2 /*---------------------------------------------------------------------------+
5 | Fixed point arithmetic square root evaluation. |
7 | Copyright (C) 1992,1993,1995,1997 |
8 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
9 | Australia. E-mail billm@suburbia.net |
12 | int wm_sqrt(FPU_REG *n, unsigned int control_word) |
14 +---------------------------------------------------------------------------*/
16 /*---------------------------------------------------------------------------+
17 | wm_sqrt(FPU_REG *n, unsigned int control_word) |
18 | returns the square root of n in n. |
20 | Use Newton's method to compute the square root of a number, which must |
21 | be in the range [1.0 .. 4.0), to 64 bits accuracy. |
22 | Does not check the sign or tag of the argument. |
23 | Sets the exponent, but not the sign or tag of the result. |
25 | The guess is kept in %esi:%edi |
26 +---------------------------------------------------------------------------*/
28 #include "exception.h"
32 #ifndef NON_REENTRANT_FPU
33 /* Local storage on the stack: */
34 #define FPU_accum_3 -4(%ebp) /* ms word */
35 #define FPU_accum_2 -8(%ebp)
36 #define FPU_accum_1 -12(%ebp)
37 #define FPU_accum_0 -16(%ebp)
40 * The de-normalised argument:
42 * b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0
45 #define FPU_fsqrt_arg_2 -20(%ebp) /* ms word */
46 #define FPU_fsqrt_arg_1 -24(%ebp)
47 #define FPU_fsqrt_arg_0 -28(%ebp) /* ls word, at most the ms bit is set */
50 /* Local storage in a static area: */
62 /* The de-normalised argument:
64 b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0
72 .long 0 /* ls word, at most the ms bit is set */
73 #endif /* NON_REENTRANT_FPU */
80 #ifndef NON_REENTRANT_FPU
82 #endif /* NON_REENTRANT_FPU */
93 /* We use a rough linear estimate for the first guess.. */
95 cmpw EXP_BIAS,EXP(%esi)
98 shrl $1,%eax /* arg is in the range [1.0 .. 2.0) */
103 /* From here on, n is never accessed directly again until it is
104 replaced by the answer. */
106 movl %eax,FPU_fsqrt_arg_2 /* ms word of n */
107 movl %ecx,FPU_fsqrt_arg_1
108 movl %edx,FPU_fsqrt_arg_0
110 /* Make a linear first estimate */
112 addl $0x40000000,%eax
113 movl $0xaaaaaaaa,%ecx
115 shll %edx /* max result was 7fff... */
116 testl $0x80000000,%edx /* but min was 3fff... */
117 jnz sqrt_prelim_no_adjust
119 movl $0x80000000,%edx /* round up */
121 sqrt_prelim_no_adjust:
122 movl %edx,%esi /* Our first guess */
124 /* We have now computed (approx) (2 + x) / 3, which forms the basis
125 for a few iterations of Newton's method */
127 movl FPU_fsqrt_arg_2,%ecx /* ms word */
130 * From our initial estimate, three iterations are enough to get us
131 * to 30 bits or so. This will then allow two iterations at better
132 * precision to complete the process.
135 /* Compute (g + n/g)/2 at each iteration (g is the guess). */
136 shrl %ecx /* Doing this first will prevent a divide */
137 /* overflow later. */
139 movl %ecx,%edx /* msw of the arg / 2 */
140 divl %esi /* current estimate */
141 shrl %esi /* divide by 2 */
142 addl %eax,%esi /* the new estimate */
155 * Now that an estimate accurate to about 30 bits has been obtained (in %esi),
156 * we improve it to 60 bits or so.
