Linux 4.9.243
[linux/fpc-iii.git] / drivers / block / brd.c
blob9d81ac8b4512a085acdb2bbbbb73d0034fd2ba80
1 /*
2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #ifdef CONFIG_BLK_DEV_RAM_DAX
23 #include <linux/pfn_t.h>
24 #endif
26 #include <asm/uaccess.h>
28 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
29 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
33 * the pages containing the block device's contents. A brd page's ->index is
34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
35 * with, the kernel's pagecache or buffer cache (which sit above our block
36 * device).
38 struct brd_device {
39 int brd_number;
41 struct request_queue *brd_queue;
42 struct gendisk *brd_disk;
43 struct list_head brd_list;
46 * Backing store of pages and lock to protect it. This is the contents
47 * of the block device.
49 spinlock_t brd_lock;
50 struct radix_tree_root brd_pages;
54 * Look up and return a brd's page for a given sector.
56 static DEFINE_MUTEX(brd_mutex);
57 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
59 pgoff_t idx;
60 struct page *page;
63 * The page lifetime is protected by the fact that we have opened the
64 * device node -- brd pages will never be deleted under us, so we
65 * don't need any further locking or refcounting.
67 * This is strictly true for the radix-tree nodes as well (ie. we
68 * don't actually need the rcu_read_lock()), however that is not a
69 * documented feature of the radix-tree API so it is better to be
70 * safe here (we don't have total exclusion from radix tree updates
71 * here, only deletes).
73 rcu_read_lock();
74 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
75 page = radix_tree_lookup(&brd->brd_pages, idx);
76 rcu_read_unlock();
78 BUG_ON(page && page->index != idx);
80 return page;
84 * Look up and return a brd's page for a given sector.
85 * If one does not exist, allocate an empty page, and insert that. Then
86 * return it.
88 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
90 pgoff_t idx;
91 struct page *page;
92 gfp_t gfp_flags;
94 page = brd_lookup_page(brd, sector);
95 if (page)
96 return page;
99 * Must use NOIO because we don't want to recurse back into the
100 * block or filesystem layers from page reclaim.
102 * Cannot support DAX and highmem, because our ->direct_access
103 * routine for DAX must return memory that is always addressable.
104 * If DAX was reworked to use pfns and kmap throughout, this
105 * restriction might be able to be lifted.
107 gfp_flags = GFP_NOIO | __GFP_ZERO;
108 #ifndef CONFIG_BLK_DEV_RAM_DAX
109 gfp_flags |= __GFP_HIGHMEM;
110 #endif
111 page = alloc_page(gfp_flags);
112 if (!page)
113 return NULL;
115 if (radix_tree_preload(GFP_NOIO)) {
116 __free_page(page);
117 return NULL;
120 spin_lock(&brd->brd_lock);
121 idx = sector >> PAGE_SECTORS_SHIFT;
122 page->index = idx;
123 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
124 __free_page(page);
125 page = radix_tree_lookup(&brd->brd_pages, idx);
126 BUG_ON(!page);
127 BUG_ON(page->index != idx);
129 spin_unlock(&brd->brd_lock);
131 radix_tree_preload_end();
133 return page;
136 static void brd_free_page(struct brd_device *brd, sector_t sector)
138 struct page *page;
139 pgoff_t idx;
141 spin_lock(&brd->brd_lock);
142 idx = sector >> PAGE_SECTORS_SHIFT;
143 page = radix_tree_delete(&brd->brd_pages, idx);
144 spin_unlock(&brd->brd_lock);
145 if (page)
146 __free_page(page);
149 static void brd_zero_page(struct brd_device *brd, sector_t sector)
151 struct page *page;
153 page = brd_lookup_page(brd, sector);
154 if (page)
155 clear_highpage(page);
159 * Free all backing store pages and radix tree. This must only be called when
160 * there are no other users of the device.
162 #define FREE_BATCH 16
163 static void brd_free_pages(struct brd_device *brd)
165 unsigned long pos = 0;
166 struct page *pages[FREE_BATCH];
167 int nr_pages;
169 do {
170 int i;
172 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
173 (void **)pages, pos, FREE_BATCH);
175 for (i = 0; i < nr_pages; i++) {
176 void *ret;
178 BUG_ON(pages[i]->index < pos);
179 pos = pages[i]->index;
180 ret = radix_tree_delete(&brd->brd_pages, pos);
181 BUG_ON(!ret || ret != pages[i]);
182 __free_page(pages[i]);
185 pos++;
188 * This assumes radix_tree_gang_lookup always returns as
189 * many pages as possible. If the radix-tree code changes,
190 * so will this have to.
