2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
11 * Handle hardware traps and faults.
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/ratelimit.h>
21 #include <linux/slab.h>
22 #include <linux/export.h>
24 #if defined(CONFIG_EDAC)
25 #include <linux/edac.h>
28 #include <linux/atomic.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/nmi.h>
42 struct list_head head
;
45 static struct nmi_desc nmi_desc
[NMI_MAX
] =
48 .lock
= __SPIN_LOCK_UNLOCKED(&nmi_desc
[0].lock
),
49 .head
= LIST_HEAD_INIT(nmi_desc
[0].head
),
52 .lock
= __SPIN_LOCK_UNLOCKED(&nmi_desc
[1].lock
),
53 .head
= LIST_HEAD_INIT(nmi_desc
[1].head
),
56 .lock
= __SPIN_LOCK_UNLOCKED(&nmi_desc
[2].lock
),
57 .head
= LIST_HEAD_INIT(nmi_desc
[2].head
),
60 .lock
= __SPIN_LOCK_UNLOCKED(&nmi_desc
[3].lock
),
61 .head
= LIST_HEAD_INIT(nmi_desc
[3].head
),
69 unsigned int external
;
73 static DEFINE_PER_CPU(struct nmi_stats
, nmi_stats
);
75 static int ignore_nmis __read_mostly
;
77 int unknown_nmi_panic
;
79 * Prevent NMI reason port (0x61) being accessed simultaneously, can
80 * only be used in NMI handler.
82 static DEFINE_RAW_SPINLOCK(nmi_reason_lock
);
84 static int __init
setup_unknown_nmi_panic(char *str
)
86 unknown_nmi_panic
= 1;
89 __setup("unknown_nmi_panic", setup_unknown_nmi_panic
);
91 #define nmi_to_desc(type) (&nmi_desc[type])
93 static u64 nmi_longest_ns
= 1 * NSEC_PER_MSEC
;
95 static int __init
nmi_warning_debugfs(void)
97 debugfs_create_u64("nmi_longest_ns", 0644,
98 arch_debugfs_dir
, &nmi_longest_ns
);
101 fs_initcall(nmi_warning_debugfs
);
103 static void nmi_max_handler(struct irq_work
*w
)
105 struct nmiaction
*a
= container_of(w
, struct nmiaction
, irq_work
);
106 int remainder_ns
, decimal_msecs
;
107 u64 whole_msecs
= ACCESS_ONCE(a
->max_duration
);
109 remainder_ns
= do_div(whole_msecs
, (1000 * 1000));
110 decimal_msecs
= remainder_ns
/ 1000;
112 printk_ratelimited(KERN_INFO
113 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
114 a
->handler
, whole_msecs
, decimal_msecs
);
117 static int nmi_handle(unsigned int type
, struct pt_regs
*regs
)
119 struct nmi_desc
*desc
= nmi_to_desc(type
);
126 * NMIs are edge-triggered, which means if you have enough
127 * of them concurrently, you can lose some because only one
128 * can be latched at any given time. Walk the whole list
129 * to handle those situations.
