2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
75 anon_vma
->degree
= 1; /* Reference for first vma */
76 anon_vma
->parent
= anon_vma
;
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
81 anon_vma
->root
= anon_vma
;
87 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
89 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
103 * atomic_read() rwsem_is_locked()
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
109 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
110 anon_vma_lock_write(anon_vma
);
111 anon_vma_unlock_write(anon_vma
);
114 kmem_cache_free(anon_vma_cachep
, anon_vma
);
117 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
119 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
122 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
124 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
127 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
128 struct anon_vma_chain
*avc
,
129 struct anon_vma
*anon_vma
)
132 avc
->anon_vma
= anon_vma
;
133 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
134 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
162 * This must be called with the mmap_sem held for reading.
164 int anon_vma_prepare(struct vm_area_struct
*vma
)
166 struct anon_vma
*anon_vma
= vma
->anon_vma
;
167 struct anon_vma_chain
*avc
;
170 if (unlikely(!anon_vma
)) {
171 struct mm_struct
*mm
= vma
->vm_mm
;
172 struct anon_vma
*allocated
;
174 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
178 anon_vma
= find_mergeable_anon_vma(vma
);
181 anon_vma
= anon_vma_alloc();
182 if (unlikely(!anon_vma
))
183 goto out_enomem_free_avc
;
184 allocated
= anon_vma
;
187 anon_vma_lock_write(anon_vma
);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm
->page_table_lock
);
190 if (likely(!vma
->anon_vma
)) {
191 vma
->anon_vma
= anon_vma
;
192 anon_vma_chain_link(vma
, avc
, anon_vma
);
193 /* vma reference or self-parent link for new root */
198 spin_unlock(&mm
->page_table_lock
);
199 anon_vma_unlock_write(anon_vma
);
201 if (unlikely(allocated
))
202 put_anon_vma(allocated
);
204 anon_vma_chain_free(avc
);
209 anon_vma_chain_free(avc
);
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
222 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
224 struct anon_vma
*new_root
= anon_vma
->root
;
225 if (new_root
!= root
) {
226 if (WARN_ON_ONCE(root
))
227 up_write(&root
->rwsem
);
229 down_write(&root
->rwsem
);
234 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
237 up_write(&root
->rwsem
);
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
252 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
254 struct anon_vma_chain
*avc
, *pavc
;
255 struct anon_vma
*root
= NULL
;
257 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
258 struct anon_vma
*anon_vma
;
260 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
261 if (unlikely(!avc
)) {
262 unlock_anon_vma_root(root
);
264 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
268 anon_vma
= pavc
->anon_vma
;
269 root
= lock_anon_vma_root(root
, anon_vma
);
270 anon_vma_chain_link(dst
, avc
, anon_vma
);
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
280 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
281 anon_vma
->degree
< 2)
282 dst
->anon_vma
= anon_vma
;
285 dst
->anon_vma
->degree
++;
286 unlock_anon_vma_root(root
);
291 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292 * decremented in unlink_anon_vmas().
293 * We can safely do this because callers of anon_vma_clone() don't care
294 * about dst->anon_vma if anon_vma_clone() failed.
296 dst
->anon_vma
= NULL
;
297 unlink_anon_vmas(dst
);
302 * Attach vma to its own anon_vma, as well as to the anon_vmas that
303 * the corresponding VMA in the parent process is attached to.
304 * Returns 0 on success, non-zero on failure.
306 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
308 struct anon_vma_chain
*avc
;
309 struct anon_vma
*anon_vma
;
312 /* Don't bother if the parent process has no anon_vma here. */
316 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317 vma
->anon_vma
= NULL
;
320 * First, attach the new VMA to the parent VMA's anon_vmas,
321 * so rmap can find non-COWed pages in child processes.
323 error
= anon_vma_clone(vma
, pvma
);
327 /* An existing anon_vma has been reused, all done then. */
331 /* Then add our own anon_vma. */
332 anon_vma
= anon_vma_alloc();
335 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
337 goto out_error_free_anon_vma
;
340 * The root anon_vma's spinlock is the lock actually used when we
341 * lock any of the anon_vmas in this anon_vma tree.