192 } while (nr_pages == FREE_BATCH);
196 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
198 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
200 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
201 size_t copy;
203 copy = min_t(size_t, n, PAGE_SIZE - offset);
204 if (!brd_insert_page(brd, sector))
205 return -ENOSPC;
206 if (copy < n) {
207 sector += copy >> SECTOR_SHIFT;
208 if (!brd_insert_page(brd, sector))
209 return -ENOSPC;
211 return 0;
214 static void discard_from_brd(struct brd_device *brd,
215 sector_t sector, size_t n)
217 while (n >= PAGE_SIZE) {
219 * Don't want to actually discard pages here because
220 * re-allocating the pages can result in writeback
221 * deadlocks under heavy load.
223 if (0)
224 brd_free_page(brd, sector);
225 else
226 brd_zero_page(brd, sector);
227 sector += PAGE_SIZE >> SECTOR_SHIFT;
228 n -= PAGE_SIZE;
233 * Copy n bytes from src to the brd starting at sector. Does not sleep.
235 static void copy_to_brd(struct brd_device *brd, const void *src,
236 sector_t sector, size_t n)
238 struct page *page;
239 void *dst;
240 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
241 size_t copy;
243 copy = min_t(size_t, n, PAGE_SIZE - offset);
244 page = brd_lookup_page(brd, sector);
245 BUG_ON(!page);
247 dst = kmap_atomic(page);
248 memcpy(dst + offset, src, copy);
249 kunmap_atomic(dst);
251 if (copy < n) {
252 src += copy;
253 sector += copy >> SECTOR_SHIFT;
254 copy = n - copy;
255 page = brd_lookup_page(brd, sector);
256 BUG_ON(!page);
258 dst = kmap_atomic(page);
259 memcpy(dst, src, copy);
260 kunmap_atomic(dst);
265 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
267 static void copy_from_brd(void *dst, struct brd_device *brd,
268 sector_t sector, size_t n)
270 struct page *page;
271 void *src;
272 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
273 size_t copy;
275 copy = min_t(size_t, n, PAGE_SIZE - offset);
276 page = brd_lookup_page(brd, sector);
277 if (page) {
278 src = kmap_atomic(page);
279 memcpy(dst, src + offset, copy);
280 kunmap_atomic(src);
281 } else
282 memset(dst, 0, copy);
284 if (copy < n) {
285 dst += copy;
286 sector += copy >> SECTOR_SHIFT;
287 copy = n - copy;
288 page = brd_lookup_page(brd, sector);
289 if (page) {
290 src = kmap_atomic(page);
291 memcpy(dst, src, copy);
292 kunmap_atomic(src);
293 } else
294 memset(dst, 0, copy);
299 * Process a single bvec of a bio.
