2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 #include <crypto/skcipher.h>
33 #include <linux/device-mapper.h>
35 #define DM_MSG_PREFIX "crypt"
38 * context holding the current state of a multi-part conversion
40 struct convert_context
{
41 struct completion restart
;
44 struct bvec_iter iter_in
;
45 struct bvec_iter iter_out
;
48 struct skcipher_request
*req
;
52 * per bio private data
55 struct crypt_config
*cc
;
57 struct work_struct work
;
59 struct convert_context ctx
;
65 struct rb_node rb_node
;
66 } CRYPTO_MINALIGN_ATTR
;
68 struct dm_crypt_request
{
69 struct convert_context
*ctx
;
70 struct scatterlist sg_in
;
71 struct scatterlist sg_out
;
77 struct crypt_iv_operations
{
78 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
80 void (*dtr
)(struct crypt_config
*cc
);
81 int (*init
)(struct crypt_config
*cc
);
82 int (*wipe
)(struct crypt_config
*cc
);
83 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
84 struct dm_crypt_request
*dmreq
);
85 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
86 struct dm_crypt_request
*dmreq
);
89 struct iv_essiv_private
{
90 struct crypto_ahash
*hash_tfm
;
94 struct iv_benbi_private
{
98 #define LMK_SEED_SIZE 64 /* hash + 0 */
99 struct iv_lmk_private
{
100 struct crypto_shash
*hash_tfm
;
104 #define TCW_WHITENING_SIZE 16
105 struct iv_tcw_private
{
106 struct crypto_shash
*crc32_tfm
;
112 * Crypt: maps a linear range of a block device
113 * and encrypts / decrypts at the same time.
115 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
116 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
};
119 * The fields in here must be read only after initialization.
121 struct crypt_config
{
126 * pool for per bio private data, crypto requests and
127 * encryption requeusts/buffer pages
130 mempool_t
*page_pool
;
132 struct mutex bio_alloc_lock
;
134 struct workqueue_struct
*io_queue
;
135 struct workqueue_struct
*crypt_queue
;
137 struct task_struct
*write_thread
;
138 wait_queue_head_t write_thread_wait
;
139 struct rb_root write_tree
;
144 struct crypt_iv_operations
*iv_gen_ops
;
146 struct iv_essiv_private essiv
;
147 struct iv_benbi_private benbi
;
148 struct iv_lmk_private lmk
;
149 struct iv_tcw_private tcw
;
152 unsigned int iv_size
;
154 /* ESSIV: struct crypto_cipher *essiv_tfm */
156 struct crypto_skcipher
**tfms
;
160 * Layout of each crypto request:
162 * struct skcipher_request
165 * struct dm_crypt_request
169 * The padding is added so that dm_crypt_request and the IV are
172 unsigned int dmreq_start
;
174 unsigned int per_bio_data_size
;
177 unsigned int key_size
;
178 unsigned int key_parts
; /* independent parts in key buffer */
179 unsigned int key_extra_size
; /* additional keys length */
185 static void clone_init(struct dm_crypt_io
*, struct bio
*);
186 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
187 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
190 * Use this to access cipher attributes that are the same for each CPU.
192 static struct crypto_skcipher
*any_tfm(struct crypt_config
*cc
)
198 * Different IV generation algorithms:
200 * plain: the initial vector is the 32-bit little-endian version of the sector
201 * number, padded with zeros if necessary.
203 * plain64: the initial vector is the 64-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
206 * essiv: "encrypted sector|salt initial vector", the sector number is
207 * encrypted with the bulk cipher using a salt as key. The salt
208 * should be derived from the bulk cipher's key via hashing.
210 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
211 * (needed for LRW-32-AES and possible other narrow block modes)
213 * null: the initial vector is always zero. Provides compatibility with
214 * obsolete loop_fish2 devices. Do not use for new devices.
216 * lmk: Compatible implementation of the block chaining mode used
217 * by the Loop-AES block device encryption system
218 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
219 * It operates on full 512 byte sectors and uses CBC
220 * with an IV derived from the sector number, the data and
221 * optionally extra IV seed.
222 * This means that after decryption the first block
223 * of sector must be tweaked according to decrypted data.
