2 * acpi_pad.c ACPI Processor Aggregator Driver
4 * Copyright (c) 2009, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/kernel.h>
18 #include <linux/cpumask.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/cpu.h>
25 #include <linux/tick.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <asm/mwait.h>
31 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
32 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
33 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
34 static DEFINE_MUTEX(isolated_cpus_lock
);
35 static DEFINE_MUTEX(round_robin_lock
);
37 static unsigned long power_saving_mwait_eax
;
39 static unsigned char tsc_detected_unstable
;
40 static unsigned char tsc_marked_unstable
;
42 static void power_saving_mwait_init(void)
44 unsigned int eax
, ebx
, ecx
, edx
;
45 unsigned int highest_cstate
= 0;
46 unsigned int highest_subcstate
= 0;
49 if (!boot_cpu_has(X86_FEATURE_MWAIT
))
51 if (boot_cpu_data
.cpuid_level
< CPUID_MWAIT_LEAF
)
54 cpuid(CPUID_MWAIT_LEAF
, &eax
, &ebx
, &ecx
, &edx
);
56 if (!(ecx
& CPUID5_ECX_EXTENSIONS_SUPPORTED
) ||
57 !(ecx
& CPUID5_ECX_INTERRUPT_BREAK
))
60 edx
>>= MWAIT_SUBSTATE_SIZE
;
61 for (i
= 0; i
< 7 && edx
; i
++, edx
>>= MWAIT_SUBSTATE_SIZE
) {
62 if (edx
& MWAIT_SUBSTATE_MASK
) {
64 highest_subcstate
= edx
& MWAIT_SUBSTATE_MASK
;
67 power_saving_mwait_eax
= (highest_cstate
<< MWAIT_SUBSTATE_SIZE
) |
68 (highest_subcstate
- 1);
70 #if defined(CONFIG_X86)
71 switch (boot_cpu_data
.x86_vendor
) {
73 case X86_VENDOR_INTEL
:
75 * AMD Fam10h TSC will tick in all
76 * C/P/S0/S1 states when this bit is set.
78 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
79 tsc_detected_unstable
= 1;
82 /* TSC could halt in idle */
83 tsc_detected_unstable
= 1;
88 static unsigned long cpu_weight
[NR_CPUS
];
89 static int tsk_in_cpu
[NR_CPUS
] = {[0 ... NR_CPUS
-1] = -1};
90 static DECLARE_BITMAP(pad_busy_cpus_bits
, NR_CPUS
);
91 static void round_robin_cpu(unsigned int tsk_index
)
93 struct cpumask
*pad_busy_cpus
= to_cpumask(pad_busy_cpus_bits
);
96 unsigned long min_weight
= -1;
97 unsigned long uninitialized_var(preferred_cpu
);
99 if (!alloc_cpumask_var(&tmp
, GFP_KERNEL
))
102 mutex_lock(&round_robin_lock
);
104 for_each_cpu(cpu
, pad_busy_cpus
)
105 cpumask_or(tmp
, tmp
, topology_sibling_cpumask(cpu
));
106 cpumask_andnot(tmp
, cpu_online_mask
, tmp
);
107 /* avoid HT sibilings if possible */
108 if (cpumask_empty(tmp
))
109 cpumask_andnot(tmp
, cpu_online_mask
, pad_busy_cpus
);
110 if (cpumask_empty(tmp
)) {
111 mutex_unlock(&round_robin_lock
);
112 free_cpumask_var(tmp
);
115 for_each_cpu(cpu
, tmp
) {
116 if (cpu_weight
[cpu
] < min_weight
) {
117 min_weight
= cpu_weight
[cpu
];
122 if (tsk_in_cpu
[tsk_index
] != -1)
123 cpumask_clear_cpu(tsk_in_cpu
[tsk_index
], pad_busy_cpus
);
124 tsk_in_cpu
[tsk_index
] = preferred_cpu
;
125 cpumask_set_cpu(preferred_cpu
, pad_busy_cpus
);
126 cpu_weight
[preferred_cpu
]++;
127 mutex_unlock(&round_robin_lock
);
129 set_cpus_allowed_ptr(current
, cpumask_of(preferred_cpu
));
131 free_cpumask_var(tmp
);
134 static void exit_round_robin(unsigned int tsk_index
)
136 struct cpumask
*pad_busy_cpus
= to_cpumask(pad_busy_cpus_bits
);
137 cpumask_clear_cpu(tsk_in_cpu
[tsk_index
], pad_busy_cpus
);
138 tsk_in_cpu
[tsk_index
] = -1;
141 static unsigned int idle_pct
= 5; /* percentage */
142 static unsigned int round_robin_time
= 1; /* second */
143 static int power_saving_thread(void *data
)
145 struct sched_param param
= {.sched_priority
= 1};
147 unsigned int tsk_index
= (unsigned long)data
;
148 u64 last_jiffies
= 0;
150 sched_setscheduler(current
, SCHED_RR
, ¶m
);
152 while (!kthread_should_stop()) {
153 unsigned long expire_time
;
155 /* round robin to cpus */
156 expire_time
= last_jiffies
+ round_robin_time
* HZ
;
157 if (time_before(expire_time
, jiffies
)) {
158 last_jiffies
= jiffies
;
159 round_robin_cpu(tsk_index
);
164 expire_time
= jiffies
+ HZ
* (100 - idle_pct
) / 100;
166 while (!need_resched()) {
167 if (tsc_detected_unstable
&& !tsc_marked_unstable
) {
168 /* TSC could halt in idle, so notify users */
169 mark_tsc_unstable("TSC halts in idle");
170 tsc_marked_unstable
= 1;
173 tick_broadcast_enable();
174 tick_broadcast_enter();
175 stop_critical_timings();
177 mwait_idle_with_hints(power_saving_mwait_eax
, 1);
179 start_critical_timings();
180 tick_broadcast_exit();
183 if (time_before(expire_time
, jiffies
)) {
190 * current sched_rt has threshold for rt task running time.
