1 /* ----------------------------------------------------------------------- *
3 * Copyright 2014 Intel Corporation; author: H. Peter Anvin
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * ----------------------------------------------------------------------- */
17 * The IRET instruction, when returning to a 16-bit segment, only
18 * restores the bottom 16 bits of the user space stack pointer. This
19 * causes some 16-bit software to break, but it also leaks kernel state
22 * This works around this by creating percpu "ministacks", each of which
23 * is mapped 2^16 times 64K apart. When we detect that the return SS is
24 * on the LDT, we copy the IRET frame to the ministack and use the
25 * relevant alias to return to userspace. The ministacks are mapped
26 * readonly, so if the IRET fault we promote #GP to #DF which is an IST
27 * vector and thus has its own stack; we then do the fixup in the #DF
30 * This file sets up the ministacks and the related page tables. The
31 * actual ministack invocation is in entry_64.S.
34 #include <linux/init.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/percpu.h>
38 #include <linux/gfp.h>
39 #include <linux/random.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/setup.h>
43 #include <asm/espfix.h>
44 #include <asm/kaiser.h>
47 * Note: we only need 6*8 = 48 bytes for the espfix stack, but round
48 * it up to a cache line to avoid unnecessary sharing.
50 #define ESPFIX_STACK_SIZE (8*8UL)
51 #define ESPFIX_STACKS_PER_PAGE (PAGE_SIZE/ESPFIX_STACK_SIZE)
53 /* There is address space for how many espfix pages? */
54 #define ESPFIX_PAGE_SPACE (1UL << (PGDIR_SHIFT-PAGE_SHIFT-16))
56 #define ESPFIX_MAX_CPUS (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
57 #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
58 # error "Need more than one PGD for the ESPFIX hack"
61 #define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO)
63 /* This contains the *bottom* address of the espfix stack */
64 DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack
);
65 DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr
);
67 /* Initialization mutex - should this be a spinlock? */
68 static DEFINE_MUTEX(espfix_init_mutex
);
70 /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
71 #define ESPFIX_MAX_PAGES DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
72 static void *espfix_pages
[ESPFIX_MAX_PAGES
];
74 static __page_aligned_bss pud_t espfix_pud_page
[PTRS_PER_PUD
]
77 static unsigned int page_random
, slot_random
;
80 * This returns the bottom address of the espfix stack for a specific CPU.
81 * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
82 * we have to account for some amount of padding at the end of each page.
84 static inline unsigned long espfix_base_addr(unsigned int cpu
)
86 unsigned long page
, slot
;
89 page
= (cpu
/ ESPFIX_STACKS_PER_PAGE
) ^ page_random
;
90 slot
= (cpu
+ slot_random
) % ESPFIX_STACKS_PER_PAGE
;
91 addr
= (page
<< PAGE_SHIFT
) + (slot
* ESPFIX_STACK_SIZE
);
92 addr
= (addr
& 0xffffUL
) | ((addr
& ~0xffffUL
) << 16);
93 addr
+= ESPFIX_BASE_ADDR
;
97 #define PTE_STRIDE (65536/PAGE_SIZE)
98 #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
99 #define ESPFIX_PMD_CLONES PTRS_PER_PMD
100 #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
102 #define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
104 static void init_espfix_random(void)
109 * This is run before the entropy pools are initialized,
110 * but this is hopefully better than nothing.
112 if (!arch_get_random_long(&rand
)) {
113 /* The constant is an arbitrary large prime */
115 rand
*= 0xc345c6b72fd16123UL
;
118 slot_random
= rand
% ESPFIX_STACKS_PER_PAGE
;
119 page_random
= (rand
/ ESPFIX_STACKS_PER_PAGE
)
120 & (ESPFIX_PAGE_SPACE
- 1);
123 void __init
init_espfix_bsp(void)
127 /* Install the espfix pud into the kernel page directory */
128 pgd_p
= &init_level4_pgt
[pgd_index(ESPFIX_BASE_ADDR
)];
129 pgd_populate(&init_mm
, pgd_p
, (pud_t
*)espfix_pud_page
);
131 * Just copy the top-level PGD that is mapping the espfix
132 * area to ensure it is mapped into the shadow user page
135 if (kaiser_enabled
) {
136 set_pgd(native_get_shadow_pgd(pgd_p
),
137 __pgd(_KERNPG_TABLE
| __pa((pud_t
*)espfix_pud_page
)));
140 /* Randomize the locations */
141 init_espfix_random();
143 /* The rest is the same as for any other processor */
147 void init_espfix_ap(int cpu
)
158 /* We only have to do this once... */
159 if (likely(per_cpu(espfix_stack
, cpu
)))
160 return; /* Already initialized */
162 addr
= espfix_base_addr(cpu
);
163 page
= cpu
/ESPFIX_STACKS_PER_PAGE
;
165 /* Did another CPU already set this up? */
166 stack_page
= ACCESS_ONCE(espfix_pages
[page
]);
167 if (likely(stack_page
))
170 mutex_lock(&espfix_init_mutex
);
172 /* Did we race on the lock? */
173 stack_page
= ACCESS_ONCE(espfix_pages
[page
]);
177 node
= cpu_to_node(cpu
);
178 ptemask
= __supported_pte_mask
;
180 pud_p
= &espfix_pud_page
[pud_index(addr
)];
182 if (!pud_present(pud
)) {
183 struct page
*page
= alloc_pages_node(node
, PGALLOC_GFP
, 0);
185 pmd_p
= (pmd_t
*)page_address(page
);
186 pud
= __pud(__pa(pmd_p
) | (PGTABLE_PROT
& ptemask
));
187 paravirt_alloc_pmd(&init_mm
, __pa(pmd_p
) >> PAGE_SHIFT
);
188 for (n
= 0; n
< ESPFIX_PUD_CLONES
; n
++)
189 set_pud(&pud_p
[n
], pud
);
192 pmd_p
= pmd_offset(&pud
, addr
);
194 if (!pmd_present(pmd
)) {
195 struct page
*page
= alloc_pages_node(node
, PGALLOC_GFP
, 0);
197 pte_p
= (pte_t
*)page_address(page
);
198 pmd
= __pmd(__pa(pte_p
) | (PGTABLE_PROT
& ptemask
));
199 paravirt_alloc_pte(&init_mm
, __pa(pte_p
) >> PAGE_SHIFT
);
200 for (n
= 0; n
< ESPFIX_PMD_CLONES
; n
++)
201 set_pmd(&pmd_p
[n
], pmd
);
204 pte_p
= pte_offset_kernel(&pmd
, addr
);
205 stack_page
= page_address(alloc_pages_node(node
, GFP_KERNEL
, 0));
206 pte
= __pte(__pa(stack_page
) | (__PAGE_KERNEL_RO
& ptemask
));
207 for (n
= 0; n
< ESPFIX_PTE_CLONES
; n
++)
208 set_pte(&pte_p
[n
*PTE_STRIDE
], pte
);
210 /* Job is done for this CPU and any CPU which shares this page */
211 ACCESS_ONCE(espfix_pages
[page
]) = stack_page
;
214 mutex_unlock(&espfix_init_mutex
);
216 per_cpu(espfix_stack
, cpu
) = addr
;
217 per_cpu(espfix_waddr
, cpu
) = (unsigned long)stack_page
218 + (addr
& ~PAGE_MASK
);