343 anon_vma
->root
= pvma
->anon_vma
->root
;
344 anon_vma
->parent
= pvma
->anon_vma
;
346 * With refcounts, an anon_vma can stay around longer than the
347 * process it belongs to. The root anon_vma needs to be pinned until
348 * this anon_vma is freed, because the lock lives in the root.
350 get_anon_vma(anon_vma
->root
);
351 /* Mark this anon_vma as the one where our new (COWed) pages go. */
352 vma
->anon_vma
= anon_vma
;
353 anon_vma_lock_write(anon_vma
);
354 anon_vma_chain_link(vma
, avc
, anon_vma
);
355 anon_vma
->parent
->degree
++;
356 anon_vma_unlock_write(anon_vma
);
360 out_error_free_anon_vma
:
361 put_anon_vma(anon_vma
);
363 unlink_anon_vmas(vma
);
367 void unlink_anon_vmas(struct vm_area_struct
*vma
)
369 struct anon_vma_chain
*avc
, *next
;
370 struct anon_vma
*root
= NULL
;
373 * Unlink each anon_vma chained to the VMA. This list is ordered
374 * from newest to oldest, ensuring the root anon_vma gets freed last.
376 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
377 struct anon_vma
*anon_vma
= avc
->anon_vma
;
379 root
= lock_anon_vma_root(root
, anon_vma
);
380 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
383 * Leave empty anon_vmas on the list - we'll need
384 * to free them outside the lock.
386 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
)) {
387 anon_vma
->parent
->degree
--;
391 list_del(&avc
->same_vma
);
392 anon_vma_chain_free(avc
);
395 vma
->anon_vma
->degree
--;
396 unlock_anon_vma_root(root
);
399 * Iterate the list once more, it now only contains empty and unlinked
400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 * needing to write-acquire the anon_vma->root->rwsem.
403 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
404 struct anon_vma
*anon_vma
= avc
->anon_vma
;
406 BUG_ON(anon_vma
->degree
);
407 put_anon_vma(anon_vma
);
409 list_del(&avc
->same_vma
);
410 anon_vma_chain_free(avc
);
414 static void anon_vma_ctor(void *data
)
416 struct anon_vma
*anon_vma
= data
;
418 init_rwsem(&anon_vma
->rwsem
);
419 atomic_set(&anon_vma
->refcount
, 0);
420 anon_vma
->rb_root
= RB_ROOT
;
423 void __init
anon_vma_init(void)
425 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
426 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
427 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
433 * Since there is no serialization what so ever against page_remove_rmap()
434 * the best this function can do is return a locked anon_vma that might
435 * have been relevant to this page.
437 * The page might have been remapped to a different anon_vma or the anon_vma
438 * returned may already be freed (and even reused).
440 * In case it was remapped to a different anon_vma, the new anon_vma will be a
441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442 * ensure that any anon_vma obtained from the page will still be valid for as
443 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
445 * All users of this function must be very careful when walking the anon_vma
446 * chain and verify that the page in question is indeed mapped in it
447 * [ something equivalent to page_mapped_in_vma() ].
449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450 * that the anon_vma pointer from page->mapping is valid if there is a
451 * mapcount, we can dereference the anon_vma after observing those.
453 struct anon_vma
*page_get_anon_vma(struct page
*page
)
455 struct anon_vma
*anon_vma
= NULL
;
456 unsigned long anon_mapping
;
459 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
460 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
462 if (!page_mapped(page
))
465 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
466 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
472 * If this page is still mapped, then its anon_vma cannot have been
473 * freed. But if it has been unmapped, we have no security against the
474 * anon_vma structure being freed and reused (for another anon_vma:
475 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476 * above cannot corrupt).
478 if (!page_mapped(page
)) {
480 put_anon_vma(anon_vma
);
490 * Similar to page_get_anon_vma() except it locks the anon_vma.
492 * Its a little more complex as it tries to keep the fast path to a single
493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494 * reference like with page_get_anon_vma() and then block on the mutex.
496 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
498 struct anon_vma
*anon_vma
= NULL
;
499 struct anon_vma
*root_anon_vma
;
500 unsigned long anon_mapping
;
503 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
504 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
506 if (!page_mapped(page
))
509 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
510 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
511 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
513 * If the page is still mapped, then this anon_vma is still
514 * its anon_vma, and holding the mutex ensures that it will
515 * not go away, see anon_vma_free().