301 static int brd_do_bvec(struct brd_device *brd, struct page *page,
302 unsigned int len, unsigned int off, bool is_write,
303 sector_t sector)
305 void *mem;
306 int err = 0;
308 if (is_write) {
309 err = copy_to_brd_setup(brd, sector, len);
310 if (err)
311 goto out;
314 mem = kmap_atomic(page);
315 if (!is_write) {
316 copy_from_brd(mem + off, brd, sector, len);
317 flush_dcache_page(page);
318 } else {
319 flush_dcache_page(page);
320 copy_to_brd(brd, mem + off, sector, len);
322 kunmap_atomic(mem);
324 out:
325 return err;
328 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
330 struct block_device *bdev = bio->bi_bdev;
331 struct brd_device *brd = bdev->bd_disk->private_data;
332 struct bio_vec bvec;
333 sector_t sector;
334 struct bvec_iter iter;
336 sector = bio->bi_iter.bi_sector;
337 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
338 goto io_error;
340 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
341 if (sector & ((PAGE_SIZE >> SECTOR_SHIFT) - 1) ||
342 bio->bi_iter.bi_size & ~PAGE_MASK)
343 goto io_error;
344 discard_from_brd(brd, sector, bio->bi_iter.bi_size);
345 goto out;
348 bio_for_each_segment(bvec, bio, iter) {
349 unsigned int len = bvec.bv_len;
350 int err;
352 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
353 op_is_write(bio_op(bio)), sector);
354 if (err)
355 goto io_error;
356 sector += len >> SECTOR_SHIFT;
359 out:
360 bio_endio(bio);
361 return BLK_QC_T_NONE;
362 io_error:
363 bio_io_error(bio);
364 return BLK_QC_T_NONE;
367 static int brd_rw_page(struct block_device *bdev, sector_t sector,
368 struct page *page, bool is_write)
370 struct brd_device *brd = bdev->bd_disk->private_data;
371 int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
372 page_endio(page, is_write, err);
373 return err;
376 #ifdef CONFIG_BLK_DEV_RAM_DAX
377 static long brd_direct_access(struct block_device *bdev, sector_t sector,
378 void **kaddr, pfn_t *pfn, long size)
380 struct brd_device *brd = bdev->bd_disk->private_data;
381 struct page *page;
383 if (!brd)
384 return -ENODEV;
385 page = brd_insert_page(brd, sector);
386 if (!page)
387 return -ENOSPC;
388 *kaddr = page_address(page);
389 *pfn = page_to_pfn_t(page);
391 return PAGE_SIZE;
393 #else
394 #define brd_direct_access NULL
395 #endif
397 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
398 unsigned int cmd, unsigned long arg)
400 int error;
401 struct brd_device *brd = bdev->bd_disk->private_data;
403 if (cmd != BLKFLSBUF)
404 return -ENOTTY;
407 * ram device BLKFLSBUF has special semantics, we want to actually
408 * release and destroy the ramdisk data.
410 mutex_lock(&brd_mutex);
411 mutex_lock(&bdev->bd_mutex);
412 error = -EBUSY;
413 if (bdev->bd_openers <= 1) {
415 * Kill the cache first, so it isn't written back to the
416 * device.
418 * Another thread might instantiate more buffercache here,
419 * but there is not much we can do to close that race.
421 kill_bdev(bdev);
422 brd_free_pages(brd);
423 error = 0;
425 mutex_unlock(&bdev->bd_mutex);
426 mutex_unlock(&brd_mutex);
428 return error;
431 static const struct block_device_operations brd_fops = {
432 .owner = THIS_MODULE,
433 .rw_page = brd_rw_page,
434 .ioctl = brd_ioctl,
435 .direct_access = brd_direct_access,
439 * And now the modules code and kernel interface.
441 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
442 module_param(rd_nr, int, S_IRUGO);
443 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
445 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
446 module_param(rd_size, int, S_IRUGO);
447 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
449 static int max_part = 1;
450 module_param(max_part, int, S_IRUGO);
451 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
453 MODULE_LICENSE("GPL");
454 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
455 MODULE_ALIAS("rd");
457 #ifndef MODULE
458 /* Legacy boot options - nonmodular */
459 static int __init ramdisk_size(char *str)
461 rd_size = simple_strtol(str, NULL, 0);
462 return 1;
464 __setup("ramdisk_size=", ramdisk_size);
465 #endif
468 * The device scheme is derived from loop.c. Keep them in synch where possible
469 * (should share code eventually).
