Linux 3.16.62
[linux/fpc-iii.git] / mm / rmap.c
blob0ebe6ab837c6a5cd4bdf00a88e789f323e697ed5
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
81 anon_vma->root = anon_vma;
84 return anon_vma;
87 static inline void anon_vma_free(struct anon_vma *anon_vma)
89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
102 * LOCK MB
103 * atomic_read() rwsem_is_locked()
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
108 might_sleep();
109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 anon_vma_lock_write(anon_vma);
111 anon_vma_unlock_write(anon_vma);
114 kmem_cache_free(anon_vma_cachep, anon_vma);
117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
162 * This must be called with the mmap_sem held for reading.
164 int anon_vma_prepare(struct vm_area_struct *vma)
166 struct anon_vma *anon_vma = vma->anon_vma;
167 struct anon_vma_chain *avc;
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
172 struct anon_vma *allocated;
174 avc = anon_vma_chain_alloc(GFP_KERNEL);
175 if (!avc)
176 goto out_enomem;
178 anon_vma = find_mergeable_anon_vma(vma);
179 allocated = NULL;
180 if (!anon_vma) {
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
183 goto out_enomem_free_avc;
184 allocated = anon_vma;
187 anon_vma_lock_write(anon_vma);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
192 anon_vma_chain_link(vma, avc, anon_vma);
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
195 allocated = NULL;
196 avc = NULL;
198 spin_unlock(&mm->page_table_lock);
199 anon_vma_unlock_write(anon_vma);
201 if (unlikely(allocated))
202 put_anon_vma(allocated);
203 if (unlikely(avc))
204 anon_vma_chain_free(avc);
206 return 0;
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
227 up_write(&root->rwsem);
228 root = new_root;
229 down_write(&root->rwsem);
231 return root;
234 static inline void unlock_anon_vma_root(struct anon_vma *root)
236 if (root)
237 up_write(&root->rwsem);
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
254 struct anon_vma_chain *avc, *pavc;
255 struct anon_vma *root = NULL;
257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 struct anon_vma *anon_vma;
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
286 unlock_anon_vma_root(root);
287 return 0;
289 enomem_failure:
291 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292 * decremented in unlink_anon_vmas().
293 * We can safely do this because callers of anon_vma_clone() don't care
294 * about dst->anon_vma if anon_vma_clone() failed.
296 dst->anon_vma = NULL;
297 unlink_anon_vmas(dst);
298 return -ENOMEM;
302 * Attach vma to its own anon_vma, as well as to the anon_vmas that
303 * the corresponding VMA in the parent process is attached to.
304 * Returns 0 on success, non-zero on failure.
306 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
308 struct anon_vma_chain *avc;
309 struct anon_vma *anon_vma;
310 int error;
312 /* Don't bother if the parent process has no anon_vma here. */
313 if (!pvma->anon_vma)
314 return 0;
316 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317 vma->anon_vma = NULL;
320 * First, attach the new VMA to the parent VMA's anon_vmas,
321 * so rmap can find non-COWed pages in child processes.
323 error = anon_vma_clone(vma, pvma);
324 if (error)
325 return error;
327 /* An existing anon_vma has been reused, all done then. */
328 if (vma->anon_vma)
329 return 0;
331 /* Then add our own anon_vma. */
332 anon_vma = anon_vma_alloc();
333 if (!anon_vma)
334 goto out_error;
335 avc = anon_vma_chain_alloc(GFP_KERNEL);
336 if (!avc)
337 goto out_error_free_anon_vma;
340 * The root anon_vma's spinlock is the lock actually used when we
341 * lock any of the anon_vmas in this anon_vma tree.
343 anon_vma->root = pvma->anon_vma->root;
344 anon_vma->parent = pvma->anon_vma;
346 * With refcounts, an anon_vma can stay around longer than the
347 * process it belongs to. The root anon_vma needs to be pinned until
348 * this anon_vma is freed, because the lock lives in the root.
350 get_anon_vma(anon_vma->root);
351 /* Mark this anon_vma as the one where our new (COWed) pages go. */
352 vma->anon_vma = anon_vma;
353 anon_vma_lock_write(anon_vma);
354 anon_vma_chain_link(vma, avc, anon_vma);
355 anon_vma->parent->degree++;
356 anon_vma_unlock_write(anon_vma);
358 return 0;
360 out_error_free_anon_vma:
361 put_anon_vma(anon_vma);
362 out_error:
363 unlink_anon_vmas(vma);
364 return -ENOMEM;
367 void unlink_anon_vmas(struct vm_area_struct *vma)
369 struct anon_vma_chain *avc, *next;
370 struct anon_vma *root = NULL;
373 * Unlink each anon_vma chained to the VMA. This list is ordered
374 * from newest to oldest, ensuring the root anon_vma gets freed last.