517 if (!page_mapped(page
)) {
518 up_read(&root_anon_vma
->rwsem
);
524 /* trylock failed, we got to sleep */
525 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
530 if (!page_mapped(page
)) {
532 put_anon_vma(anon_vma
);
536 /* we pinned the anon_vma, its safe to sleep */
538 anon_vma_lock_read(anon_vma
);
540 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
542 * Oops, we held the last refcount, release the lock
543 * and bail -- can't simply use put_anon_vma() because
544 * we'll deadlock on the anon_vma_lock_write() recursion.
546 anon_vma_unlock_read(anon_vma
);
547 __put_anon_vma(anon_vma
);
558 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
560 anon_vma_unlock_read(anon_vma
);
564 * At what user virtual address is page expected in @vma?
566 static inline unsigned long
567 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
569 pgoff_t pgoff
= page_to_pgoff(page
);
570 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
574 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
576 unsigned long address
= __vma_address(page
, vma
);
578 /* page should be within @vma mapping range */
579 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
585 * At what user virtual address is page expected in vma?
586 * Caller should check the page is actually part of the vma.
588 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
590 unsigned long address
;
591 if (PageAnon(page
)) {
592 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
594 * Note: swapoff's unuse_vma() is more efficient with this
595 * check, and needs it to match anon_vma when KSM is active.
597 if (!vma
->anon_vma
|| !page__anon_vma
||
598 vma
->anon_vma
->root
!= page__anon_vma
->root
)
600 } else if (page
->mapping
) {
601 if (!vma
->vm_file
|| vma
->vm_file
->f_mapping
!= page
->mapping
)
605 address
= __vma_address(page
, vma
);
606 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
611 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
618 pgd
= pgd_offset(mm
, address
);
619 if (!pgd_present(*pgd
))
622 pud
= pud_offset(pgd
, address
);
623 if (!pud_present(*pud
))
626 pmd
= pmd_offset(pud
, address
);
628 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
629 * without holding anon_vma lock for write. So when looking for a
630 * genuine pmde (in which to find pte), test present and !THP together.
632 pmde
= ACCESS_ONCE(*pmd
);
633 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
640 * Check that @page is mapped at @address into @mm.
642 * If @sync is false, page_check_address may perform a racy check to avoid
643 * the page table lock when the pte is not present (helpful when reclaiming
644 * highly shared pages).
646 * On success returns with pte mapped and locked.
648 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
649 unsigned long address
, spinlock_t
**ptlp
, int sync
)
655 if (unlikely(PageHuge(page
))) {
656 /* when pud is not present, pte will be NULL */
657 pte
= huge_pte_offset(mm
, address
);
661 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
665 pmd
= mm_find_pmd(mm
, address
);
669 pte
= pte_offset_map(pmd
, address
);
670 /* Make a quick check before getting the lock */
671 if (!sync
&& !pte_present(*pte
)) {
676 ptl
= pte_lockptr(mm
, pmd
);
679 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
683 pte_unmap_unlock(pte
, ptl
);
688 * page_mapped_in_vma - check whether a page is really mapped in a VMA
689 * @page: the page to test
690 * @vma: the VMA to test
692 * Returns 1 if the page is mapped into the page tables of the VMA, 0
693 * if the page is not mapped into the page tables of this VMA. Only
694 * valid for normal file or anonymous VMAs.
696 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
698 unsigned long address
;
702 address
= __vma_address(page
, vma
);
703 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
705 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
706 if (!pte
) /* the page is not in this mm */
708 pte_unmap_unlock(pte
, ptl
);
713 struct page_referenced_arg
{
716 unsigned long vm_flags
;
717 struct mem_cgroup
*memcg
;
720 * arg: page_referenced_arg will be passed
722 static int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
723 unsigned long address
, void *arg
)
725 struct mm_struct
*mm
= vma
->vm_mm
;
728 struct page_referenced_arg
*pra
= arg
;
730 if (unlikely(PageTransHuge(page
))) {
734 * rmap might return false positives; we must filter
735 * these out using page_check_address_pmd().
737 pmd
= page_check_address_pmd(page
, mm
, address
,
738 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
742 if (vma
->vm_flags
& VM_LOCKED
) {
744 pra
->vm_flags
|= VM_LOCKED
;
745 return SWAP_FAIL
; /* To break the loop */
748 /* go ahead even if the pmd is pmd_trans_splitting() */
749 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
756 * rmap might return false positives; we must filter
757 * these out using page_check_address().
