 static struct kobj_attribute alloc_sleep_millisecs_attr =
470 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 alloc_sleep_millisecs_store);
473 static ssize_t pages_to_scan_show(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 char *buf)
477 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
479 static ssize_t pages_to_scan_store(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 const char *buf, size_t count)
483 int err;
484 unsigned long pages;
486 err = kstrtoul(buf, 10, &pages);
487 if (err || !pages || pages > UINT_MAX)
488 return -EINVAL;
490 khugepaged_pages_to_scan = pages;
492 return count;
494 static struct kobj_attribute pages_to_scan_attr =
495 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 pages_to_scan_store);
498 static ssize_t pages_collapsed_show(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 char *buf)
502 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
504 static struct kobj_attribute pages_collapsed_attr =
505 __ATTR_RO(pages_collapsed);
507 static ssize_t full_scans_show(struct kobject *kobj,
508 struct kobj_attribute *attr,
509 char *buf)
511 return sprintf(buf, "%u\n", khugepaged_full_scans);
513 static struct kobj_attribute full_scans_attr =
514 __ATTR_RO(full_scans);
516 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 struct kobj_attribute *attr, char *buf)
519 return single_flag_show(kobj, attr, buf,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 struct kobj_attribute *attr,
524 const char *buf, size_t count)
526 return single_flag_store(kobj, attr, buf, count,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
529 static struct kobj_attribute khugepaged_defrag_attr =
530 __ATTR(defrag, 0644, khugepaged_defrag_show,
531 khugepaged_defrag_store);
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
541 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 char *buf)
545 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
547 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 struct kobj_attribute *attr,
549 const char *buf, size_t count)
551 int err;
552 unsigned long max_ptes_none;
554 err = kstrtoul(buf, 10, &max_ptes_none);
555 if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 return -EINVAL;
558 khugepaged_max_ptes_none = max_ptes_none;
560 return count;
562 static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 khugepaged_max_ptes_none_store);
566 static struct attribute *khugepaged_attr[] = {
567 &khugepaged_defrag_attr.attr,
568 &khugepaged_max_ptes_none_attr.attr,
569 &pages_to_scan_attr.attr,
570 &pages_collapsed_attr.attr,
571 &full_scans_attr.attr,
572 &scan_sleep_millisecs_attr.attr,
573 &alloc_sleep_millisecs_attr.attr,
574 NULL,
577 static struct attribute_group khugepaged_attr_group = {
578 .attrs = khugepaged_attr,
579 .name = "khugepaged",
582 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
584 int err;
586 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 if (unlikely(!*hugepage_kobj)) {
588 pr_err("failed to create transparent hugepage kobject\n");
589 return -ENOMEM;
592 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
593 if (err) {
594 pr_err("failed to register transparent hugepage group\n");
595 goto delete_obj;
598 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
599 if (err) {
600 pr_err("failed to register transparent hugepage group\n");
601 goto remove_hp_group;
604 return 0;
606 remove_hp_group:
607 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608 delete_obj:
609 kobject_put(*hugepage_kobj);
610 return err;
613 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
615 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 kobject_put(hugepage_kobj);
619 #else
620 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
622 return 0;
625 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
628 #endif /* CONFIG_SYSFS */
630 static int __init hugepage_init(void)
632 int err;
633 struct kobject *hugepage_kobj;
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags = 0;
637 return -EINVAL;
640 err = hugepage_init_sysfs(&hugepage_kobj);
641 if (err)
642 return err;
644 err = khugepaged_slab_init();
645 if (err)
646 goto out;
648 register_shrinker(&huge_zero_page_shrinker);
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
655 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 transparent_hugepage_flags = 0;
658 start_khugepaged();
660 return 0;
661 out:
662 hugepage_exit_sysfs(hugepage_kobj);
663 return err;
665 subsys_initcall(hugepage_init);
667 static int __init setup_transparent_hugepage(char *str)
669 int ret = 0;
670 if (!str)
671 goto out;
672 if (!strcmp(str, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
691 out:
692 if (!ret)
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 return ret;
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
718 pgtable_t pgtable;
719 spinlock_t *ptl;
721 VM_BUG_ON_PAGE(!PageCompound(page), page);
722 pgtable = pte_alloc_one(mm, haddr);
723 if (unlikely(!pgtable))
724 return VM_FAULT_OOM;
726 clear_huge_page(page, haddr, HPAGE_PMD_NR);
728 * The memory barrier inside __SetPageUptodate makes sure that
729 * clear_huge_page writes become visible before the set_pmd_at()
730 * write.
732 __SetPageUptodate(page);
734 ptl = pmd_lock(mm, pmd);
735 if (unlikely(!pmd_none(*pmd))) {
736 spin_unlock(ptl);
737 mem_cgroup_uncharge_page(page);
738 put_page(page);
739 pte_free(mm, pgtable);
740 } else {
741 pmd_t entry;
742 entry = mk_huge_pmd(page, vma->vm_page_prot);
743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 page_add_new_anon_rmap(page, vma, haddr);
745 pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 set_pmd_at(mm, haddr, pmd, entry);
747 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 atomic_long_inc(&mm->nr_ptes);
749 spin_unlock(ptl);
752 return 0;
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
757 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 struct vm_area_struct *vma,
762 unsigned long haddr, int nd,
763 gfp_t extra_gfp)
765 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 HPAGE_PMD_ORDER, vma, haddr, nd);
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 struct page *zero_page)
774 pmd_t entry;
775 if (!pmd_none(*pmd))
776 return false;
777 entry = mk_pmd(zero_page, vma->vm_page_prot);
778 entry = pmd_wrprotect(entry);
779 entry = pmd_mkhuge(entry);
780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 set_pmd_at(mm, haddr, pmd, entry);
782 atomic_long_inc(&mm->nr_ptes);
783 return true;
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 unsigned long address, pmd_t *pmd,
788 unsigned int flags)
790 struct page *page;
791 unsigned long haddr = address & HPAGE_PMD_MASK;
793 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 return VM_FAULT_FALLBACK;
795 if (unlikely(anon_vma_prepare(vma)))
796 return VM_FAULT_OOM;
797 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
798 return VM_FAULT_OOM;
799 if (!(flags & FAULT_FLAG_WRITE) &&
800 transparent_hugepage_use_zero_page()) {
801 spinlock_t *ptl;
802 pgtable_t pgtable;
803 struct page *zero_page;
804 bool set;
805 pgtable = pte_alloc_one(mm, haddr);
806 if (unlikely(!pgtable))
807 return VM_FAULT_OOM;
808 zero_page = get_huge_zero_page();
809 if (unlikely(!zero_page)) {
810 pte_free(mm, pgtable);
811 count_vm_event(THP_FAULT_FALLBACK);
812 return VM_FAULT_FALLBACK;
814 ptl = pmd_lock(mm, pmd);
815 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 zero_page);
817 spin_unlock(ptl);
818 if (!set) {
819 pte_free(mm, pgtable);
820 put_huge_zero_page();
822 return 0;
824 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 vma, haddr, numa_node_id(), 0);
826 if (unlikely(!page)) {
827 count_vm_event(THP_FAULT_FALLBACK);
828 return VM_FAULT_FALLBACK;
830 if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
835 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 mem_cgroup_uncharge_page(page);
837 put_page(page);
838 count_vm_event(THP_FAULT_FALLBACK);
839 return VM_FAULT_FALLBACK;
842 count_vm_event(THP_FAULT_ALLOC);
843 return 0;
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 struct vm_area_struct *vma)
850 spinlock_t *dst_ptl, *src_ptl;
851 struct page *src_page;
852 pmd_t pmd;
853 pgtable_t pgtable;
854 int ret;
856 ret = -ENOMEM;
857 pgtable = pte_alloc_one(dst_mm, addr);
858 if (unlikely(!pgtable))
859 goto out;
861 dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 src_ptl = pmd_lockptr(src_mm, src_pmd);
863 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
865 ret = -EAGAIN;
866 pmd = *src_pmd;
867 if (unlikely(!pmd_trans_huge(pmd))) {
868 pte_free(dst_mm, pgtable);
869 goto out_unlock;
872 * When page table lock is held, the huge zero pmd should not be
873 * under splitting since we don't split the page itself, only pmd to
874 * a page table.
876 if (is_huge_zero_pmd(pmd)) {
877 struct page *zero_page;
878 bool set;
880 * get_huge_zero_page() will never allocate a new page here,
881 * since we already have a zero page to copy. It just takes a
882 * reference.