376 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
377 struct anon_vma *anon_vma = avc->anon_vma;
379 root = lock_anon_vma_root(root, anon_vma);
380 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
383 * Leave empty anon_vmas on the list - we'll need
384 * to free them outside the lock.
386 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
387 anon_vma->parent->degree--;
388 continue;
391 list_del(&avc->same_vma);
392 anon_vma_chain_free(avc);
394 if (vma->anon_vma)
395 vma->anon_vma->degree--;
396 unlock_anon_vma_root(root);
399 * Iterate the list once more, it now only contains empty and unlinked
400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 * needing to write-acquire the anon_vma->root->rwsem.
403 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 struct anon_vma *anon_vma = avc->anon_vma;
406 BUG_ON(anon_vma->degree);
407 put_anon_vma(anon_vma);
409 list_del(&avc->same_vma);
410 anon_vma_chain_free(avc);
414 static void anon_vma_ctor(void *data)
416 struct anon_vma *anon_vma = data;
418 init_rwsem(&anon_vma->rwsem);
419 atomic_set(&anon_vma->refcount, 0);
420 anon_vma->rb_root = RB_ROOT;
423 void __init anon_vma_init(void)
425 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
426 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
427 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
433 * Since there is no serialization what so ever against page_remove_rmap()
434 * the best this function can do is return a locked anon_vma that might
435 * have been relevant to this page.
437 * The page might have been remapped to a different anon_vma or the anon_vma
438 * returned may already be freed (and even reused).
440 * In case it was remapped to a different anon_vma, the new anon_vma will be a
441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442 * ensure that any anon_vma obtained from the page will still be valid for as
443 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
445 * All users of this function must be very careful when walking the anon_vma
446 * chain and verify that the page in question is indeed mapped in it
447 * [ something equivalent to page_mapped_in_vma() ].
449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450 * that the anon_vma pointer from page->mapping is valid if there is a
451 * mapcount, we can dereference the anon_vma after observing those.
453 struct anon_vma *page_get_anon_vma(struct page *page)
455 struct anon_vma *anon_vma = NULL;
456 unsigned long anon_mapping;
458 rcu_read_lock();
459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 goto out;
462 if (!page_mapped(page))
463 goto out;
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
467 anon_vma = NULL;
468 goto out;
472 * If this page is still mapped, then its anon_vma cannot have been
473 * freed. But if it has been unmapped, we have no security against the
474 * anon_vma structure being freed and reused (for another anon_vma:
475 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476 * above cannot corrupt).
478 if (!page_mapped(page)) {
479 rcu_read_unlock();
480 put_anon_vma(anon_vma);
481 return NULL;
483 out:
484 rcu_read_unlock();
486 return anon_vma;
490 * Similar to page_get_anon_vma() except it locks the anon_vma.
492 * Its a little more complex as it tries to keep the fast path to a single
493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494 * reference like with page_get_anon_vma() and then block on the mutex.
496 struct anon_vma *page_lock_anon_vma_read(struct page *page)
498 struct anon_vma *anon_vma = NULL;
499 struct anon_vma *root_anon_vma;
500 unsigned long anon_mapping;
502 rcu_read_lock();
503 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
504 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
505 goto out;
506 if (!page_mapped(page))
507 goto out;
509 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
510 root_anon_vma = ACCESS_ONCE(anon_vma->root);
511 if (down_read_trylock(&root_anon_vma->rwsem)) {
513 * If the page is still mapped, then this anon_vma is still
514 * its anon_vma, and holding the mutex ensures that it will
515 * not go away, see anon_vma_free().
517 if (!page_mapped(page)) {
518 up_read(&root_anon_vma->rwsem);
519 anon_vma = NULL;
521 goto out;
524 /* trylock failed, we got to sleep */
525 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
526 anon_vma = NULL;
527 goto out;
530 if (!page_mapped(page)) {
531 rcu_read_unlock();
532 put_anon_vma(anon_vma);
533 return NULL;
536 /* we pinned the anon_vma, its safe to sleep */
537 rcu_read_unlock();
538 anon_vma_lock_read(anon_vma);
540 if (atomic_dec_and_test(&anon_vma->refcount)) {
542 * Oops, we held the last refcount, release the lock
543 * and bail -- can't simply use put_anon_vma() because
544 * we'll deadlock on the anon_vma_lock_write() recursion.
546 anon_vma_unlock_read(anon_vma);
547 __put_anon_vma(anon_vma);
548 anon_vma = NULL;
551 return anon_vma;
553 out:
554 rcu_read_unlock();
555 return anon_vma;
558 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
560 anon_vma_unlock_read(anon_vma);
564 * At what user virtual address is page expected in @vma?
566 static inline unsigned long
567 __vma_address(struct page *page, struct vm_area_struct *vma)
569 pgoff_t pgoff = page_to_pgoff(page);
570 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
573 inline unsigned long
574 vma_address(struct page *page, struct vm_area_struct *vma)
576 unsigned long address = __vma_address(page, vma);
578 /* page should be within @vma mapping range */
579 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
581 return address;
585 * At what user virtual address is page expected in vma?
