Linux 4.9.243
[linux/fpc-iii.git] / arch / x86 / kernel / nmi.c
blob6b7b35d80264a52b28ebc87385f6616cddaf321f
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * Handle hardware traps and faults.
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/ratelimit.h>
21 #include <linux/slab.h>
22 #include <linux/export.h>
24 #if defined(CONFIG_EDAC)
25 #include <linux/edac.h>
26 #endif
28 #include <linux/atomic.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/nmi.h>
40 struct nmi_desc {
41 spinlock_t lock;
42 struct list_head head;
45 static struct nmi_desc nmi_desc[NMI_MAX] =
48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
49 .head = LIST_HEAD_INIT(nmi_desc[0].head),
52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[1].head),
56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
57 .head = LIST_HEAD_INIT(nmi_desc[2].head),
60 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
61 .head = LIST_HEAD_INIT(nmi_desc[3].head),
66 struct nmi_stats {
67 unsigned int normal;
68 unsigned int unknown;
69 unsigned int external;
70 unsigned int swallow;
73 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
75 static int ignore_nmis __read_mostly;
77 int unknown_nmi_panic;
79 * Prevent NMI reason port (0x61) being accessed simultaneously, can
80 * only be used in NMI handler.
82 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
84 static int __init setup_unknown_nmi_panic(char *str)
86 unknown_nmi_panic = 1;
87 return 1;
89 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
91 #define nmi_to_desc(type) (&nmi_desc[type])
93 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
95 static int __init nmi_warning_debugfs(void)
97 debugfs_create_u64("nmi_longest_ns", 0644,
98 arch_debugfs_dir, &nmi_longest_ns);
99 return 0;
101 fs_initcall(nmi_warning_debugfs);
103 static void nmi_max_handler(struct irq_work *w)
105 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
106 int remainder_ns, decimal_msecs;
107 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
109 remainder_ns = do_div(whole_msecs, (1000 * 1000));
110 decimal_msecs = remainder_ns / 1000;
112 printk_ratelimited(KERN_INFO
113 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
114 a->handler, whole_msecs, decimal_msecs);
117 static int nmi_handle(unsigned int type, struct pt_regs *regs)
119 struct nmi_desc *desc = nmi_to_desc(type);
120 struct nmiaction *a;
121 int handled=0;
123 rcu_read_lock();
126 * NMIs are edge-triggered, which means if you have enough
127 * of them concurrently, you can lose some because only one
128 * can be latched at any given time. Walk the whole list
129 * to handle those situations.
131 list_for_each_entry_rcu(a, &desc->head, list) {
132 int thishandled;
133 u64 delta;
135 delta = sched_clock();
136 thishandled = a->handler(type, regs);
137 handled += thishandled;
138 delta = sched_clock() - delta;
139 trace_nmi_handler(a->handler, (int)delta, thishandled);
141 if (delta < nmi_longest_ns || delta < a->max_duration)
142 continue;
144 a->max_duration = delta;
145 irq_work_queue(&a->irq_work);
148 rcu_read_unlock();
150 /* return total number of NMI events handled */
151 return handled;
153 NOKPROBE_SYMBOL(nmi_handle);
155 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
157 struct nmi_desc *desc = nmi_to_desc(type);
158 unsigned long flags;
160 if (!action->handler)
161 return -EINVAL;
163 init_irq_work(&action->irq_work, nmi_max_handler);
165 spin_lock_irqsave(&desc->lock, flags);
168 * most handlers of type NMI_UNKNOWN never return because
169 * they just assume the NMI is theirs. Just a sanity check
170 * to manage expectations
172 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
173 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
174 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
177 * some handlers need to be executed first otherwise a fake
178 * event confuses some handlers (kdump uses this flag)
180 if (action->flags & NMI_FLAG_FIRST)
181 list_add_rcu(&action->list, &desc->head);
182 else
183 list_add_tail_rcu(&action->list, &desc->head);
185 spin_unlock_irqrestore(&desc->lock, flags);
186 return 0;
188 EXPORT_SYMBOL(__register_nmi_handler);
190 void unregister_nmi_handler(unsigned int type, const char *name)
192 struct nmi_desc *desc = nmi_to_desc(type);
193 struct nmiaction *n;
194 unsigned long flags;
196 spin_lock_irqsave(&desc->lock, flags);
198 list_for_each_entry_rcu(n, &desc->head, list) {
200 * the name passed in to describe the nmi handler
201 * is used as the lookup key
203 if (!strcmp(n->name, name)) {
204 WARN(in_nmi(),
205 "Trying to free NMI (%s) from NMI context!\n", n->name);
206 list_del_rcu(&n->list);
207 break;
211 spin_unlock_irqrestore(&desc->lock, flags);
212 synchronize_rcu();
214 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
216 static void
217 pci_serr_error(unsigned char reason, struct pt_regs *regs)
219 /* check to see if anyone registered against these types of errors */
220 if (nmi_handle(NMI_SERR, regs))
221 return;
223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 reason, smp_processor_id());
227 * On some machines, PCI SERR line is used to report memory
228 * errors. EDAC makes use of it.