759 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
763 if (vma
->vm_flags
& VM_LOCKED
) {
764 pte_unmap_unlock(pte
, ptl
);
765 pra
->vm_flags
|= VM_LOCKED
;
766 return SWAP_FAIL
; /* To break the loop */
769 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
771 * Don't treat a reference through a sequentially read
772 * mapping as such. If the page has been used in
773 * another mapping, we will catch it; if this other
774 * mapping is already gone, the unmap path will have
775 * set PG_referenced or activated the page.
777 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
780 pte_unmap_unlock(pte
, ptl
);
785 pra
->vm_flags
|= vma
->vm_flags
;
790 return SWAP_SUCCESS
; /* To break the loop */
795 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
797 struct page_referenced_arg
*pra
= arg
;
798 struct mem_cgroup
*memcg
= pra
->memcg
;
800 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
807 * page_referenced - test if the page was referenced
808 * @page: the page to test
809 * @is_locked: caller holds lock on the page
810 * @memcg: target memory cgroup
811 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
813 * Quick test_and_clear_referenced for all mappings to a page,
814 * returns the number of ptes which referenced the page.
816 int page_referenced(struct page
*page
,
818 struct mem_cgroup
*memcg
,
819 unsigned long *vm_flags
)
823 struct page_referenced_arg pra
= {
824 .mapcount
= page_mapcount(page
),
827 struct rmap_walk_control rwc
= {
828 .rmap_one
= page_referenced_one
,
830 .anon_lock
= page_lock_anon_vma_read
,
834 if (!page_mapped(page
))
837 if (!page_rmapping(page
))
840 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
841 we_locked
= trylock_page(page
);
847 * If we are reclaiming on behalf of a cgroup, skip
848 * counting on behalf of references from different
852 rwc
.invalid_vma
= invalid_page_referenced_vma
;
855 ret
= rmap_walk(page
, &rwc
);
856 *vm_flags
= pra
.vm_flags
;
861 return pra
.referenced
;
864 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
865 unsigned long address
, void *arg
)
867 struct mm_struct
*mm
= vma
->vm_mm
;
873 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
877 if (pte_dirty(*pte
) || pte_write(*pte
)) {
880 flush_cache_page(vma
, address
, pte_pfn(*pte
));
881 entry
= ptep_clear_flush(vma
, address
, pte
);
882 entry
= pte_wrprotect(entry
);
883 entry
= pte_mkclean(entry
);
884 set_pte_at(mm
, address
, pte
, entry
);
888 pte_unmap_unlock(pte
, ptl
);
891 mmu_notifier_invalidate_page(mm
, address
);
898 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
900 if (vma
->vm_flags
& VM_SHARED
)
906 int page_mkclean(struct page
*page
)
909 struct address_space
*mapping
;
910 struct rmap_walk_control rwc
= {
911 .arg
= (void *)&cleaned
,
912 .rmap_one
= page_mkclean_one
,
913 .invalid_vma
= invalid_mkclean_vma
,
916 BUG_ON(!PageLocked(page
));
918 if (!page_mapped(page
))
921 mapping
= page_mapping(page
);
925 rmap_walk(page
, &rwc
);
929 EXPORT_SYMBOL_GPL(page_mkclean
);
932 * page_move_anon_rmap - move a page to our anon_vma
933 * @page: the page to move to our anon_vma
934 * @vma: the vma the page belongs to
935 * @address: the user virtual address mapped
937 * When a page belongs exclusively to one process after a COW event,
938 * that page can be moved into the anon_vma that belongs to just that
939 * process, so the rmap code will not search the parent or sibling
942 void page_move_anon_rmap(struct page
*page
,
943 struct vm_area_struct
*vma
, unsigned long address
)
945 struct anon_vma
*anon_vma
= vma
->anon_vma
;
947 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
948 VM_BUG_ON(!anon_vma
);
949 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
951 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
952 page
->mapping
= (struct address_space
*) anon_vma
;
956 * __page_set_anon_rmap - set up new anonymous rmap
957 * @page: Page to add to rmap
958 * @vma: VM area to add page to.
