Linux 3.16.62
[linux/fpc-iii.git] / mm / mmap.c
blobf557e90fc719bd91e9eed81bda1b51900eb9a269
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/perf_event.h>
35 #include <linux/audit.h>
36 #include <linux/khugepaged.h>
37 #include <linux/uprobes.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
44 #include <asm/uaccess.h>
45 #include <asm/cacheflush.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
49 #include "internal.h"
51 #ifndef arch_mmap_check
52 #define arch_mmap_check(addr, len, flags) (0)
53 #endif
55 #ifndef arch_rebalance_pgtables
56 #define arch_rebalance_pgtables(addr, len) (addr)
57 #endif
59 static void unmap_region(struct mm_struct *mm,
60 struct vm_area_struct *vma, struct vm_area_struct *prev,
61 unsigned long start, unsigned long end);
63 /* description of effects of mapping type and prot in current implementation.
64 * this is due to the limited x86 page protection hardware. The expected
65 * behavior is in parens:
67 * map_type prot
68 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
69 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (yes) yes w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
74 * w: (no) no w: (no) no w: (copy) copy w: (no) no
75 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
78 pgprot_t protection_map[16] = {
79 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
80 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 return __pgprot(pgprot_val(protection_map[vm_flags &
86 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
87 pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 EXPORT_SYMBOL(vm_get_page_prot);
91 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
92 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
93 unsigned long sysctl_overcommit_kbytes __read_mostly;
94 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
95 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
96 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 * Make sure vm_committed_as in one cacheline and not cacheline shared with
99 * other variables. It can be updated by several CPUs frequently.
101 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
104 * The global memory commitment made in the system can be a metric
105 * that can be used to drive ballooning decisions when Linux is hosted
106 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
107 * balancing memory across competing virtual machines that are hosted.
108 * Several metrics drive this policy engine including the guest reported
109 * memory commitment.
111 unsigned long vm_memory_committed(void)
113 return percpu_counter_read_positive(&vm_committed_as);
115 EXPORT_SYMBOL_GPL(vm_memory_committed);
118 * Check that a process has enough memory to allocate a new virtual
119 * mapping. 0 means there is enough memory for the allocation to
120 * succeed and -ENOMEM implies there is not.
122 * We currently support three overcommit policies, which are set via the
123 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
125 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
126 * Additional code 2002 Jul 20 by Robert Love.
128 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130 * Note this is a helper function intended to be used by LSMs which
131 * wish to use this logic.
133 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 long free, allowed, reserve;
137 vm_acct_memory(pages);
140 * Sometimes we want to use more memory than we have
142 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
143 return 0;
145 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
146 free = global_page_state(NR_FREE_PAGES);
147 free += global_page_state(NR_FILE_PAGES);
150 * shmem pages shouldn't be counted as free in this
151 * case, they can't be purged, only swapped out, and
152 * that won't affect the overall amount of available
153 * memory in the system.
155 free -= global_page_state(NR_SHMEM);
157 free += get_nr_swap_pages();
160 * Any slabs which are created with the
161 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
162 * which are reclaimable, under pressure. The dentry
163 * cache and most inode caches should fall into this
165 free += global_page_state(NR_SLAB_RECLAIMABLE);
168 * Leave reserved pages. The pages are not for anonymous pages.
170 if (free <= totalreserve_pages)
171 goto error;
172 else
173 free -= totalreserve_pages;
176 * Reserve some for root
178 if (!cap_sys_admin)
179 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
181 if (free > pages)
182 return 0;
184 goto error;
187 allowed = vm_commit_limit();
189 * Reserve some for root
191 if (!cap_sys_admin)
192 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
195 * Don't let a single process grow so big a user can't recover
197 if (mm) {
198 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
199 allowed -= min_t(long, mm->total_vm / 32, reserve);
202 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
203 return 0;
204 error:
205 vm_unacct_memory(pages);
207 return -ENOMEM;
211 * Requires inode->i_mapping->i_mmap_mutex
213 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
214 struct file *file, struct address_space *mapping)
216 if (vma->vm_flags & VM_DENYWRITE)
217 atomic_inc(&file_inode(file)->i_writecount);
218 if (vma->vm_flags & VM_SHARED)
219 mapping->i_mmap_writable--;
221 flush_dcache_mmap_lock(mapping);
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
230 void unlink_file_vma(struct vm_area_struct *vma)
232 struct file *file = vma->vm_file;
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
243 * Close a vm structure and free it, returning the next.
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
247 struct vm_area_struct *next = vma->vm_next;
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 struct vm_area_struct *next;
267 unsigned long min_brk;
268 bool populate;
270 down_write(&mm->mmap_sem);
272 #ifdef CONFIG_COMPAT_BRK
274 * CONFIG_COMPAT_BRK can still be overridden by setting
275 * randomize_va_space to 2, which will still cause mm->start_brk
276 * to be arbitrarily shifted
278 if (current->brk_randomized)
279 min_brk = mm->start_brk;
280 else
281 min_brk = mm->end_data;
282 #else
283 min_brk = mm->start_brk;
284 #endif
285 if (brk < min_brk)
286 goto out;
289 * Check against rlimit here. If this check is done later after the test
290 * of oldbrk with newbrk then it can escape the test and let the data
291 * segment grow beyond its set limit the in case where the limit is
292 * not page aligned -Ram Gupta
294 rlim = rlimit(RLIMIT_DATA);
295 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
296 (mm->end_data - mm->start_data) > rlim)
297 goto out;
299 newbrk = PAGE_ALIGN(brk);
300 oldbrk = PAGE_ALIGN(mm->brk);
301 if (oldbrk == newbrk)
302 goto set_brk;
304 /* Always allow shrinking brk. */
305 if (brk <= mm->brk) {
306 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
307 goto set_brk;
308 goto out;
311 /* Check against existing mmap mappings. */
312 next = find_vma(mm, oldbrk);
313 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
314 goto out;
316 /* Ok, looks good - let it rip. */
317 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
318 goto out;
320 set_brk:
321 mm->brk = brk;
322 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
323 up_write(&mm->mmap_sem);
324 if (populate)
325 mm_populate(oldbrk, newbrk - oldbrk);
326 return brk;
328 out:
329 retval = mm->brk;
330 up_write(&mm->mmap_sem);
331 return retval;
334 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
336 unsigned long max, prev_end, subtree_gap;
339 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
340 * allow two stack_guard_gaps between them here, and when choosing
341 * an unmapped area; whereas when expanding we only require one.
342 * That's a little inconsistent, but keeps the code here simpler.
344 max = vm_start_gap(vma);
345 if (vma->vm_prev) {
346 prev_end = vm_end_gap(vma->vm_prev);
347 if (max > prev_end)
348 max -= prev_end;
349 else
350 max = 0;
352 if (vma->vm_rb.rb_left) {
353 subtree_gap = rb_entry(vma->vm_rb.rb_left,
354 struct vm_area_struct, vm_rb)->rb_subtree_gap;
355 if (subtree_gap > max)
356 max = subtree_gap;
358 if (vma->vm_rb.rb_right) {
359 subtree_gap = rb_entry(vma->vm_rb.rb_right,
360 struct vm_area_struct, vm_rb)->rb_subtree_gap;
361 if (subtree_gap > max)
362 max = subtree_gap;
364 return max;
367 #ifdef CONFIG_DEBUG_VM_RB
368 static int browse_rb(struct rb_root *root)
370 int i = 0, j, bug = 0;
371 struct rb_node *nd, *pn = NULL;
372 unsigned long prev = 0, pend = 0;
374 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
375 struct vm_area_struct *vma;
376 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
377 if (vma->vm_start < prev) {
378 pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
379 bug = 1;
381 if (vma->vm_start < pend) {
382 pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
383 bug = 1;
385 if (vma->vm_start > vma->vm_end) {
386 pr_info("vm_end %lx < vm_start %lx\n",
387 vma->vm_end, vma->vm_start);
388 bug = 1;
390 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
391 pr_info("free gap %lx, correct %lx\n",
392 vma->rb_subtree_gap,
393 vma_compute_subtree_gap(vma));
394 bug = 1;
396 i++;
397 pn = nd;
398 prev = vma->vm_start;
399 pend = vma->vm_end;
401 j = 0;
402 for (nd = pn; nd; nd = rb_prev(nd))
403 j++;
404 if (i != j) {
405 pr_info("backwards %d, forwards %d\n", j, i);
406 bug = 1;
408 return bug ? -1 : i;
411 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
413 struct rb_node *nd;
415 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
416 struct vm_area_struct *vma;
417 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
418 BUG_ON(vma != ignore &&
419 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
423 static void validate_mm(struct mm_struct *mm)
425 int bug = 0;
426 int i = 0;
427 unsigned long highest_address = 0;
428 struct vm_area_struct *vma = mm->mmap;
429 while (vma) {
430 struct anon_vma *anon_vma = vma->anon_vma;
431 struct anon_vma_chain *avc;
433 if (anon_vma) {
434 anon_vma_lock_read(anon_vma);
435 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
436 anon_vma_interval_tree_verify(avc);
437 anon_vma_unlock_read(anon_vma);
440 highest_address = vm_end_gap(vma);
441 vma = vma->vm_next;
442 i++;
444 if (i != mm->map_count) {
445 pr_info("map_count %d vm_next %d\n", mm->map_count, i);
446 bug = 1;
448 if (highest_address != mm->highest_vm_end) {
449 pr_info("mm->highest_vm_end %lx, found %lx\n",
450 mm->highest_vm_end, highest_address);
451 bug = 1;
453 i = browse_rb(&mm->mm_rb);
454 if (i != mm->map_count) {
455 pr_info("map_count %d rb %d\n", mm->map_count, i);
456 bug = 1;
458 BUG_ON(bug);
460 #else
461 #define validate_mm_rb(root, ignore) do { } while (0)
462 #define validate_mm(mm) do { } while (0)
463 #endif
465 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
466 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
469 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
470 * vma->vm_prev->vm_end values changed, without modifying the vma's position
471 * in the rbtree.
473 static void vma_gap_update(struct vm_area_struct *vma)
476 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
477 * function that does exacltly what we want.
479 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
482 static inline void vma_rb_insert(struct vm_area_struct *vma,
483 struct rb_root *root)
485 /* All rb_subtree_gap values must be consistent prior to insertion */
486 validate_mm_rb(root, NULL);
488 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
491 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
494 * All rb_subtree_gap values must be consistent prior to erase,
495 * with the possible exception of the vma being erased.
497 validate_mm_rb(root, vma);
500 * Note rb_erase_augmented is a fairly large inline function,
501 * so make sure we instantiate it only once with our desired
502 * augmented rbtree callbacks.
504 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
508 * vma has some anon_vma assigned, and is already inserted on that
509 * anon_vma's interval trees.
511 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
512 * vma must be removed from the anon_vma's interval trees using
513 * anon_vma_interval_tree_pre_update_vma().
515 * After the update, the vma will be reinserted using
516 * anon_vma_interval_tree_post_update_vma().
518 * The entire update must be protected by exclusive mmap_sem and by
519 * the root anon_vma's mutex.