131 list_for_each_entry_rcu(a
, &desc
->head
, list
) {
135 delta
= sched_clock();
136 thishandled
= a
->handler(type
, regs
);
137 handled
+= thishandled
;
138 delta
= sched_clock() - delta
;
139 trace_nmi_handler(a
->handler
, (int)delta
, thishandled
);
141 if (delta
< nmi_longest_ns
|| delta
< a
->max_duration
)
144 a
->max_duration
= delta
;
145 irq_work_queue(&a
->irq_work
);
150 /* return total number of NMI events handled */
153 NOKPROBE_SYMBOL(nmi_handle
);
155 int __register_nmi_handler(unsigned int type
, struct nmiaction
*action
)
157 struct nmi_desc
*desc
= nmi_to_desc(type
);
160 if (!action
->handler
)
163 init_irq_work(&action
->irq_work
, nmi_max_handler
);
165 spin_lock_irqsave(&desc
->lock
, flags
);
168 * most handlers of type NMI_UNKNOWN never return because
169 * they just assume the NMI is theirs. Just a sanity check
170 * to manage expectations
172 WARN_ON_ONCE(type
== NMI_UNKNOWN
&& !list_empty(&desc
->head
));
173 WARN_ON_ONCE(type
== NMI_SERR
&& !list_empty(&desc
->head
));
174 WARN_ON_ONCE(type
== NMI_IO_CHECK
&& !list_empty(&desc
->head
));
177 * some handlers need to be executed first otherwise a fake
178 * event confuses some handlers (kdump uses this flag)
180 if (action
->flags
& NMI_FLAG_FIRST
)
181 list_add_rcu(&action
->list
, &desc
->head
);
183 list_add_tail_rcu(&action
->list
, &desc
->head
);
185 spin_unlock_irqrestore(&desc
->lock
, flags
);
188 EXPORT_SYMBOL(__register_nmi_handler
);
190 void unregister_nmi_handler(unsigned int type
, const char *name
)
192 struct nmi_desc
*desc
= nmi_to_desc(type
);
196 spin_lock_irqsave(&desc
->lock
, flags
);
198 list_for_each_entry_rcu(n
, &desc
->head
, list
) {
200 * the name passed in to describe the nmi handler
201 * is used as the lookup key
203 if (!strcmp(n
->name
, name
)) {
205 "Trying to free NMI (%s) from NMI context!\n", n
->name
);
206 list_del_rcu(&n
->list
);
211 spin_unlock_irqrestore(&desc
->lock
, flags
);
214 EXPORT_SYMBOL_GPL(unregister_nmi_handler
);
217 pci_serr_error(unsigned char reason
, struct pt_regs
*regs
)
219 /* check to see if anyone registered against these types of errors */
220 if (nmi_handle(NMI_SERR
, regs
))
223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 reason
, smp_processor_id());
227 * On some machines, PCI SERR line is used to report memory
228 * errors. EDAC makes use of it.
230 #if defined(CONFIG_EDAC)
231 if (edac_handler_set()) {
232 edac_atomic_assert_error();
237 if (panic_on_unrecovered_nmi
)
238 nmi_panic(regs
, "NMI: Not continuing");
240 pr_emerg("Dazed and confused, but trying to continue\n");
242 /* Clear and disable the PCI SERR error line. */
243 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_SERR
;
244 outb(reason
, NMI_REASON_PORT
);
246 NOKPROBE_SYMBOL(pci_serr_error
);
249 io_check_error(unsigned char reason
, struct pt_regs
*regs
)
253 /* check to see if anyone registered against these types of errors */
254 if (nmi_handle(NMI_IO_CHECK
, regs
))
258 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
259 reason
, smp_processor_id());
262 if (panic_on_io_nmi
) {
263 nmi_panic(regs
, "NMI IOCK error: Not continuing");
266 * If we end up here, it means we have received an NMI while
267 * processing panic(). Simply return without delaying and
273 /* Re-enable the IOCK line, wait for a few seconds */
274 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_IOCHK
;
275 outb(reason
, NMI_REASON_PORT
);
279 touch_nmi_watchdog();
283 reason
&= ~NMI_REASON_CLEAR_IOCHK
;
284 outb(reason
, NMI_REASON_PORT
);
286 NOKPROBE_SYMBOL(io_check_error
);
289 unknown_nmi_error(unsigned char reason
, struct pt_regs
*regs
)
294 * Use 'false' as back-to-back NMIs are dealt with one level up.