224 * Loop-AES can use three encryption schemes:
225 * version 1: is plain aes-cbc mode
226 * version 2: uses 64 multikey scheme with lmk IV generator
227 * version 3: the same as version 2 with additional IV seed
228 * (it uses 65 keys, last key is used as IV seed)
230 * tcw: Compatible implementation of the block chaining mode used
231 * by the TrueCrypt device encryption system (prior to version 4.1).
232 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
233 * It operates on full 512 byte sectors and uses CBC
234 * with an IV derived from initial key and the sector number.
235 * In addition, whitening value is applied on every sector, whitening
236 * is calculated from initial key, sector number and mixed using CRC32.
237 * Note that this encryption scheme is vulnerable to watermarking attacks
238 * and should be used for old compatible containers access only.
240 * plumb: unimplemented, see:
241 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
244 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
245 struct dm_crypt_request
*dmreq
)
247 memset(iv
, 0, cc
->iv_size
);
248 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
253 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
254 struct dm_crypt_request
*dmreq
)
256 memset(iv
, 0, cc
->iv_size
);
257 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
262 /* Initialise ESSIV - compute salt but no local memory allocations */
263 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
265 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
266 AHASH_REQUEST_ON_STACK(req
, essiv
->hash_tfm
);
267 struct scatterlist sg
;
268 struct crypto_cipher
*essiv_tfm
;
271 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
272 ahash_request_set_tfm(req
, essiv
->hash_tfm
);
273 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
274 ahash_request_set_crypt(req
, &sg
, essiv
->salt
, cc
->key_size
);
276 err
= crypto_ahash_digest(req
);
277 ahash_request_zero(req
);
281 essiv_tfm
= cc
->iv_private
;
283 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
284 crypto_ahash_digestsize(essiv
->hash_tfm
));
291 /* Wipe salt and reset key derived from volume key */
292 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
294 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
295 unsigned salt_size
= crypto_ahash_digestsize(essiv
->hash_tfm
);
296 struct crypto_cipher
*essiv_tfm
;
299 memset(essiv
->salt
, 0, salt_size
);
301 essiv_tfm
= cc
->iv_private
;
302 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
309 /* Set up per cpu cipher state */
310 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
311 struct dm_target
*ti
,
312 u8
*salt
, unsigned saltsize
)
314 struct crypto_cipher
*essiv_tfm
;
317 /* Setup the essiv_tfm with the given salt */
318 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
319 if (IS_ERR(essiv_tfm
)) {
320 ti
->error
= "Error allocating crypto tfm for ESSIV";
324 if (crypto_cipher_blocksize(essiv_tfm
) !=
325 crypto_skcipher_ivsize(any_tfm(cc
))) {
326 ti
->error
= "Block size of ESSIV cipher does "
327 "not match IV size of block cipher";
328 crypto_free_cipher(essiv_tfm
);
329 return ERR_PTR(-EINVAL
);
332 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
334 ti
->error
= "Failed to set key for ESSIV cipher";
335 crypto_free_cipher(essiv_tfm
);
342 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
344 struct crypto_cipher
*essiv_tfm
;
345 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
347 crypto_free_ahash(essiv
->hash_tfm
);
348 essiv
->hash_tfm
= NULL
;
353 essiv_tfm
= cc
->iv_private
;
356 crypto_free_cipher(essiv_tfm
);
358 cc
->iv_private
= NULL
;
361 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
364 struct crypto_cipher
*essiv_tfm
= NULL
;
365 struct crypto_ahash
*hash_tfm
= NULL
;
370 ti
->error
= "Digest algorithm missing for ESSIV mode";
374 /* Allocate hash algorithm */
375 hash_tfm
= crypto_alloc_ahash(opts
, 0, CRYPTO_ALG_ASYNC
);
376 if (IS_ERR(hash_tfm
)) {
377 ti
->error
= "Error initializing ESSIV hash";
378 err
= PTR_ERR(hash_tfm
);
382 salt
= kzalloc(crypto_ahash_digestsize(hash_tfm
), GFP_KERNEL
);
384 ti
->error
= "Error kmallocing salt storage in ESSIV";
389 cc
->iv_gen_private
.essiv
.salt
= salt
;
390 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
392 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
393 crypto_ahash_digestsize(hash_tfm
));
394 if (IS_ERR(essiv_tfm
)) {
395 crypt_iv_essiv_dtr(cc
);
396 return PTR_ERR(essiv_tfm
);
398 cc
->iv_private
= essiv_tfm
;
403 if (hash_tfm
&& !IS_ERR(hash_tfm
))
404 crypto_free_ahash(hash_tfm
);
409 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
410 struct dm_crypt_request
*dmreq
)
412 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
414 memset(iv
, 0, cc
->iv_size
);
415 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
416 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
421 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
424 unsigned bs
= crypto_skcipher_blocksize(any_tfm(cc
));
427 /* we need to calculate how far we must shift the sector count
428 * to get the cipher block count, we use this shift in _gen */
430 if (1 << log
!= bs
) {
431 ti
->error
= "cypher blocksize is not a power of 2";
436 ti
->error
= "cypher blocksize is > 512";