191 * When a rt task uses 95% CPU time, the rt thread will be
192 * scheduled out for 5% CPU time to not starve other tasks. But
193 * the mechanism only works when all CPUs have RT task running,
194 * as if one CPU hasn't RT task, RT task from other CPUs will
195 * borrow CPU time from this CPU and cause RT task use > 95%
196 * CPU time. To make 'avoid starvation' work, takes a nap here.
198 if (unlikely(do_sleep
))
199 schedule_timeout_killable(HZ
* idle_pct
/ 100);
201 /* If an external event has set the need_resched flag, then
202 * we need to deal with it, or this loop will continue to
203 * spin without calling __mwait().
205 if (unlikely(need_resched()))
209 exit_round_robin(tsk_index
);
213 static struct task_struct
*ps_tsks
[NR_CPUS
];
214 static unsigned int ps_tsk_num
;
215 static int create_power_saving_task(void)
219 ps_tsks
[ps_tsk_num
] = kthread_run(power_saving_thread
,
220 (void *)(unsigned long)ps_tsk_num
,
221 "acpi_pad/%d", ps_tsk_num
);
223 if (IS_ERR(ps_tsks
[ps_tsk_num
])) {
224 rc
= PTR_ERR(ps_tsks
[ps_tsk_num
]);
225 ps_tsks
[ps_tsk_num
] = NULL
;
234 static void destroy_power_saving_task(void)
236 if (ps_tsk_num
> 0) {
238 kthread_stop(ps_tsks
[ps_tsk_num
]);
239 ps_tsks
[ps_tsk_num
] = NULL
;
243 static void set_power_saving_task_num(unsigned int num
)
245 if (num
> ps_tsk_num
) {
246 while (ps_tsk_num
< num
) {
247 if (create_power_saving_task())
250 } else if (num
< ps_tsk_num
) {
251 while (ps_tsk_num
> num
)
252 destroy_power_saving_task();
256 static void acpi_pad_idle_cpus(unsigned int num_cpus
)
260 num_cpus
= min_t(unsigned int, num_cpus
, num_online_cpus());
261 set_power_saving_task_num(num_cpus
);
266 static uint32_t acpi_pad_idle_cpus_num(void)
271 static ssize_t
acpi_pad_rrtime_store(struct device
*dev
,
272 struct device_attribute
*attr
, const char *buf
, size_t count
)
275 if (kstrtoul(buf
, 0, &num
))
277 if (num
< 1 || num
>= 100)
279 mutex_lock(&isolated_cpus_lock
);
280 round_robin_time
= num
;
281 mutex_unlock(&isolated_cpus_lock
);
285 static ssize_t
acpi_pad_rrtime_show(struct device
*dev
,
286 struct device_attribute
*attr
, char *buf
)
288 return scnprintf(buf
, PAGE_SIZE
, "%d\n", round_robin_time
);
290 static DEVICE_ATTR(rrtime
, S_IRUGO
|S_IWUSR
,
291 acpi_pad_rrtime_show
,
292 acpi_pad_rrtime_store
);
294 static ssize_t
acpi_pad_idlepct_store(struct device
*dev
,
295 struct device_attribute
*attr
, const char *buf
, size_t count
)
298 if (kstrtoul(buf
, 0, &num
))
300 if (num
< 1 || num
>= 100)
302 mutex_lock(&isolated_cpus_lock
);
304 mutex_unlock(&isolated_cpus_lock
);
308 static ssize_t
acpi_pad_idlepct_show(struct device
*dev
,
309 struct device_attribute
*attr
, char *buf
)
311 return scnprintf(buf
, PAGE_SIZE
, "%d\n", idle_pct
);
313 static DEVICE_ATTR(idlepct
, S_IRUGO
|S_IWUSR
,
314 acpi_pad_idlepct_show
,
315 acpi_pad_idlepct_store
);
317 static ssize_t
acpi_pad_idlecpus_store(struct device
*dev
,
318 struct device_attribute
*attr
, const char *buf
, size_t count
)
321 if (kstrtoul(buf
, 0, &num
))
323 mutex_lock(&isolated_cpus_lock
);
324 acpi_pad_idle_cpus(num
);
325 mutex_unlock(&isolated_cpus_lock
);
329 static ssize_t
acpi_pad_idlecpus_show(struct device
*dev
,
330 struct device_attribute
*attr
, char *buf
)
332 return cpumap_print_to_pagebuf(false, buf
,
333 to_cpumask(pad_busy_cpus_bits
));
336 static DEVICE_ATTR(idlecpus
, S_IRUGO
|S_IWUSR
,
337 acpi_pad_idlecpus_show
,
338 acpi_pad_idlecpus_store
);
340 static int acpi_pad_add_sysfs(struct acpi_device
*device
)
344 result
= device_create_file(&device
->dev
, &dev_attr_idlecpus
);