586 * Caller should check the page is actually part of the vma.
588 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
590 unsigned long address;
591 if (PageAnon(page)) {
592 struct anon_vma *page__anon_vma = page_anon_vma(page);
594 * Note: swapoff's unuse_vma() is more efficient with this
595 * check, and needs it to match anon_vma when KSM is active.
597 if (!vma->anon_vma || !page__anon_vma ||
598 vma->anon_vma->root != page__anon_vma->root)
599 return -EFAULT;
600 } else if (page->mapping) {
601 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
602 return -EFAULT;
603 } else
604 return -EFAULT;
605 address = __vma_address(page, vma);
606 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
607 return -EFAULT;
608 return address;
611 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
613 pgd_t *pgd;
614 pud_t *pud;
615 pmd_t *pmd = NULL;
616 pmd_t pmde;
618 pgd = pgd_offset(mm, address);
619 if (!pgd_present(*pgd))
620 goto out;
622 pud = pud_offset(pgd, address);
623 if (!pud_present(*pud))
624 goto out;
626 pmd = pmd_offset(pud, address);
628 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
629 * without holding anon_vma lock for write. So when looking for a
630 * genuine pmde (in which to find pte), test present and !THP together.
632 pmde = ACCESS_ONCE(*pmd);
633 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
634 pmd = NULL;
635 out:
636 return pmd;
640 * Check that @page is mapped at @address into @mm.
642 * If @sync is false, page_check_address may perform a racy check to avoid
643 * the page table lock when the pte is not present (helpful when reclaiming
644 * highly shared pages).
646 * On success returns with pte mapped and locked.
648 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
649 unsigned long address, spinlock_t **ptlp, int sync)
651 pmd_t *pmd;
652 pte_t *pte;
653 spinlock_t *ptl;
655 if (unlikely(PageHuge(page))) {
656 /* when pud is not present, pte will be NULL */
657 pte = huge_pte_offset(mm, address);
658 if (!pte)
659 return NULL;
661 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
662 goto check;
665 pmd = mm_find_pmd(mm, address);
666 if (!pmd)
667 return NULL;
669 pte = pte_offset_map(pmd, address);
670 /* Make a quick check before getting the lock */
671 if (!sync && !pte_present(*pte)) {
672 pte_unmap(pte);
673 return NULL;
676 ptl = pte_lockptr(mm, pmd);
677 check:
678 spin_lock(ptl);
679 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
680 *ptlp = ptl;
681 return pte;
683 pte_unmap_unlock(pte, ptl);
684 return NULL;
688 * page_mapped_in_vma - check whether a page is really mapped in a VMA
689 * @page: the page to test
690 * @vma: the VMA to test
692 * Returns 1 if the page is mapped into the page tables of the VMA, 0
693 * if the page is not mapped into the page tables of this VMA. Only
694 * valid for normal file or anonymous VMAs.
696 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
698 unsigned long address;
699 pte_t *pte;
700 spinlock_t *ptl;
702 address = __vma_address(page, vma);
703 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
704 return 0;
705 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
706 if (!pte) /* the page is not in this mm */
707 return 0;
708 pte_unmap_unlock(pte, ptl);
710 return 1;
713 struct page_referenced_arg {
714 int mapcount;
715 int referenced;
716 unsigned long vm_flags;
717 struct mem_cgroup *memcg;
720 * arg: page_referenced_arg will be passed
722 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
723 unsigned long address, void *arg)
725 struct mm_struct *mm = vma->vm_mm;
726 spinlock_t *ptl;
727 int referenced = 0;
728 struct page_referenced_arg *pra = arg;
730 if (unlikely(PageTransHuge(page))) {
731 pmd_t *pmd;
734 * rmap might return false positives; we must filter
735 * these out using page_check_address_pmd().
737 pmd = page_check_address_pmd(page, mm, address,
738 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
739 if (!pmd)
740 return SWAP_AGAIN;
742 if (vma->vm_flags & VM_LOCKED) {
743 spin_unlock(ptl);
744 pra->vm_flags |= VM_LOCKED;
745 return SWAP_FAIL; /* To break the loop */
748 /* go ahead even if the pmd is pmd_trans_splitting() */
749 if (pmdp_clear_flush_young_notify(vma, address, pmd))
750 referenced++;
751 spin_unlock(ptl);
752 } else {
753 pte_t *pte;
756 * rmap might return false positives; we must filter
757 * these out using page_check_address().
