2 * Copyright 2010 Matt Turner.
3 * Copyright 2012 Red Hat
5 * This file is subject to the terms and conditions of the GNU General
6 * Public License version 2. See the file COPYING in the main
7 * directory of this archive for more details.
9 * Authors: Matthew Garrett
14 #include <linux/delay.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <drm/drm_plane_helper.h>
20 #include "mgag200_drv.h"
22 #define MGAG200_LUT_SIZE 256
25 * This file contains setup code for the CRTC.
28 static void mga_crtc_load_lut(struct drm_crtc
*crtc
)
30 struct mga_crtc
*mga_crtc
= to_mga_crtc(crtc
);
31 struct drm_device
*dev
= crtc
->dev
;
32 struct mga_device
*mdev
= dev
->dev_private
;
33 struct drm_framebuffer
*fb
= crtc
->primary
->fb
;
39 WREG8(DAC_INDEX
+ MGA1064_INDEX
, 0);
41 if (fb
&& fb
->bits_per_pixel
== 16) {
42 int inc
= (fb
->depth
== 15) ? 8 : 4;
44 for (i
= 0; i
< MGAG200_LUT_SIZE
; i
+= inc
) {
45 if (fb
->depth
== 16) {
46 if (i
> (MGAG200_LUT_SIZE
>> 1)) {
49 r
= mga_crtc
->lut_r
[i
<< 1];
50 b
= mga_crtc
->lut_b
[i
<< 1];
53 r
= mga_crtc
->lut_r
[i
];
54 b
= mga_crtc
->lut_b
[i
];
57 WREG8(DAC_INDEX
+ MGA1064_COL_PAL
, r
);
58 WREG8(DAC_INDEX
+ MGA1064_COL_PAL
, mga_crtc
->lut_g
[i
]);
59 WREG8(DAC_INDEX
+ MGA1064_COL_PAL
, b
);
63 for (i
= 0; i
< MGAG200_LUT_SIZE
; i
++) {
65 WREG8(DAC_INDEX
+ MGA1064_COL_PAL
, mga_crtc
->lut_r
[i
]);
66 WREG8(DAC_INDEX
+ MGA1064_COL_PAL
, mga_crtc
->lut_g
[i
]);
67 WREG8(DAC_INDEX
+ MGA1064_COL_PAL
, mga_crtc
->lut_b
[i
]);
71 static inline void mga_wait_vsync(struct mga_device
*mdev
)
73 unsigned long timeout
= jiffies
+ HZ
/10;
74 unsigned int status
= 0;
77 status
= RREG32(MGAREG_Status
);
78 } while ((status
& 0x08) && time_before(jiffies
, timeout
));
79 timeout
= jiffies
+ HZ
/10;
82 status
= RREG32(MGAREG_Status
);
83 } while (!(status
& 0x08) && time_before(jiffies
, timeout
));
86 static inline void mga_wait_busy(struct mga_device
*mdev
)
88 unsigned long timeout
= jiffies
+ HZ
;
89 unsigned int status
= 0;
91 status
= RREG8(MGAREG_Status
+ 2);
92 } while ((status
& 0x01) && time_before(jiffies
, timeout
));
95 #define P_ARRAY_SIZE 9
97 static int mga_g200se_set_plls(struct mga_device
*mdev
, long clock
)
99 unsigned int vcomax
, vcomin
, pllreffreq
;
100 unsigned int delta
, tmpdelta
, permitteddelta
;
101 unsigned int testp
, testm
, testn
;
102 unsigned int p
, m
, n
;
103 unsigned int computed
;
104 unsigned int pvalues_e4
[P_ARRAY_SIZE
] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
108 if (mdev
->unique_rev_id
<= 0x03) {
116 permitteddelta
= clock
* 5 / 1000;
118 for (testp
= 8; testp
> 0; testp
/= 2) {
119 if (clock
* testp
> vcomax
)
121 if (clock
* testp
< vcomin
)
124 for (testn
= 17; testn
< 256; testn
++) {
125 for (testm
= 1; testm
< 32; testm
++) {
126 computed
= (pllreffreq
* testn
) /
128 if (computed
> clock
)
129 tmpdelta
= computed
- clock
;
131 tmpdelta
= clock
- computed
;
132 if (tmpdelta
< delta
) {
155 /* Permited delta is 0.5% as VESA Specification */
156 permitteddelta
= clock
* 5 / 1000;
158 for (i
= 0 ; i
< P_ARRAY_SIZE
; i
++) {
159 testp
= pvalues_e4
[i
];
161 if ((clock
* testp
) > vcomax
)
163 if ((clock
* testp
) < vcomin
)
166 for (testn
= 50; testn
<= 256; testn
++) {
167 for (testm
= 1; testm
<= 32; testm
++) {
168 computed
= (pllreffreq
* testn
) /
170 if (computed
> clock
)
171 tmpdelta
= computed
- clock
;
173 tmpdelta
= clock
- computed
;
175 if (tmpdelta
< delta
) {
185 fvv
= pllreffreq
* (n
+ 1) / (m
+ 1);
186 fvv
= (fvv
- 800000) / 50000;
197 if (delta
> permitteddelta
) {
198 printk(KERN_WARNING
"PLL delta too large\n");
202 WREG_DAC(MGA1064_PIX_PLLC_M
, m
);
203 WREG_DAC(MGA1064_PIX_PLLC_N
, n
);
204 WREG_DAC(MGA1064_PIX_PLLC_P
, p
);
206 if (mdev
->unique_rev_id
>= 0x04) {
207 WREG_DAC(0x1a, 0x09);
209 WREG_DAC(0x1a, 0x01);
216 static int mga_g200wb_set_plls(struct mga_device
*mdev
, long clock
)
218 unsigned int vcomax
, vcomin
, pllreffreq
;
219 unsigned int delta
, tmpdelta
;
220 unsigned int testp
, testm
, testn
, testp2
;
221 unsigned int p
, m
, n
;
222 unsigned int computed
;
223 int i
, j
, tmpcount
, vcount
;
224 bool pll_locked
= false;
231 if (mdev
->type
== G200_EW3
) {
237 for (testp
= 1; testp
< 8; testp
++) {
238 for (testp2
= 1; testp2
< 8; testp2
++) {
241 if ((clock
* testp
* testp2
) > vcomax
)
243 if ((clock
* testp
* testp2
) < vcomin
)
245 for (testm
= 1; testm
< 26; testm
++) {
246 for (testn