884 zero_page = get_huge_zero_page();
885 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 zero_page);
887 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 ret = 0;
889 goto out_unlock;
892 if (unlikely(pmd_trans_splitting(pmd))) {
893 /* split huge page running from under us */
894 spin_unlock(src_ptl);
895 spin_unlock(dst_ptl);
896 pte_free(dst_mm, pgtable);
898 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 goto out;
901 src_page = pmd_page(pmd);
902 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 get_page(src_page);
904 page_dup_rmap(src_page);
905 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
907 pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 pmd = pmd_mkold(pmd_wrprotect(pmd));
909 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 atomic_long_inc(&dst_mm->nr_ptes);
913 ret = 0;
914 out_unlock:
915 spin_unlock(src_ptl);
916 spin_unlock(dst_ptl);
917 out:
918 return ret;
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 struct vm_area_struct *vma,
923 unsigned long address,
924 pmd_t *pmd, pmd_t orig_pmd,
925 int dirty)
927 spinlock_t *ptl;
928 pmd_t entry;
929 unsigned long haddr;
931 ptl = pmd_lock(mm, pmd);
932 if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 goto unlock;
935 entry = pmd_mkyoung(orig_pmd);
936 haddr = address & HPAGE_PMD_MASK;
937 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 update_mmu_cache_pmd(vma, address, pmd);
940 unlock:
941 spin_unlock(ptl);
945 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
946 * during copy_user_huge_page()'s copy_page_rep(): in the case when
947 * the source page gets split and a tail freed before copy completes.
948 * Called under pmd_lock of checked pmd, so safe from splitting itself.
950 static void get_user_huge_page(struct page *page)
952 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
953 struct page *endpage = page + HPAGE_PMD_NR;
955 atomic_add(HPAGE_PMD_NR, &page->_count);
956 while (++page < endpage)
957 get_huge_page_tail(page);
958 } else {
959 get_page(page);
963 static void put_user_huge_page(struct page *page)
965 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
966 struct page *endpage = page + HPAGE_PMD_NR;
968 while (page < endpage)
969 put_page(page++);
970 } else {
971 put_page(page);
975 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
976 struct vm_area_struct *vma,
977 unsigned long address,
978 pmd_t *pmd, pmd_t orig_pmd,
979 struct page *page,
980 unsigned long haddr)
982 spinlock_t *ptl;
983 pgtable_t pgtable;
984 pmd_t _pmd;
985 int ret = 0, i;
986 struct page **pages;
987 unsigned long mmun_start; /* For mmu_notifiers */
988 unsigned long mmun_end; /* For mmu_notifiers */
990 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
991 GFP_KERNEL);
992 if (unlikely(!pages)) {
993 ret |= VM_FAULT_OOM;
994 goto out;
997 for (i = 0; i < HPAGE_PMD_NR; i++) {
998 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
999 __GFP_OTHER_NODE,
1000 vma, address, page_to_nid(page));
1001 if (unlikely(!pages[i] ||
1002 mem_cgroup_charge_anon(pages[i], mm,
1003 GFP_KERNEL))) {
1004 if (pages[i])
1005 put_page(pages[i]);
1006 mem_cgroup_uncharge_start();
1007 while (--i >= 0) {
1008 mem_cgroup_uncharge_page(pages[i]);
1009 put_page(pages[i]);
1011 mem_cgroup_uncharge_end();
1012 kfree(pages);
1013 ret |= VM_FAULT_OOM;
1014 goto out;
1018 for (i = 0; i < HPAGE_PMD_NR; i++) {
1019 copy_user_highpage(pages[i], page + i,
1020 haddr + PAGE_SIZE * i, vma);
1021 __SetPageUptodate(pages[i]);
1022 cond_resched();
1025 mmun_start = haddr;
1026 mmun_end = haddr + HPAGE_PMD_SIZE;
1027 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1029 ptl = pmd_lock(mm, pmd);
1030 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1031 goto out_free_pages;
1032 VM_BUG_ON_PAGE(!PageHead(page), page);
1034 pmdp_clear_flush(vma, haddr, pmd);
1035 /* leave pmd empty until pte is filled */
1037 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1038 pmd_populate(mm, &_pmd, pgtable);
1040 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1041 pte_t *pte, entry;
1042 entry = mk_pte(pages[i], vma->vm_page_prot);
1043 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1044 page_add_new_anon_rmap(pages[i], vma, haddr);
1045 pte = pte_offset_map(&_pmd, haddr);
1046 VM_BUG_ON(!pte_none(*pte));
1047 set_pte_at(mm, haddr, pte, entry);
1048 pte_unmap(pte);
1050 kfree(pages);
1052 smp_wmb(); /* make pte visible before pmd */
1053 pmd_populate(mm, pmd, pgtable);
1054 page_remove_rmap(page);
1055 spin_unlock(ptl);
1057 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1059 ret |= VM_FAULT_WRITE;
1060 put_page(page);
1062 out:
1063 return ret;
1065 out_free_pages:
1066 spin_unlock(ptl);
1067 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1068 mem_cgroup_uncharge_start();
1069 for (i = 0; i < HPAGE_PMD_NR; i++) {
1070 mem_cgroup_uncharge_page(pages[i]);
1071 put_page(pages[i]);
1073 mem_cgroup_uncharge_end();
1074 kfree(pages);
1075 goto out;
1078 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1079 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1081 spinlock_t *ptl;
1082 int ret = 0;
1083 struct page *page = NULL, *new_page;
1084 unsigned long haddr;
1085 unsigned long mmun_start; /* For mmu_notifiers */
1086 unsigned long mmun_end; /* For mmu_notifiers */
1088 ptl = pmd_lockptr(mm, pmd);
1089 VM_BUG_ON(!vma->anon_vma);
1090 haddr = address & HPAGE_PMD_MASK;
1091 if (is_huge_zero_pmd(orig_pmd))
1092 goto alloc;
1093 spin_lock(ptl);
1094 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1095 goto out_unlock;
1097 page = pmd_page(orig_pmd);
1098 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1099 if (page_mapcount(page) == 1) {
1100 pmd_t entry;
1101 entry = pmd_mkyoung(orig_pmd);
1102 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1103 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1104 update_mmu_cache_pmd(vma, address, pmd);
1105 ret |= VM_FAULT_WRITE;
1106 goto out_unlock;
1108 get_user_huge_page(page);
1109 spin_unlock(ptl);
1110 alloc:
1111 if (transparent_hugepage_enabled(vma) &&
1112 !transparent_hugepage_debug_cow())
1113 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1114 vma, haddr, numa_node_id(), 0);
1115 else
1116 new_page = NULL;
1118 if (unlikely(!new_page)) {
1119 if (!page) {
1120 split_huge_page_pmd(vma, address, pmd);
1121 ret |= VM_FAULT_FALLBACK;
1122 } else {
1123 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1124 pmd, orig_pmd, page, haddr);
1125 if (ret & VM_FAULT_OOM) {
1126 split_huge_page(page);
1127 ret |= VM_FAULT_FALLBACK;
1129 put_user_huge_page(page);
1131 count_vm_event(THP_FAULT_FALLBACK);
1132 goto out;
1135 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1136 put_page(new_page);
1137 if (page) {
1138 split_huge_page(page);
1139 put_user_huge_page(page);
1140 } else
1141 split_huge_page_pmd(vma, address, pmd);
1142 ret |= VM_FAULT_FALLBACK;
1143 count_vm_event(THP_FAULT_FALLBACK);
1144 goto out;
1147 count_vm_event(THP_FAULT_ALLOC);
1149 if (!page)
1150 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1151 else
1152 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1153 __SetPageUptodate(new_page);
1155 mmun_start = haddr;
1156 mmun_end = haddr + HPAGE_PMD_SIZE;
1157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1159 spin_lock(ptl);
1160 if (page)
1161 put_user_huge_page(page);
1162 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1163 spin_unlock(ptl);
1164 mem_cgroup_uncharge_page(new_page);
1165 put_page(new_page);
1166 goto out_mn;
1167 } else {
1168 pmd_t entry;
1169 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1170 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1171 pmdp_clear_flush(vma, haddr, pmd);
1172 page_add_new_anon_rmap(new_page, vma, haddr);
1173 set_pmd_at(mm, haddr, pmd, entry);
1174 update_mmu_cache_pmd(vma, address, pmd);
1175 if (!page) {
1176 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1177 put_huge_zero_page();
1178 } else {
1179 VM_BUG_ON_PAGE(!PageHead(page), page);
1180 page_remove_rmap(page);
1181 put_page(page);
1183 ret |= VM_FAULT_WRITE;
1185 spin_unlock(ptl);
1186 out_mn:
1187 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1188 out:
1189 return ret;
1190 out_unlock:
1191 spin_unlock(ptl);
1192 return ret;
1196 * FOLL_FORCE can write to even unwritable pmd's, but only
1197 * after we've gone through a COW cycle and they are dirty.