347 result
= device_create_file(&device
->dev
, &dev_attr_idlepct
);
349 device_remove_file(&device
->dev
, &dev_attr_idlecpus
);
352 result
= device_create_file(&device
->dev
, &dev_attr_rrtime
);
354 device_remove_file(&device
->dev
, &dev_attr_idlecpus
);
355 device_remove_file(&device
->dev
, &dev_attr_idlepct
);
361 static void acpi_pad_remove_sysfs(struct acpi_device
*device
)
363 device_remove_file(&device
->dev
, &dev_attr_idlecpus
);
364 device_remove_file(&device
->dev
, &dev_attr_idlepct
);
365 device_remove_file(&device
->dev
, &dev_attr_rrtime
);
369 * Query firmware how many CPUs should be idle
370 * return -1 on failure
372 static int acpi_pad_pur(acpi_handle handle
)
374 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
375 union acpi_object
*package
;
378 if (ACPI_FAILURE(acpi_evaluate_object(handle
, "_PUR", NULL
, &buffer
)))
381 if (!buffer
.length
|| !buffer
.pointer
)
384 package
= buffer
.pointer
;
386 if (package
->type
== ACPI_TYPE_PACKAGE
&&
387 package
->package
.count
== 2 &&
388 package
->package
.elements
[0].integer
.value
== 1) /* rev 1 */
390 num
= package
->package
.elements
[1].integer
.value
;
392 kfree(buffer
.pointer
);
396 static void acpi_pad_handle_notify(acpi_handle handle
)
400 struct acpi_buffer param
= {
402 .pointer
= (void *)&idle_cpus
,
405 mutex_lock(&isolated_cpus_lock
);
406 num_cpus
= acpi_pad_pur(handle
);
408 mutex_unlock(&isolated_cpus_lock
);
411 acpi_pad_idle_cpus(num_cpus
);
412 idle_cpus
= acpi_pad_idle_cpus_num();
413 acpi_evaluate_ost(handle
, ACPI_PROCESSOR_AGGREGATOR_NOTIFY
, 0, ¶m
);
414 mutex_unlock(&isolated_cpus_lock
);
417 static void acpi_pad_notify(acpi_handle handle
, u32 event
,
420 struct acpi_device
*device
= data
;
423 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY
:
424 acpi_pad_handle_notify(handle
);
425 acpi_bus_generate_netlink_event(device
->pnp
.device_class
,
426 dev_name(&device
->dev
), event
, 0);
429 pr_warn("Unsupported event [0x%x]\n", event
);
434 static int acpi_pad_add(struct acpi_device
*device
)
438 strcpy(acpi_device_name(device
), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME
);
439 strcpy(acpi_device_class(device
), ACPI_PROCESSOR_AGGREGATOR_CLASS
);
441 if (acpi_pad_add_sysfs(device
))
444 status
= acpi_install_notify_handler(device
->handle
,
445 ACPI_DEVICE_NOTIFY
, acpi_pad_notify
, device
);
446 if (ACPI_FAILURE(status
)) {
447 acpi_pad_remove_sysfs(device
);
454 static int acpi_pad_remove(struct acpi_device
*device
)
456 mutex_lock(&isolated_cpus_lock
);
457 acpi_pad_idle_cpus(0);
458 mutex_unlock(&isolated_cpus_lock
);
460 acpi_remove_notify_handler(device
->handle
,
461 ACPI_DEVICE_NOTIFY
, acpi_pad_notify
);
462 acpi_pad_remove_sysfs(device
);
466 static const struct acpi_device_id pad_device_ids
[] = {
470 MODULE_DEVICE_TABLE(acpi
, pad_device_ids
);
472 static struct acpi_driver acpi_pad_driver
= {
473 .name
= "processor_aggregator",
474 .class = ACPI_PROCESSOR_AGGREGATOR_CLASS
,
475 .ids
= pad_device_ids
,
478 .remove
= acpi_pad_remove
,
482 static int __init
acpi_pad_init(void)
484 /* Xen ACPI PAD is used when running as Xen Dom0. */
485 if (xen_initial_domain())
488 power_saving_mwait_init();
489 if (power_saving_mwait_eax
== 0)
492 return acpi_bus_register_driver(&acpi_pad_driver
);
495 static void __exit
acpi_pad_exit(void)
497 acpi_bus_unregister_driver(&acpi_pad_driver
);
500 module_init(acpi_pad_init
);
501 module_exit(acpi_pad_exit
);
502 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
503 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
504 MODULE_LICENSE("GPL");