230 #if defined(CONFIG_EDAC)
231 if (edac_handler_set()) {
232 edac_atomic_assert_error();
233 return;
235 #endif
237 if (panic_on_unrecovered_nmi)
238 nmi_panic(regs, "NMI: Not continuing");
240 pr_emerg("Dazed and confused, but trying to continue\n");
242 /* Clear and disable the PCI SERR error line. */
243 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
244 outb(reason, NMI_REASON_PORT);
246 NOKPROBE_SYMBOL(pci_serr_error);
248 static void
249 io_check_error(unsigned char reason, struct pt_regs *regs)
251 unsigned long i;
253 /* check to see if anyone registered against these types of errors */
254 if (nmi_handle(NMI_IO_CHECK, regs))
255 return;
257 pr_emerg(
258 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
259 reason, smp_processor_id());
260 show_regs(regs);
262 if (panic_on_io_nmi) {
263 nmi_panic(regs, "NMI IOCK error: Not continuing");
266 * If we end up here, it means we have received an NMI while
267 * processing panic(). Simply return without delaying and
268 * re-enabling NMIs.
270 return;
273 /* Re-enable the IOCK line, wait for a few seconds */
274 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
275 outb(reason, NMI_REASON_PORT);
277 i = 20000;
278 while (--i) {
279 touch_nmi_watchdog();
280 udelay(100);
283 reason &= ~NMI_REASON_CLEAR_IOCHK;
284 outb(reason, NMI_REASON_PORT);
286 NOKPROBE_SYMBOL(io_check_error);
288 static void
289 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
291 int handled;
294 * Use 'false' as back-to-back NMIs are dealt with one level up.
295 * Of course this makes having multiple 'unknown' handlers useless
296 * as only the first one is ever run (unless it can actually determine
297 * if it caused the NMI)
299 handled = nmi_handle(NMI_UNKNOWN, regs);
300 if (handled) {
301 __this_cpu_add(nmi_stats.unknown, handled);
302 return;
305 __this_cpu_add(nmi_stats.unknown, 1);
307 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308 reason, smp_processor_id());
310 pr_emerg("Do you have a strange power saving mode enabled?\n");
311 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
312 nmi_panic(regs, "NMI: Not continuing");
314 pr_emerg("Dazed and confused, but trying to continue\n");
316 NOKPROBE_SYMBOL(unknown_nmi_error);
318 static DEFINE_PER_CPU(bool, swallow_nmi);
319 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
321 static void default_do_nmi(struct pt_regs *regs)
323 unsigned char reason = 0;
324 int handled;
325 bool b2b = false;
328 * CPU-specific NMI must be processed before non-CPU-specific
329 * NMI, otherwise we may lose it, because the CPU-specific
330 * NMI can not be detected/processed on other CPUs.