= 32; testn
< 2048 ; testn
++) {
247 computed
= (pllreffreq
* testn
) /
248 (testm
* testp
* testp2
);
249 if (computed
> clock
)
250 tmpdelta
= computed
- clock
;
252 tmpdelta
= clock
- computed
;
253 if (tmpdelta
< delta
) {
255 m
= ((testn
& 0x100) >> 1) |
258 p
= ((testn
& 0x600) >> 3) |
272 for (testp
= 1; testp
< 9; testp
++) {
273 if (clock
* testp
> vcomax
)
275 if (clock
* testp
< vcomin
)
278 for (testm
= 1; testm
< 17; testm
++) {
279 for (testn
= 1; testn
< 151; testn
++) {
280 computed
= (pllreffreq
* testn
) /
282 if (computed
> clock
)
283 tmpdelta
= computed
- clock
;
285 tmpdelta
= clock
- computed
;
286 if (tmpdelta
< delta
) {
298 for (i
= 0; i
<= 32 && pll_locked
== false; i
++) {
300 WREG8(MGAREG_CRTC_INDEX
, 0x1e);
301 tmp
= RREG8(MGAREG_CRTC_DATA
);
303 WREG8(MGAREG_CRTC_DATA
, tmp
+1);
306 /* set pixclkdis to 1 */
307 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
308 tmp
= RREG8(DAC_DATA
);
309 tmp
|= MGA1064_PIX_CLK_CTL_CLK_DIS
;
310 WREG8(DAC_DATA
, tmp
);
312 WREG8(DAC_INDEX
, MGA1064_REMHEADCTL
);
313 tmp
= RREG8(DAC_DATA
);
314 tmp
|= MGA1064_REMHEADCTL_CLKDIS
;
315 WREG8(DAC_DATA
, tmp
);
317 /* select PLL Set C */
318 tmp
= RREG8(MGAREG_MEM_MISC_READ
);
320 WREG8(MGAREG_MEM_MISC_WRITE
, tmp
);
322 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
323 tmp
= RREG8(DAC_DATA
);
324 tmp
|= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN
| 0x80;
325 WREG8(DAC_DATA
, tmp
);
330 WREG8(DAC_INDEX
, MGA1064_VREF_CTL
);
331 tmp
= RREG8(DAC_DATA
);
333 WREG8(DAC_DATA
, tmp
);
337 /* program pixel pll register */
338 WREG_DAC(MGA1064_WB_PIX_PLLC_N
, n
);
339 WREG_DAC(MGA1064_WB_PIX_PLLC_M
, m
);
340 WREG_DAC(MGA1064_WB_PIX_PLLC_P
, p
);
345 WREG8(DAC_INDEX
, MGA1064_VREF_CTL
);
346 tmp
= RREG8(DAC_DATA
);
348 WREG_DAC(MGA1064_VREF_CTL
, tmp
);
352 /* select the pixel pll */
353 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
354 tmp
= RREG8(DAC_DATA
);
355 tmp
&= ~MGA1064_PIX_CLK_CTL_SEL_MSK
;
356 tmp
|= MGA1064_PIX_CLK_CTL_SEL_PLL
;
357 WREG8(DAC_DATA
, tmp
);
359 WREG8(DAC_INDEX
, MGA1064_REMHEADCTL
);
360 tmp
= RREG8(DAC_DATA
);
361 tmp
&= ~MGA1064_REMHEADCTL_CLKSL_MSK
;
362 tmp
|= MGA1064_REMHEADCTL_CLKSL_PLL
;
363 WREG8(DAC_DATA
, tmp
);
365 /* reset dotclock rate bit */
366 WREG8(MGAREG_SEQ_INDEX
, 1);
367 tmp
= RREG8(MGAREG_SEQ_DATA
);
369 WREG8(MGAREG_SEQ_DATA
, tmp
);
371 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
372 tmp
= RREG8(DAC_DATA
);
373 tmp
&= ~MGA1064_PIX_CLK_CTL_CLK_DIS
;
374 WREG8(DAC_DATA
, tmp
);
376 vcount
= RREG8(MGAREG_VCOUNT
);
378 for (j
= 0; j
< 30 && pll_locked
== false; j
++) {
379 tmpcount
= RREG8(MGAREG_VCOUNT
);
380 if (tmpcount
< vcount
)
382 if ((tmpcount
- vcount
) > 2)
388 WREG8(DAC_INDEX
, MGA1064_REMHEADCTL
);
389 tmp
= RREG8(DAC_DATA
);
390 tmp
&= ~MGA1064_REMHEADCTL_CLKDIS
;
391 WREG_DAC(MGA1064_REMHEADCTL
, tmp
);
395 static int mga_g200ev_set_plls(struct mga_device
*mdev
, long clock
)
397 unsigned int vcomax
, vcomin
, pllreffreq
;
398 unsigned int delta
, tmpdelta
;
399 unsigned int testp
, testm
, testn
;
400 unsigned int p
, m
, n
;
401 unsigned int computed
;
411 for (testp
= 16; testp
> 0; testp
--) {
412 if (clock
* testp
> vcomax
)
414 if (clock
* testp
< vcomin
)
417 for (testn
= 1; testn
< 257; testn
++) {
418 for (testm
= 1; testm
< 17; testm
++) {
419 computed
= (pllreffreq
* testn
) /
421 if (computed
> clock
)
422 tmpdelta
= computed
- clock
;
424 tmpdelta
= clock
- computed
;
425 if (tmpdelta
< delta
) {
435 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
436 tmp
= RREG8(DAC_DATA
);
437 tmp
|= MGA1064_PIX_CLK_CTL_CLK_DIS
;
438 WREG8(DAC_DATA
, tmp
);
440 tmp
= RREG8(MGAREG_MEM_MISC_READ
);
442 WREG8(MGAREG_MEM_MISC_WRITE
, tmp
);
444 WREG8(DAC_INDEX
, MGA1064_PIX_PLL_STAT
);
445 tmp
= RREG8(DAC_DATA
);
446 WREG8(DAC_DATA
, tmp
& ~0x40);
448 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
449 tmp
= RREG8(DAC_DATA
);
450 tmp
|= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN
;
451 WREG8(DAC_DATA
, tmp
);
453 WREG_DAC(MGA1064_EV_PIX_PLLC_M
, m
);
454 WREG_DAC(MGA1064_EV_PIX_PLLC_N
, n
);
455 WREG_DAC(MGA1064_EV_PIX_PLLC_P
, p
);
459 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
460 tmp
= RREG8(DAC_DATA
);
461 tmp
&= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN
;
462 WREG8(DAC_DATA
, tmp
);
466 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
467 tmp
= RREG8(DAC_DATA