959 * @address: User virtual address of the mapping
960 * @exclusive: the page is exclusively owned by the current process
962 static void __page_set_anon_rmap(struct page
*page
,
963 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
965 struct anon_vma
*anon_vma
= vma
->anon_vma
;
973 * If the page isn't exclusively mapped into this vma,
974 * we must use the _oldest_ possible anon_vma for the
978 anon_vma
= anon_vma
->root
;
980 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
981 page
->mapping
= (struct address_space
*) anon_vma
;
982 page
->index
= linear_page_index(vma
, address
);
986 * __page_check_anon_rmap - sanity check anonymous rmap addition
987 * @page: the page to add the mapping to
988 * @vma: the vm area in which the mapping is added
989 * @address: the user virtual address mapped
991 static void __page_check_anon_rmap(struct page
*page
,
992 struct vm_area_struct
*vma
, unsigned long address
)
994 #ifdef CONFIG_DEBUG_VM
996 * The page's anon-rmap details (mapping and index) are guaranteed to
997 * be set up correctly at this point.
999 * We have exclusion against page_add_anon_rmap because the caller
1000 * always holds the page locked, except if called from page_dup_rmap,
1001 * in which case the page is already known to be setup.
1003 * We have exclusion against page_add_new_anon_rmap because those pages
1004 * are initially only visible via the pagetables, and the pte is locked
1005 * over the call to page_add_new_anon_rmap.
1007 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1008 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1013 * page_add_anon_rmap - add pte mapping to an anonymous page
1014 * @page: the page to add the mapping to
1015 * @vma: the vm area in which the mapping is added
1016 * @address: the user virtual address mapped
1018 * The caller needs to hold the pte lock, and the page must be locked in
1019 * the anon_vma case: to serialize mapping,index checking after setting,
1020 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1021 * (but PageKsm is never downgraded to PageAnon).
1023 void page_add_anon_rmap(struct page
*page
,
1024 struct vm_area_struct
*vma
, unsigned long address
)
1026 do_page_add_anon_rmap(page
, vma
, address
, 0);
1030 * Special version of the above for do_swap_page, which often runs
1031 * into pages that are exclusively owned by the current process.
1032 * Everybody else should continue to use page_add_anon_rmap above.
1034 void do_page_add_anon_rmap(struct page
*page
,
1035 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1037 int first
= atomic_inc_and_test(&page
->_mapcount
);
1040 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1041 * these counters are not modified in interrupt context, and
1042 * pte lock(a spinlock) is held, which implies preemption
1045 if (PageTransHuge(page
))
1046 __inc_zone_page_state(page
,
1047 NR_ANON_TRANSPARENT_HUGEPAGES
);
1048 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1049 hpage_nr_pages(page
));
1051 if (unlikely(PageKsm(page
)))
1054 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1055 /* address might be in next vma when migration races vma_adjust */
1057 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1059 __page_check_anon_rmap(page
, vma
, address
);
1063 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1064 * @page: the page to add the mapping to
1065 * @vma: the vm area in which the mapping is added
1066 * @address: the user virtual address mapped
1068 * Same as page_add_anon_rmap but must only be called on *new* pages.
1069 * This means the inc-and-test can be bypassed.
1070 * Page does not have to be locked.
1072 void page_add_new_anon_rmap(struct page
*page
,
1073 struct vm_area_struct
*vma
, unsigned long address
)
1075 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1076 SetPageSwapBacked(page
);
1077 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1078 if (PageTransHuge(page
))
1079 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1080 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1081 hpage_nr_pages(page
));
1082 __page_set_anon_rmap(page
, vma
, address
, 1);
1084 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1085 if (likely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) != VM_LOCKED
)) {
1086 SetPageActive(page
);
1087 lru_cache_add(page
);
1091 if (!TestSetPageMlocked(page
)) {
1093 * We use the irq-unsafe __mod_zone_page_stat because this
1094 * counter is not modified from interrupt context, and the pte
1095 * lock is held(spinlock), which implies preemption disabled.
1097 __mod_zone_page_state(page_zone(page
), NR_MLOCK
,
1098 hpage_nr_pages(page
));
1099 count_vm_event(UNEVICTABLE_PGMLOCKED
);
1101 add_page_to_unevictable_list(page
);
1105 * page_add_file_rmap - add pte mapping to a file page
1106 * @page: the page to add the mapping to
1108 * The caller needs to hold the pte lock.
