Linux 4.9.243
[linux/fpc-iii.git] / drivers / gpu / drm / mgag200 / mgag200_mode.c
blob6b21cb27e1cc77fe0476017c26676c786c5bca8f
1 /*
2 * Copyright 2010 Matt Turner.
3 * Copyright 2012 Red Hat
5 * This file is subject to the terms and conditions of the GNU General
6 * Public License version 2. See the file COPYING in the main
7 * directory of this archive for more details.
9 * Authors: Matthew Garrett
10 * Matt Turner
11 * Dave Airlie
14 #include <linux/delay.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <drm/drm_plane_helper.h>
20 #include "mgag200_drv.h"
22 #define MGAG200_LUT_SIZE 256
25 * This file contains setup code for the CRTC.
28 static void mga_crtc_load_lut(struct drm_crtc *crtc)
30 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 struct drm_device *dev = crtc->dev;
32 struct mga_device *mdev = dev->dev_private;
33 struct drm_framebuffer *fb = crtc->primary->fb;
34 int i;
36 if (!crtc->enabled)
37 return;
39 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
41 if (fb && fb->bits_per_pixel == 16) {
42 int inc = (fb->depth == 15) ? 8 : 4;
43 u8 r, b;
44 for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
45 if (fb->depth == 16) {
46 if (i > (MGAG200_LUT_SIZE >> 1)) {
47 r = b = 0;
48 } else {
49 r = mga_crtc->lut_r[i << 1];
50 b = mga_crtc->lut_b[i << 1];
52 } else {
53 r = mga_crtc->lut_r[i];
54 b = mga_crtc->lut_b[i];
56 /* VGA registers */
57 WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
58 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
59 WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
61 return;
63 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
64 /* VGA registers */
65 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
66 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
67 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
71 static inline void mga_wait_vsync(struct mga_device *mdev)
73 unsigned long timeout = jiffies + HZ/10;
74 unsigned int status = 0;
76 do {
77 status = RREG32(MGAREG_Status);
78 } while ((status & 0x08) && time_before(jiffies, timeout));
79 timeout = jiffies + HZ/10;
80 status = 0;
81 do {
82 status = RREG32(MGAREG_Status);
83 } while (!(status & 0x08) && time_before(jiffies, timeout));
86 static inline void mga_wait_busy(struct mga_device *mdev)
88 unsigned long timeout = jiffies + HZ;
89 unsigned int status = 0;
90 do {
91 status = RREG8(MGAREG_Status + 2);
92 } while ((status & 0x01) && time_before(jiffies, timeout));
95 #define P_ARRAY_SIZE 9
97 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
99 unsigned int vcomax, vcomin, pllreffreq;
100 unsigned int delta, tmpdelta, permitteddelta;
101 unsigned int testp, testm, testn;
102 unsigned int p, m, n;
103 unsigned int computed;
104 unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
105 unsigned int fvv;
106 unsigned int i;
108 if (mdev->unique_rev_id <= 0x03) {
110 m = n = p = 0;
111 vcomax = 320000;
112 vcomin = 160000;
113 pllreffreq = 25000;
115 delta = 0xffffffff;
116 permitteddelta = clock * 5 / 1000;
118 for (testp = 8; testp > 0; testp /= 2) {
119 if (clock * testp > vcomax)
120 continue;
121 if (clock * testp < vcomin)
122 continue;
124 for (testn = 17; testn < 256; testn++) {
125 for (testm = 1; testm < 32; testm++) {
126 computed = (pllreffreq * testn) /
127 (testm * testp);
128 if (computed > clock)
129 tmpdelta = computed - clock;
130 else
131 tmpdelta = clock - computed;
132 if (tmpdelta < delta) {
133 delta = tmpdelta;
134 m = testm - 1;
135 n = testn - 1;
136 p = testp - 1;
141 } else {
144 m = n = p = 0;
145 vcomax = 1600000;
146 vcomin = 800000;
147 pllreffreq = 25000;
149 if (clock < 25000)
150 clock = 25000;
152 clock = clock * 2;
154 delta = 0xFFFFFFFF;
155 /* Permited delta is 0.5% as VESA Specification */
156 permitteddelta = clock * 5 / 1000;
158 for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
159 testp = pvalues_e4[i];
161 if ((clock * testp) > vcomax)
162 continue;
163 if ((clock * testp) < vcomin)
164 continue;
166 for (testn = 50; testn <= 256; testn++) {
167 for (testm = 1; testm <= 32; testm++) {
168 computed = (pllreffreq * testn) /
169 (testm * testp);
170 if (computed > clock)
171 tmpdelta = computed - clock;
172 else
173 tmpdelta = clock - computed;
175 if (tmpdelta < delta) {
176 delta = tmpdelta;
177 m = testm - 1;
178 n = testn - 1;
179 p = testp - 1;
185 fvv = pllreffreq * (n + 1) / (m + 1);
186 fvv = (fvv - 800000) / 50000;
188 if (fvv > 15)
189 fvv = 15;
191 p |= (fvv << 4);
192 m |= 0x80;
194 clock = clock / 2;
197 if (delta > permitteddelta) {
198 printk(KERN_WARNING "PLL delta too large\n");
199 return 1;
202 WREG_DAC(MGA1064_PIX_PLLC_M, m);
203 WREG_DAC(MGA1064_PIX_PLLC_N, n);
204 WREG_DAC(MGA1064_PIX_PLLC_P, p);
206 if (mdev->unique_rev_id >= 0x04) {
207 WREG_DAC(0x1a, 0x09);
208 msleep(20);
209 WREG_DAC(0x1a, 0x01);
213 return 0;
216 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
218 unsigned int vcomax, vcomin, pllreffreq;
219 unsigned int delta, tmpdelta;
220 unsigned int testp, testm, testn, testp2;
221 unsigned int p, m, n;
222 unsigned int computed;
223 int i, j, tmpcount, vcount;
224 bool pll_locked = false;
225 u8 tmp;
227 m = n = p = 0;
229 delta = 0xffffffff;
231 if (mdev->type == G200_EW3) {
233 vcomax = 800000;
234 vcomin = 400000;
235 pllreffreq = 25000;
237 for (testp = 1; testp < 8; testp++) {
238 for (testp2 = 1; testp2 < 8; testp2++) {
239 if (testp < testp2)
240 continue;
241 if ((clock * testp * testp2) > vcomax)
242 continue;
243 if ((clock * testp * testp2) < vcomin)
244 continue;
245 for (testm = 1; testm < 26; testm++) {
246 for (testn = 32; testn < 2048 ; testn++) {