521 static inline void
522 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
524 struct anon_vma_chain *avc;
526 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
527 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
530 static inline void
531 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
533 struct anon_vma_chain *avc;
535 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
536 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
539 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
540 unsigned long end, struct vm_area_struct **pprev,
541 struct rb_node ***rb_link, struct rb_node **rb_parent)
543 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
545 __rb_link = &mm->mm_rb.rb_node;
546 rb_prev = __rb_parent = NULL;
548 while (*__rb_link) {
549 struct vm_area_struct *vma_tmp;
551 __rb_parent = *__rb_link;
552 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
554 if (vma_tmp->vm_end > addr) {
555 /* Fail if an existing vma overlaps the area */
556 if (vma_tmp->vm_start < end)
557 return -ENOMEM;
558 __rb_link = &__rb_parent->rb_left;
559 } else {
560 rb_prev = __rb_parent;
561 __rb_link = &__rb_parent->rb_right;
565 *pprev = NULL;
566 if (rb_prev)
567 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
568 *rb_link = __rb_link;
569 *rb_parent = __rb_parent;
570 return 0;
573 static unsigned long count_vma_pages_range(struct mm_struct *mm,
574 unsigned long addr, unsigned long end)
576 unsigned long nr_pages = 0;
577 struct vm_area_struct *vma;
579 /* Find first overlaping mapping */
580 vma = find_vma_intersection(mm, addr, end);
581 if (!vma)
582 return 0;
584 nr_pages = (min(end, vma->vm_end) -
585 max(addr, vma->vm_start)) >> PAGE_SHIFT;
587 /* Iterate over the rest of the overlaps */
588 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
589 unsigned long overlap_len;
591 if (vma->vm_start > end)
592 break;
594 overlap_len = min(end, vma->vm_end) - vma->vm_start;
595 nr_pages += overlap_len >> PAGE_SHIFT;
598 return nr_pages;
601 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
602 struct rb_node **rb_link, struct rb_node *rb_parent)
604 /* Update tracking information for the gap following the new vma. */
605 if (vma->vm_next)
606 vma_gap_update(vma->vm_next);
607 else
608 mm->highest_vm_end = vm_end_gap(vma);
611 * vma->vm_prev wasn't known when we followed the rbtree to find the
612 * correct insertion point for that vma. As a result, we could not
613 * update the vma vm_rb parents rb_subtree_gap values on the way down.
614 * So, we first insert the vma with a zero rb_subtree_gap value
615 * (to be consistent with what we did on the way down), and then
616 * immediately update the gap to the correct value. Finally we
617 * rebalance the rbtree after all augmented values have been set.
619 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
620 vma->rb_subtree_gap = 0;
621 vma_gap_update(vma);
622 vma_rb_insert(vma, &mm->mm_rb);
625 static void __vma_link_file(struct vm_area_struct *vma)
627 struct file *file;
629 file = vma->vm_file;
630 if (file) {
631 struct address_space *mapping = file->f_mapping;
633 if (vma->vm_flags & VM_DENYWRITE)
634 atomic_dec(&file_inode(file)->i_writecount);
635 if (vma->vm_flags & VM_SHARED)
636 mapping->i_mmap_writable++;
638 flush_dcache_mmap_lock(mapping);
639 vma_interval_tree_insert(vma, &mapping->i_mmap);
640 flush_dcache_mmap_unlock(mapping);
644 static void
645 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
646 struct vm_area_struct *prev, struct rb_node **rb_link,
647 struct rb_node *rb_parent)
649 __vma_link_list(mm, vma, prev, rb_parent);
650 __vma_link_rb(mm, vma, rb_link, rb_parent);
653 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
654 struct vm_area_struct *prev, struct rb_node **rb_link,
655 struct rb_node *rb_parent)
657 struct address_space *mapping = NULL;
659 if (vma->vm_file) {
660 mapping = vma->vm_file->f_mapping;
661 mutex_lock(&mapping->i_mmap_mutex);
664 __vma_link(mm, vma, prev, rb_link, rb_parent);
665 __vma_link_file(vma);
667 if (mapping)
668 mutex_unlock(&mapping->i_mmap_mutex);
670 mm->map_count++;
671 validate_mm(mm);
675 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
676 * mm's list and rbtree. It has already been inserted into the interval tree.
678 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
680 struct vm_area_struct *prev;
681 struct rb_node **rb_link, *rb_parent;
683 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
684 &prev, &rb_link, &rb_parent))
685 BUG();
686 __vma_link(mm, vma, prev, rb_link, rb_parent);
687 mm->map_count++;
690 static inline void
691 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
692 struct vm_area_struct *prev)
694 struct vm_area_struct *next;
696 vma_rb_erase(vma, &mm->mm_rb);
697 prev->vm_next = next = vma->vm_next;
698 if (next)
699 next->vm_prev = prev;
701 /* Kill the cache */
702 vmacache_invalidate(mm);
706 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
707 * is already present in an i_mmap tree without adjusting the tree.
708 * The following helper function should be used when such adjustments
709 * are necessary. The "insert" vma (if any) is to be inserted
710 * before we drop the necessary locks.
712 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
713 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
715 struct mm_struct *mm = vma->vm_mm;
716 struct vm_area_struct *next = vma->vm_next;
717 struct vm_area_struct *importer = NULL;
718 struct address_space *mapping = NULL;
719 struct rb_root *root = NULL;
720 struct anon_vma *anon_vma = NULL;
721 struct file *file = vma->vm_file;
722 bool start_changed = false, end_changed = false;
723 long adjust_next = 0;
724 int remove_next = 0;
726 if (next && !insert) {
727 struct vm_area_struct *exporter = NULL;
729 if (end >= next->vm_end) {
731 * vma expands, overlapping all the next, and
732 * perhaps the one after too (mprotect case 6).
734 again: remove_next = 1 + (end > next->vm_end);
735 end = next->vm_end;
736 exporter = next;
737 importer = vma;
738 } else if (end > next->vm_start) {
740 * vma expands, overlapping part of the next:
741 * mprotect case 5 shifting the boundary up.
743 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
744 exporter = next;
745 importer = vma;
746 } else if (end < vma->vm_end) {
748 * vma shrinks, and !insert tells it's not
749 * split_vma inserting another: so it must be
750 * mprotect case 4 shifting the boundary down.
752 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
753 exporter = vma;
754 importer = next;
758 * Easily overlooked: when mprotect shifts the boundary,
759 * make sure the expanding vma has anon_vma set if the
760 * shrinking vma had, to cover any anon pages imported.
762 if (exporter && exporter->anon_vma && !importer->anon_vma) {
763 int error;
765 importer->anon_vma = exporter->anon_vma;
766 error = anon_vma_clone(importer, exporter);
767 if (error)
768 return error;
772 if (file) {
773 mapping = file->f_mapping;
774 root = &mapping->i_mmap;
775 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
777 if (adjust_next)
778 uprobe_munmap(next, next->vm_start, next->vm_end);
780 mutex_lock(&mapping->i_mmap_mutex);
781 if (insert) {
783 * Put into interval tree now, so instantiated pages
784 * are visible to arm/parisc __flush_dcache_page
785 * throughout; but we cannot insert into address
786 * space until vma start or end is updated.
788 __vma_link_file(insert);
792 vma_adjust_trans_huge(vma, start, end, adjust_next);
794 anon_vma = vma->anon_vma;
795 if (!anon_vma && adjust_next)
796 anon_vma = next->anon_vma;
797 if (anon_vma) {
798 VM_BUG_ON(adjust_next && next->anon_vma &&
799 anon_vma != next->anon_vma);
800 anon_vma_lock_write(anon_vma);
801 anon_vma_interval_tree_pre_update_vma(vma);
802 if (adjust_next)
803 anon_vma_interval_tree_pre_update_vma(next);
806 if (root) {
807 flush_dcache_mmap_lock(mapping);
808 vma_interval_tree_remove(vma, root);
809 if (adjust_next)
810 vma_interval_tree_remove(next, root);
813 if (start != vma->vm_start) {
814 vma->vm_start = start;
815 start_changed = true;
817 if (end != vma->vm_end) {
818 vma->vm_end = end;
819 end_changed = true;
821 vma->vm_pgoff = pgoff;
822 if (adjust_next) {
823 next->vm_start += adjust_next << PAGE_SHIFT;
824 next->vm_pgoff += adjust_next;
827 if (root) {
828 if (adjust_next)
829 vma_interval_tree_insert(next, root);
830 vma_interval_tree_insert(vma, root);
831 flush_dcache_mmap_unlock(mapping);
834 if (remove_next) {
836 * vma_merge has merged next into vma, and needs
837 * us to remove next before dropping the locks.
839 __vma_unlink(mm, next, vma);
840 if (file)
841 __remove_shared_vm_struct(next, file, mapping);
842 } else if (insert) {
844 * split_vma has split insert from vma, and needs
845 * us to insert it before dropping the locks
846 * (it may either follow vma or precede it).
848 __insert_vm_struct(mm, insert);
849 } else {
850 if (start_changed)
851 vma_gap_update(vma);
852 if (end_changed) {
853 if (!next)
854 mm->highest_vm_end = vm_end_gap(vma);
855 else if (!adjust_next)
856 vma_gap_update(next);
860 if (anon_vma) {
861 anon_vma_interval_tree_post_update_vma(vma);
862 if (adjust_next)
863 anon_vma_interval_tree_post_update_vma(next);
864 anon_vma_unlock_write(anon_vma);
866 if (mapping)
867 mutex_unlock(&mapping->i_mmap_mutex);
869 if (root) {
870 uprobe_mmap(vma);
872 if (adjust_next)
873 uprobe_mmap(next);
876 if (remove_next) {
877 if (file) {
878 uprobe_munmap(next, next->vm_start, next->vm_end);
879 fput(file);
881 if (next->anon_vma)
882 anon_vma_merge(vma, next);
883 mm->map_count--;
884 mpol_put(vma_policy(next));
885 kmem_cache_free(vm_area_cachep, next);
887 * In mprotect's case 6 (see comments on vma_merge),
888 * we must remove another next too. It would clutter
889 * up the code too much to do both in one go.
891 next = vma->vm_next;
892 if (remove_next == 2)
893 goto again;
894 else if (next)
895 vma_gap_update(next);
896 else
897 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
899 if (insert && file)
900 uprobe_mmap(insert);
902 validate_mm(mm);
904 return 0;
908 * If the vma has a ->close operation then the driver probably needs to release
909 * per-vma resources, so we don't attempt to merge those.
911 static inline int is_mergeable_vma(struct vm_area_struct *vma,
912 struct file *file, unsigned long vm_flags)
915 * VM_SOFTDIRTY should not prevent from VMA merging, if we
916 * match the flags but dirty bit -- the caller should mark
917 * merged VMA as dirty. If dirty bit won't be excluded from
918 * comparison, we increase pressue on the memory system forcing
919 * the kernel to generate new VMAs when old one could be
920 * extended instead.
922 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
923 return 0;
924 if (vma->vm_file != file)
925 return 0;
926 if (vma->vm_ops && vma->vm_ops->close)
927 return 0;
928 return 1;
931 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
932 struct anon_vma *anon_vma2,
933 struct vm_area_struct *vma)
936 * The list_is_singular() test is to avoid merging VMA cloned from
937 * parents. This can improve scalability caused by anon_vma lock.
939 if ((!anon_vma1 || !anon_vma2) && (!vma ||
940 list_is_singular(&vma->anon_vma_chain)))
941 return 1;
942 return anon_vma1 == anon_vma2;
946 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
947 * in front of (at a lower virtual address and file offset than) the vma.
949 * We cannot merge two vmas if they have differently assigned (non-NULL)
950 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
952 * We don't check here for the merged mmap wrapping around the end of pagecache
953 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
954 * wrap, nor mmaps which cover the final page at index -1UL.
956 static int
957 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
958 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
960 if (is_mergeable_vma(vma, file, vm_flags) &&
961 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
962 if (vma->vm_pgoff == vm_pgoff)
963 return 1;
965 return 0;
969 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
970 * beyond (at a higher virtual address and file offset than) the vma.