759 pte = page_check_address(page, mm, address, &ptl, 0);
760 if (!pte)
761 return SWAP_AGAIN;
763 if (vma->vm_flags & VM_LOCKED) {
764 pte_unmap_unlock(pte, ptl);
765 pra->vm_flags |= VM_LOCKED;
766 return SWAP_FAIL; /* To break the loop */
769 if (ptep_clear_flush_young_notify(vma, address, pte)) {
771 * Don't treat a reference through a sequentially read
772 * mapping as such. If the page has been used in
773 * another mapping, we will catch it; if this other
774 * mapping is already gone, the unmap path will have
775 * set PG_referenced or activated the page.
777 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
778 referenced++;
780 pte_unmap_unlock(pte, ptl);
783 if (referenced) {
784 pra->referenced++;
785 pra->vm_flags |= vma->vm_flags;
788 pra->mapcount--;
789 if (!pra->mapcount)
790 return SWAP_SUCCESS; /* To break the loop */
792 return SWAP_AGAIN;
795 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
797 struct page_referenced_arg *pra = arg;
798 struct mem_cgroup *memcg = pra->memcg;
800 if (!mm_match_cgroup(vma->vm_mm, memcg))
801 return true;
803 return false;
807 * page_referenced - test if the page was referenced
808 * @page: the page to test
809 * @is_locked: caller holds lock on the page
810 * @memcg: target memory cgroup
811 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
813 * Quick test_and_clear_referenced for all mappings to a page,
814 * returns the number of ptes which referenced the page.
816 int page_referenced(struct page *page,
817 int is_locked,
818 struct mem_cgroup *memcg,
819 unsigned long *vm_flags)
821 int ret;
822 int we_locked = 0;
823 struct page_referenced_arg pra = {
824 .mapcount = page_mapcount(page),
825 .memcg = memcg,
827 struct rmap_walk_control rwc = {
828 .rmap_one = page_referenced_one,
829 .arg = (void *)&pra,
830 .anon_lock = page_lock_anon_vma_read,
833 *vm_flags = 0;
834 if (!page_mapped(page))
835 return 0;
837 if (!page_rmapping(page))
838 return 0;
840 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
841 we_locked = trylock_page(page);
842 if (!we_locked)
843 return 1;
847 * If we are reclaiming on behalf of a cgroup, skip
848 * counting on behalf of references from different
849 * cgroups
851 if (memcg) {
852 rwc.invalid_vma = invalid_page_referenced_vma;
855 ret = rmap_walk(page, &rwc);
856 *vm_flags = pra.vm_flags;
858 if (we_locked)
859 unlock_page(page);
861 return pra.referenced;
864 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
865 unsigned long address, void *arg)
867 struct mm_struct *mm = vma->vm_mm;
868 pte_t *pte;
869 spinlock_t *ptl;
870 int ret = 0;
871 int *cleaned = arg;
873 pte = page_check_address(page, mm, address, &ptl, 1);
874 if (!pte)
875 goto out;
877 if (pte_dirty(*pte) || pte_write(*pte)) {
878 pte_t entry;
880 flush_cache_page(vma, address, pte_pfn(*pte));
881 entry = ptep_clear_flush(vma, address, pte);
882 entry = pte_wrprotect(entry);
883 entry = pte_mkclean(entry);
884 set_pte_at(mm, address, pte, entry);
885 ret = 1;
888 pte_unmap_unlock(pte, ptl);
890 if (ret) {
891 mmu_notifier_invalidate_page(mm, address);
892 (*cleaned)++;
894 out:
895 return SWAP_AGAIN;
898 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
900 if (vma->vm_flags & VM_SHARED)
901 return false;
903 return true;
906 int page_mkclean(struct page *page)
908 int cleaned = 0;
909 struct address_space *mapping;
910 struct rmap_walk_control rwc = {
911 .arg = (void *)&cleaned,
912 .rmap_one = page_mkclean_one,
913 .invalid_vma = invalid_mkclean_vma,
916 BUG_ON(!PageLocked(page));
918 if (!page_mapped(page))
919 return 0;
921 mapping = page_mapping(page);
922 if (!mapping)
923 return 0;
925 rmap_walk(page, &rwc);
927 return cleaned;
929 EXPORT_SYMBOL_GPL(page_mkclean);
932 * page_move_anon_rmap - move a page to our anon_vma
933 * @page: the page to move to our anon_vma
934 * @vma: the vma the page belongs to
935 * @address: the user virtual address mapped
937 * When a page belongs exclusively to one process after a COW event,
938 * that page can be moved into the anon_vma that belongs to just that
939 * process, so the rmap code will not search the parent or sibling
940 * processes.
942 void page_move_anon_rmap(struct page *page,
943 struct vm_area_struct *vma, unsigned long address)
945 struct anon_vma *anon_vma = vma->anon_vma;
947 VM_BUG_ON_PAGE(!PageLocked(page), page);
948 VM_BUG_ON(!anon_vma);
949 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
951 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
952 page->mapping = (struct address_space *) anon_vma;
956 * __page_set_anon_rmap - set up new anonymous rmap
957 * @page: Page to add to rmap
958 * @vma: VM area to add page to.