);
468 tmp
&= ~MGA1064_PIX_CLK_CTL_SEL_MSK
;
469 tmp
|= MGA1064_PIX_CLK_CTL_SEL_PLL
;
470 WREG8(DAC_DATA
, tmp
);
472 WREG8(DAC_INDEX
, MGA1064_PIX_PLL_STAT
);
473 tmp
= RREG8(DAC_DATA
);
474 WREG8(DAC_DATA
, tmp
| 0x40);
476 tmp
= RREG8(MGAREG_MEM_MISC_READ
);
478 WREG8(MGAREG_MEM_MISC_WRITE
, tmp
);
480 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
481 tmp
= RREG8(DAC_DATA
);
482 tmp
&= ~MGA1064_PIX_CLK_CTL_CLK_DIS
;
483 WREG8(DAC_DATA
, tmp
);
488 static int mga_g200eh_set_plls(struct mga_device
*mdev
, long clock
)
490 unsigned int vcomax
, vcomin
, pllreffreq
;
491 unsigned int delta
, tmpdelta
;
492 unsigned int testp
, testm
, testn
;
493 unsigned int p
, m
, n
;
494 unsigned int computed
;
495 int i
, j
, tmpcount
, vcount
;
497 bool pll_locked
= false;
506 for (testp
= 16; testp
> 0; testp
>>= 1) {
507 if (clock
* testp
> vcomax
)
509 if (clock
* testp
< vcomin
)
512 for (testm
= 1; testm
< 33; testm
++) {
513 for (testn
= 17; testn
< 257; testn
++) {
514 computed
= (pllreffreq
* testn
) /
516 if (computed
> clock
)
517 tmpdelta
= computed
- clock
;
519 tmpdelta
= clock
- computed
;
520 if (tmpdelta
< delta
) {
526 if ((clock
* testp
) >= 600000)
531 for (i
= 0; i
<= 32 && pll_locked
== false; i
++) {
532 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
533 tmp
= RREG8(DAC_DATA
);
534 tmp
|= MGA1064_PIX_CLK_CTL_CLK_DIS
;
535 WREG8(DAC_DATA
, tmp
);
537 tmp
= RREG8(MGAREG_MEM_MISC_READ
);
539 WREG8(MGAREG_MEM_MISC_WRITE
, tmp
);
541 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
542 tmp
= RREG8(DAC_DATA
);
543 tmp
|= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN
;
544 WREG8(DAC_DATA
, tmp
);
548 WREG_DAC(MGA1064_EH_PIX_PLLC_M
, m
);
549 WREG_DAC(MGA1064_EH_PIX_PLLC_N
, n
);
550 WREG_DAC(MGA1064_EH_PIX_PLLC_P
, p
);
554 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
555 tmp
= RREG8(DAC_DATA
);
556 tmp
&= ~MGA1064_PIX_CLK_CTL_SEL_MSK
;
557 tmp
|= MGA1064_PIX_CLK_CTL_SEL_PLL
;
558 WREG8(DAC_DATA
, tmp
);
560 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
561 tmp
= RREG8(DAC_DATA
);
562 tmp
&= ~MGA1064_PIX_CLK_CTL_CLK_DIS
;
563 tmp
&= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN
;
564 WREG8(DAC_DATA
, tmp
);
566 vcount
= RREG8(MGAREG_VCOUNT
);
568 for (j
= 0; j
< 30 && pll_locked
== false; j
++) {
569 tmpcount
= RREG8(MGAREG_VCOUNT
);
570 if (tmpcount
< vcount
)
572 if ((tmpcount
- vcount
) > 2)
582 static int mga_g200er_set_plls(struct mga_device
*mdev
, long clock
)
584 unsigned int vcomax
, vcomin
, pllreffreq
;
585 unsigned int delta
, tmpdelta
;
586 int testr
, testn
, testm
, testo
;
587 unsigned int p
, m
, n
;
588 unsigned int computed
, vco
;
590 const unsigned int m_div_val
[] = { 1, 2, 4, 8 };
599 for (testr
= 0; testr
< 4; testr
++) {
602 for (testn
= 5; testn
< 129; testn
++) {
605 for (testm
= 3; testm
>= 0; testm
--) {
608 for (testo
= 5; testo
< 33; testo
++) {
609 vco
= pllreffreq
* (testn
+ 1) /
615 computed
= vco
/ (m_div_val
[testm
] * (testo
+ 1));
616 if (computed
> clock
)
617 tmpdelta
= computed
- clock
;
619 tmpdelta
= clock
- computed
;
620 if (tmpdelta
< delta
) {
622 m
= testm
| (testo
<< 3);
624 p
= testr
| (testr
<< 3);
631 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
632 tmp
= RREG8(DAC_DATA
);
633 tmp
|= MGA1064_PIX_CLK_CTL_CLK_DIS
;
634 WREG8(DAC_DATA
, tmp
);
636 WREG8(DAC_INDEX
, MGA1064_REMHEADCTL
);
637 tmp
= RREG8(DAC_DATA
);
638 tmp
|= MGA1064_REMHEADCTL_CLKDIS
;
639 WREG8(DAC_DATA
, tmp
);
641 tmp
= RREG8(MGAREG_MEM_MISC_READ
);
642 tmp
|= (0x3<<2) | 0xc0;
643 WREG8(MGAREG_MEM_MISC_WRITE
, tmp
);
645 WREG8(DAC_INDEX
, MGA1064_PIX_CLK_CTL
);
646 tmp
= RREG8(DAC_DATA
);
647 tmp
&= ~MGA1064_PIX_CLK_CTL_CLK_DIS
;
648 tmp
|= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN
;
649 WREG8(DAC_DATA
, tmp
);
653 WREG_DAC(MGA1064_ER_PIX_PLLC_N
, n
);
654 WREG_DAC(MGA1064_ER_PIX_PLLC_M
, m
);
655 WREG_DAC(MGA1064_ER_PIX_PLLC_P
, p
);
662 static int mga_crtc_set_plls(struct mga_device
*mdev
, long clock
)
667 return mga_g200se_set_plls(mdev
, clock
);
671 return mga_g200wb_set_plls(mdev
, clock
);
674 return mga_g200ev_set_plls(mdev
, clock
);
677 return mga_g200eh_set_plls(mdev
, clock
);
680 return mga_g200er_set_plls(mdev
, clock
);
686 static void mga_g200wb_prepare(struct drm_crtc
*crtc
)
688 struct mga_device
*mdev
= crtc
->dev
->dev_private
;
692 /* 1- The first step is to warn the BMC of an upcoming mode change.