247 computed = (pllreffreq * testn) /
248 (testm * testp * testp2);
249 if (computed > clock)
250 tmpdelta = computed - clock;
251 else
252 tmpdelta = clock - computed;
253 if (tmpdelta < delta) {
254 delta = tmpdelta;
255 m = ((testn & 0x100) >> 1) |
256 (testm);
257 n = (testn & 0xFF);
258 p = ((testn & 0x600) >> 3) |
259 (testp2 << 3) |
260 (testp);
266 } else {
268 vcomax = 550000;
269 vcomin = 150000;
270 pllreffreq = 48000;
272 for (testp = 1; testp < 9; testp++) {
273 if (clock * testp > vcomax)
274 continue;
275 if (clock * testp < vcomin)
276 continue;
278 for (testm = 1; testm < 17; testm++) {
279 for (testn = 1; testn < 151; testn++) {
280 computed = (pllreffreq * testn) /
281 (testm * testp);
282 if (computed > clock)
283 tmpdelta = computed - clock;
284 else
285 tmpdelta = clock - computed;
286 if (tmpdelta < delta) {
287 delta = tmpdelta;
288 n = testn - 1;
289 m = (testm - 1) |
290 ((n >> 1) & 0x80);
291 p = testp - 1;
298 for (i = 0; i <= 32 && pll_locked == false; i++) {
299 if (i > 0) {
300 WREG8(MGAREG_CRTC_INDEX, 0x1e);
301 tmp = RREG8(MGAREG_CRTC_DATA);
302 if (tmp < 0xff)
303 WREG8(MGAREG_CRTC_DATA, tmp+1);
306 /* set pixclkdis to 1 */
307 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
308 tmp = RREG8(DAC_DATA);
309 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
310 WREG8(DAC_DATA, tmp);
312 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
313 tmp = RREG8(DAC_DATA);
314 tmp |= MGA1064_REMHEADCTL_CLKDIS;
315 WREG8(DAC_DATA, tmp);
317 /* select PLL Set C */
318 tmp = RREG8(MGAREG_MEM_MISC_READ);
319 tmp |= 0x3 << 2;
320 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
322 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
323 tmp = RREG8(DAC_DATA);
324 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
325 WREG8(DAC_DATA, tmp);
327 udelay(500);
329 /* reset the PLL */
330 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
331 tmp = RREG8(DAC_DATA);
332 tmp &= ~0x04;
333 WREG8(DAC_DATA, tmp);
335 udelay(50);
337 /* program pixel pll register */
338 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
339 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
340 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
342 udelay(50);
344 /* turn pll on */
345 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
346 tmp = RREG8(DAC_DATA);
347 tmp |= 0x04;
348 WREG_DAC(MGA1064_VREF_CTL, tmp);
350 udelay(500);
352 /* select the pixel pll */
353 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
354 tmp = RREG8(DAC_DATA);
355 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
356 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
357 WREG8(DAC_DATA, tmp);
359 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
360 tmp = RREG8(DAC_DATA);
361 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
362 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
363 WREG8(DAC_DATA, tmp);
365 /* reset dotclock rate bit */
366 WREG8(MGAREG_SEQ_INDEX, 1);
367 tmp = RREG8(MGAREG_SEQ_DATA);
368 tmp &= ~0x8;
369 WREG8(MGAREG_SEQ_DATA, tmp);
371 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
372 tmp = RREG8(DAC_DATA);
373 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
374 WREG8(DAC_DATA, tmp);
376 vcount = RREG8(MGAREG_VCOUNT);
378 for (j = 0; j < 30 && pll_locked == false; j++) {
379 tmpcount = RREG8(MGAREG_VCOUNT);
380 if (tmpcount < vcount)
381 vcount = 0;
382 if ((tmpcount - vcount) > 2)
383 pll_locked = true;
384 else
385 udelay(5);
388 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
389 tmp = RREG8(DAC_DATA);
390 tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
391 WREG_DAC(MGA1064_REMHEADCTL, tmp);
392 return 0;
395 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
397 unsigned int vcomax, vcomin, pllreffreq;
398 unsigned int delta, tmpdelta;
399 unsigned int testp, testm, testn;
400 unsigned int p, m, n;
401 unsigned int computed;
402 u8 tmp;
404 m = n = p = 0;
405 vcomax = 550000;
406 vcomin = 150000;
407 pllreffreq = 50000;
409 delta = 0xffffffff;
411 for (testp = 16; testp > 0; testp--) {
412 if (clock * testp > vcomax)
413 continue;
414 if (clock * testp < vcomin)
415 continue;
417 for (testn = 1; testn < 257; testn++) {
418 for (testm = 1; testm < 17; testm++) {
419 computed = (pllreffreq * testn) /
420 (testm * testp);
421 if (computed > clock)
422 tmpdelta = computed - clock;
423 else
424 tmpdelta = clock - computed;
425 if (tmpdelta < delta) {
426 delta = tmpdelta;
427 n = testn - 1;
428 m = testm - 1;
429 p = testp - 1;
435 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
436 tmp = RREG8(DAC_DATA);
437 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
438 WREG8(DAC_DATA, tmp);
440 tmp = RREG8(MGAREG_MEM_MISC_READ);
441 tmp |= 0x3 << 2;
442 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
444 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
445 tmp = RREG8(DAC_DATA);
446 WREG8(DAC_DATA, tmp & ~0x40);
448 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
449 tmp = RREG8(DAC_DATA);
450 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
451 WREG8(DAC_DATA, tmp);
453 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
454 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
455 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
457 udelay(50);
459 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
460 tmp = RREG8(DAC_DATA);
461 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
462 WREG8(DAC_DATA, tmp);
464 udelay(500);
466 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
467 tmp = RREG8(DAC_DATA);
468 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