1110 void page_add_file_rmap(struct page
*page
)
1113 unsigned long flags
;
1115 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1116 if (atomic_inc_and_test(&page
->_mapcount
)) {
1117 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1118 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1120 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1124 * page_remove_rmap - take down pte mapping from a page
1125 * @page: page to remove mapping from
1127 * The caller needs to hold the pte lock.
1129 void page_remove_rmap(struct page
*page
)
1131 bool anon
= PageAnon(page
);
1133 unsigned long flags
;
1136 * The anon case has no mem_cgroup page_stat to update; but may
1137 * uncharge_page() below, where the lock ordering can deadlock if
1138 * we hold the lock against page_stat move: so avoid it on anon.
1141 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1143 /* page still mapped by someone else? */
1144 if (!atomic_add_negative(-1, &page
->_mapcount
))
1148 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1149 * and not charged by memcg for now.
1151 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1152 * these counters are not modified in interrupt context, and
1153 * these counters are not modified in interrupt context, and
1154 * pte lock(a spinlock) is held, which implies preemption disabled.
1156 if (unlikely(PageHuge(page
)))
1159 mem_cgroup_uncharge_page(page
);
1160 if (PageTransHuge(page
))
1161 __dec_zone_page_state(page
,
1162 NR_ANON_TRANSPARENT_HUGEPAGES
);
1163 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1164 -hpage_nr_pages(page
));
1166 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1167 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1168 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1170 if (unlikely(PageMlocked(page
)))
1171 clear_page_mlock(page
);
1173 * It would be tidy to reset the PageAnon mapping here,
1174 * but that might overwrite a racing page_add_anon_rmap
1175 * which increments mapcount after us but sets mapping
1176 * before us: so leave the reset to free_hot_cold_page,
1177 * and remember that it's only reliable while mapped.
1178 * Leaving it set also helps swapoff to reinstate ptes
1179 * faster for those pages still in swapcache.
1184 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1188 * @arg: enum ttu_flags will be passed to this argument
1190 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1191 unsigned long address
, void *arg
)
1193 struct mm_struct
*mm
= vma
->vm_mm
;
1197 int ret
= SWAP_AGAIN
;
1198 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1200 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1205 * If the page is mlock()d, we cannot swap it out.
1206 * If it's recently referenced (perhaps page_referenced
1207 * skipped over this mm) then we should reactivate it.
1209 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1210 if (vma
->vm_flags
& VM_LOCKED
)
1213 if (flags
& TTU_MUNLOCK
)
1216 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1217 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1223 /* Nuke the page table entry. */
1224 flush_cache_page(vma
, address
, page_to_pfn(page
));
1225 pteval
= ptep_clear_flush(vma
, address
, pte
);
1227 /* Move the dirty bit to the physical page now the pte is gone. */
1228 if (pte_dirty(pteval
))
1229 set_page_dirty(page
);
1231 /* Update high watermark before we lower rss */
1232 update_hiwater_rss(mm
);
1234 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1235 if (!PageHuge(page
)) {
1237 dec_mm_counter(mm
, MM_ANONPAGES
);
1239 dec_mm_counter(mm
, MM_FILEPAGES
);
1241 set_pte_at(mm
, address
, pte
,
1242 swp_entry_to_pte(make_hwpoison_entry(page
)));
1243 } else if (pte_unused(pteval
)) {
1245 * The guest indicated that the page content is of no
1246 * interest anymore. Simply discard the pte, vmscan
1247 * will take care of the rest.
1250 dec_mm_counter(mm
, MM_ANONPAGES
);
1252 dec_mm_counter(mm
, MM_FILEPAGES
);
1253 } else if (PageAnon(page
)) {
1254 swp_entry_t entry
= { .val
= page_private(page
) };
1257 if (PageSwapCache(page
)) {
1259 * Store the swap location in the pte.
1260 * See handle_pte_fault() ...