1199 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1200 unsigned int flags)
1202 return pmd_write(pmd) ||
1203 ((flags & FOLL_FORCE) && (flags & FOLL_COW) &&
1204 page && PageAnon(page));
1207 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1208 unsigned long addr,
1209 pmd_t *pmd,
1210 unsigned int flags)
1212 struct mm_struct *mm = vma->vm_mm;
1213 struct page *page = NULL;
1215 assert_spin_locked(pmd_lockptr(mm, pmd));
1217 /* Avoid dumping huge zero page */
1218 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1219 return ERR_PTR(-EFAULT);
1221 /* Full NUMA hinting faults to serialise migration in fault paths */
1222 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1223 goto out;
1225 page = pmd_page(*pmd);
1226 VM_BUG_ON_PAGE(!PageHead(page), page);
1228 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, page, flags))
1229 return NULL;
1231 if (flags & FOLL_TOUCH) {
1232 pmd_t _pmd;
1233 _pmd = pmd_mkyoung(*pmd);
1234 if (flags & FOLL_WRITE)
1235 _pmd = pmd_mkdirty(_pmd);
1236 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1237 pmd, _pmd, flags & FOLL_WRITE))
1238 update_mmu_cache_pmd(vma, addr, pmd);
1240 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1241 if (page->mapping && trylock_page(page)) {
1242 lru_add_drain();
1243 if (page->mapping)
1244 mlock_vma_page(page);
1245 unlock_page(page);
1248 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1249 VM_BUG_ON_PAGE(!PageCompound(page), page);
1250 if (flags & FOLL_GET)
1251 get_page_foll(page);
1253 out:
1254 return page;
1257 /* NUMA hinting page fault entry point for trans huge pmds */
1258 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1259 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1261 spinlock_t *ptl;
1262 struct anon_vma *anon_vma = NULL;
1263 struct page *page;
1264 unsigned long haddr = addr & HPAGE_PMD_MASK;
1265 int page_nid = -1, this_nid = numa_node_id();
1266 int target_nid, last_cpupid = -1;
1267 bool page_locked;
1268 bool migrated = false;
1269 int flags = 0;
1271 ptl = pmd_lock(mm, pmdp);
1272 if (unlikely(!pmd_same(pmd, *pmdp)))
1273 goto out_unlock;
1276 * If there are potential migrations, wait for completion and retry
1277 * without disrupting NUMA hinting information. Do not relock and
1278 * check_same as the page may no longer be mapped.
1280 if (unlikely(pmd_trans_migrating(*pmdp))) {
1281 page = pmd_page(pmd);
1282 if (!get_page_unless_zero(page))
1283 goto out_unlock;
1284 spin_unlock(ptl);
1285 wait_migrate_huge_page(vma->anon_vma, pmdp);
1286 put_page(page);
1287 goto out;
1290 page = pmd_page(pmd);
1291 BUG_ON(is_huge_zero_page(page));
1292 page_nid = page_to_nid(page);
1293 last_cpupid = page_cpupid_last(page);
1294 count_vm_numa_event(NUMA_HINT_FAULTS);
1295 if (page_nid == this_nid) {
1296 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1297 flags |= TNF_FAULT_LOCAL;
1301 * Avoid grouping on DSO/COW pages in specific and RO pages
1302 * in general, RO pages shouldn't hurt as much anyway since
1303 * they can be in shared cache state.
1305 if (!pmd_write(pmd))
1306 flags |= TNF_NO_GROUP;
1309 * Acquire the page lock to serialise THP migrations but avoid dropping
1310 * page_table_lock if at all possible
1312 page_locked = trylock_page(page);
1313 target_nid = mpol_misplaced(page, vma, haddr);
1314 if (target_nid == -1) {
1315 /* If the page was locked, there are no parallel migrations */
1316 if (page_locked)
1317 goto clear_pmdnuma;
1320 /* Migration could have started since the pmd_trans_migrating check */
1321 if (!page_locked) {
1322 page_nid = -1;
1323 if (!get_page_unless_zero(page))
1324 goto out_unlock;
1325 spin_unlock(ptl);
1326 wait_on_page_locked(page);
1327 put_page(page);
1328 goto out;
1332 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1333 * to serialises splits
1335 get_page(page);
1336 spin_unlock(ptl);
1337 anon_vma = page_lock_anon_vma_read(page);
1339 /* Confirm the PMD did not change while page_table_lock was released */
1340 spin_lock(ptl);
1341 if (unlikely(!pmd_same(pmd, *pmdp))) {
1342 unlock_page(page);
1343 put_page(page);
1344 page_nid = -1;
1345 goto out_unlock;
1348 /* Bail if we fail to protect against THP splits for any reason */
1349 if (unlikely(!anon_vma)) {
1350 put_page(page);
1351 page_nid = -1;
1352 goto clear_pmdnuma;
1356 * Migrate the THP to the requested node, returns with page unlocked
1357 * and pmd_numa cleared.
1359 spin_unlock(ptl);
1360 migrated = migrate_misplaced_transhuge_page(mm, vma,
1361 pmdp, pmd, addr, page, target_nid);
1362 if (migrated) {
1363 flags |= TNF_MIGRATED;
1364 page_nid = target_nid;
1367 goto out;
1368 clear_pmdnuma:
1369 BUG_ON(!PageLocked(page));
1370 pmd = pmd_mknonnuma(pmd);
1371 set_pmd_at(mm, haddr, pmdp, pmd);
1372 VM_BUG_ON(pmd_numa(*pmdp));
1373 update_mmu_cache_pmd(vma, addr, pmdp);
1374 unlock_page(page);
1375 out_unlock:
1376 spin_unlock(ptl);
1378 out:
1379 if (anon_vma)
1380 page_unlock_anon_vma_read(anon_vma);
1382 if (page_nid != -1)
1383 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1385 return 0;
1388 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1389 pmd_t *pmd, unsigned long addr)
1391 spinlock_t *ptl;
1392 int ret = 0;
1394 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1395 struct page *page;
1396 pgtable_t pgtable;
1397 pmd_t orig_pmd;
1399 * For architectures like ppc64 we look at deposited pgtable
1400 * when calling pmdp_get_and_clear. So do the
1401 * pgtable_trans_huge_withdraw after finishing pmdp related
1402 * operations.
1404 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1405 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1406 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1407 if (is_huge_zero_pmd(orig_pmd)) {
1408 atomic_long_dec(&tlb->mm->nr_ptes);
1409 spin_unlock(ptl);
1410 put_huge_zero_page();
1411 } else {
1412 page = pmd_page(orig_pmd);
1413 page_remove_rmap(page);
1414 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1415 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1416 VM_BUG_ON_PAGE(!PageHead(page), page);
1417 atomic_long_dec(&tlb->mm->nr_ptes);
1418 spin_unlock(ptl);
1419 tlb_remove_page(tlb, page);
1421 pte_free(tlb->mm, pgtable);
1422 ret = 1;
1424 return ret;
1427 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1428 unsigned long addr, unsigned long end,
1429 unsigned char *vec)
1431 spinlock_t *ptl;
1432 int ret = 0;
1434 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1436 * All logical pages in the range are present
1437 * if backed by a huge page.
1439 spin_unlock(ptl);
1440 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1441 ret = 1;
1444 return ret;
1447 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1448 unsigned long old_addr,
1449 unsigned long new_addr, unsigned long old_end,
1450 pmd_t *old_pmd, pmd_t *new_pmd)
1452 spinlock_t *old_ptl, *new_ptl;
1453 int ret = 0;
1454 pmd_t pmd;
1455 bool force_flush = false;
1456 struct mm_struct *mm = vma->vm_mm;
1458 if ((old_addr & ~HPAGE_PMD_MASK) ||
1459 (new_addr & ~HPAGE_PMD_MASK) ||
1460 old_end - old_addr < HPAGE_PMD_SIZE ||
1461 (new_vma->vm_flags & VM_NOHUGEPAGE))
1462 goto out;
1465 * The destination pmd shouldn't be established, free_pgtables()
1466 * should have release it.
1468 if (WARN_ON(!pmd_none(*new_pmd))) {
1469 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1470 goto out;
1474 * We don't have to worry about the ordering of src and dst
1475 * ptlocks because exclusive mmap_sem prevents deadlock.