469 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
470 WREG8(DAC_DATA, tmp);
472 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
473 tmp = RREG8(DAC_DATA);
474 WREG8(DAC_DATA, tmp | 0x40);
476 tmp = RREG8(MGAREG_MEM_MISC_READ);
477 tmp |= (0x3 << 2);
478 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
480 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
481 tmp = RREG8(DAC_DATA);
482 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
483 WREG8(DAC_DATA, tmp);
485 return 0;
488 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
490 unsigned int vcomax, vcomin, pllreffreq;
491 unsigned int delta, tmpdelta;
492 unsigned int testp, testm, testn;
493 unsigned int p, m, n;
494 unsigned int computed;
495 int i, j, tmpcount, vcount;
496 u8 tmp;
497 bool pll_locked = false;
499 m = n = p = 0;
500 vcomax = 800000;
501 vcomin = 400000;
502 pllreffreq = 33333;
504 delta = 0xffffffff;
506 for (testp = 16; testp > 0; testp >>= 1) {
507 if (clock * testp > vcomax)
508 continue;
509 if (clock * testp < vcomin)
510 continue;
512 for (testm = 1; testm < 33; testm++) {
513 for (testn = 17; testn < 257; testn++) {
514 computed = (pllreffreq * testn) /
515 (testm * testp);
516 if (computed > clock)
517 tmpdelta = computed - clock;
518 else
519 tmpdelta = clock - computed;
520 if (tmpdelta < delta) {
521 delta = tmpdelta;
522 n = testn - 1;
523 m = (testm - 1);
524 p = testp - 1;
526 if ((clock * testp) >= 600000)
527 p |= 0x80;
531 for (i = 0; i <= 32 && pll_locked == false; i++) {
532 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
533 tmp = RREG8(DAC_DATA);
534 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
535 WREG8(DAC_DATA, tmp);
537 tmp = RREG8(MGAREG_MEM_MISC_READ);
538 tmp |= 0x3 << 2;
539 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
541 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
542 tmp = RREG8(DAC_DATA);
543 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
544 WREG8(DAC_DATA, tmp);
546 udelay(500);
548 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
549 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
550 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
552 udelay(500);
554 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
555 tmp = RREG8(DAC_DATA);
556 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
557 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
558 WREG8(DAC_DATA, tmp);
560 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
561 tmp = RREG8(DAC_DATA);
562 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
563 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
564 WREG8(DAC_DATA, tmp);
566 vcount = RREG8(MGAREG_VCOUNT);
568 for (j = 0; j < 30 && pll_locked == false; j++) {
569 tmpcount = RREG8(MGAREG_VCOUNT);
570 if (tmpcount < vcount)
571 vcount = 0;
572 if ((tmpcount - vcount) > 2)
573 pll_locked = true;
574 else
575 udelay(5);
579 return 0;
582 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
584 unsigned int vcomax, vcomin, pllreffreq;
585 unsigned int delta, tmpdelta;
586 int testr, testn, testm, testo;
587 unsigned int p, m, n;
588 unsigned int computed, vco;
589 int tmp;
590 const unsigned int m_div_val[] = { 1, 2, 4, 8 };
592 m = n = p = 0;
593 vcomax = 1488000;
594 vcomin = 1056000;
595 pllreffreq = 48000;
597 delta = 0xffffffff;
599 for (testr = 0; testr < 4; testr++) {
600 if (delta == 0)
601 break;
602 for (testn = 5; testn < 129; testn++) {
603 if (delta == 0)
604 break;
605 for (testm = 3; testm >= 0; testm--) {
606 if (delta == 0)
607 break;
608 for (testo = 5; testo < 33; testo++) {
609 vco = pllreffreq * (testn + 1) /
610 (testr + 1);
611 if (vco < vcomin)
612 continue;
613 if (vco > vcomax)
614 continue;
615 computed = vco / (m_div_val[testm] * (testo + 1));
616 if (computed > clock)
617 tmpdelta = computed - clock;
618 else
619 tmpdelta = clock - computed;
620 if (tmpdelta < delta) {
621 delta = tmpdelta;
622 m = testm | (testo << 3);
623 n = testn;
624 p = testr | (testr << 3);
631 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
632 tmp = RREG8(DAC_DATA);
633 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
634 WREG8(DAC_DATA, tmp);
636 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
637 tmp = RREG8(DAC_DATA);
638 tmp |= MGA1064_REMHEADCTL_CLKDIS;
639 WREG8(DAC_DATA, tmp);
641 tmp = RREG8(MGAREG_MEM_MISC_READ);
642 tmp |= (0x3<<2) | 0xc0;
643 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
645 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
646 tmp = RREG8(DAC_DATA);
647 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
648 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
649 WREG8(DAC_DATA, tmp);
651 udelay(500);
653 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
654 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
655 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
657 udelay(50);
659 return 0;
662 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
664 switch(mdev->type) {
665 case G200_SE_A:
666 case G200_SE_B:
667 return mga_g200se_set_plls(mdev, clock);
668 break;
669 case G200_WB:
670 case G200_EW3:
671 return mga_g200wb_set_plls(mdev, clock);
672 break;
673 case G200_EV:
674 return mga_g200ev_set_plls(mdev, clock);
675 break;
676 case G200_EH:
677 return mga_g200eh_set_plls(mdev, clock);
678 break;
679 case G200_ER:
680 return mga_g200er_set_plls(mdev, clock);
681 break;
683 return 0;
686 static void mga_g200wb_prepare(struct drm_crtc *crtc)
688 struct mga_device *mdev = crtc->dev->dev_private;
689 u8 tmp;
690 int iter_max;
692 /* 1- The first step is to warn the BMC of an upcoming mode change.