693 * We are putting the misc<0> to output.*/
695 WREG8(DAC_INDEX
, MGA1064_GEN_IO_CTL
);
696 tmp
= RREG8(DAC_DATA
);
698 WREG_DAC(MGA1064_GEN_IO_CTL
, tmp
);
700 /* we are putting a 1 on the misc<0> line */
701 WREG8(DAC_INDEX
, MGA1064_GEN_IO_DATA
);
702 tmp
= RREG8(DAC_DATA
);
704 WREG_DAC(MGA1064_GEN_IO_DATA
, tmp
);
706 /* 2- Second step to mask and further scan request
707 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
709 WREG8(DAC_INDEX
, MGA1064_SPAREREG
);
710 tmp
= RREG8(DAC_DATA
);
712 WREG_DAC(MGA1064_SPAREREG
, tmp
);
714 /* 3a- the third step is to verifu if there is an active scan
715 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
718 while (!(tmp
& 0x1) && iter_max
) {
719 WREG8(DAC_INDEX
, MGA1064_SPAREREG
);
720 tmp
= RREG8(DAC_DATA
);
725 /* 3b- this step occurs only if the remove is actually scanning
726 * we are waiting for the end of the frame which is a 1 on
727 * remvsyncsts (XSPAREREG<1>)
731 while ((tmp
& 0x2) && iter_max
) {
732 WREG8(DAC_INDEX
, MGA1064_SPAREREG
);
733 tmp
= RREG8(DAC_DATA
);
740 static void mga_g200wb_commit(struct drm_crtc
*crtc
)
743 struct mga_device
*mdev
= crtc
->dev
->dev_private
;
745 /* 1- The first step is to ensure that the vrsten and hrsten are set */
746 WREG8(MGAREG_CRTCEXT_INDEX
, 1);
747 tmp
= RREG8(MGAREG_CRTCEXT_DATA
);
748 WREG8(MGAREG_CRTCEXT_DATA
, tmp
| 0x88);
750 /* 2- second step is to assert the rstlvl2 */
751 WREG8(DAC_INDEX
, MGA1064_REMHEADCTL2
);
752 tmp
= RREG8(DAC_DATA
);
754 WREG8(DAC_DATA
, tmp
);
759 /* 3- deassert rstlvl2 */
761 WREG8(DAC_INDEX
, MGA1064_REMHEADCTL2
);
762 WREG8(DAC_DATA
, tmp
);
764 /* 4- remove mask of scan request */
765 WREG8(DAC_INDEX
, MGA1064_SPAREREG
);
766 tmp
= RREG8(DAC_DATA
);
768 WREG8(DAC_DATA
, tmp
);
770 /* 5- put back a 0 on the misc<0> line */
771 WREG8(DAC_INDEX
, MGA1064_GEN_IO_DATA
);
772 tmp
= RREG8(DAC_DATA
);
774 WREG_DAC(MGA1064_GEN_IO_DATA
, tmp
);
778 This is how the framebuffer base address is stored in g200 cards:
779 * Assume @offset is the gpu_addr variable of the framebuffer object
780 * Then addr is the number of _pixels_ (not bytes) from the start of
781 VRAM to the first pixel we want to display. (divided by 2 for 32bit
783 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
784 addr<20> -> CRTCEXT0<6>
785 addr<19-16> -> CRTCEXT0<3-0>
786 addr<15-8> -> CRTCC<7-0>
787 addr<7-0> -> CRTCD<7-0>
788 CRTCEXT0 has to be programmed last to trigger an update and make the
789 new addr variable take effect.
791 static void mga_set_start_address(struct drm_crtc
*crtc
, unsigned offset
)
793 struct mga_device
*mdev
= crtc
->dev
->dev_private
;
798 while (RREG8(0x1fda) & 0x08);
799 while (!(RREG8(0x1fda) & 0x08));
801 count
= RREG8(MGAREG_VCOUNT
) + 2;
802 while (RREG8(MGAREG_VCOUNT
) < count
);
804 WREG8(MGAREG_CRTCEXT_INDEX
, 0);
805 crtcext0
= RREG8(MGAREG_CRTCEXT_DATA
);
808 /* Can't store addresses any higher than that...
809 but we also don't have more than 16MB of memory, so it should be fine. */
810 WARN_ON(addr
> 0x1fffff);
811 crtcext0
|= (!!(addr
& (1<<20)))<<6;
812 WREG_CRT(0x0d, (u8
)(addr
& 0xff));
813 WREG_CRT(0x0c, (u8
)(addr
>> 8) & 0xff);
814 WREG_ECRT(0x0, ((u8
)(addr
>> 16) & 0xf) | crtcext0
);
818 /* ast is different - we will force move buffers out of VRAM */
819 static int mga_crtc_do_set_base(struct drm_crtc
*crtc
,
820 struct drm_framebuffer
*fb
,
821 int x
, int y
, int atomic
)
823 struct mga_device
*mdev
= crtc
->dev
->dev_private
;
824 struct drm_gem_object
*obj
;
825 struct mga_framebuffer
*mga_fb
;
826 struct mgag200_bo
*bo
;
830 /* push the previous fb to system ram */
832 mga_fb
= to_mga_framebuffer(fb
);
834 bo
= gem_to_mga_bo(obj
);
835 ret
= mgag200_bo_reserve(bo
, false);
838 mgag200_bo_push_sysram(bo
);
839 mgag200_bo_unreserve(bo
);
842 mga_fb
= to_mga_framebuffer(crtc
->primary
->fb
);
844 bo
= gem_to_mga_bo(obj
);
846 ret
= mgag200_bo_reserve(bo
, false);
850 ret
= mgag200_bo_pin(bo
, TTM_PL_FLAG_VRAM
, &gpu_addr
);
852 mgag200_bo_unreserve(bo
);
856 if (&mdev
->mfbdev
->mfb
== mga_fb
) {
857 /* if pushing console in kmap it */
858 ret
= ttm_bo_kmap(&bo
->bo
, 0, bo
->bo
.num_pages
, &bo
->kmap
);
860 DRM_ERROR("failed to kmap fbcon\n");
863 mgag200_bo_unreserve(bo
);
865 mga_set_start_address(crtc
, (u32
)gpu_addr
);
870 static int mga_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
871 struct drm_framebuffer
*old_fb
)
873 return mga_crtc_do_set_base(crtc
, old_fb
, x
, y
, 0);
876 static int mga_crtc_mode_set(struct drm_crtc
*crtc
,
877 struct drm_display_mode
*mode
,
878 struct drm_display_mode
*adjusted_mode
,
879 int x
, int y
, struct drm_framebuffer
*old_fb
)
881 struct drm_device
*dev
= crtc
->dev
;
882 struct mga_device
*mdev
= dev
->dev_private
;
883 int hdisplay
, hsyncstart
, hsyncend
, htotal
;
884 int vdisplay
, vsyncstart
, vsyncend
, vtotal
;
886 int option
= 0, option2
= 0;
888 unsigned char misc
= 0;
889 unsigned char ext_vga
[6];
892 static unsigned char dacvalue
[] = {
893 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