334 * Back-to-back NMIs are interesting because they can either
335 * be two NMI or more than two NMIs (any thing over two is dropped
336 * due to NMI being edge-triggered). If this is the second half
337 * of the back-to-back NMI, assume we dropped things and process
338 * more handlers. Otherwise reset the 'swallow' NMI behaviour
340 if (regs->ip == __this_cpu_read(last_nmi_rip))
341 b2b = true;
342 else
343 __this_cpu_write(swallow_nmi, false);
345 __this_cpu_write(last_nmi_rip, regs->ip);
347 handled = nmi_handle(NMI_LOCAL, regs);
348 __this_cpu_add(nmi_stats.normal, handled);
349 if (handled) {
351 * There are cases when a NMI handler handles multiple
352 * events in the current NMI. One of these events may
353 * be queued for in the next NMI. Because the event is
354 * already handled, the next NMI will result in an unknown
355 * NMI. Instead lets flag this for a potential NMI to
356 * swallow.
358 if (handled > 1)
359 __this_cpu_write(swallow_nmi, true);
360 return;
364 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
366 * Another CPU may be processing panic routines while holding
367 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
368 * and if so, call its callback directly. If there is no CPU preparing
369 * crash dump, we simply loop here.
371 while (!raw_spin_trylock(&nmi_reason_lock)) {
372 run_crash_ipi_callback(regs);
373 cpu_relax();
376 reason = x86_platform.get_nmi_reason();
378 if (reason & NMI_REASON_MASK) {
379 if (reason & NMI_REASON_SERR)
380 pci_serr_error(reason, regs);
381 else if (reason & NMI_REASON_IOCHK)
382 io_check_error(reason, regs);
383 #ifdef CONFIG_X86_32
385 * Reassert NMI in case it became active
386 * meanwhile as it's edge-triggered:
388 reassert_nmi();
389 #endif
390 __this_cpu_add(nmi_stats.external, 1);
391 raw_spin_unlock(&nmi_reason_lock);
392 return;
394 raw_spin_unlock(&nmi_reason_lock);
397 * Only one NMI can be latched at a time. To handle
398 * this we may process multiple nmi handlers at once to
399 * cover the case where an NMI is dropped. The downside
400 * to this approach is we may process an NMI prematurely,
401 * while its real NMI is sitting latched. This will cause
402 * an unknown NMI on the next run of the NMI processing.
404 * We tried to flag that condition above, by setting the
405 * swallow_nmi flag when we process more than one event.
406 * This condition is also only present on the second half
407 * of a back-to-back NMI, so we flag that condition too.
409 * If both are true, we assume we already processed this
410 * NMI previously and we swallow it. Otherwise we reset
411 * the logic.
413 * There are scenarios where we may accidentally swallow
414 * a 'real' unknown NMI. For example, while processing
415 * a perf NMI another perf NMI comes in along with a
416 * 'real' unknown NMI. These two NMIs get combined into
417 * one (as descibed above). When the next NMI gets
418 * processed, it will be flagged by perf as handled, but
419 * noone will know that there was a 'real' unknown NMI sent
420 * also. As a result it gets swallowed. Or if the first
421 * perf NMI returns two events handled then the second
422 * NMI will get eaten by the logic below, again losing a
423 * 'real' unknown NMI. But this is the best we can do
424 * for now.
426 if (b2b && __this_cpu_read(swallow_nmi))
427 __this_cpu_add(nmi_stats.swallow, 1);
428 else
429 unknown_nmi_error(reason, regs);
431 NOKPROBE_SYMBOL(default_do_nmi);
434 * NMIs can page fault or hit breakpoints which will cause it to lose
435 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
437 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
438 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
439 * if the outer NMI came from kernel mode, but we can still nest if the
440 * outer NMI came from user mode.
442 * To handle these nested NMIs, we have three states:
444 * 1) not running
445 * 2) executing
446 * 3) latched
448 * When no NMI is in progress, it is in the "not running" state.
449 * When an NMI comes in, it goes into the "executing" state.