693 * We are putting the misc<0> to output.*/
695 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
696 tmp = RREG8(DAC_DATA);
697 tmp |= 0x10;
698 WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
700 /* we are putting a 1 on the misc<0> line */
701 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
702 tmp = RREG8(DAC_DATA);
703 tmp |= 0x10;
704 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
706 /* 2- Second step to mask and further scan request
707 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
709 WREG8(DAC_INDEX, MGA1064_SPAREREG);
710 tmp = RREG8(DAC_DATA);
711 tmp |= 0x80;
712 WREG_DAC(MGA1064_SPAREREG, tmp);
714 /* 3a- the third step is to verifu if there is an active scan
715 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
717 iter_max = 300;
718 while (!(tmp & 0x1) && iter_max) {
719 WREG8(DAC_INDEX, MGA1064_SPAREREG);
720 tmp = RREG8(DAC_DATA);
721 udelay(1000);
722 iter_max--;
725 /* 3b- this step occurs only if the remove is actually scanning
726 * we are waiting for the end of the frame which is a 1 on
727 * remvsyncsts (XSPAREREG<1>)
729 if (iter_max) {
730 iter_max = 300;
731 while ((tmp & 0x2) && iter_max) {
732 WREG8(DAC_INDEX, MGA1064_SPAREREG);
733 tmp = RREG8(DAC_DATA);
734 udelay(1000);
735 iter_max--;
740 static void mga_g200wb_commit(struct drm_crtc *crtc)
742 u8 tmp;
743 struct mga_device *mdev = crtc->dev->dev_private;
745 /* 1- The first step is to ensure that the vrsten and hrsten are set */
746 WREG8(MGAREG_CRTCEXT_INDEX, 1);
747 tmp = RREG8(MGAREG_CRTCEXT_DATA);
748 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
750 /* 2- second step is to assert the rstlvl2 */
751 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
752 tmp = RREG8(DAC_DATA);
753 tmp |= 0x8;
754 WREG8(DAC_DATA, tmp);
756 /* wait 10 us */
757 udelay(10);
759 /* 3- deassert rstlvl2 */
760 tmp &= ~0x08;
761 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
762 WREG8(DAC_DATA, tmp);
764 /* 4- remove mask of scan request */
765 WREG8(DAC_INDEX, MGA1064_SPAREREG);
766 tmp = RREG8(DAC_DATA);
767 tmp &= ~0x80;
768 WREG8(DAC_DATA, tmp);
770 /* 5- put back a 0 on the misc<0> line */
771 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
772 tmp = RREG8(DAC_DATA);
773 tmp &= ~0x10;
774 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
778 This is how the framebuffer base address is stored in g200 cards:
779 * Assume @offset is the gpu_addr variable of the framebuffer object
780 * Then addr is the number of _pixels_ (not bytes) from the start of
781 VRAM to the first pixel we want to display. (divided by 2 for 32bit
782 framebuffers)
783 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
784 addr<20> -> CRTCEXT0<6>
785 addr<19-16> -> CRTCEXT0<3-0>
786 addr<15-8> -> CRTCC<7-0>
787 addr<7-0> -> CRTCD<7-0>
788 CRTCEXT0 has to be programmed last to trigger an update and make the
789 new addr variable take effect.
791 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
793 struct mga_device *mdev = crtc->dev->dev_private;
794 u32 addr;
795 int count;
796 u8 crtcext0;
798 while (RREG8(0x1fda) & 0x08);
799 while (!(RREG8(0x1fda) & 0x08));
801 count = RREG8(MGAREG_VCOUNT) + 2;
802 while (RREG8(MGAREG_VCOUNT) < count);
804 WREG8(MGAREG_CRTCEXT_INDEX, 0);
805 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
806 crtcext0 &= 0xB0;
807 addr = offset / 8;
808 /* Can't store addresses any higher than that...
809 but we also don't have more than 16MB of memory, so it should be fine. */
810 WARN_ON(addr > 0x1fffff);
811 crtcext0 |= (!!(addr & (1<<20)))<<6;
812 WREG_CRT(0x0d, (u8)(addr & 0xff));
813 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
814 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
818 /* ast is different - we will force move buffers out of VRAM */
819 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
820 struct drm_framebuffer *fb,
821 int x, int y, int atomic)
823 struct mga_device *mdev = crtc->dev->dev_private;
824 struct drm_gem_object *obj;
825 struct mga_framebuffer *mga_fb;
826 struct mgag200_bo *bo;
827 int ret;
828 u64 gpu_addr;
830 /* push the previous fb to system ram */
831 if (!atomic && fb) {
832 mga_fb = to_mga_framebuffer(fb);
833 obj = mga_fb->obj;
834 bo = gem_to_mga_bo(obj);
835 ret = mgag200_bo_reserve(bo, false);
836 if (ret)
837 return ret;
838 mgag200_bo_push_sysram(bo);
839 mgag200_bo_unreserve(bo);
842 mga_fb = to_mga_framebuffer(crtc->primary->fb);
843 obj = mga_fb->obj;
844 bo = gem_to_mga_bo(obj);
846 ret = mgag200_bo_reserve(bo, false);
847 if (ret)
848 return ret;
850 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
851 if (ret) {
852 mgag200_bo_unreserve(bo);
853 return ret;
856 if (&mdev->mfbdev->mfb == mga_fb) {
857 /* if pushing console in kmap it */
858 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
859 if (ret)
860 DRM_ERROR("failed to kmap fbcon\n");
863 mgag200_bo_unreserve(bo);
865 mga_set_start_address(crtc, (u32)gpu_addr);
867 return 0;
870 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
871 struct drm_framebuffer *old_fb)
873 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
876 static int mga_crtc_mode_set(struct drm_crtc *crtc,
877 struct drm_display_mode *mode,
878 struct drm_display_mode *adjusted_mode,
879 int x, int y, struct drm_framebuffer *old_fb)
881 struct drm_device *dev = crtc->dev;
882 struct mga_device *mdev = dev->dev_private;
883 int hdisplay, hsyncstart, hsyncend, htotal;
884 int vdisplay, vsyncstart, vsyncend, vtotal;
885 int pitch;
886 int option = 0, option2 = 0;
887 int i;
888 unsigned char misc = 0;
889 unsigned char ext_vga[6];
890 u8 bppshift;
892 static unsigned char dacvalue[] = {
893 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
894 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