158 * The strategy from now on is to compute new estimates from
159 * guess := guess + (n - guess^2) / (2 * guess)
162 /* First, find the square of the guess */
165 /* guess^2 now in %edx:%eax */
167 movl FPU_fsqrt_arg_1,%ecx
169 movl FPU_fsqrt_arg_2,%ecx /* ms word of normalized n */
171 jnc sqrt_stage_2_positive
173 /* Subtraction gives a negative result,
174 negate the result before division. */
185 jmp sqrt_stage_2_finish
187 sqrt_stage_2_positive:
200 sarl $1,%ecx /* divide by 2 */
203 /* Form the new estimate in %esi:%edi */
207 jnz sqrt_stage_2_done /* result should be [1..2) */
210 /* It should be possible to get here only if the arg is ffff....ffff */
211 cmpl $0xffffffff,FPU_fsqrt_arg_1
212 jnz sqrt_stage_2_error
213 #endif /* PARANOID */
215 /* The best rounded result. */
220 movl $0x7fffffff,%eax
221 jmp sqrt_round_result
225 pushl EX_INTERNAL|0x213
227 #endif /* PARANOID */
231 /* Now the square root has been computed to better than 60 bits. */
233 /* Find the square of the guess. */
234 movl %edi,%eax /* ls word of guess */
236 movl %edx,FPU_accum_1
240 movl %edx,FPU_accum_3
241 movl %eax,FPU_accum_2
245 addl %eax,FPU_accum_1
246 adcl %edx,FPU_accum_2
251 addl %eax,FPU_accum_1
252 adcl %edx,FPU_accum_2
255 /* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */
257 movl FPU_fsqrt_arg_0,%eax /* get normalized n */
258 subl %eax,FPU_accum_1
259 movl FPU_fsqrt_arg_1,%eax
260 sbbl %eax,FPU_accum_2
261 movl FPU_fsqrt_arg_2,%eax /* ms word of normalized n */
262 sbbl %eax,FPU_accum_3
263 jnc sqrt_stage_3_positive
265 /* Subtraction gives a negative result,
266 negate the result before division */
274 adcl $0,FPU_accum_3 /* This must be zero */
275 jz sqrt_stage_3_no_error
278 pushl EX_INTERNAL|0x207
281 sqrt_stage_3_no_error:
282 #endif /* PARANOID */
284 movl FPU_accum_2,%edx
285 movl FPU_accum_1,%eax
292 sarl $1,%ecx /* divide by 2 */
295 /* prepare to round the result */
300 jmp sqrt_stage_3_finished
302 sqrt_stage_3_positive:
303 movl FPU_accum_2,%edx
304 movl FPU_accum_1,%eax
311 sarl $1,%ecx /* divide by 2 */
314 /* prepare to round the result */
316 notl %eax /* Negate the correction term */
319 adcl $0,%ecx /* carry here ==> correction == 0 */
320 adcl $0xffffffff,%esi
325 sqrt_stage_3_finished:
328 * The result in %esi:%edi:%esi should be good to about 90 bits here,
329 * and the rounding information here does not have sufficient accuracy
330 * in a few rare cases.
332 cmpl $0xffffffe0,%eax
335 cmpl $0x00000020,%eax
338 cmpl $0x7fffffe0,%eax
341 cmpl $0x80000020,%eax
342 jb sqrt_get_more_precision
345 /* Set up for rounding operations */
350 movw EXP_BIAS,EXP(%edi) /* Result is in [1.0 .. 2.0) */
355 /* First, the estimate must be rounded up. */
361 * This is an easy case because x^1/2 is monotonic.
362 * We need just find the square of our estimate, compare it
363 * with the argument, and deduce whether our estimate is
364 * above, below, or exact. We use the fact that the estimate
365 * is known to be accurate to about 90 bits.
367 movl %edi,%eax /* ls word of guess */
369 movl %edx,%ebx /* 2nd ls word of square */
370 movl %eax,%ecx /* ls word of square */
379 jb sqrt_near_exact_ok
382 ja sqrt_near_exact_ok
384 pushl EX_INTERNAL|0x214
388 #endif /* PARANOID */
391 js sqrt_near_exact_small
393 jnz sqrt_near_exact_large
396 jnz sqrt_near_exact_large
398 /* Our estimate is exactly the right answer */
400 jmp sqrt_round_result
402 sqrt_near_exact_small:
403 /* Our estimate is too small */
404 movl $0x000000ff,%eax
405 jmp sqrt_round_result
407 sqrt_near_exact_large:
408 /* Our estimate is too large, we need to decrement it */
411 movl $0xffffff00,%eax
412 jmp sqrt_round_result
415 sqrt_get_more_precision:
416 /* This case is almost the same as the above, except we start
417 with an extra bit of precision in the estimate. */
418 stc /* The extra bit. */
419 rcll $1,%edi /* Shift the estimate left one bit */
422 movl %edi,%eax /* ls word of guess */
424 movl %edx,%ebx /* 2nd ls word of square */
425 movl %eax,%ecx /* ls word of square */
432 /* Put our estimate back to its original value */
433 stc /* The ms bit. */
434 rcrl $1,%esi /* Shift the estimate left one bit */
444 pushl EX_INTERNAL|0x215
448 #endif /* PARANOID */
451 js sqrt_more_prec_small
453 jnz sqrt_more_prec_large
456 jnz sqrt_more_prec_large
458 /* Our estimate is exactly the right answer */
459 movl $0x80000000,%eax
460 jmp sqrt_round_result
462 sqrt_more_prec_small:
463 /* Our estimate is too small */
464 movl $0x800000ff,%eax
465 jmp sqrt_round_result
467 sqrt_more_prec_large:
468 /* Our estimate is too large */
469 movl $0x7fffff00,%eax
470 jmp sqrt_round_result