972 * We cannot merge two vmas if they have differently assigned (non-NULL)
973 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
975 static int
976 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
977 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
979 if (is_mergeable_vma(vma, file, vm_flags) &&
980 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
981 pgoff_t vm_pglen;
982 vm_pglen = vma_pages(vma);
983 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
984 return 1;
986 return 0;
990 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
991 * whether that can be merged with its predecessor or its successor.
992 * Or both (it neatly fills a hole).
994 * In most cases - when called for mmap, brk or mremap - [addr,end) is
995 * certain not to be mapped by the time vma_merge is called; but when
996 * called for mprotect, it is certain to be already mapped (either at
997 * an offset within prev, or at the start of next), and the flags of
998 * this area are about to be changed to vm_flags - and the no-change
999 * case has already been eliminated.
1001 * The following mprotect cases have to be considered, where AAAA is
1002 * the area passed down from mprotect_fixup, never extending beyond one
1003 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1005 * AAAA AAAA AAAA AAAA
1006 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1007 * cannot merge might become might become might become
1008 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1009 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1010 * mremap move: PPPPNNNNNNNN 8
1011 * AAAA
1012 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1013 * might become case 1 below case 2 below case 3 below
1015 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1016 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1018 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1019 struct vm_area_struct *prev, unsigned long addr,
1020 unsigned long end, unsigned long vm_flags,
1021 struct anon_vma *anon_vma, struct file *file,
1022 pgoff_t pgoff, struct mempolicy *policy)
1024 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1025 struct vm_area_struct *area, *next;
1026 int err;
1029 * We later require that vma->vm_flags == vm_flags,
1030 * so this tests vma->vm_flags & VM_SPECIAL, too.
1032 if (vm_flags & VM_SPECIAL)
1033 return NULL;
1035 if (prev)
1036 next = prev->vm_next;
1037 else
1038 next = mm->mmap;
1039 area = next;
1040 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1041 next = next->vm_next;
1044 * Can it merge with the predecessor?
1046 if (prev && prev->vm_end == addr &&
1047 mpol_equal(vma_policy(prev), policy) &&
1048 can_vma_merge_after(prev, vm_flags,
1049 anon_vma, file, pgoff)) {
1051 * OK, it can. Can we now merge in the successor as well?
1053 if (next && end == next->vm_start &&
1054 mpol_equal(policy, vma_policy(next)) &&
1055 can_vma_merge_before(next, vm_flags,
1056 anon_vma, file, pgoff+pglen) &&
1057 is_mergeable_anon_vma(prev->anon_vma,
1058 next->anon_vma, NULL)) {
1059 /* cases 1, 6 */
1060 err = vma_adjust(prev, prev->vm_start,
1061 next->vm_end, prev->vm_pgoff, NULL);
1062 } else /* cases 2, 5, 7 */
1063 err = vma_adjust(prev, prev->vm_start,
1064 end, prev->vm_pgoff, NULL);
1065 if (err)
1066 return NULL;
1067 khugepaged_enter_vma_merge(prev, vm_flags);
1068 return prev;
1072 * Can this new request be merged in front of next?
1074 if (next && end == next->vm_start &&
1075 mpol_equal(policy, vma_policy(next)) &&
1076 can_vma_merge_before(next, vm_flags,
1077 anon_vma, file, pgoff+pglen)) {
1078 if (prev && addr < prev->vm_end) /* case 4 */
1079 err = vma_adjust(prev, prev->vm_start,
1080 addr, prev->vm_pgoff, NULL);
1081 else /* cases 3, 8 */
1082 err = vma_adjust(area, addr, next->vm_end,
1083 next->vm_pgoff - pglen, NULL);
1084 if (err)
1085 return NULL;
1086 khugepaged_enter_vma_merge(area, vm_flags);
1087 return area;
1090 return NULL;
1094 * Rough compatbility check to quickly see if it's even worth looking
1095 * at sharing an anon_vma.
1097 * They need to have the same vm_file, and the flags can only differ
1098 * in things that mprotect may change.
1100 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1101 * we can merge the two vma's. For example, we refuse to merge a vma if
1102 * there is a vm_ops->close() function, because that indicates that the
1103 * driver is doing some kind of reference counting. But that doesn't
1104 * really matter for the anon_vma sharing case.
1106 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1108 return a->vm_end == b->vm_start &&
1109 mpol_equal(vma_policy(a), vma_policy(b)) &&
1110 a->vm_file == b->vm_file &&
1111 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1112 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1116 * Do some basic sanity checking to see if we can re-use the anon_vma
1117 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1118 * the same as 'old', the other will be the new one that is trying
1119 * to share the anon_vma.
1121 * NOTE! This runs with mm_sem held for reading, so it is possible that
1122 * the anon_vma of 'old' is concurrently in the process of being set up
1123 * by another page fault trying to merge _that_. But that's ok: if it
1124 * is being set up, that automatically means that it will be a singleton
1125 * acceptable for merging, so we can do all of this optimistically. But
1126 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1128 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1129 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1130 * is to return an anon_vma that is "complex" due to having gone through
1131 * a fork).
1133 * We also make sure that the two vma's are compatible (adjacent,
1134 * and with the same memory policies). That's all stable, even with just
1135 * a read lock on the mm_sem.
1137 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1139 if (anon_vma_compatible(a, b)) {
1140 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1142 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1143 return anon_vma;
1145 return NULL;
1149 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1150 * neighbouring vmas for a suitable anon_vma, before it goes off
1151 * to allocate a new anon_vma. It checks because a repetitive
1152 * sequence of mprotects and faults may otherwise lead to distinct
1153 * anon_vmas being allocated, preventing vma merge in subsequent
1154 * mprotect.
1156 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1158 struct anon_vma *anon_vma;
1159 struct vm_area_struct *near;
1161 near = vma->vm_next;
1162 if (!near)
1163 goto try_prev;
1165 anon_vma = reusable_anon_vma(near, vma, near);
1166 if (anon_vma)
1167 return anon_vma;
1168 try_prev:
1169 near = vma->vm_prev;
1170 if (!near)
1171 goto none;
1173 anon_vma = reusable_anon_vma(near, near, vma);
1174 if (anon_vma)
1175 return anon_vma;
1176 none:
1178 * There's no absolute need to look only at touching neighbours:
1179 * we could search further afield for "compatible" anon_vmas.
1180 * But it would probably just be a waste of time searching,
1181 * or lead to too many vmas hanging off the same anon_vma.
1182 * We're trying to allow mprotect remerging later on,
1183 * not trying to minimize memory used for anon_vmas.
1185 return NULL;
1188 #ifdef CONFIG_PROC_FS
1189 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1190 struct file *file, long pages)
1192 const unsigned long stack_flags
1193 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1195 mm->total_vm += pages;
1197 if (file) {
1198 mm->shared_vm += pages;
1199 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1200 mm->exec_vm += pages;
1201 } else if (flags & stack_flags)
1202 mm->stack_vm += pages;
1204 #endif /* CONFIG_PROC_FS */
1207 * If a hint addr is less than mmap_min_addr change hint to be as
1208 * low as possible but still greater than mmap_min_addr
1210 static inline unsigned long round_hint_to_min(unsigned long hint)
1212 hint &= PAGE_MASK;
1213 if (((void *)hint != NULL) &&
1214 (hint < mmap_min_addr))
1215 return PAGE_ALIGN(mmap_min_addr);
1216 return hint;
1219 static inline int mlock_future_check(struct mm_struct *mm,
1220 unsigned long flags,
1221 unsigned long len)
1223 unsigned long locked, lock_limit;
1225 /* mlock MCL_FUTURE? */
1226 if (flags & VM_LOCKED) {
1227 locked = len >> PAGE_SHIFT;
1228 locked += mm->locked_vm;
1229 lock_limit = rlimit(RLIMIT_MEMLOCK);
1230 lock_limit >>= PAGE_SHIFT;
1231 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1232 return -EAGAIN;
1234 return 0;
1237 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1239 if (S_ISREG(inode->i_mode))
1240 return MAX_LFS_FILESIZE;
1242 if (S_ISBLK(inode->i_mode))
1243 return MAX_LFS_FILESIZE;
1245 /* Special "we do even unsigned file positions" case */
1246 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1247 return 0;
1249 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1250 return ULONG_MAX;
1253 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1254 unsigned long pgoff, unsigned long len)
1256 u64 maxsize = file_mmap_size_max(file, inode);
1258 if (maxsize && len > maxsize)
1259 return false;
1260 maxsize -= len;
1261 if (pgoff > maxsize >> PAGE_SHIFT)
1262 return false;
1263 return true;
1267 * The caller must hold down_write(&current->mm->mmap_sem).
1270 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1271 unsigned long len, unsigned long prot,
1272 unsigned long flags, unsigned long pgoff,
1273 unsigned long *populate)
1275 struct mm_struct * mm = current->mm;
1276 vm_flags_t vm_flags;
1278 *populate = 0;
1281 * Does the application expect PROT_READ to imply PROT_EXEC?
1283 * (the exception is when the underlying filesystem is noexec
1284 * mounted, in which case we dont add PROT_EXEC.)
1286 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1287 if (!(file && path_noexec(&file->f_path)))
1288 prot |= PROT_EXEC;
1290 if (!len)
1291 return -EINVAL;
1293 if (!(flags & MAP_FIXED))
1294 addr = round_hint_to_min(addr);
1296 /* Careful about overflows.. */
1297 len = PAGE_ALIGN(len);
1298 if (!len)
1299 return -ENOMEM;
1301 /* offset overflow? */
1302 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1303 return -EOVERFLOW;
1305 /* Too many mappings? */
1306 if (mm->map_count > sysctl_max_map_count)
1307 return -ENOMEM;
1309 /* Obtain the address to map to. we verify (or select) it and ensure
1310 * that it represents a valid section of the address space.
1312 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1313 if (addr & ~PAGE_MASK)
1314 return addr;
1316 /* Do simple checking here so the lower-level routines won't have
1317 * to. we assume access permissions have been handled by the open
1318 * of the memory object, so we don't do any here.
1320 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1321 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1323 if (flags & MAP_LOCKED)
1324 if (!can_do_mlock())
1325 return -EPERM;
1327 if (mlock_future_check(mm, vm_flags, len))
1328 return -EAGAIN;
1330 if (file) {
1331 struct inode *inode = file_inode(file);
1333 if (!file_mmap_ok(file, inode, pgoff, len))
1334 return -EOVERFLOW;
1336 switch (flags & MAP_TYPE) {
1337 case MAP_SHARED:
1338 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1339 return -EACCES;
1342 * Make sure we don't allow writing to an append-only
1343 * file..
1345 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1346 return -EACCES;
1349 * Make sure there are no mandatory locks on the file.
1351 if (locks_verify_locked(file))
1352 return -EAGAIN;
1354 vm_flags |= VM_SHARED | VM_MAYSHARE;
1355 if (!(file->f_mode & FMODE_WRITE))
1356 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1358 /* fall through */
1359 case MAP_PRIVATE:
1360 if (!(file->f_mode & FMODE_READ))
1361 return -EACCES;
1362 if (path_noexec(&file->f_path)) {
1363 if (vm_flags & VM_EXEC)
1364 return -EPERM;
1365 vm_flags &= ~VM_MAYEXEC;
1368 if (!file->f_op->mmap)
1369 return -ENODEV;
1370 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1371 return -EINVAL;
1372 break;
1374 default:
1375 return -EINVAL;
1377 } else {
1378 switch (flags & MAP_TYPE) {
1379 case MAP_SHARED:
1380 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1381 return -EINVAL;
1383 * Ignore pgoff.