895 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
896 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
897 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
898 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
899 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
900 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
901 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
902 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
905 bppshift = mdev->bpp_shifts[(crtc->primary->fb->bits_per_pixel >> 3) - 1];
907 switch (mdev->type) {
908 case G200_SE_A:
909 case G200_SE_B:
910 dacvalue[MGA1064_VREF_CTL] = 0x03;
911 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
912 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
913 MGA1064_MISC_CTL_VGA8 |
914 MGA1064_MISC_CTL_DAC_RAM_CS;
915 if (mdev->has_sdram)
916 option = 0x40049120;
917 else
918 option = 0x4004d120;
919 option2 = 0x00008000;
920 break;
921 case G200_WB:
922 case G200_EW3:
923 dacvalue[MGA1064_VREF_CTL] = 0x07;
924 option = 0x41049120;
925 option2 = 0x0000b000;
926 break;
927 case G200_EV:
928 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
929 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
930 MGA1064_MISC_CTL_DAC_RAM_CS;
931 option = 0x00000120;
932 option2 = 0x0000b000;
933 break;
934 case G200_EH:
935 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
936 MGA1064_MISC_CTL_DAC_RAM_CS;
937 option = 0x00000120;
938 option2 = 0x0000b000;
939 break;
940 case G200_ER:
941 break;
944 switch (crtc->primary->fb->bits_per_pixel) {
945 case 8:
946 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
947 break;
948 case 16:
949 if (crtc->primary->fb->depth == 15)
950 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
951 else
952 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
953 break;
954 case 24:
955 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
956 break;
957 case 32:
958 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
959 break;
962 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
963 misc |= 0x40;
964 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
965 misc |= 0x80;
968 for (i = 0; i < sizeof(dacvalue); i++) {
969 if ((i <= 0x17) ||
970 (i == 0x1b) ||
971 (i == 0x1c) ||
972 ((i >= 0x1f) && (i <= 0x29)) ||
973 ((i >= 0x30) && (i <= 0x37)))
974 continue;
975 if (IS_G200_SE(mdev) &&
976 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
977 continue;
978 if ((mdev->type == G200_EV ||
979 mdev->type == G200_WB ||
980 mdev->type == G200_EH ||
981 mdev->type == G200_EW3) &&
982 (i >= 0x44) && (i <= 0x4e))
983 continue;
985 WREG_DAC(i, dacvalue[i]);
988 if (mdev->type == G200_ER)
989 WREG_DAC(0x90, 0);
991 if (option)
992 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
993 if (option2)
994 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
996 WREG_SEQ(2, 0xf);
997 WREG_SEQ(3, 0);
998 WREG_SEQ(4, 0xe);
1000 pitch = crtc->primary->fb->pitches[0] / (crtc->primary->fb->bits_per_pixel / 8);
1001 if (crtc->primary->fb->bits_per_pixel == 24)
1002 pitch = (pitch * 3) >> (4 - bppshift);
1003 else
1004 pitch = pitch >> (4 - bppshift);
1006 hdisplay = mode->hdisplay / 8 - 1;
1007 hsyncstart = mode->hsync_start / 8 - 1;
1008 hsyncend = mode->hsync_end / 8 - 1;
1009 htotal = mode->htotal / 8 - 1;
1011 /* Work around hardware quirk */
1012 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1013 htotal++;
1015 vdisplay = mode->vdisplay - 1;
1016 vsyncstart = mode->vsync_start - 1;
1017 vsyncend = mode->vsync_end - 1;
1018 vtotal = mode->vtotal - 2;
1020 WREG_GFX(0, 0);
1021 WREG_GFX(1, 0);
1022 WREG_GFX(2, 0);
1023 WREG_GFX(3, 0);
1024 WREG_GFX(4, 0);
1025 WREG_GFX(5, 0x40);
1026 WREG_GFX(6, 0x5);
1027 WREG_GFX(7, 0xf);
1028 WREG_GFX(8, 0xf);
1030 WREG_CRT(0, htotal - 4);
1031 WREG_CRT(1, hdisplay);
1032 WREG_CRT(2, hdisplay);
1033 WREG_CRT(3, (htotal & 0x1F) | 0x80);
1034 WREG_CRT(4, hsyncstart);
1035 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1036 WREG_CRT(6, vtotal & 0xFF);
1037 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1038 ((vdisplay & 0x100) >> 7) |
1039 ((vsyncstart & 0x100) >> 6) |
1040 ((vdisplay & 0x100) >> 5) |
1041 ((vdisplay & 0x100) >> 4) | /* linecomp */
1042 ((vtotal & 0x200) >> 4)|
1043 ((vdisplay & 0x200) >> 3) |
1044 ((vsyncstart & 0x200) >> 2));
1045 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1046 ((vdisplay & 0x200) >> 3));
1047 WREG_CRT(10, 0);
1048 WREG_CRT(11, 0);
1049 WREG_CRT(12, 0);
1050 WREG_CRT(13, 0);
1051 WREG_CRT(14, 0);
1052 WREG_CRT(15, 0);
1053 WREG_CRT(16, vsyncstart & 0xFF);
1054 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1055 WREG_CRT(18, vdisplay & 0xFF);
1056 WREG_CRT(19, pitch & 0xFF);
1057 WREG_CRT(20, 0);
1058 WREG_CRT(21, vdisplay & 0xFF);
1059 WREG_CRT(22, (vtotal + 1) & 0xFF);
1060 WREG_CRT(23, 0xc3);
1061 WREG_CRT(24, vdisplay & 0xFF);
1063 ext_vga[0] = 0;
1064 ext_vga[5] = 0;
1066 /* TODO interlace */
1068 ext_vga[0] |= (pitch & 0x300) >> 4;
1069 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1070 ((hdisplay & 0x100) >> 7) |
1071 ((hsyncstart & 0x100) >> 6) |
1072 (htotal & 0x40);
1073 ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1074 ((vdisplay & 0x400) >> 8) |
1075 ((vdisplay & 0xc00) >> 7) |
1076 ((vsyncstart & 0xc00) >> 5) |
1077 ((vdisplay & 0x400) >> 3);
1078 if (crtc->primary->fb->bits_per_pixel == 24)
1079 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1080 else
1081 ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1082 ext_vga[4] = 0;
1083 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1084 ext_vga[1] |= 0x88;
1086 /* Set pixel clocks */
1087 misc = 0x2d;
1088 WREG8(MGA_MISC_OUT, misc);
1090 mga_crtc_set_plls(mdev, mode->clock);