1477 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1478 if (ret == 1) {
1479 new_ptl = pmd_lockptr(mm, new_pmd);
1480 if (new_ptl != old_ptl)
1481 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1482 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1483 if (pmd_present(pmd))
1484 force_flush = true;
1485 VM_BUG_ON(!pmd_none(*new_pmd));
1487 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1488 pgtable_t pgtable;
1489 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1490 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1492 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1493 if (force_flush)
1494 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1495 if (new_ptl != old_ptl)
1496 spin_unlock(new_ptl);
1497 spin_unlock(old_ptl);
1499 out:
1500 return ret;
1504 * Returns
1505 * - 0 if PMD could not be locked
1506 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1507 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1509 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1510 unsigned long addr, pgprot_t newprot, int prot_numa)
1512 struct mm_struct *mm = vma->vm_mm;
1513 spinlock_t *ptl;
1514 int ret = 0;
1516 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1517 pmd_t entry;
1518 ret = 1;
1519 if (!prot_numa) {
1520 entry = pmdp_get_and_clear(mm, addr, pmd);
1521 if (pmd_numa(entry))
1522 entry = pmd_mknonnuma(entry);
1523 entry = pmd_modify(entry, newprot);
1524 ret = HPAGE_PMD_NR;
1525 set_pmd_at(mm, addr, pmd, entry);
1526 BUG_ON(pmd_write(entry));
1527 } else {
1528 struct page *page = pmd_page(*pmd);
1531 * Do not trap faults against the zero page. The
1532 * read-only data is likely to be read-cached on the
1533 * local CPU cache and it is less useful to know about
1534 * local vs remote hits on the zero page.
1536 if (!is_huge_zero_page(page) &&
1537 !pmd_numa(*pmd)) {
1538 pmdp_set_numa(mm, addr, pmd);
1539 ret = HPAGE_PMD_NR;
1542 spin_unlock(ptl);
1545 return ret;
1549 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1550 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1552 * Note that if it returns 1, this routine returns without unlocking page
1553 * table locks. So callers must unlock them.
1555 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1556 spinlock_t **ptl)
1558 *ptl = pmd_lock(vma->vm_mm, pmd);
1559 if (likely(pmd_trans_huge(*pmd))) {
1560 if (unlikely(pmd_trans_splitting(*pmd))) {
1561 spin_unlock(*ptl);
1562 wait_split_huge_page(vma->anon_vma, pmd);
1563 return -1;
1564 } else {
1565 /* Thp mapped by 'pmd' is stable, so we can
1566 * handle it as it is. */
1567 return 1;
1570 spin_unlock(*ptl);
1571 return 0;
1575 * This function returns whether a given @page is mapped onto the @address
1576 * in the virtual space of @mm.
1578 * When it's true, this function returns *pmd with holding the page table lock
1579 * and passing it back to the caller via @ptl.
1580 * If it's false, returns NULL without holding the page table lock.
1582 pmd_t *page_check_address_pmd(struct page *page,
1583 struct mm_struct *mm,
1584 unsigned long address,
1585 enum page_check_address_pmd_flag flag,
1586 spinlock_t **ptl)
1588 pgd_t *pgd;
1589 pud_t *pud;
1590 pmd_t *pmd;
1592 if (address & ~HPAGE_PMD_MASK)
1593 return NULL;
1595 pgd = pgd_offset(mm, address);
1596 if (!pgd_present(*pgd))
1597 return NULL;
1598 pud = pud_offset(pgd, address);
1599 if (!pud_present(*pud))
1600 return NULL;
1601 pmd = pmd_offset(pud, address);
1603 *ptl = pmd_lock(mm, pmd);
1604 if (!pmd_present(*pmd))
1605 goto unlock;
1606 if (pmd_page(*pmd) != page)
1607 goto unlock;
1609 * split_vma() may create temporary aliased mappings. There is
1610 * no risk as long as all huge pmd are found and have their
1611 * splitting bit set before __split_huge_page_refcount
1612 * runs. Finding the same huge pmd more than once during the
1613 * same rmap walk is not a problem.
1615 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1616 pmd_trans_splitting(*pmd))
1617 goto unlock;
1618 if (pmd_trans_huge(*pmd)) {
1619 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1620 !pmd_trans_splitting(*pmd));
1621 return pmd;
1623 unlock:
1624 spin_unlock(*ptl);
1625 return NULL;
1628 static int __split_huge_page_splitting(struct page *page,
1629 struct vm_area_struct *vma,
1630 unsigned long address)
1632 struct mm_struct *mm = vma->vm_mm;
1633 spinlock_t *ptl;
1634 pmd_t *pmd;
1635 int ret = 0;
1636 /* For mmu_notifiers */
1637 const unsigned long mmun_start = address;
1638 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1640 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1641 pmd = page_check_address_pmd(page, mm, address,
1642 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1643 if (pmd) {
1645 * We can't temporarily set the pmd to null in order
1646 * to split it, the pmd must remain marked huge at all
1647 * times or the VM won't take the pmd_trans_huge paths
1648 * and it won't wait on the anon_vma->root->rwsem to
1649 * serialize against split_huge_page*.
1651 pmdp_splitting_flush(vma, address, pmd);
1652 ret = 1;
1653 spin_unlock(ptl);
1655 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1657 return ret;
1660 static void __split_huge_page_refcount(struct page *page,
1661 struct list_head *list)
1663 int i;
1664 struct zone *zone = page_zone(page);
1665 struct lruvec *lruvec;
1666 int tail_count = 0;
1668 /* prevent PageLRU to go away from under us, and freeze lru stats */
1669 spin_lock_irq(&zone->lru_lock);
1670 lruvec = mem_cgroup_page_lruvec(page, zone);
1672 compound_lock(page);
1673 /* complete memcg works before add pages to LRU */
1674 mem_cgroup_split_huge_fixup(page);
1676 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1677 struct page *page_tail = page + i;
1679 /* tail_page->_mapcount cannot change */
1680 BUG_ON(page_mapcount(page_tail) < 0);
1681 tail_count += page_mapcount(page_tail);
1682 /* check for overflow */
1683 BUG_ON(tail_count < 0);
1684 BUG_ON(atomic_read(&page_tail->_count) != 0);
1686 * tail_page->_count is zero and not changing from
1687 * under us. But get_page_unless_zero() may be running
1688 * from under us on the tail_page. If we used
1689 * atomic_set() below instead of atomic_add(), we
1690 * would then run atomic_set() concurrently with
1691 * get_page_unless_zero(), and atomic_set() is
1692 * implemented in C not using locked ops. spin_unlock
1693 * on x86 sometime uses locked ops because of PPro
1694 * errata 66, 92, so unless somebody can guarantee
1695 * atomic_set() here would be safe on all archs (and
1696 * not only on x86), it's safer to use atomic_add().
1698 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1699 &page_tail->_count);
1701 /* after clearing PageTail the gup refcount can be released */
1702 smp_mb();
1705 * retain hwpoison flag of the poisoned tail page:
1706 * fix for the unsuitable process killed on Guest Machine(KVM)
1707 * by the memory-failure.
1709 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1710 page_tail->flags |= (page->flags &
1711 ((1L << PG_referenced) |
1712 (1L << PG_swapbacked) |
1713 (1L << PG_mlocked) |
1714 (1L << PG_uptodate) |
1715 (1L << PG_active) |
1716 (1L << PG_unevictable)));
1717 page_tail->flags |= (1L << PG_dirty);
1719 /* clear PageTail before overwriting first_page */
1720 smp_wmb();
1723 * __split_huge_page_splitting() already set the
1724 * splitting bit in all pmd that could map this
1725 * hugepage, that will ensure no CPU can alter the
1726 * mapcount on the head page. The mapcount is only
1727 * accounted in the head page and it has to be
1728 * transferred to all tail pages in the below code. So
1729 * for this code to be safe, the split the mapcount
1730 * can't change. But that doesn't mean userland can't
1731 * keep changing and reading the page contents while
1732 * we transfer the mapcount, so the pmd splitting
1733 * status is achieved setting a reserved bit in the
1734 * pmd, not by clearing the present bit.
1736 page_tail->_mapcount = page->_mapcount;
1738 BUG_ON(page_tail->mapping);
1739 page_tail->mapping = page->mapping;
1741 page_tail->index = page->index + i;
1742 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1744 BUG_ON(!PageAnon(page_tail));
1745 BUG_ON(!PageUptodate(page_tail));
1746 BUG_ON(!PageDirty(page_tail));
1747 BUG_ON(!PageSwapBacked(page_tail));
1749 lru_add_page_tail(page, page_tail, lruvec, list);
1751 atomic_sub(tail_count, &page->_count);
1752 BUG_ON(atomic_read(&page->_count) <= 0);
1754 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1756 ClearPageCompound(page);
1757 compound_unlock(page);
1758 spin_unlock_irq(&zone->lru_lock);
1760 for (i = 1; i < HPAGE_PMD_NR; i++) {
1761 struct page *page_tail = page + i;
1762 BUG_ON(page_count(page_tail) <= 0);
1764 * Tail pages may be freed if there wasn't any mapping
1765 * like if add_to_swap() is running on a lru page that
1766 * had its mapping zapped. And freeing these pages
1767 * requires taking the lru_lock so we do the put_page
1768 * of the tail pages after the split is complete.