1385 pgoff = 0;
1386 vm_flags |= VM_SHARED | VM_MAYSHARE;
1387 break;
1388 case MAP_PRIVATE:
1390 * Set pgoff according to addr for anon_vma.
1392 pgoff = addr >> PAGE_SHIFT;
1393 break;
1394 default:
1395 return -EINVAL;
1400 * Set 'VM_NORESERVE' if we should not account for the
1401 * memory use of this mapping.
1403 if (flags & MAP_NORESERVE) {
1404 /* We honor MAP_NORESERVE if allowed to overcommit */
1405 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1406 vm_flags |= VM_NORESERVE;
1408 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1409 if (file && is_file_hugepages(file))
1410 vm_flags |= VM_NORESERVE;
1413 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1414 if (!IS_ERR_VALUE(addr) &&
1415 ((vm_flags & VM_LOCKED) ||
1416 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1417 *populate = len;
1418 return addr;
1421 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1422 unsigned long, prot, unsigned long, flags,
1423 unsigned long, fd, unsigned long, pgoff)
1425 struct file *file = NULL;
1426 unsigned long retval = -EBADF;
1428 if (!(flags & MAP_ANONYMOUS)) {
1429 audit_mmap_fd(fd, flags);
1430 file = fget(fd);
1431 if (!file)
1432 goto out;
1433 if (is_file_hugepages(file))
1434 len = ALIGN(len, huge_page_size(hstate_file(file)));
1435 retval = -EINVAL;
1436 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1437 goto out_fput;
1438 } else if (flags & MAP_HUGETLB) {
1439 struct user_struct *user = NULL;
1440 struct hstate *hs;
1442 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1443 if (!hs)
1444 return -EINVAL;
1446 len = ALIGN(len, huge_page_size(hs));
1448 * VM_NORESERVE is used because the reservations will be
1449 * taken when vm_ops->mmap() is called
1450 * A dummy user value is used because we are not locking
1451 * memory so no accounting is necessary
1453 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1454 VM_NORESERVE,
1455 &user, HUGETLB_ANONHUGE_INODE,
1456 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1457 if (IS_ERR(file))
1458 return PTR_ERR(file);
1461 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1463 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1464 out_fput:
1465 if (file)
1466 fput(file);
1467 out:
1468 return retval;
1471 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1472 struct mmap_arg_struct {
1473 unsigned long addr;
1474 unsigned long len;
1475 unsigned long prot;
1476 unsigned long flags;
1477 unsigned long fd;
1478 unsigned long offset;
1481 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1483 struct mmap_arg_struct a;
1485 if (copy_from_user(&a, arg, sizeof(a)))
1486 return -EFAULT;
1487 if (a.offset & ~PAGE_MASK)
1488 return -EINVAL;
1490 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1491 a.offset >> PAGE_SHIFT);
1493 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1496 * Some shared mappigns will want the pages marked read-only
1497 * to track write events. If so, we'll downgrade vm_page_prot
1498 * to the private version (using protection_map[] without the
1499 * VM_SHARED bit).
1501 int vma_wants_writenotify(struct vm_area_struct *vma)
1503 vm_flags_t vm_flags = vma->vm_flags;
1505 /* If it was private or non-writable, the write bit is already clear */
1506 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1507 return 0;
1509 /* The backer wishes to know when pages are first written to? */
1510 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1511 return 1;
1513 /* The open routine did something to the protections already? */
1514 if (pgprot_val(vma->vm_page_prot) !=
1515 pgprot_val(vm_get_page_prot(vm_flags)))
1516 return 0;
1518 /* Specialty mapping? */
1519 if (vm_flags & VM_PFNMAP)
1520 return 0;
1522 /* Can the mapping track the dirty pages? */
1523 return vma->vm_file && vma->vm_file->f_mapping &&
1524 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1528 * We account for memory if it's a private writeable mapping,
1529 * not hugepages and VM_NORESERVE wasn't set.
1531 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1534 * hugetlb has its own accounting separate from the core VM
1535 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1537 if (file && is_file_hugepages(file))
1538 return 0;
1540 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1543 unsigned long mmap_region(struct file *file, unsigned long addr,
1544 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1546 struct mm_struct *mm = current->mm;
1547 struct vm_area_struct *vma, *prev;
1548 int error;
1549 struct rb_node **rb_link, *rb_parent;
1550 unsigned long charged = 0;
1552 /* Check against address space limit. */
1553 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1554 unsigned long nr_pages;
1557 * MAP_FIXED may remove pages of mappings that intersects with
1558 * requested mapping. Account for the pages it would unmap.
1560 if (!(vm_flags & MAP_FIXED))
1561 return -ENOMEM;
1563 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1565 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1566 return -ENOMEM;
1569 /* Clear old maps */
1570 error = -ENOMEM;
1571 munmap_back:
1572 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1573 if (do_munmap(mm, addr, len))
1574 return -ENOMEM;
1575 goto munmap_back;
1579 * Private writable mapping: check memory availability
1581 if (accountable_mapping(file, vm_flags)) {
1582 charged = len >> PAGE_SHIFT;
1583 if (security_vm_enough_memory_mm(mm, charged))
1584 return -ENOMEM;
1585 vm_flags |= VM_ACCOUNT;
1589 * Can we just expand an old mapping?
1591 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1592 if (vma)
1593 goto out;
1596 * Determine the object being mapped and call the appropriate
1597 * specific mapper. the address has already been validated, but
1598 * not unmapped, but the maps are removed from the list.
1600 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1601 if (!vma) {
1602 error = -ENOMEM;
1603 goto unacct_error;
1606 vma->vm_mm = mm;
1607 vma->vm_start = addr;
1608 vma->vm_end = addr + len;
1609 vma->vm_flags = vm_flags;
1610 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1611 vma->vm_pgoff = pgoff;
1612 INIT_LIST_HEAD(&vma->anon_vma_chain);
1614 if (file) {
1615 if (vm_flags & VM_DENYWRITE) {
1616 error = deny_write_access(file);
1617 if (error)
1618 goto free_vma;
1620 vma->vm_file = get_file(file);
1621 error = file->f_op->mmap(file, vma);
1622 if (error)
1623 goto unmap_and_free_vma;
1625 /* Can addr have changed??
1627 * Answer: Yes, several device drivers can do it in their
1628 * f_op->mmap method. -DaveM
1629 * Bug: If addr is changed, prev, rb_link, rb_parent should
1630 * be updated for vma_link()
1632 WARN_ON_ONCE(addr != vma->vm_start);
1634 addr = vma->vm_start;
1635 vm_flags = vma->vm_flags;
1636 } else if (vm_flags & VM_SHARED) {
1637 error = shmem_zero_setup(vma);
1638 if (error)
1639 goto free_vma;
1642 if (vma_wants_writenotify(vma)) {
1643 pgprot_t pprot = vma->vm_page_prot;
1645 /* Can vma->vm_page_prot have changed??
1647 * Answer: Yes, drivers may have changed it in their
1648 * f_op->mmap method.
1650 * Ensures that vmas marked as uncached stay that way.
1652 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1653 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1654 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1657 vma_link(mm, vma, prev, rb_link, rb_parent);
1658 /* Once vma denies write, undo our temporary denial count */
1659 if (vm_flags & VM_DENYWRITE)
1660 allow_write_access(file);
1661 file = vma->vm_file;
1662 out:
1663 perf_event_mmap(vma);
1665 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1666 if (vm_flags & VM_LOCKED) {
1667 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1668 vma == get_gate_vma(current->mm)))
1669 mm->locked_vm += (len >> PAGE_SHIFT);
1670 else
1671 vma->vm_flags &= ~VM_LOCKED;
1674 if (file)
1675 uprobe_mmap(vma);
1678 * New (or expanded) vma always get soft dirty status.
1679 * Otherwise user-space soft-dirty page tracker won't
1680 * be able to distinguish situation when vma area unmapped,
1681 * then new mapped in-place (which must be aimed as
1682 * a completely new data area).
1684 vma->vm_flags |= VM_SOFTDIRTY;
1686 return addr;
1688 unmap_and_free_vma:
1689 if (vm_flags & VM_DENYWRITE)
1690 allow_write_access(file);
1691 vma->vm_file = NULL;
1692 fput(file);
1694 /* Undo any partial mapping done by a device driver. */
1695 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1696 charged = 0;
1697 free_vma:
1698 kmem_cache_free(vm_area_cachep, vma);
1699 unacct_error:
1700 if (charged)
1701 vm_unacct_memory(charged);
1702 return error;
1705 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1708 * We implement the search by looking for an rbtree node that
1709 * immediately follows a suitable gap. That is,
1710 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1711 * - gap_end = vma->vm_start >= info->low_limit + length;
1712 * - gap_end - gap_start >= length
1715 struct mm_struct *mm = current->mm;
1716 struct vm_area_struct *vma;
1717 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1719 /* Adjust search length to account for worst case alignment overhead */
1720 length = info->length + info->align_mask;
1721 if (length < info->length)
1722 return -ENOMEM;
1724 /* Adjust search limits by the desired length */
1725 if (info->high_limit < length)
1726 return -ENOMEM;
1727 high_limit = info->high_limit - length;
1729 if (info->low_limit > high_limit)
1730 return -ENOMEM;
1731 low_limit = info->low_limit + length;
1733 /* Check if rbtree root looks promising */
1734 if (RB_EMPTY_ROOT(&mm->mm_rb))
1735 goto check_highest;
1736 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1737 if (vma->rb_subtree_gap < length)
1738 goto check_highest;
1740 while (true) {
1741 /* Visit left subtree if it looks promising */
1742 gap_end = vm_start_gap(vma);
1743 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1744 struct vm_area_struct *left =
1745 rb_entry(vma->vm_rb.rb_left,
1746 struct vm_area_struct, vm_rb);
1747 if (left->rb_subtree_gap >= length) {
1748 vma = left;
1749 continue;
1753 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1754 check_current:
1755 /* Check if current node has a suitable gap */
1756 if (gap_start > high_limit)
1757 return -ENOMEM;
1758 if (gap_end >= low_limit &&
1759 gap_end > gap_start && gap_end - gap_start >= length)
1760 goto found;
1762 /* Visit right subtree if it looks promising */
1763 if (vma->vm_rb.rb_right) {
1764 struct vm_area_struct *right =
1765 rb_entry(vma->vm_rb.rb_right,
1766 struct vm_area_struct, vm_rb);
1767 if (right->rb_subtree_gap >= length) {
1768 vma = right;
1769 continue;
1773 /* Go back up the rbtree to find next candidate node */
1774 while (true) {
1775 struct rb_node *prev = &vma->vm_rb;
1776 if (!rb_parent(prev))
1777 goto check_highest;
1778 vma = rb_entry(rb_parent(prev),
1779 struct vm_area_struct, vm_rb);
1780 if (prev == vma->vm_rb.rb_left) {
1781 gap_start = vm_end_gap(vma->vm_prev);
1782 gap_end = vm_start_gap(vma);
1783 goto check_current;
1788 check_highest:
1789 /* Check highest gap, which does not precede any rbtree node */
1790 gap_start = mm->highest_vm_end;
1791 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1792 if (gap_start > high_limit)
1793 return -ENOMEM;
1795 found:
1796 /* We found a suitable gap. Clip it with the original low_limit. */
1797 if (gap_start < info->low_limit)
1798 gap_start = info->low_limit;
1800 /* Adjust gap address to the desired alignment */
1801 gap_start += (info->align_offset - gap_start) & info->align_mask;
1803 VM_BUG_ON(gap_start + info->length > info->high_limit);
1804 VM_BUG_ON(gap_start + info->length > gap_end);
1805 return gap_start;
1808 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1810 struct mm_struct *mm = current->mm;
1811 struct vm_area_struct *vma;
1812 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1814 /* Adjust search length to account for worst case alignment overhead */
1815 length = info->length + info->align_mask;
1816 if (length < info->length)
1817 return -ENOMEM;
1820 * Adjust search limits by the desired length.