894 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
895 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
896 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
897 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
898 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
899 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
900 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
901 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
902 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
905 bppshift
= mdev
->bpp_shifts
[(crtc
->primary
->fb
->bits_per_pixel
>> 3) - 1];
907 switch (mdev
->type
) {
910 dacvalue
[MGA1064_VREF_CTL
] = 0x03;
911 dacvalue
[MGA1064_PIX_CLK_CTL
] = MGA1064_PIX_CLK_CTL_SEL_PLL
;
912 dacvalue
[MGA1064_MISC_CTL
] = MGA1064_MISC_CTL_DAC_EN
|
913 MGA1064_MISC_CTL_VGA8
|
914 MGA1064_MISC_CTL_DAC_RAM_CS
;
919 option2
= 0x00008000;
923 dacvalue
[MGA1064_VREF_CTL
] = 0x07;
925 option2
= 0x0000b000;
928 dacvalue
[MGA1064_PIX_CLK_CTL
] = MGA1064_PIX_CLK_CTL_SEL_PLL
;
929 dacvalue
[MGA1064_MISC_CTL
] = MGA1064_MISC_CTL_VGA8
|
930 MGA1064_MISC_CTL_DAC_RAM_CS
;
932 option2
= 0x0000b000;
935 dacvalue
[MGA1064_MISC_CTL
] = MGA1064_MISC_CTL_VGA8
|
936 MGA1064_MISC_CTL_DAC_RAM_CS
;
938 option2
= 0x0000b000;
944 switch (crtc
->primary
->fb
->bits_per_pixel
) {
946 dacvalue
[MGA1064_MUL_CTL
] = MGA1064_MUL_CTL_8bits
;
949 if (crtc
->primary
->fb
->depth
== 15)
950 dacvalue
[MGA1064_MUL_CTL
] = MGA1064_MUL_CTL_15bits
;
952 dacvalue
[MGA1064_MUL_CTL
] = MGA1064_MUL_CTL_16bits
;
955 dacvalue
[MGA1064_MUL_CTL
] = MGA1064_MUL_CTL_24bits
;
958 dacvalue
[MGA1064_MUL_CTL
] = MGA1064_MUL_CTL_32_24bits
;
962 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
964 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
968 for (i
= 0; i
< sizeof(dacvalue
); i
++) {
972 ((i
>= 0x1f) && (i
<= 0x29)) ||
973 ((i
>= 0x30) && (i
<= 0x37)))
975 if (IS_G200_SE(mdev
) &&
976 ((i
== 0x2c) || (i
== 0x2d) || (i
== 0x2e)))
978 if ((mdev
->type
== G200_EV
||
979 mdev
->type
== G200_WB
||
980 mdev
->type
== G200_EH
||
981 mdev
->type
== G200_EW3
) &&
982 (i
>= 0x44) && (i
<= 0x4e))
985 WREG_DAC(i
, dacvalue
[i
]);
988 if (mdev
->type
== G200_ER
)
992 pci_write_config_dword(dev
->pdev
, PCI_MGA_OPTION
, option
);
994 pci_write_config_dword(dev
->pdev
, PCI_MGA_OPTION2
, option2
);
1000 pitch
= crtc
->primary
->fb
->pitches
[0] / (crtc
->primary
->fb
->bits_per_pixel
/ 8);
1001 if (crtc
->primary
->fb
->bits_per_pixel
== 24)
1002 pitch
= (pitch
* 3) >> (4 - bppshift
);
1004 pitch
= pitch
>> (4 - bppshift
);
1006 hdisplay
= mode
->hdisplay
/ 8 - 1;
1007 hsyncstart
= mode
->hsync_start
/ 8 - 1;
1008 hsyncend
= mode
->hsync_end
/ 8 - 1;
1009 htotal
= mode
->htotal
/ 8 - 1;
1011 /* Work around hardware quirk */
1012 if ((htotal
& 0x07) == 0x06 || (htotal
& 0x07) == 0x04)
1015 vdisplay
= mode
->vdisplay
- 1;
1016 vsyncstart
= mode
->vsync_start
- 1;
1017 vsyncend
= mode
->vsync_end
- 1;
1018 vtotal
= mode
->vtotal
- 2;
1030 WREG_CRT(0, htotal
- 4);
1031 WREG_CRT(1, hdisplay
);
1032 WREG_CRT(2, hdisplay
);
1033 WREG_CRT(3, (htotal
& 0x1F) | 0x80);
1034 WREG_CRT(4, hsyncstart
);
1035 WREG_CRT(5, ((htotal
& 0x20) << 2) | (hsyncend
& 0x1F));
1036 WREG_CRT(6, vtotal
& 0xFF);
1037 WREG_CRT(7, ((vtotal
& 0x100) >> 8) |
1038 ((vdisplay
& 0x100) >> 7) |
1039 ((vsyncstart
& 0x100) >> 6) |
1040 ((vdisplay
& 0x100) >> 5) |
1041 ((vdisplay
& 0x100) >> 4) | /* linecomp */
1042 ((vtotal
& 0x200) >> 4)|
1043 ((vdisplay
& 0x200) >> 3) |
1044 ((vsyncstart
& 0x200) >> 2));
1045 WREG_CRT(9, ((vdisplay
& 0x200) >> 4) |
1046 ((vdisplay
& 0x200) >> 3));
1053 WREG_CRT(16, vsyncstart
& 0xFF);
1054 WREG_CRT(17, (vsyncend
& 0x0F) | 0x20);
1055 WREG_CRT(18, vdisplay
& 0xFF);
1056 WREG_CRT(19, pitch
& 0xFF);
1058 WREG_CRT(21, vdisplay
& 0xFF);
1059 WREG_CRT(22, (vtotal
+ 1) & 0xFF);
1061 WREG_CRT(24, vdisplay
& 0xFF);
1066 /* TODO interlace */
1068 ext_vga
[0] |= (pitch
& 0x300) >> 4;
1069 ext_vga
[1] = (((htotal
- 4) & 0x100) >> 8) |
1070 ((hdisplay
& 0x100) >> 7) |
1071 ((hsyncstart
& 0x100) >> 6) |
1073 ext_vga
[2] = ((vtotal
& 0xc00) >> 10) |
1074 ((vdisplay
& 0x400) >> 8) |
1075 ((vdisplay
& 0xc00) >> 7) |
1076 ((vsyncstart
& 0xc00) >> 5) |
1077 ((vdisplay
& 0x400) >> 3);
1078 if (crtc
->primary
->fb
->bits_per_pixel
== 24)
1079 ext_vga
[3] = (((1 << bppshift
) * 3) - 1) | 0x80;
1081 ext_vga
[3] = ((1 << bppshift
) - 1) | 0x80;
1083 if (mdev
->type
== G200_WB
|| mdev
->type
== G200_EW3
)
1086 /* Set pixel clocks */
1088 WREG8(MGA_MISC_OUT
, misc
);
1090 mga_crtc_set_plls(mdev
, mode
->clock
);
1092 for (i
= 0; i
< 6; i
++) {
1093 WREG_ECRT(i
, ext_vga
[i
]);
1096 if (mdev
->type
== G200_ER
)
1097 WREG_ECRT(0x24, 0x5);
1099 if (mdev
->type
== G200_EW3
)
1100 WREG_ECRT(0x34, 0x5);
1102 if (mdev
->type
== G200_EV
) {
1106 WREG_ECRT(0, ext_vga
[0]);
1107 /* Enable mga pixel clock */
1110 WREG8(MGA_MISC_OUT
, misc
);
1113 memcpy(&mdev
->mode
, mode
, sizeof(struct drm_display_mode
));
1115 mga_crtc_do_set_base(crtc
, old_fb
, x
, y
, 0);
1118 if (mdev