959 * @address: User virtual address of the mapping
960 * @exclusive: the page is exclusively owned by the current process
962 static void __page_set_anon_rmap(struct page *page,
963 struct vm_area_struct *vma, unsigned long address, int exclusive)
965 struct anon_vma *anon_vma = vma->anon_vma;
967 BUG_ON(!anon_vma);
969 if (PageAnon(page))
970 return;
973 * If the page isn't exclusively mapped into this vma,
974 * we must use the _oldest_ possible anon_vma for the
975 * page mapping!
977 if (!exclusive)
978 anon_vma = anon_vma->root;
980 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
981 page->mapping = (struct address_space *) anon_vma;
982 page->index = linear_page_index(vma, address);
986 * __page_check_anon_rmap - sanity check anonymous rmap addition
987 * @page: the page to add the mapping to
988 * @vma: the vm area in which the mapping is added
989 * @address: the user virtual address mapped
991 static void __page_check_anon_rmap(struct page *page,
992 struct vm_area_struct *vma, unsigned long address)
994 #ifdef CONFIG_DEBUG_VM
996 * The page's anon-rmap details (mapping and index) are guaranteed to
997 * be set up correctly at this point.
999 * We have exclusion against page_add_anon_rmap because the caller
1000 * always holds the page locked, except if called from page_dup_rmap,
1001 * in which case the page is already known to be setup.
1003 * We have exclusion against page_add_new_anon_rmap because those pages
1004 * are initially only visible via the pagetables, and the pte is locked
1005 * over the call to page_add_new_anon_rmap.
1007 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1008 BUG_ON(page->index != linear_page_index(vma, address));
1009 #endif
1013 * page_add_anon_rmap - add pte mapping to an anonymous page
1014 * @page: the page to add the mapping to
1015 * @vma: the vm area in which the mapping is added
1016 * @address: the user virtual address mapped
1018 * The caller needs to hold the pte lock, and the page must be locked in
1019 * the anon_vma case: to serialize mapping,index checking after setting,
1020 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1021 * (but PageKsm is never downgraded to PageAnon).
1023 void page_add_anon_rmap(struct page *page,
1024 struct vm_area_struct *vma, unsigned long address)
1026 do_page_add_anon_rmap(page, vma, address, 0);
1030 * Special version of the above for do_swap_page, which often runs
1031 * into pages that are exclusively owned by the current process.
1032 * Everybody else should continue to use page_add_anon_rmap above.
1034 void do_page_add_anon_rmap(struct page *page,
1035 struct vm_area_struct *vma, unsigned long address, int exclusive)
1037 int first = atomic_inc_and_test(&page->_mapcount);
1038 if (first) {
1040 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1041 * these counters are not modified in interrupt context, and
1042 * pte lock(a spinlock) is held, which implies preemption
1043 * disabled.
1045 if (PageTransHuge(page))
1046 __inc_zone_page_state(page,
1047 NR_ANON_TRANSPARENT_HUGEPAGES);
1048 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1049 hpage_nr_pages(page));
1051 if (unlikely(PageKsm(page)))
1052 return;
1054 VM_BUG_ON_PAGE(!PageLocked(page), page);
1055 /* address might be in next vma when migration races vma_adjust */
1056 if (first)
1057 __page_set_anon_rmap(page, vma, address, exclusive);
1058 else
1059 __page_check_anon_rmap(page, vma, address);
1063 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1064 * @page: the page to add the mapping to
1065 * @vma: the vm area in which the mapping is added
1066 * @address: the user virtual address mapped
1068 * Same as page_add_anon_rmap but must only be called on *new* pages.
1069 * This means the inc-and-test can be bypassed.
1070 * Page does not have to be locked.
1072 void page_add_new_anon_rmap(struct page *page,
1073 struct vm_area_struct *vma, unsigned long address)
1075 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1076 SetPageSwapBacked(page);
1077 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1078 if (PageTransHuge(page))
1079 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1080 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1081 hpage_nr_pages(page));
1082 __page_set_anon_rmap(page, vma, address, 1);
1084 VM_BUG_ON_PAGE(PageLRU(page), page);
1085 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
1086 SetPageActive(page);
1087 lru_cache_add(page);
1088 return;
1091 if (!TestSetPageMlocked(page)) {
1093 * We use the irq-unsafe __mod_zone_page_stat because this
1094 * counter is not modified from interrupt context, and the pte
1095 * lock is held(spinlock), which implies preemption disabled.
1097 __mod_zone_page_state(page_zone(page), NR_MLOCK,
1098 hpage_nr_pages(page));
1099 count_vm_event(UNEVICTABLE_PGMLOCKED);
1101 add_page_to_unevictable_list(page);
1105 * page_add_file_rmap - add pte mapping to a file page
1106 * @page: the page to add the mapping to
1108 * The caller needs to hold the pte lock.