440 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
445 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
449 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
450 struct dm_crypt_request
*dmreq
)
454 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
456 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
457 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
462 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
463 struct dm_crypt_request
*dmreq
)
465 memset(iv
, 0, cc
->iv_size
);
470 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
472 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
474 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
475 crypto_free_shash(lmk
->hash_tfm
);
476 lmk
->hash_tfm
= NULL
;
482 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
485 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
487 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
488 if (IS_ERR(lmk
->hash_tfm
)) {
489 ti
->error
= "Error initializing LMK hash";
490 return PTR_ERR(lmk
->hash_tfm
);
493 /* No seed in LMK version 2 */
494 if (cc
->key_parts
== cc
->tfms_count
) {
499 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
501 crypt_iv_lmk_dtr(cc
);
502 ti
->error
= "Error kmallocing seed storage in LMK";
509 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
511 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
512 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
514 /* LMK seed is on the position of LMK_KEYS + 1 key */
516 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
517 crypto_shash_digestsize(lmk
->hash_tfm
));
522 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
524 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
527 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
532 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
533 struct dm_crypt_request
*dmreq
,
536 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
537 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
538 struct md5_state md5state
;
542 desc
->tfm
= lmk
->hash_tfm
;
543 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
545 r
= crypto_shash_init(desc
);
550 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
555 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
556 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
560 /* Sector is cropped to 56 bits here */
561 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
562 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
563 buf
[2] = cpu_to_le32(4024);
565 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
569 /* No MD5 padding here */
570 r
= crypto_shash_export(desc
, &md5state
);
574 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
575 __cpu_to_le32s(&md5state
.hash
[i
]);
576 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
581 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
582 struct dm_crypt_request
*dmreq
)
587 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
588 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
589 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
592 memset(iv
, 0, cc
->iv_size
);
597 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
598 struct dm_crypt_request
*dmreq
)
603 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
606 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
607 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
609 /* Tweak the first block of plaintext sector */
611 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
617 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
619 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
621 kzfree(tcw
->iv_seed
);
623 kzfree(tcw
->whitening
);
624 tcw
->whitening
= NULL
;
626 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
627 crypto_free_shash(tcw
->crc32_tfm
);
628 tcw
->crc32_tfm
= NULL
;
631 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
634 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
636 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
637 ti
->error
= "Wrong key size for TCW";
641 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
642 if (IS_ERR(tcw
->crc32_tfm
)) {
643 ti
->error
= "Error initializing CRC32 in TCW";
644 return PTR_ERR(tcw
->crc32_tfm
);
647 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
648 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
649 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
650 crypt_iv_tcw_dtr(cc
);
651 ti
->error
= "Error allocating seed storage in TCW";
658 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
660 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
661 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
663 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
664 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
670 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
672 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
674 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
675 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
680 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
681 struct dm_crypt_request
*dmreq
,
684 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
685 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
686 u8 buf
[TCW_WHITENING_SIZE