1770 put_page(page_tail);
1774 * Only the head page (now become a regular page) is required
1775 * to be pinned by the caller.
1777 BUG_ON(page_count(page) <= 0);
1780 static int __split_huge_page_map(struct page *page,
1781 struct vm_area_struct *vma,
1782 unsigned long address)
1784 struct mm_struct *mm = vma->vm_mm;
1785 spinlock_t *ptl;
1786 pmd_t *pmd, _pmd;
1787 int ret = 0, i;
1788 pgtable_t pgtable;
1789 unsigned long haddr;
1791 pmd = page_check_address_pmd(page, mm, address,
1792 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1793 if (pmd) {
1794 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1795 pmd_populate(mm, &_pmd, pgtable);
1796 if (pmd_write(*pmd))
1797 BUG_ON(page_mapcount(page) != 1);
1799 haddr = address;
1800 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1801 pte_t *pte, entry;
1802 BUG_ON(PageCompound(page+i));
1804 * Note that pmd_numa is not transferred deliberately
1805 * to avoid any possibility that pte_numa leaks to
1806 * a PROT_NONE VMA by accident.
1808 entry = mk_pte(page + i, vma->vm_page_prot);
1809 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1810 if (!pmd_write(*pmd))
1811 entry = pte_wrprotect(entry);
1812 if (!pmd_young(*pmd))
1813 entry = pte_mkold(entry);
1814 pte = pte_offset_map(&_pmd, haddr);
1815 BUG_ON(!pte_none(*pte));
1816 set_pte_at(mm, haddr, pte, entry);
1817 pte_unmap(pte);
1820 smp_wmb(); /* make pte visible before pmd */
1822 * Up to this point the pmd is present and huge and
1823 * userland has the whole access to the hugepage
1824 * during the split (which happens in place). If we
1825 * overwrite the pmd with the not-huge version
1826 * pointing to the pte here (which of course we could
1827 * if all CPUs were bug free), userland could trigger
1828 * a small page size TLB miss on the small sized TLB
1829 * while the hugepage TLB entry is still established
1830 * in the huge TLB. Some CPU doesn't like that. See
1831 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1832 * Erratum 383 on page 93. Intel should be safe but is
1833 * also warns that it's only safe if the permission
1834 * and cache attributes of the two entries loaded in
1835 * the two TLB is identical (which should be the case
1836 * here). But it is generally safer to never allow
1837 * small and huge TLB entries for the same virtual
1838 * address to be loaded simultaneously. So instead of
1839 * doing "pmd_populate(); flush_tlb_range();" we first
1840 * mark the current pmd notpresent (atomically because
1841 * here the pmd_trans_huge and pmd_trans_splitting
1842 * must remain set at all times on the pmd until the
1843 * split is complete for this pmd), then we flush the
1844 * SMP TLB and finally we write the non-huge version
1845 * of the pmd entry with pmd_populate.
1847 pmdp_invalidate(vma, address, pmd);
1848 pmd_populate(mm, pmd, pgtable);
1849 ret = 1;
1850 spin_unlock(ptl);
1853 return ret;
1856 /* must be called with anon_vma->root->rwsem held */
1857 static void __split_huge_page(struct page *page,
1858 struct anon_vma *anon_vma,
1859 struct list_head *list)
1861 int mapcount, mapcount2;
1862 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1863 struct anon_vma_chain *avc;
1865 BUG_ON(!PageHead(page));
1866 BUG_ON(PageTail(page));
1868 mapcount = 0;
1869 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1870 struct vm_area_struct *vma = avc->vma;
1871 unsigned long addr = vma_address(page, vma);
1872 BUG_ON(is_vma_temporary_stack(vma));
1873 mapcount += __split_huge_page_splitting(page, vma, addr);
1876 * It is critical that new vmas are added to the tail of the
1877 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1878 * and establishes a child pmd before
1879 * __split_huge_page_splitting() freezes the parent pmd (so if
1880 * we fail to prevent copy_huge_pmd() from running until the
1881 * whole __split_huge_page() is complete), we will still see
1882 * the newly established pmd of the child later during the
1883 * walk, to be able to set it as pmd_trans_splitting too.
1885 if (mapcount != page_mapcount(page)) {
1886 pr_err("mapcount %d page_mapcount %d\n",
1887 mapcount, page_mapcount(page));
1888 BUG();
1891 __split_huge_page_refcount(page, list);
1893 mapcount2 = 0;
1894 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1895 struct vm_area_struct *vma = avc->vma;
1896 unsigned long addr = vma_address(page, vma);
1897 BUG_ON(is_vma_temporary_stack(vma));
1898 mapcount2 += __split_huge_page_map(page, vma, addr);
1900 if (mapcount != mapcount2) {
1901 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1902 mapcount, mapcount2, page_mapcount(page));
1903 BUG();
1908 * Split a hugepage into normal pages. This doesn't change the position of head
1909 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1910 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1911 * from the hugepage.
1912 * Return 0 if the hugepage is split successfully otherwise return 1.
1914 int split_huge_page_to_list(struct page *page, struct list_head *list)
1916 struct anon_vma *anon_vma;
1917 int ret = 1;
1919 BUG_ON(is_huge_zero_page(page));
1920 BUG_ON(!PageAnon(page));
1923 * The caller does not necessarily hold an mmap_sem that would prevent
1924 * the anon_vma disappearing so we first we take a reference to it
1925 * and then lock the anon_vma for write. This is similar to
1926 * page_lock_anon_vma_read except the write lock is taken to serialise
1927 * against parallel split or collapse operations.
1929 anon_vma = page_get_anon_vma(page);
1930 if (!anon_vma)
1931 goto out;
1932 anon_vma_lock_write(anon_vma);
1934 ret = 0;
1935 if (!PageCompound(page))
1936 goto out_unlock;
1938 BUG_ON(!PageSwapBacked(page));
1939 __split_huge_page(page, anon_vma, list);
1940 count_vm_event(THP_SPLIT);
1942 BUG_ON(PageCompound(page));
1943 out_unlock:
1944 anon_vma_unlock_write(anon_vma);
1945 put_anon_vma(anon_vma);
1946 out:
1947 return ret;
1950 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1952 int hugepage_madvise(struct vm_area_struct *vma,
1953 unsigned long *vm_flags, int advice)
1955 switch (advice) {
1956 case MADV_HUGEPAGE:
1957 #ifdef CONFIG_S390
1959 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1960 * can't handle this properly after s390_enable_sie, so we simply
1961 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1963 if (mm_has_pgste(vma->vm_mm))
1964 return 0;
1965 #endif
1967 * Be somewhat over-protective like KSM for now!
1969 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1970 return -EINVAL;
1971 *vm_flags &= ~VM_NOHUGEPAGE;
1972 *vm_flags |= VM_HUGEPAGE;
1974 * If the vma become good for khugepaged to scan,
1975 * register it here without waiting a page fault that
1976 * may not happen any time soon.
1978 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1979 return -ENOMEM;
1980 break;
1981 case MADV_NOHUGEPAGE:
1983 * Be somewhat over-protective like KSM for now!
1985 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1986 return -EINVAL;
1987 *vm_flags &= ~VM_HUGEPAGE;
1988 *vm_flags |= VM_NOHUGEPAGE;
1990 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1991 * this vma even if we leave the mm registered in khugepaged if
1992 * it got registered before VM_NOHUGEPAGE was set.
1994 break;
1997 return 0;
2000 static int __init khugepaged_slab_init(void)
2002 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2003 sizeof(struct mm_slot),
2004 __alignof__(struct mm_slot), 0, NULL);
2005 if (!mm_slot_cache)
2006 return -ENOMEM;
2008 return 0;
2011 static inline struct mm_slot *alloc_mm_slot(void)
2013 if (!mm_slot_cache) /* initialization failed */
2014 return NULL;
2015 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2018 static inline void free_mm_slot(struct mm_slot *mm_slot)
2020 kmem_cache_free(mm_slot_cache, mm_slot);
2023 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2025 struct mm_slot *mm_slot;
2027 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2028 if (mm == mm_slot->mm)
2029 return mm_slot;
2031 return NULL;
2034 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2035 struct mm_slot *mm_slot)
2037 mm_slot->mm = mm;
2038 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2041 static inline int khugepaged_test_exit(struct mm_struct *mm)
2043 return atomic_read(&mm->mm_users) == 0;
2046 int __khugepaged_enter(struct mm_struct *mm)
2048 struct mm_slot *mm_slot;
2049 int wakeup;
2051 mm_slot = alloc_mm_slot();
2052 if (!mm_slot)
2053 return -ENOMEM;
2055 /* __khugepaged_exit() must not run from under us */
2056 VM_BUG_ON(khugepaged_test_exit(mm));
2057 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2058 free_mm_slot(mm_slot);
2059 return 0;
2062 spin_lock(&khugepaged_mm_lock);
2063 insert_to_mm_slots_hash(mm, mm_slot);
2065 * Insert just behind the scanning cursor, to let the area settle
2066 * down a little.