1821 * See implementation comment at top of unmapped_area().
1823 gap_end = info->high_limit;
1824 if (gap_end < length)
1825 return -ENOMEM;
1826 high_limit = gap_end - length;
1828 if (info->low_limit > high_limit)
1829 return -ENOMEM;
1830 low_limit = info->low_limit + length;
1832 /* Check highest gap, which does not precede any rbtree node */
1833 gap_start = mm->highest_vm_end;
1834 if (gap_start <= high_limit)
1835 goto found_highest;
1837 /* Check if rbtree root looks promising */
1838 if (RB_EMPTY_ROOT(&mm->mm_rb))
1839 return -ENOMEM;
1840 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1841 if (vma->rb_subtree_gap < length)
1842 return -ENOMEM;
1844 while (true) {
1845 /* Visit right subtree if it looks promising */
1846 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1847 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1848 struct vm_area_struct *right =
1849 rb_entry(vma->vm_rb.rb_right,
1850 struct vm_area_struct, vm_rb);
1851 if (right->rb_subtree_gap >= length) {
1852 vma = right;
1853 continue;
1857 check_current:
1858 /* Check if current node has a suitable gap */
1859 gap_end = vm_start_gap(vma);
1860 if (gap_end < low_limit)
1861 return -ENOMEM;
1862 if (gap_start <= high_limit &&
1863 gap_end > gap_start && gap_end - gap_start >= length)
1864 goto found;
1866 /* Visit left subtree if it looks promising */
1867 if (vma->vm_rb.rb_left) {
1868 struct vm_area_struct *left =
1869 rb_entry(vma->vm_rb.rb_left,
1870 struct vm_area_struct, vm_rb);
1871 if (left->rb_subtree_gap >= length) {
1872 vma = left;
1873 continue;
1877 /* Go back up the rbtree to find next candidate node */
1878 while (true) {
1879 struct rb_node *prev = &vma->vm_rb;
1880 if (!rb_parent(prev))
1881 return -ENOMEM;
1882 vma = rb_entry(rb_parent(prev),
1883 struct vm_area_struct, vm_rb);
1884 if (prev == vma->vm_rb.rb_right) {
1885 gap_start = vma->vm_prev ?
1886 vm_end_gap(vma->vm_prev) : 0;
1887 goto check_current;
1892 found:
1893 /* We found a suitable gap. Clip it with the original high_limit. */
1894 if (gap_end > info->high_limit)
1895 gap_end = info->high_limit;
1897 found_highest:
1898 /* Compute highest gap address at the desired alignment */
1899 gap_end -= info->length;
1900 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1902 VM_BUG_ON(gap_end < info->low_limit);
1903 VM_BUG_ON(gap_end < gap_start);
1904 return gap_end;
1907 /* Get an address range which is currently unmapped.
1908 * For shmat() with addr=0.
1910 * Ugly calling convention alert:
1911 * Return value with the low bits set means error value,
1912 * ie
1913 * if (ret & ~PAGE_MASK)
1914 * error = ret;
1916 * This function "knows" that -ENOMEM has the bits set.
1918 #ifndef HAVE_ARCH_UNMAPPED_AREA
1919 unsigned long
1920 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1921 unsigned long len, unsigned long pgoff, unsigned long flags)
1923 struct mm_struct *mm = current->mm;
1924 struct vm_area_struct *vma, *prev;
1925 struct vm_unmapped_area_info info;
1927 if (len > TASK_SIZE - mmap_min_addr)
1928 return -ENOMEM;
1930 if (flags & MAP_FIXED)
1931 return addr;
1933 if (addr) {
1934 addr = PAGE_ALIGN(addr);
1935 vma = find_vma_prev(mm, addr, &prev);
1936 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1937 (!vma || addr + len <= vm_start_gap(vma)) &&
1938 (!prev || addr >= vm_end_gap(prev)))
1939 return addr;
1942 info.flags = 0;
1943 info.length = len;
1944 info.low_limit = mm->mmap_base;
1945 info.high_limit = TASK_SIZE;
1946 info.align_mask = 0;
1947 return vm_unmapped_area(&info);
1949 #endif
1952 * This mmap-allocator allocates new areas top-down from below the
1953 * stack's low limit (the base):
1955 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1956 unsigned long
1957 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1958 const unsigned long len, const unsigned long pgoff,
1959 const unsigned long flags)
1961 struct vm_area_struct *vma, *prev;
1962 struct mm_struct *mm = current->mm;
1963 unsigned long addr = addr0;
1964 struct vm_unmapped_area_info info;
1966 /* requested length too big for entire address space */
1967 if (len > TASK_SIZE - mmap_min_addr)
1968 return -ENOMEM;
1970 if (flags & MAP_FIXED)
1971 return addr;
1973 /* requesting a specific address */
1974 if (addr) {
1975 addr = PAGE_ALIGN(addr);
1976 vma = find_vma_prev(mm, addr, &prev);
1977 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1978 (!vma || addr + len <= vm_start_gap(vma)) &&
1979 (!prev || addr >= vm_end_gap(prev)))
1980 return addr;
1983 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1984 info.length = len;
1985 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1986 info.high_limit = mm->mmap_base;
1987 info.align_mask = 0;
1988 addr = vm_unmapped_area(&info);
1991 * A failed mmap() very likely causes application failure,
1992 * so fall back to the bottom-up function here. This scenario
1993 * can happen with large stack limits and large mmap()
1994 * allocations.
1996 if (addr & ~PAGE_MASK) {
1997 VM_BUG_ON(addr != -ENOMEM);
1998 info.flags = 0;
1999 info.low_limit = TASK_UNMAPPED_BASE;
2000 info.high_limit = TASK_SIZE;
2001 addr = vm_unmapped_area(&info);
2004 return addr;
2006 #endif
2008 unsigned long
2009 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2010 unsigned long pgoff, unsigned long flags)
2012 unsigned long (*get_area)(struct file *, unsigned long,
2013 unsigned long, unsigned long, unsigned long);
2015 unsigned long error = arch_mmap_check(addr, len, flags);
2016 if (error)
2017 return error;
2019 /* Careful about overflows.. */
2020 if (len > TASK_SIZE)
2021 return -ENOMEM;
2023 get_area = current->mm->get_unmapped_area;
2024 if (file && file->f_op->get_unmapped_area)
2025 get_area = file->f_op->get_unmapped_area;
2026 addr = get_area(file, addr, len, pgoff, flags);
2027 if (IS_ERR_VALUE(addr))
2028 return addr;
2030 if (addr > TASK_SIZE - len)
2031 return -ENOMEM;
2032 if (addr & ~PAGE_MASK)
2033 return -EINVAL;
2035 addr = arch_rebalance_pgtables(addr, len);
2036 error = security_mmap_addr(addr);
2037 return error ? error : addr;
2040 EXPORT_SYMBOL(get_unmapped_area);
2042 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2043 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2045 struct rb_node *rb_node;
2046 struct vm_area_struct *vma;
2048 /* Check the cache first. */
2049 vma = vmacache_find(mm, addr);
2050 if (likely(vma))
2051 return vma;
2053 rb_node = mm->mm_rb.rb_node;
2054 vma = NULL;
2056 while (rb_node) {
2057 struct vm_area_struct *tmp;
2059 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2061 if (tmp->vm_end > addr) {
2062 vma = tmp;
2063 if (tmp->vm_start <= addr)
2064 break;
2065 rb_node = rb_node->rb_left;
2066 } else
2067 rb_node = rb_node->rb_right;
2070 if (vma)
2071 vmacache_update(addr, vma);
2072 return vma;
2075 EXPORT_SYMBOL(find_vma);
2078 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2080 struct vm_area_struct *
2081 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2082 struct vm_area_struct **pprev)
2084 struct vm_area_struct *vma;
2086 vma = find_vma(mm, addr);
2087 if (vma) {
2088 *pprev = vma->vm_prev;
2089 } else {
2090 struct rb_node *rb_node = mm->mm_rb.rb_node;
2091 *pprev = NULL;
2092 while (rb_node) {
2093 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2094 rb_node = rb_node->rb_right;
2097 return vma;
2101 * Verify that the stack growth is acceptable and
2102 * update accounting. This is shared with both the
2103 * grow-up and grow-down cases.
2105 static int acct_stack_growth(struct vm_area_struct *vma,
2106 unsigned long size, unsigned long grow)
2108 struct mm_struct *mm = vma->vm_mm;
2109 struct rlimit *rlim = current->signal->rlim;
2110 unsigned long new_start;
2112 /* address space limit tests */
2113 if (!may_expand_vm(mm, grow))
2114 return -ENOMEM;
2116 /* Stack limit test */
2117 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2118 return -ENOMEM;
2120 /* mlock limit tests */
2121 if (vma->vm_flags & VM_LOCKED) {
2122 unsigned long locked;
2123 unsigned long limit;
2124 locked = mm->locked_vm + grow;
2125 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2126 limit >>= PAGE_SHIFT;
2127 if (locked > limit && !capable(CAP_IPC_LOCK))
2128 return -ENOMEM;
2131 /* Check to ensure the stack will not grow into a hugetlb-only region */
2132 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2133 vma->vm_end - size;
2134 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2135 return -EFAULT;
2138 * Overcommit.. This must be the final test, as it will
2139 * update security statistics.
2141 if (security_vm_enough_memory_mm(mm, grow))
2142 return -ENOMEM;
2144 /* Ok, everything looks good - let it rip */
2145 if (vma->vm_flags & VM_LOCKED)
2146 mm->locked_vm += grow;
2147 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2148 return 0;
2151 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2153 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2154 * vma is the last one with address > vma->vm_end. Have to extend vma.
2156 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2158 struct vm_area_struct *next;
2159 unsigned long gap_addr;
2160 int error = 0;
2162 if (!(vma->vm_flags & VM_GROWSUP))
2163 return -EFAULT;
2165 /* Guard against exceeding limits of the address space. */
2166 address &= PAGE_MASK;
2167 if (address >= (TASK_SIZE & PAGE_MASK))
2168 return -ENOMEM;
2169 address += PAGE_SIZE;
2171 /* Enforce stack_guard_gap */
2172 gap_addr = address + stack_guard_gap;
2174 /* Guard against overflow */
2175 if (gap_addr < address || gap_addr > TASK_SIZE)
2176 gap_addr = TASK_SIZE;
2178 next = vma->vm_next;
2179 if (next && next->vm_start < gap_addr &&
2180 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2181 if (!(next->vm_flags & VM_GROWSUP))
2182 return -ENOMEM;
2183 /* Check that both stack segments have the same anon_vma? */
2186 /* We must make sure the anon_vma is allocated. */
2187 if (unlikely(anon_vma_prepare(vma)))
2188 return -ENOMEM;
2191 * vma->vm_start/vm_end cannot change under us because the caller
2192 * is required to hold the mmap_sem in read mode. We need the
2193 * anon_vma lock to serialize against concurrent expand_stacks.