295 * Of course this makes having multiple 'unknown' handlers useless
296 * as only the first one is ever run (unless it can actually determine
297 * if it caused the NMI)
299 handled
= nmi_handle(NMI_UNKNOWN
, regs
);
301 __this_cpu_add(nmi_stats
.unknown
, handled
);
305 __this_cpu_add(nmi_stats
.unknown
, 1);
307 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308 reason
, smp_processor_id());
310 pr_emerg("Do you have a strange power saving mode enabled?\n");
311 if (unknown_nmi_panic
|| panic_on_unrecovered_nmi
)
312 nmi_panic(regs
, "NMI: Not continuing");
314 pr_emerg("Dazed and confused, but trying to continue\n");
316 NOKPROBE_SYMBOL(unknown_nmi_error
);
318 static DEFINE_PER_CPU(bool, swallow_nmi
);
319 static DEFINE_PER_CPU(unsigned long, last_nmi_rip
);
321 static void default_do_nmi(struct pt_regs
*regs
)
323 unsigned char reason
= 0;
328 * CPU-specific NMI must be processed before non-CPU-specific
329 * NMI, otherwise we may lose it, because the CPU-specific
330 * NMI can not be detected/processed on other CPUs.
334 * Back-to-back NMIs are interesting because they can either
335 * be two NMI or more than two NMIs (any thing over two is dropped
336 * due to NMI being edge-triggered). If this is the second half
337 * of the back-to-back NMI, assume we dropped things and process
338 * more handlers. Otherwise reset the 'swallow' NMI behaviour
340 if (regs
->ip
== __this_cpu_read(last_nmi_rip
))
343 __this_cpu_write(swallow_nmi
, false);
345 __this_cpu_write(last_nmi_rip
, regs
->ip
);
347 handled
= nmi_handle(NMI_LOCAL
, regs
);
348 __this_cpu_add(nmi_stats
.normal
, handled
);
351 * There are cases when a NMI handler handles multiple
352 * events in the current NMI. One of these events may
353 * be queued for in the next NMI. Because the event is
354 * already handled, the next NMI will result in an unknown
355 * NMI. Instead lets flag this for a potential NMI to
359 __this_cpu_write(swallow_nmi
, true);
364 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
366 * Another CPU may be processing panic routines while holding
367 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
368 * and if so, call its callback directly. If there is no CPU preparing
369 * crash dump, we simply loop here.
371 while (!raw_spin_trylock(&nmi_reason_lock
)) {
372 run_crash_ipi_callback(regs
);
376 reason
= x86_platform
.get_nmi_reason();
378 if (reason
& NMI_REASON_MASK
) {
379 if (reason
& NMI_REASON_SERR
)
380 pci_serr_error(reason
, regs
);
381 else if (reason
& NMI_REASON_IOCHK
)
382 io_check_error(reason
, regs
);
385 * Reassert NMI in case it became active
386 * meanwhile as it's edge-triggered:
390 __this_cpu_add(nmi_stats
.external
, 1);
391 raw_spin_unlock(&nmi_reason_lock
);
394 raw_spin_unlock(&nmi_reason_lock
);
397 * Only one NMI can be latched at a time. To handle
398 * this we may process multiple nmi handlers at once to
399 * cover the case where an NMI is dropped. The downside
400 * to this approach is we may process an NMI prematurely,
401 * while its real NMI is sitting latched. This will cause
402 * an unknown NMI on the next run of the NMI processing.
404 * We tried to flag that condition above, by setting the
405 * swallow_nmi flag when we process more than one event.
406 * This condition is also only present on the second half
407 * of a back-to-back NMI, so we flag that condition too.
409 * If both are true, we assume we already processed this
410 * NMI previously and we swallow it. Otherwise we reset
413 * There are scenarios where we may accidentally swallow
414 * a 'real' unknown NMI. For example, while processing
415 * a perf NMI another perf NMI comes in along with a
416 * 'real' unknown NMI. These two NMIs get combined into
417 * one (as descibed above). When the next NMI gets
418 * processed, it will be flagged by perf as handled, but
419 * noone will know that there was a 'real' unknown NMI sent
420 * also. As a result it gets swallowed. Or if the first
421 * perf NMI returns two events handled then the second
422 * NMI will get eaten by the logic below, again losing a
423 * 'real' unknown NMI. But this is the best we can do
426 if (b2b
&& __this_cpu_read(swallow_nmi
))
427 __this_cpu_add(nmi_stats
.swallow
, 1);
429 unknown_nmi_error(reason
, regs
);
431 NOKPROBE_SYMBOL(default_do_nmi
);
434 * NMIs can page fault or hit breakpoints which will cause it to lose
435 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
437 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
438 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
439 * if the outer NMI came from kernel mode, but we can still nest if the
440 * outer NMI came from user mode.