2068 wakeup = list_empty(&khugepaged_scan.mm_head);
2069 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2070 spin_unlock(&khugepaged_mm_lock);
2072 atomic_inc(&mm->mm_count);
2073 if (wakeup)
2074 wake_up_interruptible(&khugepaged_wait);
2076 return 0;
2079 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2080 unsigned long vm_flags)
2082 unsigned long hstart, hend;
2083 if (!vma->anon_vma)
2085 * Not yet faulted in so we will register later in the
2086 * page fault if needed.
2088 return 0;
2089 if (vma->vm_ops || (vm_flags & VM_NO_THP))
2090 /* khugepaged not yet working on file or special mappings */
2091 return 0;
2092 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2093 hend = vma->vm_end & HPAGE_PMD_MASK;
2094 if (hstart < hend)
2095 return khugepaged_enter(vma, vm_flags);
2096 return 0;
2099 void __khugepaged_exit(struct mm_struct *mm)
2101 struct mm_slot *mm_slot;
2102 int free = 0;
2104 spin_lock(&khugepaged_mm_lock);
2105 mm_slot = get_mm_slot(mm);
2106 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2107 hash_del(&mm_slot->hash);
2108 list_del(&mm_slot->mm_node);
2109 free = 1;
2111 spin_unlock(&khugepaged_mm_lock);
2113 if (free) {
2114 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2115 free_mm_slot(mm_slot);
2116 mmdrop(mm);
2117 } else if (mm_slot) {
2119 * This is required to serialize against
2120 * khugepaged_test_exit() (which is guaranteed to run
2121 * under mmap sem read mode). Stop here (after we
2122 * return all pagetables will be destroyed) until
2123 * khugepaged has finished working on the pagetables
2124 * under the mmap_sem.
2126 down_write(&mm->mmap_sem);
2127 up_write(&mm->mmap_sem);
2131 static void release_pte_page(struct page *page)
2133 /* 0 stands for page_is_file_cache(page) == false */
2134 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2135 unlock_page(page);
2136 putback_lru_page(page);
2139 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2141 while (--_pte >= pte) {
2142 pte_t pteval = *_pte;
2143 if (!pte_none(pteval))
2144 release_pte_page(pte_page(pteval));
2148 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2149 unsigned long address,
2150 pte_t *pte)
2152 struct page *page;
2153 pte_t *_pte;
2154 int referenced = 0, none = 0;
2155 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2156 _pte++, address += PAGE_SIZE) {
2157 pte_t pteval = *_pte;
2158 if (pte_none(pteval)) {
2159 if (++none <= khugepaged_max_ptes_none)
2160 continue;
2161 else
2162 goto out;
2164 if (!pte_present(pteval) || !pte_write(pteval))
2165 goto out;
2166 page = vm_normal_page(vma, address, pteval);
2167 if (unlikely(!page))
2168 goto out;
2170 VM_BUG_ON_PAGE(PageCompound(page), page);
2171 VM_BUG_ON_PAGE(!PageAnon(page), page);
2172 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2174 /* cannot use mapcount: can't collapse if there's a gup pin */
2175 if (page_count(page) != 1)
2176 goto out;
2178 * We can do it before isolate_lru_page because the
2179 * page can't be freed from under us. NOTE: PG_lock
2180 * is needed to serialize against split_huge_page
2181 * when invoked from the VM.
2183 if (!trylock_page(page))
2184 goto out;
2186 * Isolate the page to avoid collapsing an hugepage
2187 * currently in use by the VM.
2189 if (isolate_lru_page(page)) {
2190 unlock_page(page);
2191 goto out;
2193 /* 0 stands for page_is_file_cache(page) == false */
2194 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2195 VM_BUG_ON_PAGE(!PageLocked(page), page);
2196 VM_BUG_ON_PAGE(PageLRU(page), page);
2198 /* If there is no mapped pte young don't collapse the page */
2199 if (pte_young(pteval) || PageReferenced(page) ||
2200 mmu_notifier_test_young(vma->vm_mm, address))
2201 referenced = 1;
2203 if (likely(referenced))
2204 return 1;
2205 out:
2206 release_pte_pages(pte, _pte);
2207 return 0;
2210 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2211 struct vm_area_struct *vma,
2212 unsigned long address,
2213 spinlock_t *ptl)
2215 pte_t *_pte;
2216 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2217 pte_t pteval = *_pte;
2218 struct page *src_page;
2220 if (pte_none(pteval)) {
2221 clear_user_highpage(page, address);
2222 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2223 } else {
2224 src_page = pte_page(pteval);
2225 copy_user_highpage(page, src_page, address, vma);
2226 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2227 release_pte_page(src_page);
2229 * ptl mostly unnecessary, but preempt has to
2230 * be disabled to update the per-cpu stats
2231 * inside page_remove_rmap().
2233 spin_lock(ptl);
2235 * paravirt calls inside pte_clear here are
2236 * superfluous.
2238 pte_clear(vma->vm_mm, address, _pte);
2239 page_remove_rmap(src_page);
2240 spin_unlock(ptl);
2241 free_page_and_swap_cache(src_page);
2244 address += PAGE_SIZE;
2245 page++;
2249 static void khugepaged_alloc_sleep(void)
2251 wait_event_freezable_timeout(khugepaged_wait, false,
2252 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2255 static int khugepaged_node_load[MAX_NUMNODES];
2257 #ifdef CONFIG_NUMA
2258 static int khugepaged_find_target_node(void)
2260 static int last_khugepaged_target_node = NUMA_NO_NODE;
2261 int nid, target_node = 0, max_value = 0;
2263 /* find first node with max normal pages hit */
2264 for (nid = 0; nid < MAX_NUMNODES; nid++)
2265 if (khugepaged_node_load[nid] > max_value) {
2266 max_value = khugepaged_node_load[nid];
2267 target_node = nid;
2270 /* do some balance if several nodes have the same hit record */
2271 if (target_node <= last_khugepaged_target_node)
2272 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2273 nid++)
2274 if (max_value == khugepaged_node_load[nid]) {
2275 target_node = nid;
2276 break;
2279 last_khugepaged_target_node = target_node;
2280 return target_node;
2283 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2285 if (IS_ERR(*hpage)) {
2286 if (!*wait)
2287 return false;
2289 *wait = false;
2290 *hpage = NULL;
2291 khugepaged_alloc_sleep();
2292 } else if (*hpage) {
2293 put_page(*hpage);
2294 *hpage = NULL;
2297 return true;
2300 static struct page
2301 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2302 struct vm_area_struct *vma, unsigned long address,
2303 int node)
2305 VM_BUG_ON_PAGE(*hpage, *hpage);
2307 * Allocate the page while the vma is still valid and under
2308 * the mmap_sem read mode so there is no memory allocation
2309 * later when we take the mmap_sem in write mode. This is more
2310 * friendly behavior (OTOH it may actually hide bugs) to
2311 * filesystems in userland with daemons allocating memory in
2312 * the userland I/O paths. Allocating memory with the
2313 * mmap_sem in read mode is good idea also to allow greater
2314 * scalability.
2316 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2317 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2319 * After allocating the hugepage, release the mmap_sem read lock in
2320 * preparation for taking it in write mode.