1262 if (swap_duplicate(entry
) < 0) {
1263 set_pte_at(mm
, address
, pte
, pteval
);
1267 if (list_empty(&mm
->mmlist
)) {
1268 spin_lock(&mmlist_lock
);
1269 if (list_empty(&mm
->mmlist
))
1270 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1271 spin_unlock(&mmlist_lock
);
1273 dec_mm_counter(mm
, MM_ANONPAGES
);
1274 inc_mm_counter(mm
, MM_SWAPENTS
);
1275 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1277 * Store the pfn of the page in a special migration
1278 * pte. do_swap_page() will wait until the migration
1279 * pte is removed and then restart fault handling.
1281 BUG_ON(!(flags
& TTU_MIGRATION
));
1282 entry
= make_migration_entry(page
, pte_write(pteval
));
1284 swp_pte
= swp_entry_to_pte(entry
);
1285 if (pte_soft_dirty(pteval
))
1286 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1287 set_pte_at(mm
, address
, pte
, swp_pte
);
1288 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1289 (flags
& TTU_MIGRATION
)) {
1290 /* Establish migration entry for a file page */
1292 entry
= make_migration_entry(page
, pte_write(pteval
));
1293 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1295 dec_mm_counter(mm
, MM_FILEPAGES
);
1297 page_remove_rmap(page
);
1298 page_cache_release(page
);
1301 pte_unmap_unlock(pte
, ptl
);
1302 if (ret
!= SWAP_FAIL
&& !(flags
& TTU_MUNLOCK
))
1303 mmu_notifier_invalidate_page(mm
, address
);
1308 pte_unmap_unlock(pte
, ptl
);
1312 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1313 * unstable result and race. Plus, We can't wait here because
1314 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1315 * if trylock failed, the page remain in evictable lru and later
1316 * vmscan could retry to move the page to unevictable lru if the
1317 * page is actually mlocked.
1319 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1320 if (vma
->vm_flags
& VM_LOCKED
) {
1321 mlock_vma_page(page
);
1324 up_read(&vma
->vm_mm
->mmap_sem
);
1329 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1331 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1336 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1337 VM_STACK_INCOMPLETE_SETUP
)
1343 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1345 return is_vma_temporary_stack(vma
);
1348 static int page_not_mapped(struct page
*page
)
1350 return !page_mapped(page
);
1354 * try_to_unmap - try to remove all page table mappings to a page
1355 * @page: the page to get unmapped
1356 * @flags: action and flags
1358 * Tries to remove all the page table entries which are mapping this
1359 * page, used in the pageout path. Caller must hold the page lock.
1360 * Return values are:
1362 * SWAP_SUCCESS - we succeeded in removing all mappings
1363 * SWAP_AGAIN - we missed a mapping, try again later
1364 * SWAP_FAIL - the page is unswappable
1365 * SWAP_MLOCK - page is mlocked.
1367 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1370 struct rmap_walk_control rwc
= {
1371 .rmap_one
= try_to_unmap_one
,
1372 .arg
= (void *)flags
,
1373 .done
= page_not_mapped
,
1374 .anon_lock
= page_lock_anon_vma_read
,
1377 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1380 * During exec, a temporary VMA is setup and later moved.
1381 * The VMA is moved under the anon_vma lock but not the
1382 * page tables leading to a race where migration cannot
1383 * find the migration ptes. Rather than increasing the
1384 * locking requirements of exec(), migration skips
1385 * temporary VMAs until after exec() completes.
1387 if ((flags
& TTU_MIGRATION
) && !PageKsm(page
) && PageAnon(page
))
1388 rwc
.invalid_vma
= invalid_migration_vma
;
1390 ret
= rmap_walk(page
, &rwc
);
1392 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1398 * try_to_munlock - try to munlock a page
1399 * @page: the page to be munlocked
1401 * Called from munlock code. Checks all of the VMAs mapping the page
1402 * to make sure nobody else has this page mlocked. The page will be
1403 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1405 * Return values are:
1407 * SWAP_AGAIN - no vma is holding page mlocked, or,
1408 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1409 * SWAP_FAIL - page cannot be located at present
1410 * SWAP_MLOCK - page is now mlocked.