->type
== G200_ER
) {
1119 u32 mem_ctl
= RREG32(MGAREG_MEMCTL
);
1123 WREG8(MGAREG_SEQ_INDEX
, 0x01);
1124 seq1
= RREG8(MGAREG_SEQ_DATA
) | 0x20;
1125 WREG8(MGAREG_SEQ_DATA
, seq1
);
1127 WREG32(MGAREG_MEMCTL
, mem_ctl
| 0x00200000);
1129 WREG32(MGAREG_MEMCTL
, mem_ctl
& ~0x00200000);
1131 WREG8(MGAREG_SEQ_DATA
, seq1
& ~0x20);
1135 if (IS_G200_SE(mdev
)) {
1136 if (mdev
->unique_rev_id
>= 0x02) {
1141 if (crtc
->primary
->fb
->bits_per_pixel
> 16)
1143 else if (crtc
->primary
->fb
->bits_per_pixel
> 8)
1148 mb
= (mode
->clock
* bpp
) / 1000;
1162 WREG8(MGAREG_CRTCEXT_INDEX
, 0x06);
1163 WREG8(MGAREG_CRTCEXT_DATA
, hi_pri_lvl
);
1165 WREG8(MGAREG_CRTCEXT_INDEX
, 0x06);
1166 if (mdev
->unique_rev_id
>= 0x01)
1167 WREG8(MGAREG_CRTCEXT_DATA
, 0x03);
1169 WREG8(MGAREG_CRTCEXT_DATA
, 0x04);
1175 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1176 static int mga_suspend(struct drm_crtc
*crtc
)
1178 struct mga_crtc
*mga_crtc
= to_mga_crtc(crtc
);
1179 struct drm_device
*dev
= crtc
->dev
;
1180 struct mga_device
*mdev
= dev
->dev_private
;
1181 struct pci_dev
*pdev
= dev
->pdev
;
1184 if (mdev
->suspended
)
1189 /* Disable the pixel clock */
1190 WREG_DAC(0x1a, 0x05);
1191 /* Power down the DAC */
1192 WREG_DAC(0x1e, 0x18);
1193 /* Power down the pixel PLL */
1194 WREG_DAC(0x1a, 0x0d);
1196 /* Disable PLLs and clocks */
1197 pci_read_config_dword(pdev
, PCI_MGA_OPTION
, &option
);
1198 option
&= ~(0x1F8024);
1199 pci_write_config_dword(pdev
, PCI_MGA_OPTION
, option
);
1200 pci_set_power_state(pdev
, PCI_D3hot
);
1201 pci_disable_device(pdev
);
1203 mdev
->suspended
= true;
1208 static int mga_resume(struct drm_crtc
*crtc
)
1210 struct mga_crtc
*mga_crtc
= to_mga_crtc(crtc
);
1211 struct drm_device
*dev
= crtc
->dev
;
1212 struct mga_device
*mdev
= dev
->dev_private
;
1213 struct pci_dev
*pdev
= dev
->pdev
;
1216 if (!mdev
->suspended
)
1219 pci_set_power_state(pdev
, PCI_D0
);
1220 pci_enable_device(pdev
);
1222 /* Disable sysclk */
1223 pci_read_config_dword(pdev
, PCI_MGA_OPTION
, &option
);
1225 pci_write_config_dword(pdev
, PCI_MGA_OPTION
, option
);
1227 mdev
->suspended
= false;
1234 static void mga_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1236 struct drm_device
*dev
= crtc
->dev
;
1237 struct mga_device
*mdev
= dev
->dev_private
;
1238 u8 seq1
= 0, crtcext1
= 0;
1241 case DRM_MODE_DPMS_ON
:
1244 mga_crtc_load_lut(crtc
);
1246 case DRM_MODE_DPMS_STANDBY
:
1250 case DRM_MODE_DPMS_SUSPEND
:
1254 case DRM_MODE_DPMS_OFF
:
1261 if (mode
== DRM_MODE_DPMS_OFF
) {
1265 WREG8(MGAREG_SEQ_INDEX
, 0x01);
1266 seq1
|= RREG8(MGAREG_SEQ_DATA
) & ~0x20;
1267 mga_wait_vsync(mdev
);
1268 mga_wait_busy(mdev
);
1269 WREG8(MGAREG_SEQ_DATA
, seq1
);
1271 WREG8(MGAREG_CRTCEXT_INDEX
, 0x01);
1272 crtcext1
|= RREG8(MGAREG_CRTCEXT_DATA
) & ~0x30;
1273 WREG8(MGAREG_CRTCEXT_DATA
, crtcext1
);
1276 if (mode
== DRM_MODE_DPMS_ON
&& mdev
->suspended
== true) {
1278 drm_helper_resume_force_mode(dev
);
1284 * This is called before a mode is programmed. A typical use might be to
1285 * enable DPMS during the programming to avoid seeing intermediate stages,
1286 * but that's not relevant to us
1288 static void mga_crtc_prepare(struct drm_crtc
*crtc
)
1290 struct drm_device
*dev
= crtc
->dev
;
1291 struct mga_device
*mdev
= dev
->dev_private
;
1294 /* mga_resume(crtc);*/
1296 WREG8(MGAREG_CRTC_INDEX
, 0x11);
1297 tmp
= RREG8(MGAREG_CRTC_DATA
);
1298 WREG_CRT(0x11, tmp
| 0x80);
1300 if (mdev
->type
== G200_SE_A
|| mdev
->type
== G200_SE_B
) {
1306 WREG8(MGAREG_SEQ_INDEX
, 0x1);
1307 tmp
= RREG8(MGAREG_SEQ_DATA
);
1309 /* start sync reset */
1311 WREG_SEQ(1, tmp
| 0x20);
1314 if (mdev
->type
== G200_WB
|| mdev
->type
== G200_EW3
)
1315 mga_g200wb_prepare(crtc
);
1321 * This is called after a mode is programmed. It should reverse anything done
1322 * by the prepare function
1324 static void mga_crtc_commit(struct drm_crtc
*crtc
)
1326 struct drm_device
*dev
= crtc
->dev
;
1327 struct mga_device
*mdev
= dev
->dev_private
;
1328 const struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
1331 if (mdev
->type
== G200_WB
|| mdev
->type
== G200_EW3
)
1332 mga_g200wb_commit(crtc
);
1334 if (mdev
->type
== G200_SE_A
|| mdev
->type
== G200_SE_B
) {
1340 WREG8(MGAREG_SEQ_INDEX
, 0x1);
1341 tmp
= RREG8(MGAREG_SEQ_DATA
);
1347 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
1351 * The core can pass us a set of gamma values to program. We actually only
1352 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1353 * but it's a requirement that we provide the function
1355 static int mga_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
1356 u16
*blue
, uint32_t size
)
1358 struct mga_crtc
*mga_crtc
= to_mga_crtc(crtc
);
1361 for (i
= 0; i
< size
; i
++) {
1362 mga_crtc
->lut_r
[i
] = red
[i
] >> 8;
1363 mga_crtc
->lut_g
[i
] = green
[i
] >> 8;
1364 mga_crtc
->lut_b
[i
] = blue
[i
] >> 8;
1366 mga_crtc_load_lut(crtc
);
1371 /* Simple cleanup function */
1372 static void mga_crtc_destroy(struct drm_crtc
*crtc
)
1374 struct mga_crtc
*mga_crtc