1110 void page_add_file_rmap(struct page *page)
1112 bool locked;
1113 unsigned long flags;
1115 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1116 if (atomic_inc_and_test(&page->_mapcount)) {
1117 __inc_zone_page_state(page, NR_FILE_MAPPED);
1118 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1120 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1124 * page_remove_rmap - take down pte mapping from a page
1125 * @page: page to remove mapping from
1127 * The caller needs to hold the pte lock.
1129 void page_remove_rmap(struct page *page)
1131 bool anon = PageAnon(page);
1132 bool locked;
1133 unsigned long flags;
1136 * The anon case has no mem_cgroup page_stat to update; but may
1137 * uncharge_page() below, where the lock ordering can deadlock if
1138 * we hold the lock against page_stat move: so avoid it on anon.
1140 if (!anon)
1141 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1143 /* page still mapped by someone else? */
1144 if (!atomic_add_negative(-1, &page->_mapcount))
1145 goto out;
1148 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1149 * and not charged by memcg for now.
1151 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1152 * these counters are not modified in interrupt context, and
1153 * these counters are not modified in interrupt context, and
1154 * pte lock(a spinlock) is held, which implies preemption disabled.
1156 if (unlikely(PageHuge(page)))
1157 goto out;
1158 if (anon) {
1159 mem_cgroup_uncharge_page(page);
1160 if (PageTransHuge(page))
1161 __dec_zone_page_state(page,
1162 NR_ANON_TRANSPARENT_HUGEPAGES);
1163 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1164 -hpage_nr_pages(page));
1165 } else {
1166 __dec_zone_page_state(page, NR_FILE_MAPPED);
1167 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1168 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1170 if (unlikely(PageMlocked(page)))
1171 clear_page_mlock(page);
1173 * It would be tidy to reset the PageAnon mapping here,
1174 * but that might overwrite a racing page_add_anon_rmap
1175 * which increments mapcount after us but sets mapping
1176 * before us: so leave the reset to free_hot_cold_page,
1177 * and remember that it's only reliable while mapped.
1178 * Leaving it set also helps swapoff to reinstate ptes
1179 * faster for those pages still in swapcache.
1181 return;
1182 out:
1183 if (!anon)
1184 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1188 * @arg: enum ttu_flags will be passed to this argument
1190 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1191 unsigned long address, void *arg)
1193 struct mm_struct *mm = vma->vm_mm;
1194 pte_t *pte;
1195 pte_t pteval;
1196 spinlock_t *ptl;
1197 int ret = SWAP_AGAIN;
1198 enum ttu_flags flags = (enum ttu_flags)arg;
1200 pte = page_check_address(page, mm, address, &ptl, 0);
1201 if (!pte)
1202 goto out;
1205 * If the page is mlock()d, we cannot swap it out.
1206 * If it's recently referenced (perhaps page_referenced
1207 * skipped over this mm) then we should reactivate it.
1209 if (!(flags & TTU_IGNORE_MLOCK)) {
1210 if (vma->vm_flags & VM_LOCKED)
1211 goto out_mlock;
1213 if (flags & TTU_MUNLOCK)
1214 goto out_unmap;
1216 if (!(flags & TTU_IGNORE_ACCESS)) {
1217 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1218 ret = SWAP_FAIL;
1219 goto out_unmap;
1223 /* Nuke the page table entry. */
1224 flush_cache_page(vma, address, page_to_pfn(page));
1225 pteval = ptep_clear_flush(vma, address, pte);
1227 /* Move the dirty bit to the physical page now the pte is gone. */
1228 if (pte_dirty(pteval))
1229 set_page_dirty(page);
1231 /* Update high watermark before we lower rss */
1232 update_hiwater_rss(mm);
1234 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1235 if (!PageHuge(page)) {
1236 if (PageAnon(page))
1237 dec_mm_counter(mm, MM_ANONPAGES);
1238 else
1239 dec_mm_counter(mm, MM_FILEPAGES);
1241 set_pte_at(mm, address, pte,
1242 swp_entry_to_pte(make_hwpoison_entry(page)));
1243 } else if (pte_unused(pteval)) {
1245 * The guest indicated that the page content is of no
1246 * interest anymore. Simply discard the pte, vmscan
1247 * will take care of the rest.
1249 if (PageAnon(page))
1250 dec_mm_counter(mm, MM_ANONPAGES);
1251 else
1252 dec_mm_counter(mm, MM_FILEPAGES);
1253 } else if (PageAnon(page)) {
1254 swp_entry_t entry = { .val = page_private(page) };
1255 pte_t swp_pte;
1257 if (PageSwapCache(page)) {
1259 * Store the swap location in the pte.
1260 * See handle_pte_fault() ...