1412 int try_to_munlock(struct page
*page
)
1415 struct rmap_walk_control rwc
= {
1416 .rmap_one
= try_to_unmap_one
,
1417 .arg
= (void *)TTU_MUNLOCK
,
1418 .done
= page_not_mapped
,
1419 .anon_lock
= page_lock_anon_vma_read
,
1423 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1425 ret
= rmap_walk(page
, &rwc
);
1429 void __put_anon_vma(struct anon_vma
*anon_vma
)
1431 struct anon_vma
*root
= anon_vma
->root
;
1433 anon_vma_free(anon_vma
);
1434 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1435 anon_vma_free(root
);
1438 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1439 struct rmap_walk_control
*rwc
)
1441 struct anon_vma
*anon_vma
;
1444 return rwc
->anon_lock(page
);
1447 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1448 * because that depends on page_mapped(); but not all its usages
1449 * are holding mmap_sem. Users without mmap_sem are required to
1450 * take a reference count to prevent the anon_vma disappearing
1452 anon_vma
= page_anon_vma(page
);
1456 anon_vma_lock_read(anon_vma
);
1461 * rmap_walk_anon - do something to anonymous page using the object-based
1463 * @page: the page to be handled
1464 * @rwc: control variable according to each walk type
1466 * Find all the mappings of a page using the mapping pointer and the vma chains
1467 * contained in the anon_vma struct it points to.
1469 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1470 * where the page was found will be held for write. So, we won't recheck
1471 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1474 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1476 struct anon_vma
*anon_vma
;
1477 pgoff_t pgoff
= page_to_pgoff(page
);
1478 struct anon_vma_chain
*avc
;
1479 int ret
= SWAP_AGAIN
;
1481 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1485 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1486 struct vm_area_struct
*vma
= avc
->vma
;
1487 unsigned long address
= vma_address(page
, vma
);
1491 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1494 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1495 if (ret
!= SWAP_AGAIN
)
1497 if (rwc
->done
&& rwc
->done(page
))
1500 anon_vma_unlock_read(anon_vma
);
1505 * rmap_walk_file - do something to file page using the object-based rmap method
1506 * @page: the page to be handled
1507 * @rwc: control variable according to each walk type
1509 * Find all the mappings of a page using the mapping pointer and the vma chains
1510 * contained in the address_space struct it points to.
1512 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1513 * where the page was found will be held for write. So, we won't recheck
1514 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1517 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1519 struct address_space
*mapping
= page
->mapping
;
1520 pgoff_t pgoff
= page_to_pgoff(page
);
1521 struct vm_area_struct
*vma
;
1522 int ret
= SWAP_AGAIN
;
1525 * The page lock not only makes sure that page->mapping cannot
1526 * suddenly be NULLified by truncation, it makes sure that the
1527 * structure at mapping cannot be freed and reused yet,
1528 * so we can safely take mapping->i_mmap_mutex.
1530 VM_BUG_ON(!PageLocked(page
));
1534 mutex_lock(&mapping
->i_mmap_mutex
);
1535 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1536 unsigned long address
= vma_address(page
, vma
);
1540 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1543 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1544 if (ret
!= SWAP_AGAIN
)
1546 if (rwc
->done
&& rwc
->done(page
))
1551 mutex_unlock(&mapping
->i_mmap_mutex
);
1555 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1557 if (unlikely(PageKsm(page
)))
1558 return rmap_walk_ksm(page
, rwc
);
1559 else if (PageAnon(page
))
1560 return rmap_walk_anon(page
, rwc
);
1562 return rmap_walk_file(page
, rwc
);
1565 #ifdef CONFIG_HUGETLB_PAGE
1567 * The following three functions are for anonymous (private mapped) hugepages.
1568 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1569 * and no lru code, because we handle hugepages differently from common pages.
1571 static void __hugepage_set_anon_rmap(struct page
*page
,
1572 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1574 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1581 anon_vma
= anon_vma
->root
;
1583 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1584 page
->mapping
= (struct address_space
*) anon_vma
;
1585 page
->index
= linear_page_index(vma
, address
);
1588 void hugepage_add_anon_rmap(struct page
*page
,
1589 struct vm_area_struct
*vma
, unsigned long address
)
1591 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1594 BUG_ON(!PageLocked(page
));
1596 /* address might be in next vma when migration races vma_adjust */
1597 first
= atomic_inc_and_test(&page
->_mapcount
);
1599 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1602 void hugepage_add_new_anon_rmap(struct page
*page
,
1603 struct vm_area_struct
*vma
, unsigned long address
)
1605 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1606 atomic_set(&page
->_mapcount
, 0);
1607 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1609 #endif /* CONFIG_HUGETLB_PAGE */