471 static LIST_HEAD(brd_devices);
472 static DEFINE_MUTEX(brd_devices_mutex);
474 static struct brd_device *brd_alloc(int i)
476 struct brd_device *brd;
477 struct gendisk *disk;
479 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
480 if (!brd)
481 goto out;
482 brd->brd_number = i;
483 spin_lock_init(&brd->brd_lock);
484 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
486 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
487 if (!brd->brd_queue)
488 goto out_free_dev;
490 blk_queue_make_request(brd->brd_queue, brd_make_request);
491 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
492 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
494 /* This is so fdisk will align partitions on 4k, because of
495 * direct_access API needing 4k alignment, returning a PFN
496 * (This is only a problem on very small devices <= 4M,
497 * otherwise fdisk will align on 1M. Regardless this call
498 * is harmless)
500 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
502 brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
503 blk_queue_max_discard_sectors(brd->brd_queue, UINT_MAX);
504 brd->brd_queue->limits.discard_zeroes_data = 1;
505 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
506 #ifdef CONFIG_BLK_DEV_RAM_DAX
507 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
508 #endif
509 disk = brd->brd_disk = alloc_disk(max_part);
510 if (!disk)
511 goto out_free_queue;
512 disk->major = RAMDISK_MAJOR;
513 disk->first_minor = i * max_part;
514 disk->fops = &brd_fops;
515 disk->private_data = brd;
516 disk->queue = brd->brd_queue;
517 disk->flags = GENHD_FL_EXT_DEVT;
518 sprintf(disk->disk_name, "ram%d", i);
519 set_capacity(disk, rd_size * 2);
521 return brd;
523 out_free_queue:
524 blk_cleanup_queue(brd->brd_queue);
525 out_free_dev:
526 kfree(brd);
527 out:
528 return NULL;
531 static void brd_free(struct brd_device *brd)
533 put_disk(brd->brd_disk);
534 blk_cleanup_queue(brd->brd_queue);
535 brd_free_pages(brd);
536 kfree(brd);
539 static struct brd_device *brd_init_one(int i, bool *new)
541 struct brd_device *brd;
543 *new = false;
544 list_for_each_entry(brd, &brd_devices, brd_list) {
545 if (brd->brd_number == i)
546 goto out;
549 brd = brd_alloc(i);
550 if (brd) {
551 add_disk(brd->brd_disk);
552 list_add_tail(&brd->brd_list, &brd_devices);
554 *new = true;
555 out:
556 return brd;
559 static void brd_del_one(struct brd_device *brd)
561 list_del(&brd->brd_list);
562 del_gendisk(brd->brd_disk);
563 brd_free(brd);
566 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
568 struct brd_device *brd;
569 struct kobject *kobj;
570 bool new;
572 mutex_lock(&brd_devices_mutex);
573 brd = brd_init_one(MINOR(dev) / max_part, &new);
574 kobj = brd ? get_disk(brd->brd_disk) : NULL;
575 mutex_unlock(&brd_devices_mutex);
577 if (new)
578 *part = 0;
580 return kobj;
583 static inline void brd_check_and_reset_par(void)
585 if (unlikely(!max_part))
586 max_part = 1;
589 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
590 * otherwise, it is possiable to get same dev_t when adding partitions.
592 if ((1U << MINORBITS) % max_part != 0)
593 max_part = 1UL << fls(max_part);
595 if (max_part > DISK_MAX_PARTS) {
596 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
597 DISK_MAX_PARTS, DISK_MAX_PARTS);
598 max_part = DISK_MAX_PARTS;
602 static int __init brd_init(void)
604 struct brd_device *brd, *next;
605 int i;
608 * brd module now has a feature to instantiate underlying device
609 * structure on-demand, provided that there is an access dev node.
611 * (1) if rd_nr is specified, create that many upfront. else
612 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
613 * (2) User can further extend brd devices by create dev node themselves
614 * and have kernel automatically instantiate actual device
615 * on-demand. Example:
616 * mknod /path/devnod_name b 1 X # 1 is the rd major
617 * fdisk -l /path/devnod_name
618 * If (X / max_part) was not already created it will be created
619 * dynamically.
622 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
623 return -EIO;
625 brd_check_and_reset_par();
627 for (i = 0; i < rd_nr; i++) {
628 brd = brd_alloc(i);
629 if (!brd)
630 goto out_free;
631 list_add_tail(&brd->brd_list, &brd_devices);
634 /* point of no return */
636 list_for_each_entry(brd, &brd_devices, brd_list)
637 add_disk(brd->brd_disk);
639 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
640 THIS_MODULE, brd_probe, NULL, NULL);
642 pr_info("brd: module loaded\n");
643 return 0;
645 out_free:
646 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
647 list_del(&brd->brd_list);
648 brd_free(brd);
650 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
652 pr_info("brd: module NOT loaded !!!\n");
653 return -ENOMEM;
656 static void __exit brd_exit(void)
658 struct brd_device *brd, *next;
660 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
661 brd_del_one(brd);
663 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
664 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
666 pr_info("brd: module unloaded\n");
669 module_init(brd_init);
670 module_exit(brd_exit);