1262 if (swap_duplicate(entry) < 0) {
1263 set_pte_at(mm, address, pte, pteval);
1264 ret = SWAP_FAIL;
1265 goto out_unmap;
1267 if (list_empty(&mm->mmlist)) {
1268 spin_lock(&mmlist_lock);
1269 if (list_empty(&mm->mmlist))
1270 list_add(&mm->mmlist, &init_mm.mmlist);
1271 spin_unlock(&mmlist_lock);
1273 dec_mm_counter(mm, MM_ANONPAGES);
1274 inc_mm_counter(mm, MM_SWAPENTS);
1275 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1277 * Store the pfn of the page in a special migration
1278 * pte. do_swap_page() will wait until the migration
1279 * pte is removed and then restart fault handling.
1281 BUG_ON(!(flags & TTU_MIGRATION));
1282 entry = make_migration_entry(page, pte_write(pteval));
1284 swp_pte = swp_entry_to_pte(entry);
1285 if (pte_soft_dirty(pteval))
1286 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1287 set_pte_at(mm, address, pte, swp_pte);
1288 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1289 (flags & TTU_MIGRATION)) {
1290 /* Establish migration entry for a file page */
1291 swp_entry_t entry;
1292 entry = make_migration_entry(page, pte_write(pteval));
1293 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1294 } else
1295 dec_mm_counter(mm, MM_FILEPAGES);
1297 page_remove_rmap(page);
1298 page_cache_release(page);
1300 out_unmap:
1301 pte_unmap_unlock(pte, ptl);
1302 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1303 mmu_notifier_invalidate_page(mm, address);
1304 out:
1305 return ret;
1307 out_mlock:
1308 pte_unmap_unlock(pte, ptl);
1312 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1313 * unstable result and race. Plus, We can't wait here because
1314 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1315 * if trylock failed, the page remain in evictable lru and later
1316 * vmscan could retry to move the page to unevictable lru if the
1317 * page is actually mlocked.
1319 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1320 if (vma->vm_flags & VM_LOCKED) {
1321 mlock_vma_page(page);
1322 ret = SWAP_MLOCK;
1324 up_read(&vma->vm_mm->mmap_sem);
1326 return ret;
1329 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1331 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1333 if (!maybe_stack)
1334 return false;
1336 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1337 VM_STACK_INCOMPLETE_SETUP)
1338 return true;
1340 return false;
1343 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1345 return is_vma_temporary_stack(vma);
1348 static int page_not_mapped(struct page *page)
1350 return !page_mapped(page);
1354 * try_to_unmap - try to remove all page table mappings to a page
1355 * @page: the page to get unmapped
1356 * @flags: action and flags
1358 * Tries to remove all the page table entries which are mapping this
1359 * page, used in the pageout path. Caller must hold the page lock.
1360 * Return values are:
1362 * SWAP_SUCCESS - we succeeded in removing all mappings
1363 * SWAP_AGAIN - we missed a mapping, try again later
1364 * SWAP_FAIL - the page is unswappable
1365 * SWAP_MLOCK - page is mlocked.
1367 int try_to_unmap(struct page *page, enum ttu_flags flags)
1369 int ret;
1370 struct rmap_walk_control rwc = {
1371 .rmap_one = try_to_unmap_one,
1372 .arg = (void *)flags,
1373 .done = page_not_mapped,
1374 .anon_lock = page_lock_anon_vma_read,
1377 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1380 * During exec, a temporary VMA is setup and later moved.
1381 * The VMA is moved under the anon_vma lock but not the
1382 * page tables leading to a race where migration cannot
1383 * find the migration ptes. Rather than increasing the
1384 * locking requirements of exec(), migration skips
1385 * temporary VMAs until after exec() completes.
1387 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1388 rwc.invalid_vma = invalid_migration_vma;
1390 ret = rmap_walk(page, &rwc);
1392 if (ret != SWAP_MLOCK && !page_mapped(page))
1393 ret = SWAP_SUCCESS;
1394 return ret;
1398 * try_to_munlock - try to munlock a page
1399 * @page: the page to be munlocked
1401 * Called from munlock code. Checks all of the VMAs mapping the page
1402 * to make sure nobody else has this page mlocked. The page will be
1403 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1405 * Return values are:
1407 * SWAP_AGAIN - no vma is holding page mlocked, or,
1408 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1409 * SWAP_FAIL - page cannot be located at present
1410 * SWAP_MLOCK - page is now mlocked.