= to_mga_crtc(crtc
);
1376 drm_crtc_cleanup(crtc
);
1380 static void mga_crtc_disable(struct drm_crtc
*crtc
)
1383 DRM_DEBUG_KMS("\n");
1384 mga_crtc_dpms(crtc
, DRM_MODE_DPMS_OFF
);
1385 if (crtc
->primary
->fb
) {
1386 struct mga_framebuffer
*mga_fb
= to_mga_framebuffer(crtc
->primary
->fb
);
1387 struct drm_gem_object
*obj
= mga_fb
->obj
;
1388 struct mgag200_bo
*bo
= gem_to_mga_bo(obj
);
1389 ret
= mgag200_bo_reserve(bo
, false);
1392 mgag200_bo_push_sysram(bo
);
1393 mgag200_bo_unreserve(bo
);
1395 crtc
->primary
->fb
= NULL
;
1398 /* These provide the minimum set of functions required to handle a CRTC */
1399 static const struct drm_crtc_funcs mga_crtc_funcs
= {
1400 .cursor_set
= mga_crtc_cursor_set
,
1401 .cursor_move
= mga_crtc_cursor_move
,
1402 .gamma_set
= mga_crtc_gamma_set
,
1403 .set_config
= drm_crtc_helper_set_config
,
1404 .destroy
= mga_crtc_destroy
,
1407 static const struct drm_crtc_helper_funcs mga_helper_funcs
= {
1408 .disable
= mga_crtc_disable
,
1409 .dpms
= mga_crtc_dpms
,
1410 .mode_set
= mga_crtc_mode_set
,
1411 .mode_set_base
= mga_crtc_mode_set_base
,
1412 .prepare
= mga_crtc_prepare
,
1413 .commit
= mga_crtc_commit
,
1414 .load_lut
= mga_crtc_load_lut
,
1418 static void mga_crtc_init(struct mga_device
*mdev
)
1420 struct mga_crtc
*mga_crtc
;
1423 mga_crtc
= kzalloc(sizeof(struct mga_crtc
) +
1424 (MGAG200FB_CONN_LIMIT
* sizeof(struct drm_connector
*)),
1427 if (mga_crtc
== NULL
)
1430 drm_crtc_init(mdev
->dev
, &mga_crtc
->base
, &mga_crtc_funcs
);
1432 drm_mode_crtc_set_gamma_size(&mga_crtc
->base
, MGAG200_LUT_SIZE
);
1433 mdev
->mode_info
.crtc
= mga_crtc
;
1435 for (i
= 0; i
< MGAG200_LUT_SIZE
; i
++) {
1436 mga_crtc
->lut_r
[i
] = i
;
1437 mga_crtc
->lut_g
[i
] = i
;
1438 mga_crtc
->lut_b
[i
] = i
;
1441 drm_crtc_helper_add(&mga_crtc
->base
, &mga_helper_funcs
);
1444 /** Sets the color ramps on behalf of fbcon */
1445 void mga_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
1446 u16 blue
, int regno
)
1448 struct mga_crtc
*mga_crtc
= to_mga_crtc(crtc
);
1450 mga_crtc
->lut_r
[regno
] = red
>> 8;
1451 mga_crtc
->lut_g
[regno
] = green
>> 8;
1452 mga_crtc
->lut_b
[regno
] = blue
>> 8;
1455 /** Gets the color ramps on behalf of fbcon */
1456 void mga_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
1457 u16
*blue
, int regno
)
1459 struct mga_crtc
*mga_crtc
= to_mga_crtc(crtc
);
1461 *red
= (u16
)mga_crtc
->lut_r
[regno
] << 8;
1462 *green
= (u16
)mga_crtc
->lut_g
[regno
] << 8;
1463 *blue
= (u16
)mga_crtc
->lut_b
[regno
] << 8;
1467 * The encoder comes after the CRTC in the output pipeline, but before
1468 * the connector. It's responsible for ensuring that the digital
1469 * stream is appropriately converted into the output format. Setup is
1470 * very simple in this case - all we have to do is inform qemu of the
1471 * colour depth in order to ensure that it displays appropriately
1475 * These functions are analagous to those in the CRTC code, but are intended
1476 * to handle any encoder-specific limitations
1478 static void mga_encoder_mode_set(struct drm_encoder
*encoder
,
1479 struct drm_display_mode
*mode
,
1480 struct drm_display_mode
*adjusted_mode
)
1485 static void mga_encoder_dpms(struct drm_encoder
*encoder
, int state
)
1490 static void mga_encoder_prepare(struct drm_encoder
*encoder
)
1494 static void mga_encoder_commit(struct drm_encoder
*encoder
)
1498 static void mga_encoder_destroy(struct drm_encoder
*encoder
)
1500 struct mga_encoder
*mga_encoder
= to_mga_encoder(encoder
);
1501 drm_encoder_cleanup(encoder
);
1505 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs
= {
1506 .dpms
= mga_encoder_dpms
,
1507 .mode_set
= mga_encoder_mode_set
,
1508 .prepare
= mga_encoder_prepare
,
1509 .commit
= mga_encoder_commit
,
1512 static const struct drm_encoder_funcs mga_encoder_encoder_funcs
= {
1513 .destroy
= mga_encoder_destroy
,
1516 static struct drm_encoder
*mga_encoder_init(struct drm_device
*dev
)
1518 struct drm_encoder
*encoder
;
1519 struct mga_encoder
*mga_encoder
;
1521 mga_encoder
= kzalloc(sizeof(struct mga_encoder
), GFP_KERNEL
);
1525 encoder
= &mga_encoder
->base
;
1526 encoder
->possible_crtcs
= 0x1;
1528 drm_encoder_init(dev
, encoder
, &mga_encoder_encoder_funcs
,
1529 DRM_MODE_ENCODER_DAC
, NULL
);
1530 drm_encoder_helper_add(encoder
, &mga_encoder_helper_funcs
);
1536 static int mga_vga_get_modes(struct drm_connector
*connector
)
1538 struct mga_connector
*mga_connector
= to_mga_connector(connector
);
1542 edid
= drm_get_edid(connector
, &mga_connector
->i2c
->adapter
);
1544 drm_mode_connector_update_edid_property(connector
, edid
);
1545 ret
= drm_add_edid_modes(connector
, edid
);
1551 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode
*mode
,
1554 uint32_t total_area
, divisor
;
1555 uint64_t active_area
, pixels_per_second
, bandwidth
;
1556 uint64_t bytes_per_pixel
= (bits_per_pixel
+ 7) / 8;
1560 if (!mode
->htotal
|| !mode
->vtotal
|| !mode
->clock
)
1563 active_area
= mode
->hdisplay
* mode
->vdisplay
;
1564 total_area
= mode
->htotal