2195 anon_vma_lock_write(vma->anon_vma);
2197 /* Somebody else might have raced and expanded it already */
2198 if (address > vma->vm_end) {
2199 unsigned long size, grow;
2201 size = address - vma->vm_start;
2202 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2204 error = -ENOMEM;
2205 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2206 error = acct_stack_growth(vma, size, grow);
2207 if (!error) {
2209 * vma_gap_update() doesn't support concurrent
2210 * updates, but we only hold a shared mmap_sem
2211 * lock here, so we need to protect against
2212 * concurrent vma expansions.
2213 * anon_vma_lock_write() doesn't help here, as
2214 * we don't guarantee that all growable vmas
2215 * in a mm share the same root anon vma.
2216 * So, we reuse mm->page_table_lock to guard
2217 * against concurrent vma expansions.
2219 spin_lock(&vma->vm_mm->page_table_lock);
2220 anon_vma_interval_tree_pre_update_vma(vma);
2221 vma->vm_end = address;
2222 anon_vma_interval_tree_post_update_vma(vma);
2223 if (vma->vm_next)
2224 vma_gap_update(vma->vm_next);
2225 else
2226 vma->vm_mm->highest_vm_end = vm_end_gap(vma);
2227 spin_unlock(&vma->vm_mm->page_table_lock);
2229 perf_event_mmap(vma);
2233 anon_vma_unlock_write(vma->anon_vma);
2234 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2235 validate_mm(vma->vm_mm);
2236 return error;
2238 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2241 * vma is the first one with address < vma->vm_start. Have to extend vma.
2243 int expand_downwards(struct vm_area_struct *vma,
2244 unsigned long address)
2246 struct vm_area_struct *prev;
2247 unsigned long gap_addr;
2248 int error;
2250 address &= PAGE_MASK;
2251 error = security_mmap_addr(address);
2252 if (error)
2253 return error;
2255 /* Enforce stack_guard_gap */
2256 gap_addr = address - stack_guard_gap;
2257 if (gap_addr > address)
2258 return -ENOMEM;
2259 prev = vma->vm_prev;
2260 if (prev && prev->vm_end > gap_addr &&
2261 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2262 if (!(prev->vm_flags & VM_GROWSDOWN))
2263 return -ENOMEM;
2264 /* Check that both stack segments have the same anon_vma? */
2267 /* We must make sure the anon_vma is allocated. */
2268 if (unlikely(anon_vma_prepare(vma)))
2269 return -ENOMEM;
2272 * vma->vm_start/vm_end cannot change under us because the caller
2273 * is required to hold the mmap_sem in read mode. We need the
2274 * anon_vma lock to serialize against concurrent expand_stacks.
2276 anon_vma_lock_write(vma->anon_vma);
2278 /* Somebody else might have raced and expanded it already */
2279 if (address < vma->vm_start) {
2280 unsigned long size, grow;
2282 size = vma->vm_end - address;
2283 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2285 error = -ENOMEM;
2286 if (grow <= vma->vm_pgoff) {
2287 error = acct_stack_growth(vma, size, grow);
2288 if (!error) {
2290 * vma_gap_update() doesn't support concurrent
2291 * updates, but we only hold a shared mmap_sem
2292 * lock here, so we need to protect against
2293 * concurrent vma expansions.
2294 * anon_vma_lock_write() doesn't help here, as
2295 * we don't guarantee that all growable vmas
2296 * in a mm share the same root anon vma.
2297 * So, we reuse mm->page_table_lock to guard
2298 * against concurrent vma expansions.
2300 spin_lock(&vma->vm_mm->page_table_lock);
2301 anon_vma_interval_tree_pre_update_vma(vma);
2302 vma->vm_start = address;
2303 vma->vm_pgoff -= grow;
2304 anon_vma_interval_tree_post_update_vma(vma);
2305 vma_gap_update(vma);
2306 spin_unlock(&vma->vm_mm->page_table_lock);
2308 perf_event_mmap(vma);
2312 anon_vma_unlock_write(vma->anon_vma);
2313 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2314 validate_mm(vma->vm_mm);
2315 return error;
2318 /* enforced gap between the expanding stack and other mappings. */
2319 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2321 static int __init cmdline_parse_stack_guard_gap(char *p)
2323 unsigned long val;
2324 char *endptr;
2326 val = simple_strtoul(p, &endptr, 10);
2327 if (!*endptr)
2328 stack_guard_gap = val << PAGE_SHIFT;
2330 return 0;
2332 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2334 #ifdef CONFIG_STACK_GROWSUP
2335 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2337 return expand_upwards(vma, address);
2340 struct vm_area_struct *
2341 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2343 struct vm_area_struct *vma, *prev;
2345 addr &= PAGE_MASK;
2346 vma = find_vma_prev(mm, addr, &prev);
2347 if (vma && (vma->vm_start <= addr))
2348 return vma;
2349 if (!prev || expand_stack(prev, addr))
2350 return NULL;
2351 if (prev->vm_flags & VM_LOCKED)
2352 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2353 return prev;
2355 #else
2356 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2358 return expand_downwards(vma, address);
2361 struct vm_area_struct *
2362 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2364 struct vm_area_struct * vma;
2365 unsigned long start;
2367 addr &= PAGE_MASK;
2368 vma = find_vma(mm,addr);
2369 if (!vma)
2370 return NULL;
2371 if (vma->vm_start <= addr)
2372 return vma;
2373 if (!(vma->vm_flags & VM_GROWSDOWN))
2374 return NULL;
2375 start = vma->vm_start;
2376 if (expand_stack(vma, addr))
2377 return NULL;
2378 if (vma->vm_flags & VM_LOCKED)
2379 __mlock_vma_pages_range(vma, addr, start, NULL);
2380 return vma;
2382 #endif
2385 * Ok - we have the memory areas we should free on the vma list,
2386 * so release them, and do the vma updates.
2388 * Called with the mm semaphore held.
2390 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2392 unsigned long nr_accounted = 0;
2394 /* Update high watermark before we lower total_vm */
2395 update_hiwater_vm(mm);
2396 do {
2397 long nrpages = vma_pages(vma);
2399 if (vma->vm_flags & VM_ACCOUNT)
2400 nr_accounted += nrpages;
2401 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2402 vma = remove_vma(vma);
2403 } while (vma);
2404 vm_unacct_memory(nr_accounted);
2405 validate_mm(mm);
2409 * Get rid of page table information in the indicated region.
2411 * Called with the mm semaphore held.
2413 static void unmap_region(struct mm_struct *mm,
2414 struct vm_area_struct *vma, struct vm_area_struct *prev,
2415 unsigned long start, unsigned long end)
2417 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2418 struct mmu_gather tlb;
2420 lru_add_drain();
2421 tlb_gather_mmu(&tlb, mm, start, end);
2422 update_hiwater_rss(mm);
2423 unmap_vmas(&tlb, vma, start, end);
2424 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2425 next ? next->vm_start : USER_PGTABLES_CEILING);
2426 tlb_finish_mmu(&tlb, start, end);
2430 * Create a list of vma's touched by the unmap, removing them from the mm's
2431 * vma list as we go..
2433 static void
2434 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2435 struct vm_area_struct *prev, unsigned long end)
2437 struct vm_area_struct **insertion_point;
2438 struct vm_area_struct *tail_vma = NULL;
2440 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2441 vma->vm_prev = NULL;
2442 do {
2443 vma_rb_erase(vma, &mm->mm_rb);
2444 mm->map_count--;
2445 tail_vma = vma;
2446 vma = vma->vm_next;
2447 } while (vma && vma->vm_start < end);
2448 *insertion_point = vma;
2449 if (vma) {
2450 vma->vm_prev = prev;
2451 vma_gap_update(vma);
2452 } else
2453 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2454 tail_vma->vm_next = NULL;
2456 /* Kill the cache */
2457 vmacache_invalidate(mm);
2461 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2462 * munmap path where it doesn't make sense to fail.
2464 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2465 unsigned long addr, int new_below)
2467 struct vm_area_struct *new;
2468 int err = -ENOMEM;
2470 if (is_vm_hugetlb_page(vma) && (addr &
2471 ~(huge_page_mask(hstate_vma(vma)))))
2472 return -EINVAL;
2474 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2475 if (!new)
2476 goto out_err;
2478 /* most fields are the same, copy all, and then fixup */
2479 *new = *vma;
2481 INIT_LIST_HEAD(&new->anon_vma_chain);
2483 if (new_below)
2484 new->vm_end = addr;
2485 else {
2486 new->vm_start = addr;
2487 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2490 err = vma_dup_policy(vma, new);
2491 if (err)
2492 goto out_free_vma;
2494 err = anon_vma_clone(new, vma);
2495 if (err)
2496 goto out_free_mpol;
2498 if (new->vm_file)
2499 get_file(new->vm_file);
2501 if (new->vm_ops && new->vm_ops->open)
2502 new->vm_ops->open(new);
2504 if (new_below)
2505 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2506 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2507 else
2508 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2510 /* Success. */
2511 if (!err)
2512 return 0;
2514 /* Clean everything up if vma_adjust failed. */
2515 if (new->vm_ops && new->vm_ops->close)
2516 new->vm_ops->close(new);
2517 if (new->vm_file)
2518 fput(new->vm_file);
2519 unlink_anon_vmas(new);
2520 out_free_mpol:
2521 mpol_put(vma_policy(new));
2522 out_free_vma:
2523 kmem_cache_free(vm_area_cachep, new);
2524 out_err:
2525 return err;
2529 * Split a vma into two pieces at address 'addr', a new vma is allocated
2530 * either for the first part or the tail.
2532 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2533 unsigned long addr, int new_below)
2535 if (mm->map_count >= sysctl_max_map_count)
2536 return -ENOMEM;
2538 return __split_vma(mm, vma, addr, new_below);
2541 /* Munmap is split into 2 main parts -- this part which finds
2542 * what needs doing, and the areas themselves, which do the
2543 * work. This now handles partial unmappings.
2544 * Jeremy Fitzhardinge <jeremy@goop.org>
2546 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2548 unsigned long end;
2549 struct vm_area_struct *vma, *prev, *last;
2551 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2552 return -EINVAL;
2554 if ((len = PAGE_ALIGN(len)) == 0)
2555 return -EINVAL;
2557 /* Find the first overlapping VMA */
2558 vma = find_vma(mm, start);
2559 if (!vma)
2560 return 0;
2561 prev = vma->vm_prev;
2562 /* we have start < vma->vm_end */
2564 /* if it doesn't overlap, we have nothing.. */
2565 end = start + len;
2566 if (vma->vm_start >= end)
2567 return 0;
2570 * If we need to split any vma, do it now to save pain later.
2572 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2573 * unmapped vm_area_struct will remain in use: so lower split_vma
2574 * places tmp vma above, and higher split_vma places tmp vma below.
2576 if (start > vma->vm_start) {
2577 int error;
2580 * Make sure that map_count on return from munmap() will
2581 * not exceed its limit; but let map_count go just above
2582 * its limit temporarily, to help free resources as expected.