2322 up_read(&mm->mmap_sem);
2323 if (unlikely(!*hpage)) {
2324 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2325 *hpage = ERR_PTR(-ENOMEM);
2326 return NULL;
2329 count_vm_event(THP_COLLAPSE_ALLOC);
2330 return *hpage;
2332 #else
2333 static int khugepaged_find_target_node(void)
2335 return 0;
2338 static inline struct page *alloc_hugepage(int defrag)
2340 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2341 HPAGE_PMD_ORDER);
2344 static struct page *khugepaged_alloc_hugepage(bool *wait)
2346 struct page *hpage;
2348 do {
2349 hpage = alloc_hugepage(khugepaged_defrag());
2350 if (!hpage) {
2351 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2352 if (!*wait)
2353 return NULL;
2355 *wait = false;
2356 khugepaged_alloc_sleep();
2357 } else
2358 count_vm_event(THP_COLLAPSE_ALLOC);
2359 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2361 return hpage;
2364 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2366 if (!*hpage)
2367 *hpage = khugepaged_alloc_hugepage(wait);
2369 if (unlikely(!*hpage))
2370 return false;
2372 return true;
2375 static struct page
2376 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2377 struct vm_area_struct *vma, unsigned long address,
2378 int node)
2380 up_read(&mm->mmap_sem);
2381 VM_BUG_ON(!*hpage);
2382 return *hpage;
2384 #endif
2386 static bool hugepage_vma_check(struct vm_area_struct *vma)
2388 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2389 (vma->vm_flags & VM_NOHUGEPAGE))
2390 return false;
2392 if (!vma->anon_vma || vma->vm_ops)
2393 return false;
2394 if (is_vma_temporary_stack(vma))
2395 return false;
2396 return !(vma->vm_flags & VM_NO_THP);
2399 static void collapse_huge_page(struct mm_struct *mm,
2400 unsigned long address,
2401 struct page **hpage,
2402 struct vm_area_struct *vma,
2403 int node)
2405 pmd_t *pmd, _pmd;
2406 pte_t *pte;
2407 pgtable_t pgtable;
2408 struct page *new_page;
2409 spinlock_t *pmd_ptl, *pte_ptl;
2410 int isolated;
2411 unsigned long hstart, hend;
2412 unsigned long mmun_start; /* For mmu_notifiers */
2413 unsigned long mmun_end; /* For mmu_notifiers */
2415 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2417 /* release the mmap_sem read lock. */
2418 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2419 if (!new_page)
2420 return;
2422 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2423 return;
2426 * Prevent all access to pagetables with the exception of
2427 * gup_fast later hanlded by the ptep_clear_flush and the VM
2428 * handled by the anon_vma lock + PG_lock.
2430 down_write(&mm->mmap_sem);
2431 if (unlikely(khugepaged_test_exit(mm)))
2432 goto out;
2434 vma = find_vma(mm, address);
2435 if (!vma)
2436 goto out;
2437 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2438 hend = vma->vm_end & HPAGE_PMD_MASK;
2439 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2440 goto out;
2441 if (!hugepage_vma_check(vma))
2442 goto out;
2443 pmd = mm_find_pmd(mm, address);
2444 if (!pmd)
2445 goto out;
2447 anon_vma_lock_write(vma->anon_vma);
2449 pte = pte_offset_map(pmd, address);
2450 pte_ptl = pte_lockptr(mm, pmd);
2452 mmun_start = address;
2453 mmun_end = address + HPAGE_PMD_SIZE;
2454 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2455 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2457 * After this gup_fast can't run anymore. This also removes
2458 * any huge TLB entry from the CPU so we won't allow
2459 * huge and small TLB entries for the same virtual address
2460 * to avoid the risk of CPU bugs in that area.
2462 _pmd = pmdp_clear_flush(vma, address, pmd);
2463 spin_unlock(pmd_ptl);
2464 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2466 spin_lock(pte_ptl);
2467 isolated = __collapse_huge_page_isolate(vma, address, pte);
2468 spin_unlock(pte_ptl);
2470 if (unlikely(!isolated)) {
2471 pte_unmap(pte);
2472 spin_lock(pmd_ptl);
2473 BUG_ON(!pmd_none(*pmd));
2475 * We can only use set_pmd_at when establishing
2476 * hugepmds and never for establishing regular pmds that
2477 * points to regular pagetables. Use pmd_populate for that
2479 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2480 spin_unlock(pmd_ptl);
2481 anon_vma_unlock_write(vma->anon_vma);
2482 goto out;
2486 * All pages are isolated and locked so anon_vma rmap
2487 * can't run anymore.
2489 anon_vma_unlock_write(vma->anon_vma);
2491 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2492 pte_unmap(pte);
2493 __SetPageUptodate(new_page);
2494 pgtable = pmd_pgtable(_pmd);
2496 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2497 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2500 * spin_lock() below is not the equivalent of smp_wmb(), so
2501 * this is needed to avoid the copy_huge_page writes to become
2502 * visible after the set_pmd_at() write.
2504 smp_wmb();
2506 spin_lock(pmd_ptl);
2507 BUG_ON(!pmd_none(*pmd));
2508 page_add_new_anon_rmap(new_page, vma, address);
2509 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2510 set_pmd_at(mm, address, pmd, _pmd);
2511 update_mmu_cache_pmd(vma, address, pmd);
2512 spin_unlock(pmd_ptl);
2514 *hpage = NULL;
2516 khugepaged_pages_collapsed++;
2517 out_up_write:
2518 up_write(&mm->mmap_sem);
2519 return;
2521 out:
2522 mem_cgroup_uncharge_page(new_page);
2523 goto out_up_write;
2526 static int khugepaged_scan_pmd(struct mm_struct *mm,
2527 struct vm_area_struct *vma,
2528 unsigned long address,
2529 struct page **hpage)
2531 pmd_t *pmd;
2532 pte_t *pte, *_pte;
2533 int ret = 0, referenced = 0, none = 0;
2534 struct page *page;
2535 unsigned long _address;
2536 spinlock_t *ptl;
2537 int node = NUMA_NO_NODE;
2539 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2541 pmd = mm_find_pmd(mm, address);
2542 if (!pmd)
2543 goto out;
2545 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2546 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2547 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2548 _pte++, _address += PAGE_SIZE) {
2549 pte_t pteval = *_pte;
2550 if (pte_none(pteval)) {
2551 if (++none <= khugepaged_max_ptes_none)
2552 continue;
2553 else
2554 goto out_unmap;
2556 if (!pte_present(pteval) || !pte_write(pteval))
2557 goto out_unmap;
2558 page = vm_normal_page(vma, _address, pteval);
2559 if (unlikely(!page))
2560 goto out_unmap;
2562 * Record which node the original page is from and save this
2563 * information to khugepaged_node_load[].
2564 * Khupaged will allocate hugepage from the node has the max
2565 * hit record.
2567 node = page_to_nid(page);
2568 khugepaged_node_load[node]++;
2569 VM_BUG_ON_PAGE(PageCompound(page), page);
2570 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2571 goto out_unmap;
2572 /* cannot use mapcount: can't collapse if there's a gup pin */
2573 if (page_count(page) != 1)
2574 goto out_unmap;
2575 if (pte_young(pteval) || PageReferenced(page) ||
2576 mmu_notifier_test_young(vma->vm_mm, address))
2577 referenced = 1;
2579 if (referenced)
2580 ret = 1;
2581 out_unmap:
2582 pte_unmap_unlock(pte, ptl);
2583 if (ret) {
2584 node = khugepaged_find_target_node();
2585 /* collapse_huge_page will return with the mmap_sem released */
2586 collapse_huge_page(mm, address, hpage, vma, node);
2588 out:
2589 return ret;
2592 static void collect_mm_slot(struct mm_slot *mm_slot)
2594 struct mm_struct *mm = mm_slot->mm;
2596 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2598 if (khugepaged_test_exit(mm)) {
2599 /* free mm_slot */
2600 hash_del(&mm_slot->hash);
2601 list_del(&mm_slot->mm_node);
2604 * Not strictly needed because the mm exited already.
2606 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2609 /* khugepaged_mm_lock actually not necessary for the below */
2610 free_mm_slot(mm_slot);
2611 mmdrop(mm);
2615 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2616 struct page **hpage)
2617 __releases(&khugepaged_mm_lock)
2618 __acquires(&khugepaged_mm_lock)
2620 struct mm_slot *mm_slot;
2621 struct mm_struct *mm;
2622 struct vm_area_struct *vma;
2623 int progress = 0;
2625 VM_BUG_ON(!pages);
2626 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2628 if (khugepaged_scan.mm_slot)
2629 mm_slot = khugepaged_scan.mm_slot;
2630 else {
2631 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2632 struct mm_slot, mm_node);
2633 khugepaged_scan.address = 0;
2634 khugepaged_scan.mm_slot = mm_slot;
2636 spin_unlock(&khugepaged_mm_lock);
2638 mm = mm_slot->mm;
2639 down_read(&mm->mmap_sem);
2640 if (unlikely(khugepaged_test_exit(mm)))
2641 vma = NULL;
2642 else
2643 vma = find_vma(mm, khugepaged_scan.address);
2645 progress++;
2646 for (; vma; vma = vma->vm_next) {
2647 unsigned long hstart, hend;
2649 cond_resched();
2650 if (unlikely(khugepaged_test_exit(mm))) {
2651 progress++;
2652 break;
2654 if (!hugepage_vma_check(vma)) {
2655 skip:
2656 progress++;
2657 continue;
2659 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2660 hend = vma->vm_end & HPAGE_PMD_MASK;
2661 if (hstart >= hend)
2662 goto skip;
2663 if (khugepaged_scan.address > hend)
2664 goto skip;
2665 if (khugepaged_scan.address < hstart)
2666 khugepaged_scan.address = hstart;
2667 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2669 while (khugepaged_scan.address < hend) {
2670 int ret;
2671 cond_resched();
2672 if (unlikely(khugepaged_test_exit(mm)))
2673 goto breakouterloop;
2675 VM_BUG_ON(khugepaged_scan.address < hstart ||
2676 khugepaged_scan.address + HPAGE_PMD_SIZE >
2677 hend);
2678 ret = khugepaged_scan_pmd(mm, vma,
2679 khugepaged_scan.address,
2680 hpage);
2681 /* move to next address */
2682 khugepaged_scan.address += HPAGE_PMD_SIZE;
2683 progress += HPAGE_PMD_NR;
2684 if (ret)
2685 /* we released mmap_sem so break loop */
2686 goto breakouterloop_mmap_sem;
2687 if (progress >= pages)
2688 goto breakouterloop;
2691 breakouterloop:
2692 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2693 breakouterloop_mmap_sem:
2695 spin_lock(&khugepaged_mm_lock);
2696 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2698 * Release the current mm_slot if this mm is about to die, or
2699 * if we scanned all vmas of this mm.