1412 int try_to_munlock(struct page *page)
1414 int ret;
1415 struct rmap_walk_control rwc = {
1416 .rmap_one = try_to_unmap_one,
1417 .arg = (void *)TTU_MUNLOCK,
1418 .done = page_not_mapped,
1419 .anon_lock = page_lock_anon_vma_read,
1423 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1425 ret = rmap_walk(page, &rwc);
1426 return ret;
1429 void __put_anon_vma(struct anon_vma *anon_vma)
1431 struct anon_vma *root = anon_vma->root;
1433 anon_vma_free(anon_vma);
1434 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1435 anon_vma_free(root);
1438 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1439 struct rmap_walk_control *rwc)
1441 struct anon_vma *anon_vma;
1443 if (rwc->anon_lock)
1444 return rwc->anon_lock(page);
1447 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1448 * because that depends on page_mapped(); but not all its usages
1449 * are holding mmap_sem. Users without mmap_sem are required to
1450 * take a reference count to prevent the anon_vma disappearing
1452 anon_vma = page_anon_vma(page);
1453 if (!anon_vma)
1454 return NULL;
1456 anon_vma_lock_read(anon_vma);
1457 return anon_vma;
1461 * rmap_walk_anon - do something to anonymous page using the object-based
1462 * rmap method
1463 * @page: the page to be handled
1464 * @rwc: control variable according to each walk type
1466 * Find all the mappings of a page using the mapping pointer and the vma chains
1467 * contained in the anon_vma struct it points to.
1469 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1470 * where the page was found will be held for write. So, we won't recheck
1471 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1472 * LOCKED.
1474 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1476 struct anon_vma *anon_vma;
1477 pgoff_t pgoff = page_to_pgoff(page);
1478 struct anon_vma_chain *avc;
1479 int ret = SWAP_AGAIN;
1481 anon_vma = rmap_walk_anon_lock(page, rwc);
1482 if (!anon_vma)
1483 return ret;
1485 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1486 struct vm_area_struct *vma = avc->vma;
1487 unsigned long address = vma_address(page, vma);
1489 cond_resched();
1491 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1492 continue;
1494 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1495 if (ret != SWAP_AGAIN)
1496 break;
1497 if (rwc->done && rwc->done(page))
1498 break;
1500 anon_vma_unlock_read(anon_vma);
1501 return ret;
1505 * rmap_walk_file - do something to file page using the object-based rmap method
1506 * @page: the page to be handled
1507 * @rwc: control variable according to each walk type
1509 * Find all the mappings of a page using the mapping pointer and the vma chains
1510 * contained in the address_space struct it points to.
1512 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1513 * where the page was found will be held for write. So, we won't recheck
1514 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1515 * LOCKED.
1517 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1519 struct address_space *mapping = page->mapping;
1520 pgoff_t pgoff = page_to_pgoff(page);
1521 struct vm_area_struct *vma;
1522 int ret = SWAP_AGAIN;
1525 * The page lock not only makes sure that page->mapping cannot
1526 * suddenly be NULLified by truncation, it makes sure that the
1527 * structure at mapping cannot be freed and reused yet,
1528 * so we can safely take mapping->i_mmap_mutex.
1530 VM_BUG_ON(!PageLocked(page));
1532 if (!mapping)
1533 return ret;
1534 mutex_lock(&mapping->i_mmap_mutex);
1535 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1536 unsigned long address = vma_address(page, vma);
1538 cond_resched();
1540 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1541 continue;
1543 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1544 if (ret != SWAP_AGAIN)
1545 goto done;
1546 if (rwc->done && rwc->done(page))
1547 goto done;
1550 done:
1551 mutex_unlock(&mapping->i_mmap_mutex);
1552 return ret;
1555 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1557 if (unlikely(PageKsm(page)))
1558 return rmap_walk_ksm(page, rwc);
1559 else if (PageAnon(page))
1560 return rmap_walk_anon(page, rwc);
1561 else
1562 return rmap_walk_file(page, rwc);
1565 #ifdef CONFIG_HUGETLB_PAGE
1567 * The following three functions are for anonymous (private mapped) hugepages.
1568 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1569 * and no lru code, because we handle hugepages differently from common pages.
1571 static void __hugepage_set_anon_rmap(struct page *page,
1572 struct vm_area_struct *vma, unsigned long address, int exclusive)
1574 struct anon_vma *anon_vma = vma->anon_vma;
1576 BUG_ON(!anon_vma);
1578 if (PageAnon(page))
1579 return;
1580 if (!exclusive)
1581 anon_vma = anon_vma->root;
1583 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1584 page->mapping = (struct address_space *) anon_vma;
1585 page->index = linear_page_index(vma, address);
1588 void hugepage_add_anon_rmap(struct page *page,
1589 struct vm_area_struct *vma, unsigned long address)
1591 struct anon_vma *anon_vma = vma->anon_vma;
1592 int first;
1594 BUG_ON(!PageLocked(page));
1595 BUG_ON(!anon_vma);
1596 /* address might be in next vma when migration races vma_adjust */
1597 first = atomic_inc_and_test(&page->_mapcount);
1598 if (first)
1599 __hugepage_set_anon_rmap(page, vma, address, 0);
1602 void hugepage_add_new_anon_rmap(struct page *page,
1603 struct vm_area_struct *vma, unsigned long address)
1605 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1606 atomic_set(&page->_mapcount, 0);
1607 __hugepage_set_anon_rmap(page, vma, address, 1);
1609 #endif /* CONFIG_HUGETLB_PAGE */