2584 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2585 return -ENOMEM;
2587 error = __split_vma(mm, vma, start, 0);
2588 if (error)
2589 return error;
2590 prev = vma;
2593 /* Does it split the last one? */
2594 last = find_vma(mm, end);
2595 if (last && end > last->vm_start) {
2596 int error = __split_vma(mm, last, end, 1);
2597 if (error)
2598 return error;
2600 vma = prev? prev->vm_next: mm->mmap;
2603 * unlock any mlock()ed ranges before detaching vmas
2605 if (mm->locked_vm) {
2606 struct vm_area_struct *tmp = vma;
2607 while (tmp && tmp->vm_start < end) {
2608 if (tmp->vm_flags & VM_LOCKED) {
2609 mm->locked_vm -= vma_pages(tmp);
2610 munlock_vma_pages_all(tmp);
2612 tmp = tmp->vm_next;
2617 * Remove the vma's, and unmap the actual pages
2619 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2620 unmap_region(mm, vma, prev, start, end);
2622 /* Fix up all other VM information */
2623 remove_vma_list(mm, vma);
2625 return 0;
2628 int vm_munmap(unsigned long start, size_t len)
2630 int ret;
2631 struct mm_struct *mm = current->mm;
2633 down_write(&mm->mmap_sem);
2634 ret = do_munmap(mm, start, len);
2635 up_write(&mm->mmap_sem);
2636 return ret;
2638 EXPORT_SYMBOL(vm_munmap);
2640 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2642 profile_munmap(addr);
2643 return vm_munmap(addr, len);
2648 * Emulation of deprecated remap_file_pages() syscall.
2650 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2651 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2654 struct mm_struct *mm = current->mm;
2655 struct vm_area_struct *vma;
2656 unsigned long populate = 0;
2657 unsigned long ret = -EINVAL;
2658 struct file *file;
2660 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2661 "See Documentation/vm/remap_file_pages.txt.\n",
2662 current->comm, current->pid);
2664 if (prot)
2665 return ret;
2666 start = start & PAGE_MASK;
2667 size = size & PAGE_MASK;
2669 if (start + size <= start)
2670 return ret;
2672 /* Does pgoff wrap? */
2673 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2674 return ret;
2676 down_write(&mm->mmap_sem);
2677 vma = find_vma(mm, start);
2679 if (!vma || !(vma->vm_flags & VM_SHARED))
2680 goto out;
2682 if (start < vma->vm_start)
2683 goto out;
2685 if (start + size > vma->vm_end) {
2686 struct vm_area_struct *next;
2688 for (next = vma->vm_next; next; next = next->vm_next) {
2689 /* hole between vmas ? */
2690 if (next->vm_start != next->vm_prev->vm_end)
2691 goto out;
2693 if (next->vm_file != vma->vm_file)
2694 goto out;
2696 if (next->vm_flags != vma->vm_flags)
2697 goto out;
2699 if (start + size <= next->vm_end)
2700 break;
2703 if (!next)
2704 goto out;
2707 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2708 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2709 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2711 flags &= MAP_NONBLOCK;
2712 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2713 if (vma->vm_flags & VM_LOCKED) {
2714 struct vm_area_struct *tmp;
2715 flags |= MAP_LOCKED;
2717 /* drop PG_Mlocked flag for over-mapped range */
2718 for (tmp = vma; tmp->vm_start >= start + size;
2719 tmp = tmp->vm_next) {
2720 munlock_vma_pages_range(tmp,
2721 max(tmp->vm_start, start),
2722 min(tmp->vm_end, start + size));
2726 file = get_file(vma->vm_file);
2727 ret = do_mmap_pgoff(vma->vm_file, start, size,
2728 prot, flags, pgoff, &populate);
2729 fput(file);
2730 out:
2731 up_write(&mm->mmap_sem);
2732 if (populate)
2733 mm_populate(ret, populate);
2734 if (!IS_ERR_VALUE(ret))
2735 ret = 0;
2736 return ret;
2739 static inline void verify_mm_writelocked(struct mm_struct *mm)
2741 #ifdef CONFIG_DEBUG_VM
2742 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2743 WARN_ON(1);
2744 up_read(&mm->mmap_sem);
2746 #endif
2750 * this is really a simplified "do_mmap". it only handles
2751 * anonymous maps. eventually we may be able to do some
2752 * brk-specific accounting here.
2754 static unsigned long do_brk(unsigned long addr, unsigned long len)
2756 struct mm_struct * mm = current->mm;
2757 struct vm_area_struct * vma, * prev;
2758 unsigned long flags;
2759 struct rb_node ** rb_link, * rb_parent;
2760 pgoff_t pgoff = addr >> PAGE_SHIFT;
2761 int error;
2763 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2765 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2766 if (error & ~PAGE_MASK)
2767 return error;
2769 error = mlock_future_check(mm, mm->def_flags, len);
2770 if (error)
2771 return error;
2774 * mm->mmap_sem is required to protect against another thread
2775 * changing the mappings in case we sleep.
2777 verify_mm_writelocked(mm);
2780 * Clear old maps. this also does some error checking for us
2782 munmap_back:
2783 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2784 if (do_munmap(mm, addr, len))
2785 return -ENOMEM;
2786 goto munmap_back;
2789 /* Check against address space limits *after* clearing old maps... */
2790 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2791 return -ENOMEM;
2793 if (mm->map_count > sysctl_max_map_count)
2794 return -ENOMEM;
2796 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2797 return -ENOMEM;
2799 /* Can we just expand an old private anonymous mapping? */
2800 vma = vma_merge(mm, prev, addr, addr + len, flags,
2801 NULL, NULL, pgoff, NULL);
2802 if (vma)
2803 goto out;
2806 * create a vma struct for an anonymous mapping
2808 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2809 if (!vma) {
2810 vm_unacct_memory(len >> PAGE_SHIFT);
2811 return -ENOMEM;
2814 INIT_LIST_HEAD(&vma->anon_vma_chain);
2815 vma->vm_mm = mm;
2816 vma->vm_start = addr;
2817 vma->vm_end = addr + len;
2818 vma->vm_pgoff = pgoff;
2819 vma->vm_flags = flags;
2820 vma->vm_page_prot = vm_get_page_prot(flags);
2821 vma_link(mm, vma, prev, rb_link, rb_parent);
2822 out:
2823 perf_event_mmap(vma);
2824 mm->total_vm += len >> PAGE_SHIFT;
2825 if (flags & VM_LOCKED)
2826 mm->locked_vm += (len >> PAGE_SHIFT);
2827 vma->vm_flags |= VM_SOFTDIRTY;
2828 return addr;
2831 unsigned long vm_brk(unsigned long addr, unsigned long request)
2833 struct mm_struct *mm = current->mm;
2834 unsigned long len;
2835 unsigned long ret;
2836 bool populate;
2838 len = PAGE_ALIGN(request);
2839 if (len < request)
2840 return -ENOMEM;
2841 if (!len)
2842 return addr;
2844 down_write(&mm->mmap_sem);
2845 ret = do_brk(addr, len);
2846 populate = ((mm->def_flags & VM_LOCKED) != 0);
2847 up_write(&mm->mmap_sem);
2848 if (populate)
2849 mm_populate(addr, len);
2850 return ret;
2852 EXPORT_SYMBOL(vm_brk);
2854 /* Release all mmaps. */
2855 void exit_mmap(struct mm_struct *mm)
2857 struct mmu_gather tlb;
2858 struct vm_area_struct *vma;
2859 unsigned long nr_accounted = 0;
2861 /* mm's last user has gone, and its about to be pulled down */
2862 mmu_notifier_release(mm);
2864 if (mm->locked_vm) {
2865 vma = mm->mmap;
2866 while (vma) {
2867 if (vma->vm_flags & VM_LOCKED)
2868 munlock_vma_pages_all(vma);
2869 vma = vma->vm_next;
2873 arch_exit_mmap(mm);
2875 vma = mm->mmap;
2876 if (!vma) /* Can happen if dup_mmap() received an OOM */
2877 return;
2879 lru_add_drain();
2880 flush_cache_mm(mm);
2881 tlb_gather_mmu(&tlb, mm, 0, -1);
2882 /* update_hiwater_rss(mm) here? but nobody should be looking */
2883 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2884 unmap_vmas(&tlb, vma, 0, -1);
2886 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2887 tlb_finish_mmu(&tlb, 0, -1);
2890 * Walk the list again, actually closing and freeing it,
2891 * with preemption enabled, without holding any MM locks.
2893 while (vma) {
2894 if (vma->vm_flags & VM_ACCOUNT)
2895 nr_accounted += vma_pages(vma);
2896 vma = remove_vma(vma);
2898 vm_unacct_memory(nr_accounted);
2900 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2901 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2904 /* Insert vm structure into process list sorted by address
2905 * and into the inode's i_mmap tree. If vm_file is non-NULL
2906 * then i_mmap_mutex is taken here.
2908 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2910 struct vm_area_struct *prev;
2911 struct rb_node **rb_link, *rb_parent;
2914 * The vm_pgoff of a purely anonymous vma should be irrelevant
2915 * until its first write fault, when page's anon_vma and index
2916 * are set. But now set the vm_pgoff it will almost certainly
2917 * end up with (unless mremap moves it elsewhere before that
2918 * first wfault), so /proc/pid/maps tells a consistent story.
2920 * By setting it to reflect the virtual start address of the
2921 * vma, merges and splits can happen in a seamless way, just
2922 * using the existing file pgoff checks and manipulations.
2923 * Similarly in do_mmap_pgoff and in do_brk.
2925 if (!vma->vm_file) {
2926 BUG_ON(vma->anon_vma);
2927 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2929 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2930 &prev, &rb_link, &rb_parent))
2931 return -ENOMEM;
2932 if ((vma->vm_flags & VM_ACCOUNT) &&
2933 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2934 return -ENOMEM;
2936 vma_link(mm, vma, prev, rb_link, rb_parent);
2937 return 0;
2941 * Copy the vma structure to a new location in the same mm,
2942 * prior to moving page table entries, to effect an mremap move.
2944 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2945 unsigned long addr, unsigned long len, pgoff_t pgoff,
2946 bool *need_rmap_locks)
2948 struct vm_area_struct *vma = *vmap;
2949 unsigned long vma_start = vma->vm_start;
2950 struct mm_struct *mm = vma->vm_mm;
2951 struct vm_area_struct *new_vma, *prev;
2952 struct rb_node **rb_link, *rb_parent;
2953 bool faulted_in_anon_vma = true;
2956 * If anonymous vma has not yet been faulted, update new pgoff
2957 * to match new location, to increase its chance of merging.
2959 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2960 pgoff = addr >> PAGE_SHIFT;
2961 faulted_in_anon_vma = false;
2964 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2965 return NULL; /* should never get here */
2966 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2967 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2968 if (new_vma) {
2970 * Source vma may have been merged into new_vma
2972 if (unlikely(vma_start >= new_vma->vm_start &&
2973 vma_start < new_vma->vm_end)) {
2975 * The only way we can get a vma_merge with
2976 * self during an mremap is if the vma hasn't
2977 * been faulted in yet and we were allowed to
2978 * reset the dst vma->vm_pgoff to the
2979 * destination address of the mremap to allow
2980 * the merge to happen. mremap must change the
2981 * vm_pgoff linearity between src and dst vmas
2982 * (in turn preventing a vma_merge) to be
2983 * safe. It is only safe to keep the vm_pgoff
2984 * linear if there are no pages mapped yet.
2986 VM_BUG_ON(faulted_in_anon_vma);
2987 *vmap = vma = new_vma;
2989 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2990 } else {
2991 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2992 if (new_vma) {
2993 *new_vma = *vma;
2994 new_vma->vm_start = addr;
2995 new_vma->vm_end = addr + len;
2996 new_vma->vm_pgoff = pgoff;
2997 if (vma_dup_policy(vma, new_vma))
2998 goto out_free_vma;
2999 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3000 if (anon_vma_clone(new_vma, vma))
3001 goto out_free_mempol;
3002 if (new_vma->vm_file)
3003 get_file(new_vma->vm_file);
3004 if (new_vma->vm_ops && new_vma->vm_ops->open)
3005 new_vma->vm_ops->open(new_vma);
3006 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3007 *need_rmap_locks = false;
3010 return new_vma;
3012 out_free_mempol:
3013 mpol_put(vma_policy(new_vma));
3014 out_free_vma:
3015 kmem_cache_free(vm_area_cachep, new_vma);
3016 return NULL;
3020 * Return true if the calling process may expand its vm space by the passed
3021 * number of pages
3023 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3025 unsigned long cur = mm->total_vm; /* pages */
3026 unsigned long lim;
3028 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3030 if (cur + npages > lim)
3031 return 0;
3032 return 1;
3035 static int special_mapping_fault(struct vm_area_struct *vma,
3036 struct vm_fault *vmf);
3039 * Having a close hook prevents vma merging regardless of flags.