* mode
->vtotal
;
1566 pixels_per_second
= active_area
* mode
->clock
* 1000;
1567 do_div(pixels_per_second
, total_area
);
1569 bandwidth
= pixels_per_second
* bytes_per_pixel
* 100;
1570 do_div(bandwidth
, divisor
);
1572 return (uint32_t)(bandwidth
);
1575 #define MODE_BANDWIDTH MODE_BAD
1577 static int mga_vga_mode_valid(struct drm_connector
*connector
,
1578 struct drm_display_mode
*mode
)
1580 struct drm_device
*dev
= connector
->dev
;
1581 struct mga_device
*mdev
= (struct mga_device
*)dev
->dev_private
;
1584 if (IS_G200_SE(mdev
)) {
1585 if (mdev
->unique_rev_id
== 0x01) {
1586 if (mode
->hdisplay
> 1600)
1587 return MODE_VIRTUAL_X
;
1588 if (mode
->vdisplay
> 1200)
1589 return MODE_VIRTUAL_Y
;
1590 if (mga_vga_calculate_mode_bandwidth(mode
, bpp
)
1592 return MODE_BANDWIDTH
;
1593 } else if (mdev
->unique_rev_id
== 0x02) {
1594 if (mode
->hdisplay
> 1920)
1595 return MODE_VIRTUAL_X
;
1596 if (mode
->vdisplay
> 1200)
1597 return MODE_VIRTUAL_Y
;
1598 if (mga_vga_calculate_mode_bandwidth(mode
, bpp
)
1600 return MODE_BANDWIDTH
;
1602 } else if (mdev
->type
== G200_WB
) {
1603 if (mode
->hdisplay
> 1280)
1604 return MODE_VIRTUAL_X
;
1605 if (mode
->vdisplay
> 1024)
1606 return MODE_VIRTUAL_Y
;
1607 if (mga_vga_calculate_mode_bandwidth(mode
,
1608 bpp
> (31877 * 1024)))
1609 return MODE_BANDWIDTH
;
1610 } else if (mdev
->type
== G200_EV
&&
1611 (mga_vga_calculate_mode_bandwidth(mode
, bpp
)
1612 > (32700 * 1024))) {
1613 return MODE_BANDWIDTH
;
1614 } else if (mdev
->type
== G200_EH
&&
1615 (mga_vga_calculate_mode_bandwidth(mode
, bpp
)
1616 > (37500 * 1024))) {
1617 return MODE_BANDWIDTH
;
1618 } else if (mdev
->type
== G200_ER
&&
1619 (mga_vga_calculate_mode_bandwidth(mode
,
1620 bpp
) > (55000 * 1024))) {
1621 return MODE_BANDWIDTH
;
1624 if ((mode
->hdisplay
% 8) != 0 || (mode
->hsync_start
% 8) != 0 ||
1625 (mode
->hsync_end
% 8) != 0 || (mode
->htotal
% 8) != 0) {
1626 return MODE_H_ILLEGAL
;
1629 if (mode
->crtc_hdisplay
> 2048 || mode
->crtc_hsync_start
> 4096 ||
1630 mode
->crtc_hsync_end
> 4096 || mode
->crtc_htotal
> 4096 ||
1631 mode
->crtc_vdisplay
> 2048 || mode
->crtc_vsync_start
> 4096 ||
1632 mode
->crtc_vsync_end
> 4096 || mode
->crtc_vtotal
> 4096) {
1636 /* Validate the mode input by the user */
1637 if (connector
->cmdline_mode
.specified
) {
1638 if (connector
->cmdline_mode
.bpp_specified
)
1639 bpp
= connector
->cmdline_mode
.bpp
;
1642 if ((mode
->hdisplay
* mode
->vdisplay
* (bpp
/8)) > mdev
->mc
.vram_size
) {
1643 if (connector
->cmdline_mode
.specified
)
1644 connector
->cmdline_mode
.specified
= false;
1651 static struct drm_encoder
*mga_connector_best_encoder(struct drm_connector
1654 int enc_id
= connector
->encoder_ids
[0];
1655 /* pick the encoder ids */
1657 return drm_encoder_find(connector
->dev
, enc_id
);
1661 static enum drm_connector_status
mga_vga_detect(struct drm_connector
1662 *connector
, bool force
)
1664 return connector_status_connected
;
1667 static void mga_connector_destroy(struct drm_connector
*connector
)
1669 struct mga_connector
*mga_connector
= to_mga_connector(connector
);
1670 mgag200_i2c_destroy(mga_connector
->i2c
);
1671 drm_connector_cleanup(connector
);
1675 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs
= {
1676 .get_modes
= mga_vga_get_modes
,
1677 .mode_valid
= mga_vga_mode_valid
,
1678 .best_encoder
= mga_connector_best_encoder
,
1681 static const struct drm_connector_funcs mga_vga_connector_funcs
= {
1682 .dpms
= drm_helper_connector_dpms
,
1683 .detect
= mga_vga_detect
,
1684 .fill_modes
= drm_helper_probe_single_connector_modes
,
1685 .destroy
= mga_connector_destroy
,
1688 static struct drm_connector
*mga_vga_init(struct drm_device
*dev
)
1690 struct drm_connector
*connector
;
1691 struct mga_connector
*mga_connector
;
1693 mga_connector
= kzalloc(sizeof(struct mga_connector
), GFP_KERNEL
);
1697 connector
= &mga_connector
->base
;
1699 drm_connector_init(dev
, connector
,
1700 &mga_vga_connector_funcs
, DRM_MODE_CONNECTOR_VGA
);
1702 drm_connector_helper_add(connector
, &mga_vga_connector_helper_funcs
);
1704 drm_connector_register(connector
);
1706 mga_connector
->i2c
= mgag200_i2c_create(dev
);
1707 if (!mga_connector
->i2c
)
1708 DRM_ERROR("failed to add ddc bus\n");
1714 int mgag200_modeset_init(struct mga_device
*mdev
)
1716 struct drm_encoder
*encoder
;
1717 struct drm_connector
*connector
;
1720 mdev
->mode_info
.mode_config_initialized
= true;
1722 mdev
->dev
->mode_config
.max_width
= MGAG200_MAX_FB_WIDTH
;
1723 mdev
->dev
->mode_config
.max_height
= MGAG200_MAX_FB_HEIGHT
;
1725 mdev
->dev
->mode_config
.fb_base
= mdev
->mc
.vram_base
;
1727 mga_crtc_init(mdev
);
1729 encoder
= mga_encoder_init(mdev
->dev
);
1731 DRM_ERROR("mga_encoder_init failed\n");
1735 connector
= mga_vga_init(mdev
->dev
);
1737 DRM_ERROR("mga_vga_init failed\n");
1741 drm_mode_connector_attach_encoder(connector
, encoder
);
1743 ret
= mgag200_fbdev_init(mdev
);
1745 DRM_ERROR("mga_fbdev_init failed\n");
1752 void mgag200_modeset_fini(struct mga_device
*mdev
)