1092 for (i = 0; i < 6; i++) {
1093 WREG_ECRT(i, ext_vga[i]);
1096 if (mdev->type == G200_ER)
1097 WREG_ECRT(0x24, 0x5);
1099 if (mdev->type == G200_EW3)
1100 WREG_ECRT(0x34, 0x5);
1102 if (mdev->type == G200_EV) {
1103 WREG_ECRT(6, 0);
1106 WREG_ECRT(0, ext_vga[0]);
1107 /* Enable mga pixel clock */
1108 misc = 0x2d;
1110 WREG8(MGA_MISC_OUT, misc);
1112 if (adjusted_mode)
1113 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1115 mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1117 /* reset tagfifo */
1118 if (mdev->type == G200_ER) {
1119 u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1120 u8 seq1;
1122 /* screen off */
1123 WREG8(MGAREG_SEQ_INDEX, 0x01);
1124 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1125 WREG8(MGAREG_SEQ_DATA, seq1);
1127 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1128 udelay(1000);
1129 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1131 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1135 if (IS_G200_SE(mdev)) {
1136 if (mdev->unique_rev_id >= 0x02) {
1137 u8 hi_pri_lvl;
1138 u32 bpp;
1139 u32 mb;
1141 if (crtc->primary->fb->bits_per_pixel > 16)
1142 bpp = 32;
1143 else if (crtc->primary->fb->bits_per_pixel > 8)
1144 bpp = 16;
1145 else
1146 bpp = 8;
1148 mb = (mode->clock * bpp) / 1000;
1149 if (mb > 3100)
1150 hi_pri_lvl = 0;
1151 else if (mb > 2600)
1152 hi_pri_lvl = 1;
1153 else if (mb > 1900)
1154 hi_pri_lvl = 2;
1155 else if (mb > 1160)
1156 hi_pri_lvl = 3;
1157 else if (mb > 440)
1158 hi_pri_lvl = 4;
1159 else
1160 hi_pri_lvl = 5;
1162 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1163 WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1164 } else {
1165 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1166 if (mdev->unique_rev_id >= 0x01)
1167 WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1168 else
1169 WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1172 return 0;
1175 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1176 static int mga_suspend(struct drm_crtc *crtc)
1178 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1179 struct drm_device *dev = crtc->dev;
1180 struct mga_device *mdev = dev->dev_private;
1181 struct pci_dev *pdev = dev->pdev;
1182 int option;
1184 if (mdev->suspended)
1185 return 0;
1187 WREG_SEQ(1, 0x20);
1188 WREG_ECRT(1, 0x30);
1189 /* Disable the pixel clock */
1190 WREG_DAC(0x1a, 0x05);
1191 /* Power down the DAC */
1192 WREG_DAC(0x1e, 0x18);
1193 /* Power down the pixel PLL */
1194 WREG_DAC(0x1a, 0x0d);
1196 /* Disable PLLs and clocks */
1197 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1198 option &= ~(0x1F8024);
1199 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1200 pci_set_power_state(pdev, PCI_D3hot);
1201 pci_disable_device(pdev);
1203 mdev->suspended = true;
1205 return 0;
1208 static int mga_resume(struct drm_crtc *crtc)
1210 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1211 struct drm_device *dev = crtc->dev;
1212 struct mga_device *mdev = dev->dev_private;
1213 struct pci_dev *pdev = dev->pdev;
1214 int option;
1216 if (!mdev->suspended)
1217 return 0;
1219 pci_set_power_state(pdev, PCI_D0);
1220 pci_enable_device(pdev);
1222 /* Disable sysclk */
1223 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1224 option &= ~(0x4);
1225 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1227 mdev->suspended = false;
1229 return 0;
1232 #endif
1234 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1236 struct drm_device *dev = crtc->dev;
1237 struct mga_device *mdev = dev->dev_private;
1238 u8 seq1 = 0, crtcext1 = 0;
1240 switch (mode) {
1241 case DRM_MODE_DPMS_ON:
1242 seq1 = 0;
1243 crtcext1 = 0;
1244 mga_crtc_load_lut(crtc);
1245 break;
1246 case DRM_MODE_DPMS_STANDBY:
1247 seq1 = 0x20;
1248 crtcext1 = 0x10;
1249 break;
1250 case DRM_MODE_DPMS_SUSPEND:
1251 seq1 = 0x20;
1252 crtcext1 = 0x20;
1253 break;
1254 case DRM_MODE_DPMS_OFF:
1255 seq1 = 0x20;
1256 crtcext1 = 0x30;
1257 break;
1260 #if 0
1261 if (mode == DRM_MODE_DPMS_OFF) {
1262 mga_suspend(crtc);
1264 #endif
1265 WREG8(MGAREG_SEQ_INDEX, 0x01);
1266 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1267 mga_wait_vsync(mdev);
1268 mga_wait_busy(mdev);
1269 WREG8(MGAREG_SEQ_DATA, seq1);
1270 msleep(20);
1271 WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1272 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1273 WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1275 #if 0
1276 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1277 mga_resume(crtc);
1278 drm_helper_resume_force_mode(dev);
1280 #endif
1284 * This is called before a mode is programmed. A typical use might be to
1285 * enable DPMS during the programming to avoid seeing intermediate stages,
1286 * but that's not relevant to us
1288 static void mga_crtc_prepare(struct drm_crtc *crtc)
1290 struct drm_device *dev = crtc->dev;
1291 struct mga_device *mdev = dev->dev_private;
1292 u8 tmp;
1294 /* mga_resume(crtc);*/
1296 WREG8(MGAREG_CRTC_INDEX, 0x11);
1297 tmp = RREG8(MGAREG_CRTC_DATA);
1298 WREG_CRT(0x11, tmp | 0x80);
1300 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1301 WREG_SEQ(0, 1);
1302 msleep(50);
1303 WREG_SEQ(1, 0x20);
1304 msleep(20);
1305 } else {
1306 WREG8(MGAREG_SEQ_INDEX, 0x1);
1307 tmp = RREG8(MGAREG_SEQ_DATA);
1309 /* start sync reset */
1310 WREG_SEQ(0, 1);
1311 WREG_SEQ(1, tmp | 0x20);
1314 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1315 mga_g200wb_prepare(crtc);
1317 WREG_CRT(17, 0);
1321 * This is called after a mode is programmed. It should reverse anything done
1322 * by the prepare function
1324 static void mga_crtc_commit(struct drm_crtc *crtc)
1326 struct drm_device *dev = crtc->dev;
1327 struct mga_device *mdev = dev->dev_private;