3041 static void special_mapping_close(struct vm_area_struct *vma)
3045 static const char *special_mapping_name(struct vm_area_struct *vma)
3047 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3050 static const struct vm_operations_struct special_mapping_vmops = {
3051 .close = special_mapping_close,
3052 .fault = special_mapping_fault,
3053 .name = special_mapping_name,
3056 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3057 .close = special_mapping_close,
3058 .fault = special_mapping_fault,
3061 static int special_mapping_fault(struct vm_area_struct *vma,
3062 struct vm_fault *vmf)
3064 pgoff_t pgoff;
3065 struct page **pages;
3068 * special mappings have no vm_file, and in that case, the mm
3069 * uses vm_pgoff internally. So we have to subtract it from here.
3070 * We are allowed to do this because we are the mm; do not copy
3071 * this code into drivers!
3073 pgoff = vmf->pgoff - vma->vm_pgoff;
3075 if (vma->vm_ops == &legacy_special_mapping_vmops)
3076 pages = vma->vm_private_data;
3077 else
3078 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3079 pages;
3081 for (; pgoff && *pages; ++pages)
3082 pgoff--;
3084 if (*pages) {
3085 struct page *page = *pages;
3086 get_page(page);
3087 vmf->page = page;
3088 return 0;
3091 return VM_FAULT_SIGBUS;
3094 static struct vm_area_struct *__install_special_mapping(
3095 struct mm_struct *mm,
3096 unsigned long addr, unsigned long len,
3097 unsigned long vm_flags, const struct vm_operations_struct *ops,
3098 void *priv)
3100 int ret;
3101 struct vm_area_struct *vma;
3103 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3104 if (unlikely(vma == NULL))
3105 return ERR_PTR(-ENOMEM);
3107 INIT_LIST_HEAD(&vma->anon_vma_chain);
3108 vma->vm_mm = mm;
3109 vma->vm_start = addr;
3110 vma->vm_end = addr + len;
3112 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3113 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3115 vma->vm_ops = ops;
3116 vma->vm_private_data = priv;
3118 ret = insert_vm_struct(mm, vma);
3119 if (ret)
3120 goto out;
3122 mm->total_vm += len >> PAGE_SHIFT;
3124 perf_event_mmap(vma);
3126 return vma;
3128 out:
3129 kmem_cache_free(vm_area_cachep, vma);
3130 return ERR_PTR(ret);
3134 * Called with mm->mmap_sem held for writing.
3135 * Insert a new vma covering the given region, with the given flags.
3136 * Its pages are supplied by the given array of struct page *.
3137 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3138 * The region past the last page supplied will always produce SIGBUS.
3139 * The array pointer and the pages it points to are assumed to stay alive
3140 * for as long as this mapping might exist.
3142 struct vm_area_struct *_install_special_mapping(
3143 struct mm_struct *mm,
3144 unsigned long addr, unsigned long len,
3145 unsigned long vm_flags, const struct vm_special_mapping *spec)
3147 return __install_special_mapping(mm, addr, len, vm_flags,
3148 &special_mapping_vmops, (void *)spec);
3151 int install_special_mapping(struct mm_struct *mm,
3152 unsigned long addr, unsigned long len,
3153 unsigned long vm_flags, struct page **pages)
3155 struct vm_area_struct *vma = __install_special_mapping(
3156 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3157 (void *)pages);
3159 return PTR_ERR_OR_ZERO(vma);
3162 static DEFINE_MUTEX(mm_all_locks_mutex);
3164 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3166 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3168 * The LSB of head.next can't change from under us
3169 * because we hold the mm_all_locks_mutex.
3171 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3173 * We can safely modify head.next after taking the
3174 * anon_vma->root->rwsem. If some other vma in this mm shares
3175 * the same anon_vma we won't take it again.
3177 * No need of atomic instructions here, head.next
3178 * can't change from under us thanks to the
3179 * anon_vma->root->rwsem.
3181 if (__test_and_set_bit(0, (unsigned long *)
3182 &anon_vma->root->rb_root.rb_node))
3183 BUG();
3187 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3189 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3191 * AS_MM_ALL_LOCKS can't change from under us because
3192 * we hold the mm_all_locks_mutex.
3194 * Operations on ->flags have to be atomic because
3195 * even if AS_MM_ALL_LOCKS is stable thanks to the
3196 * mm_all_locks_mutex, there may be other cpus
3197 * changing other bitflags in parallel to us.
3199 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3200 BUG();
3201 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3206 * This operation locks against the VM for all pte/vma/mm related
3207 * operations that could ever happen on a certain mm. This includes
3208 * vmtruncate, try_to_unmap, and all page faults.
3210 * The caller must take the mmap_sem in write mode before calling
3211 * mm_take_all_locks(). The caller isn't allowed to release the
3212 * mmap_sem until mm_drop_all_locks() returns.
3214 * mmap_sem in write mode is required in order to block all operations
3215 * that could modify pagetables and free pages without need of
3216 * altering the vma layout. It's also needed in write mode to avoid new
3217 * anon_vmas to be associated with existing vmas.
3219 * A single task can't take more than one mm_take_all_locks() in a row
3220 * or it would deadlock.
3222 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3223 * mapping->flags avoid to take the same lock twice, if more than one
3224 * vma in this mm is backed by the same anon_vma or address_space.
3226 * We can take all the locks in random order because the VM code
3227 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3228 * takes more than one of them in a row. Secondly we're protected
3229 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3231 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3232 * that may have to take thousand of locks.
3234 * mm_take_all_locks() can fail if it's interrupted by signals.
3236 int mm_take_all_locks(struct mm_struct *mm)
3238 struct vm_area_struct *vma;
3239 struct anon_vma_chain *avc;
3241 BUG_ON(down_read_trylock(&mm->mmap_sem));
3243 mutex_lock(&mm_all_locks_mutex);
3245 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3246 if (signal_pending(current))
3247 goto out_unlock;
3248 if (vma->vm_file && vma->vm_file->f_mapping)
3249 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3252 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3253 if (signal_pending(current))
3254 goto out_unlock;
3255 if (vma->anon_vma)
3256 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3257 vm_lock_anon_vma(mm, avc->anon_vma);
3260 return 0;
3262 out_unlock:
3263 mm_drop_all_locks(mm);
3264 return -EINTR;
3267 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3269 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3271 * The LSB of head.next can't change to 0 from under
3272 * us because we hold the mm_all_locks_mutex.
3274 * We must however clear the bitflag before unlocking
3275 * the vma so the users using the anon_vma->rb_root will
3276 * never see our bitflag.
3278 * No need of atomic instructions here, head.next
3279 * can't change from under us until we release the
3280 * anon_vma->root->rwsem.
3282 if (!__test_and_clear_bit(0, (unsigned long *)
3283 &anon_vma->root->rb_root.rb_node))
3284 BUG();
3285 anon_vma_unlock_write(anon_vma);
3289 static void vm_unlock_mapping(struct address_space *mapping)
3291 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3293 * AS_MM_ALL_LOCKS can't change to 0 from under us
3294 * because we hold the mm_all_locks_mutex.
3296 mutex_unlock(&mapping->i_mmap_mutex);
3297 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3298 &mapping->flags))
3299 BUG();
3304 * The mmap_sem cannot be released by the caller until
3305 * mm_drop_all_locks() returns.
3307 void mm_drop_all_locks(struct mm_struct *mm)
3309 struct vm_area_struct *vma;
3310 struct anon_vma_chain *avc;
3312 BUG_ON(down_read_trylock(&mm->mmap_sem));
3313 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3315 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3316 if (vma->anon_vma)
3317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3318 vm_unlock_anon_vma(avc->anon_vma);
3319 if (vma->vm_file && vma->vm_file->f_mapping)
3320 vm_unlock_mapping(vma->vm_file->f_mapping);
3323 mutex_unlock(&mm_all_locks_mutex);
3327 * initialise the VMA slab
3329 void __init mmap_init(void)
3331 int ret;
3333 ret = percpu_counter_init(&vm_committed_as, 0);
3334 VM_BUG_ON(ret);
3338 * Initialise sysctl_user_reserve_kbytes.
3340 * This is intended to prevent a user from starting a single memory hogging
3341 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3342 * mode.
3344 * The default value is min(3% of free memory, 128MB)
3345 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3347 static int init_user_reserve(void)
3349 unsigned long free_kbytes;
3351 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3353 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3354 return 0;
3356 subsys_initcall(init_user_reserve);
3359 * Initialise sysctl_admin_reserve_kbytes.
3361 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3362 * to log in and kill a memory hogging process.
3364 * Systems with more than 256MB will reserve 8MB, enough to recover
3365 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3366 * only reserve 3% of free pages by default.
3368 static int init_admin_reserve(void)
3370 unsigned long free_kbytes;
3372 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3374 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3375 return 0;
3377 subsys_initcall(init_admin_reserve);
3380 * Reinititalise user and admin reserves if memory is added or removed.
3382 * The default user reserve max is 128MB, and the default max for the
3383 * admin reserve is 8MB. These are usually, but not always, enough to
3384 * enable recovery from a memory hogging process using login/sshd, a shell,
3385 * and tools like top. It may make sense to increase or even disable the
3386 * reserve depending on the existence of swap or variations in the recovery
3387 * tools. So, the admin may have changed them.
3389 * If memory is added and the reserves have been eliminated or increased above
3390 * the default max, then we'll trust the admin.
3392 * If memory is removed and there isn't enough free memory, then we
3393 * need to reset the reserves.
3395 * Otherwise keep the reserve set by the admin.
3397 static int reserve_mem_notifier(struct notifier_block *nb,
3398 unsigned long action, void *data)
3400 unsigned long tmp, free_kbytes;
3402 switch (action) {
3403 case MEM_ONLINE:
3404 /* Default max is 128MB. Leave alone if modified by operator. */
3405 tmp = sysctl_user_reserve_kbytes;
3406 if (0 < tmp && tmp < (1UL << 17))
3407 init_user_reserve();
3409 /* Default max is 8MB. Leave alone if modified by operator. */
3410 tmp = sysctl_admin_reserve_kbytes;
3411 if (0 < tmp && tmp < (1UL << 13))
3412 init_admin_reserve();
3414 break;
3415 case MEM_OFFLINE:
3416 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3418 if (sysctl_user_reserve_kbytes > free_kbytes) {
3419 init_user_reserve();
3420 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3421 sysctl_user_reserve_kbytes);
3424 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3425 init_admin_reserve();
3426 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3427 sysctl_admin_reserve_kbytes);
3429 break;
3430 default:
3431 break;
3433 return NOTIFY_OK;
3436 static struct notifier_block reserve_mem_nb = {
3437 .notifier_call = reserve_mem_notifier,
3440 static int __meminit init_reserve_notifier(void)
3442 if (register_hotmemory_notifier(&reserve_mem_nb))
3443 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3445 return 0;
3447 subsys_initcall(init_reserve_notifier);