2701 if (khugepaged_test_exit(mm) || !vma) {
2703 * Make sure that if mm_users is reaching zero while
2704 * khugepaged runs here, khugepaged_exit will find
2705 * mm_slot not pointing to the exiting mm.
2707 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2708 khugepaged_scan.mm_slot = list_entry(
2709 mm_slot->mm_node.next,
2710 struct mm_slot, mm_node);
2711 khugepaged_scan.address = 0;
2712 } else {
2713 khugepaged_scan.mm_slot = NULL;
2714 khugepaged_full_scans++;
2717 collect_mm_slot(mm_slot);
2720 return progress;
2723 static int khugepaged_has_work(void)
2725 return !list_empty(&khugepaged_scan.mm_head) &&
2726 khugepaged_enabled();
2729 static int khugepaged_wait_event(void)
2731 return !list_empty(&khugepaged_scan.mm_head) ||
2732 kthread_should_stop();
2735 static void khugepaged_do_scan(void)
2737 struct page *hpage = NULL;
2738 unsigned int progress = 0, pass_through_head = 0;
2739 unsigned int pages = khugepaged_pages_to_scan;
2740 bool wait = true;
2742 barrier(); /* write khugepaged_pages_to_scan to local stack */
2744 while (progress < pages) {
2745 if (!khugepaged_prealloc_page(&hpage, &wait))
2746 break;
2748 cond_resched();
2750 if (unlikely(kthread_should_stop() || freezing(current)))
2751 break;
2753 spin_lock(&khugepaged_mm_lock);
2754 if (!khugepaged_scan.mm_slot)
2755 pass_through_head++;
2756 if (khugepaged_has_work() &&
2757 pass_through_head < 2)
2758 progress += khugepaged_scan_mm_slot(pages - progress,
2759 &hpage);
2760 else
2761 progress = pages;
2762 spin_unlock(&khugepaged_mm_lock);
2765 if (!IS_ERR_OR_NULL(hpage))
2766 put_page(hpage);
2769 static void khugepaged_wait_work(void)
2771 try_to_freeze();
2773 if (khugepaged_has_work()) {
2774 if (!khugepaged_scan_sleep_millisecs)
2775 return;
2777 wait_event_freezable_timeout(khugepaged_wait,
2778 kthread_should_stop(),
2779 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2780 return;
2783 if (khugepaged_enabled())
2784 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2787 static int khugepaged(void *none)
2789 struct mm_slot *mm_slot;
2791 set_freezable();
2792 set_user_nice(current, MAX_NICE);
2794 while (!kthread_should_stop()) {
2795 khugepaged_do_scan();
2796 khugepaged_wait_work();
2799 spin_lock(&khugepaged_mm_lock);
2800 mm_slot = khugepaged_scan.mm_slot;
2801 khugepaged_scan.mm_slot = NULL;
2802 if (mm_slot)
2803 collect_mm_slot(mm_slot);
2804 spin_unlock(&khugepaged_mm_lock);
2805 return 0;
2808 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2809 unsigned long haddr, pmd_t *pmd)
2811 struct mm_struct *mm = vma->vm_mm;
2812 pgtable_t pgtable;
2813 pmd_t _pmd;
2814 int i;
2816 pmdp_clear_flush(vma, haddr, pmd);
2817 /* leave pmd empty until pte is filled */
2819 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2820 pmd_populate(mm, &_pmd, pgtable);
2822 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2823 pte_t *pte, entry;
2824 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2825 entry = pte_mkspecial(entry);
2826 pte = pte_offset_map(&_pmd, haddr);
2827 VM_BUG_ON(!pte_none(*pte));
2828 set_pte_at(mm, haddr, pte, entry);
2829 pte_unmap(pte);
2831 smp_wmb(); /* make pte visible before pmd */
2832 pmd_populate(mm, pmd, pgtable);
2833 put_huge_zero_page();
2836 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2837 pmd_t *pmd)
2839 spinlock_t *ptl;
2840 struct page *page;
2841 struct mm_struct *mm = vma->vm_mm;
2842 unsigned long haddr = address & HPAGE_PMD_MASK;
2843 unsigned long mmun_start; /* For mmu_notifiers */
2844 unsigned long mmun_end; /* For mmu_notifiers */
2846 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2848 mmun_start = haddr;
2849 mmun_end = haddr + HPAGE_PMD_SIZE;
2850 again:
2851 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2852 ptl = pmd_lock(mm, pmd);
2853 if (unlikely(!pmd_trans_huge(*pmd))) {
2854 spin_unlock(ptl);
2855 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2856 return;
2858 if (is_huge_zero_pmd(*pmd)) {
2859 __split_huge_zero_page_pmd(vma, haddr, pmd);
2860 spin_unlock(ptl);
2861 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2862 return;
2864 page = pmd_page(*pmd);
2865 VM_BUG_ON_PAGE(!page_count(page), page);
2866 get_page(page);
2867 spin_unlock(ptl);
2868 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2870 split_huge_page(page);
2872 put_page(page);
2875 * We don't always have down_write of mmap_sem here: a racing
2876 * do_huge_pmd_wp_page() might have copied-on-write to another
2877 * huge page before our split_huge_page() got the anon_vma lock.
2879 if (unlikely(pmd_trans_huge(*pmd)))
2880 goto again;
2883 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2884 pmd_t *pmd)
2886 struct vm_area_struct *vma;
2888 vma = find_vma(mm, address);
2889 BUG_ON(vma == NULL);
2890 split_huge_page_pmd(vma, address, pmd);
2893 static void split_huge_page_address(struct mm_struct *mm,
2894 unsigned long address)
2896 pgd_t *pgd;
2897 pud_t *pud;
2898 pmd_t *pmd;
2900 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2902 pgd = pgd_offset(mm, address);
2903 if (!pgd_present(*pgd))
2904 return;
2906 pud = pud_offset(pgd, address);
2907 if (!pud_present(*pud))
2908 return;
2910 pmd = pmd_offset(pud, address);
2911 if (!pmd_present(*pmd))
2912 return;
2914 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2915 * materialize from under us.
2917 split_huge_page_pmd_mm(mm, address, pmd);
2920 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2921 unsigned long start,
2922 unsigned long end,
2923 long adjust_next)
2926 * If the new start address isn't hpage aligned and it could
2927 * previously contain an hugepage: check if we need to split
2928 * an huge pmd.
2930 if (start & ~HPAGE_PMD_MASK &&
2931 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2932 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2933 split_huge_page_address(vma->vm_mm, start);
2936 * If the new end address isn't hpage aligned and it could
2937 * previously contain an hugepage: check if we need to split
2938 * an huge pmd.
2940 if (end & ~HPAGE_PMD_MASK &&
2941 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2942 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2943 split_huge_page_address(vma->vm_mm, end);
2946 * If we're also updating the vma->vm_next->vm_start, if the new
2947 * vm_next->vm_start isn't page aligned and it could previously
2948 * contain an hugepage: check if we need to split an huge pmd.
2950 if (adjust_next > 0) {
2951 struct vm_area_struct *next = vma->vm_next;
2952 unsigned long nstart = next->vm_start;
2953 nstart += adjust_next << PAGE_SHIFT;
2954 if (nstart & ~HPAGE_PMD_MASK &&
2955 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2956 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2957 split_huge_page_address(next->vm_mm, nstart);