1328 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1329 u8 tmp;
1331 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1332 mga_g200wb_commit(crtc);
1334 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1335 msleep(50);
1336 WREG_SEQ(1, 0x0);
1337 msleep(20);
1338 WREG_SEQ(0, 0x3);
1339 } else {
1340 WREG8(MGAREG_SEQ_INDEX, 0x1);
1341 tmp = RREG8(MGAREG_SEQ_DATA);
1343 tmp &= ~0x20;
1344 WREG_SEQ(0x1, tmp);
1345 WREG_SEQ(0, 3);
1347 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1351 * The core can pass us a set of gamma values to program. We actually only
1352 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1353 * but it's a requirement that we provide the function
1355 static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1356 u16 *blue, uint32_t size)
1358 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1359 int i;
1361 for (i = 0; i < size; i++) {
1362 mga_crtc->lut_r[i] = red[i] >> 8;
1363 mga_crtc->lut_g[i] = green[i] >> 8;
1364 mga_crtc->lut_b[i] = blue[i] >> 8;
1366 mga_crtc_load_lut(crtc);
1368 return 0;
1371 /* Simple cleanup function */
1372 static void mga_crtc_destroy(struct drm_crtc *crtc)
1374 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1376 drm_crtc_cleanup(crtc);
1377 kfree(mga_crtc);
1380 static void mga_crtc_disable(struct drm_crtc *crtc)
1382 int ret;
1383 DRM_DEBUG_KMS("\n");
1384 mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1385 if (crtc->primary->fb) {
1386 struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1387 struct drm_gem_object *obj = mga_fb->obj;
1388 struct mgag200_bo *bo = gem_to_mga_bo(obj);
1389 ret = mgag200_bo_reserve(bo, false);
1390 if (ret)
1391 return;
1392 mgag200_bo_push_sysram(bo);
1393 mgag200_bo_unreserve(bo);
1395 crtc->primary->fb = NULL;
1398 /* These provide the minimum set of functions required to handle a CRTC */
1399 static const struct drm_crtc_funcs mga_crtc_funcs = {
1400 .cursor_set = mga_crtc_cursor_set,
1401 .cursor_move = mga_crtc_cursor_move,
1402 .gamma_set = mga_crtc_gamma_set,
1403 .set_config = drm_crtc_helper_set_config,
1404 .destroy = mga_crtc_destroy,
1407 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1408 .disable = mga_crtc_disable,
1409 .dpms = mga_crtc_dpms,
1410 .mode_set = mga_crtc_mode_set,
1411 .mode_set_base = mga_crtc_mode_set_base,
1412 .prepare = mga_crtc_prepare,
1413 .commit = mga_crtc_commit,
1414 .load_lut = mga_crtc_load_lut,
1417 /* CRTC setup */
1418 static void mga_crtc_init(struct mga_device *mdev)
1420 struct mga_crtc *mga_crtc;
1421 int i;
1423 mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1424 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1425 GFP_KERNEL);
1427 if (mga_crtc == NULL)
1428 return;
1430 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1432 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1433 mdev->mode_info.crtc = mga_crtc;
1435 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1436 mga_crtc->lut_r[i] = i;
1437 mga_crtc->lut_g[i] = i;
1438 mga_crtc->lut_b[i] = i;
1441 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1444 /** Sets the color ramps on behalf of fbcon */
1445 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1446 u16 blue, int regno)
1448 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1450 mga_crtc->lut_r[regno] = red >> 8;
1451 mga_crtc->lut_g[regno] = green >> 8;
1452 mga_crtc->lut_b[regno] = blue >> 8;
1455 /** Gets the color ramps on behalf of fbcon */
1456 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1457 u16 *blue, int regno)
1459 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1461 *red = (u16)mga_crtc->lut_r[regno] << 8;
1462 *green = (u16)mga_crtc->lut_g[regno] << 8;
1463 *blue = (u16)mga_crtc->lut_b[regno] << 8;
1467 * The encoder comes after the CRTC in the output pipeline, but before
1468 * the connector. It's responsible for ensuring that the digital
1469 * stream is appropriately converted into the output format. Setup is
1470 * very simple in this case - all we have to do is inform qemu of the
1471 * colour depth in order to ensure that it displays appropriately
1475 * These functions are analagous to those in the CRTC code, but are intended
1476 * to handle any encoder-specific limitations
1478 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1479 struct drm_display_mode *mode,
1480 struct drm_display_mode *adjusted_mode)
1485 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1487 return;
1490 static void mga_encoder_prepare(struct drm_encoder *encoder)
1494 static void mga_encoder_commit(struct drm_encoder *encoder)
1498 static void mga_encoder_destroy(struct drm_encoder *encoder)
1500 struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1501 drm_encoder_cleanup(encoder);
1502 kfree(mga_encoder);
1505 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1506 .dpms = mga_encoder_dpms,
1507 .mode_set = mga_encoder_mode_set,
1508 .prepare = mga_encoder_prepare,
1509 .commit = mga_encoder_commit,
1512 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1513 .destroy = mga_encoder_destroy,
1516 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1518 struct drm_encoder *encoder;
1519 struct mga_encoder *mga_encoder;
1521 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1522 if (!mga_encoder)
1523 return NULL;
1525 encoder = &mga_encoder->base;
1526 encoder->possible_crtcs = 0x1;
1528 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1529 DRM_MODE_ENCODER_DAC, NULL);
1530 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1532 return encoder;
1536 static int mga_vga_get_modes(struct drm_connector *connector)
1538 struct mga_connector *mga_connector = to_mga_connector(connector);
1539 struct edid *edid;
1540 int ret = 0;
1542 edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1543 if (edid) {