450 * Normally, if another NMI is triggered, it does not interrupt
451 * the running NMI and the HW will simply latch it so that when
452 * the first NMI finishes, it will restart the second NMI.
453 * (Note, the latch is binary, thus multiple NMIs triggering,
454 * when one is running, are ignored. Only one NMI is restarted.)
456 * If an NMI executes an iret, another NMI can preempt it. We do not
457 * want to allow this new NMI to run, but we want to execute it when the
458 * first one finishes. We set the state to "latched", and the exit of
459 * the first NMI will perform a dec_return, if the result is zero
460 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
461 * dec_return would have set the state to NMI_EXECUTING (what we want it
462 * to be when we are running). In this case, we simply jump back to
463 * rerun the NMI handler again, and restart the 'latched' NMI.
465 * No trap (breakpoint or page fault) should be hit before nmi_restart,
466 * thus there is no race between the first check of state for NOT_RUNNING
467 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
468 * at this point.
470 * In case the NMI takes a page fault, we need to save off the CR2
471 * because the NMI could have preempted another page fault and corrupt
472 * the CR2 that is about to be read. As nested NMIs must be restarted
473 * and they can not take breakpoints or page faults, the update of the
474 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
475 * Otherwise, there would be a race of another nested NMI coming in
476 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
478 enum nmi_states {
479 NMI_NOT_RUNNING = 0,
480 NMI_EXECUTING,
481 NMI_LATCHED,
483 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
484 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
486 #ifdef CONFIG_X86_64
488 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
489 * some care, the inner breakpoint will clobber the outer breakpoint's
490 * stack.
492 * If a breakpoint is being processed, and the debug stack is being
493 * used, if an NMI comes in and also hits a breakpoint, the stack
494 * pointer will be set to the same fixed address as the breakpoint that
495 * was interrupted, causing that stack to be corrupted. To handle this
496 * case, check if the stack that was interrupted is the debug stack, and
497 * if so, change the IDT so that new breakpoints will use the current
498 * stack and not switch to the fixed address. On return of the NMI,
499 * switch back to the original IDT.
501 static DEFINE_PER_CPU(int, update_debug_stack);
502 #endif
504 dotraplinkage notrace void
505 do_nmi(struct pt_regs *regs, long error_code)
507 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
508 this_cpu_write(nmi_state, NMI_LATCHED);
509 return;
511 this_cpu_write(nmi_state, NMI_EXECUTING);
512 this_cpu_write(nmi_cr2, read_cr2());
513 nmi_restart:
515 #ifdef CONFIG_X86_64
517 * If we interrupted a breakpoint, it is possible that
518 * the nmi handler will have breakpoints too. We need to
519 * change the IDT such that breakpoints that happen here
520 * continue to use the NMI stack.
522 if (unlikely(is_debug_stack(regs->sp))) {
523 debug_stack_set_zero();
524 this_cpu_write(update_debug_stack, 1);
526 #endif
528 nmi_enter();
530 inc_irq_stat(__nmi_count);
532 if (!ignore_nmis)
533 default_do_nmi(regs);
535 nmi_exit();
537 #ifdef CONFIG_X86_64
538 if (unlikely(this_cpu_read(update_debug_stack))) {
539 debug_stack_reset();
540 this_cpu_write(update_debug_stack, 0);
542 #endif
544 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
545 write_cr2(this_cpu_read(nmi_cr2));
546 if (this_cpu_dec_return(nmi_state))
547 goto nmi_restart;
549 if (user_mode(regs))
550 mds_user_clear_cpu_buffers();
552 NOKPROBE_SYMBOL(do_nmi);
554 void stop_nmi(void)
556 ignore_nmis++;
559 void restart_nmi(void)
561 ignore_nmis--;
564 /* reset the back-to-back NMI logic */
565 void local_touch_nmi(void)
567 __this_cpu_write(last_nmi_rip, 0);
569 EXPORT_SYMBOL_GPL(local_touch_nmi);