442 * To handle these nested NMIs, we have three states:
448 * When no NMI is in progress, it is in the "not running" state.
449 * When an NMI comes in, it goes into the "executing" state.
450 * Normally, if another NMI is triggered, it does not interrupt
451 * the running NMI and the HW will simply latch it so that when
452 * the first NMI finishes, it will restart the second NMI.
453 * (Note, the latch is binary, thus multiple NMIs triggering,
454 * when one is running, are ignored. Only one NMI is restarted.)
456 * If an NMI executes an iret, another NMI can preempt it. We do not
457 * want to allow this new NMI to run, but we want to execute it when the
458 * first one finishes. We set the state to "latched", and the exit of
459 * the first NMI will perform a dec_return, if the result is zero
460 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
461 * dec_return would have set the state to NMI_EXECUTING (what we want it
462 * to be when we are running). In this case, we simply jump back to
463 * rerun the NMI handler again, and restart the 'latched' NMI.
465 * No trap (breakpoint or page fault) should be hit before nmi_restart,
466 * thus there is no race between the first check of state for NOT_RUNNING
467 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
470 * In case the NMI takes a page fault, we need to save off the CR2
471 * because the NMI could have preempted another page fault and corrupt
472 * the CR2 that is about to be read. As nested NMIs must be restarted
473 * and they can not take breakpoints or page faults, the update of the
474 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
475 * Otherwise, there would be a race of another nested NMI coming in
476 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
483 static DEFINE_PER_CPU(enum nmi_states
, nmi_state
);
484 static DEFINE_PER_CPU(unsigned long, nmi_cr2
);
488 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
489 * some care, the inner breakpoint will clobber the outer breakpoint's
492 * If a breakpoint is being processed, and the debug stack is being
493 * used, if an NMI comes in and also hits a breakpoint, the stack
494 * pointer will be set to the same fixed address as the breakpoint that
495 * was interrupted, causing that stack to be corrupted. To handle this
496 * case, check if the stack that was interrupted is the debug stack, and
497 * if so, change the IDT so that new breakpoints will use the current
498 * stack and not switch to the fixed address. On return of the NMI,
499 * switch back to the original IDT.
501 static DEFINE_PER_CPU(int, update_debug_stack
);
504 dotraplinkage notrace
void
505 do_nmi(struct pt_regs
*regs
, long error_code
)
507 if (this_cpu_read(nmi_state
) != NMI_NOT_RUNNING
) {
508 this_cpu_write(nmi_state
, NMI_LATCHED
);
511 this_cpu_write(nmi_state
, NMI_EXECUTING
);
512 this_cpu_write(nmi_cr2
, read_cr2());
517 * If we interrupted a breakpoint, it is possible that
518 * the nmi handler will have breakpoints too. We need to
519 * change the IDT such that breakpoints that happen here
520 * continue to use the NMI stack.
522 if (unlikely(is_debug_stack(regs
->sp
))) {
523 debug_stack_set_zero();
524 this_cpu_write(update_debug_stack
, 1);
530 inc_irq_stat(__nmi_count
);
533 default_do_nmi(regs
);
538 if (unlikely(this_cpu_read(update_debug_stack
))) {
540 this_cpu_write(update_debug_stack
, 0);
544 if (unlikely(this_cpu_read(nmi_cr2
) != read_cr2()))
545 write_cr2(this_cpu_read(nmi_cr2
));
546 if (this_cpu_dec_return(nmi_state
))
550 mds_user_clear_cpu_buffers();
552 NOKPROBE_SYMBOL(do_nmi
);
559 void restart_nmi(void)
564 /* reset the back-to-back NMI logic */
565 void local_touch_nmi(void)
567 __this_cpu_write(last_nmi_rip
, 0);
569 EXPORT_SYMBOL_GPL(local_touch_nmi
);