1544 drm_mode_connector_update_edid_property(connector, edid);
1545 ret = drm_add_edid_modes(connector, edid);
1546 kfree(edid);
1548 return ret;
1551 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1552 int bits_per_pixel)
1554 uint32_t total_area, divisor;
1555 uint64_t active_area, pixels_per_second, bandwidth;
1556 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1558 divisor = 1024;
1560 if (!mode->htotal || !mode->vtotal || !mode->clock)
1561 return 0;
1563 active_area = mode->hdisplay * mode->vdisplay;
1564 total_area = mode->htotal * mode->vtotal;
1566 pixels_per_second = active_area * mode->clock * 1000;
1567 do_div(pixels_per_second, total_area);
1569 bandwidth = pixels_per_second * bytes_per_pixel * 100;
1570 do_div(bandwidth, divisor);
1572 return (uint32_t)(bandwidth);
1575 #define MODE_BANDWIDTH MODE_BAD
1577 static int mga_vga_mode_valid(struct drm_connector *connector,
1578 struct drm_display_mode *mode)
1580 struct drm_device *dev = connector->dev;
1581 struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1582 int bpp = 32;
1584 if (IS_G200_SE(mdev)) {
1585 if (mdev->unique_rev_id == 0x01) {
1586 if (mode->hdisplay > 1600)
1587 return MODE_VIRTUAL_X;
1588 if (mode->vdisplay > 1200)
1589 return MODE_VIRTUAL_Y;
1590 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1591 > (24400 * 1024))
1592 return MODE_BANDWIDTH;
1593 } else if (mdev->unique_rev_id == 0x02) {
1594 if (mode->hdisplay > 1920)
1595 return MODE_VIRTUAL_X;
1596 if (mode->vdisplay > 1200)
1597 return MODE_VIRTUAL_Y;
1598 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1599 > (30100 * 1024))
1600 return MODE_BANDWIDTH;
1602 } else if (mdev->type == G200_WB) {
1603 if (mode->hdisplay > 1280)
1604 return MODE_VIRTUAL_X;
1605 if (mode->vdisplay > 1024)
1606 return MODE_VIRTUAL_Y;
1607 if (mga_vga_calculate_mode_bandwidth(mode,
1608 bpp > (31877 * 1024)))
1609 return MODE_BANDWIDTH;
1610 } else if (mdev->type == G200_EV &&
1611 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1612 > (32700 * 1024))) {
1613 return MODE_BANDWIDTH;
1614 } else if (mdev->type == G200_EH &&
1615 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1616 > (37500 * 1024))) {
1617 return MODE_BANDWIDTH;
1618 } else if (mdev->type == G200_ER &&
1619 (mga_vga_calculate_mode_bandwidth(mode,
1620 bpp) > (55000 * 1024))) {
1621 return MODE_BANDWIDTH;
1624 if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1625 (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1626 return MODE_H_ILLEGAL;
1629 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1630 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1631 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1632 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1633 return MODE_BAD;
1636 /* Validate the mode input by the user */
1637 if (connector->cmdline_mode.specified) {
1638 if (connector->cmdline_mode.bpp_specified)
1639 bpp = connector->cmdline_mode.bpp;
1642 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1643 if (connector->cmdline_mode.specified)
1644 connector->cmdline_mode.specified = false;
1645 return MODE_BAD;
1648 return MODE_OK;
1651 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1652 *connector)
1654 int enc_id = connector->encoder_ids[0];
1655 /* pick the encoder ids */
1656 if (enc_id)
1657 return drm_encoder_find(connector->dev, enc_id);
1658 return NULL;
1661 static enum drm_connector_status mga_vga_detect(struct drm_connector
1662 *connector, bool force)
1664 return connector_status_connected;
1667 static void mga_connector_destroy(struct drm_connector *connector)
1669 struct mga_connector *mga_connector = to_mga_connector(connector);
1670 mgag200_i2c_destroy(mga_connector->i2c);
1671 drm_connector_cleanup(connector);
1672 kfree(connector);
1675 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1676 .get_modes = mga_vga_get_modes,
1677 .mode_valid = mga_vga_mode_valid,
1678 .best_encoder = mga_connector_best_encoder,
1681 static const struct drm_connector_funcs mga_vga_connector_funcs = {
1682 .dpms = drm_helper_connector_dpms,
1683 .detect = mga_vga_detect,
1684 .fill_modes = drm_helper_probe_single_connector_modes,
1685 .destroy = mga_connector_destroy,
1688 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1690 struct drm_connector *connector;
1691 struct mga_connector *mga_connector;
1693 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1694 if (!mga_connector)
1695 return NULL;
1697 connector = &mga_connector->base;
1699 drm_connector_init(dev, connector,
1700 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1702 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1704 drm_connector_register(connector);
1706 mga_connector->i2c = mgag200_i2c_create(dev);
1707 if (!mga_connector->i2c)
1708 DRM_ERROR("failed to add ddc bus\n");
1710 return connector;
1714 int mgag200_modeset_init(struct mga_device *mdev)
1716 struct drm_encoder *encoder;
1717 struct drm_connector *connector;
1718 int ret;
1720 mdev->mode_info.mode_config_initialized = true;
1722 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1723 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1725 mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1727 mga_crtc_init(mdev);
1729 encoder = mga_encoder_init(mdev->dev);
1730 if (!encoder) {
1731 DRM_ERROR("mga_encoder_init failed\n");
1732 return -1;
1735 connector = mga_vga_init(mdev->dev);
1736 if (!connector) {
1737 DRM_ERROR("mga_vga_init failed\n");
1738 return -1;
1741 drm_mode_connector_attach_encoder(connector, encoder);
1743 ret = mgag200_fbdev_init(mdev);
1744 if (ret) {
1745 DRM_ERROR("mga_fbdev_init failed\n");
1746 return ret;
1749 return 0;
1752 void mgag200_modeset_fini(struct mga_device *mdev)