];
687 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
690 /* xor whitening with sector number */
691 memcpy(buf
, tcw
->whitening
, TCW_WHITENING_SIZE
);
692 crypto_xor(buf
, (u8
*)§or
, 8);
693 crypto_xor(&buf
[8], (u8
*)§or
, 8);
695 /* calculate crc32 for every 32bit part and xor it */
696 desc
->tfm
= tcw
->crc32_tfm
;
697 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
698 for (i
= 0; i
< 4; i
++) {
699 r
= crypto_shash_init(desc
);
702 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
705 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
709 crypto_xor(&buf
[0], &buf
[12], 4);
710 crypto_xor(&buf
[4], &buf
[8], 4);
712 /* apply whitening (8 bytes) to whole sector */
713 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
714 crypto_xor(data
+ i
* 8, buf
, 8);
716 memzero_explicit(buf
, sizeof(buf
));
720 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
721 struct dm_crypt_request
*dmreq
)
723 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
724 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
728 /* Remove whitening from ciphertext */
729 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
730 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
731 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ dmreq
->sg_in
.offset
);
736 memcpy(iv
, tcw
->iv_seed
, cc
->iv_size
);
737 crypto_xor(iv
, (u8
*)§or
, 8);
739 crypto_xor(&iv
[8], (u8
*)§or
, cc
->iv_size
- 8);
744 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
745 struct dm_crypt_request
*dmreq
)
750 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
753 /* Apply whitening on ciphertext */
754 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
755 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
761 static struct crypt_iv_operations crypt_iv_plain_ops
= {
762 .generator
= crypt_iv_plain_gen
765 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
766 .generator
= crypt_iv_plain64_gen
769 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
770 .ctr
= crypt_iv_essiv_ctr
,
771 .dtr
= crypt_iv_essiv_dtr
,
772 .init
= crypt_iv_essiv_init
,
773 .wipe
= crypt_iv_essiv_wipe
,
774 .generator
= crypt_iv_essiv_gen
777 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
778 .ctr
= crypt_iv_benbi_ctr
,
779 .dtr
= crypt_iv_benbi_dtr
,
780 .generator
= crypt_iv_benbi_gen
783 static struct crypt_iv_operations crypt_iv_null_ops
= {
784 .generator
= crypt_iv_null_gen
787 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
788 .ctr
= crypt_iv_lmk_ctr
,
789 .dtr
= crypt_iv_lmk_dtr
,
790 .init
= crypt_iv_lmk_init
,
791 .wipe
= crypt_iv_lmk_wipe
,
792 .generator
= crypt_iv_lmk_gen
,
793 .post
= crypt_iv_lmk_post
796 static struct crypt_iv_operations crypt_iv_tcw_ops
= {
797 .ctr
= crypt_iv_tcw_ctr
,
798 .dtr
= crypt_iv_tcw_dtr
,
799 .init
= crypt_iv_tcw_init
,
800 .wipe
= crypt_iv_tcw_wipe
,
801 .generator
= crypt_iv_tcw_gen
,
802 .post
= crypt_iv_tcw_post
805 static void crypt_convert_init(struct crypt_config
*cc
,
806 struct convert_context
*ctx
,
807 struct bio
*bio_out
, struct bio
*bio_in
,
810 ctx
->bio_in
= bio_in
;
811 ctx
->bio_out
= bio_out
;
813 ctx
->iter_in
= bio_in
->bi_iter
;
815 ctx
->iter_out
= bio_out
->bi_iter
;
816 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
817 init_completion(&ctx
->restart
);
820 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
821 struct skcipher_request
*req
)
823 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
826 static struct skcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
827 struct dm_crypt_request
*dmreq
)
829 return (struct skcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
832 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
833 struct dm_crypt_request
*dmreq
)
835 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
836 crypto_skcipher_alignmask(any_tfm(cc
)) + 1);
839 static int crypt_convert_block(struct crypt_config
*cc
,
840 struct convert_context
*ctx
,
841 struct skcipher_request
*req
)
843 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
844 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
845 struct dm_crypt_request
*dmreq
;
849 dmreq
= dmreq_of_req(cc
, req
);
850 iv
= iv_of_dmreq(cc
, dmreq
);
852 dmreq
->iv_sector
= ctx
->cc_sector
;
854 sg_init_table(&dmreq
->sg_in
, 1);
855 sg_set_page(&dmreq
->sg_in
, bv_in
.bv_page
, 1 << SECTOR_SHIFT
,
858 sg_init_table(&dmreq
->sg_out
, 1);
859 sg_set_page(&dmreq
->sg_out
, bv_out
.bv_page
, 1 << SECTOR_SHIFT
,
862 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, 1 << SECTOR_SHIFT
);
863 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, 1 << SECTOR_SHIFT
);
865 if (cc
->iv_gen_ops
) {
866 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
871 skcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
872 1 << SECTOR_SHIFT
, iv
);
874 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
875 r
= crypto_skcipher_encrypt(req
);
877 r
= crypto_skcipher_decrypt(req
);
879 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
880 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
885 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
888 static void crypt_alloc_req(struct crypt_config
*cc
,
889 struct convert_context
*ctx
)
891 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
894 ctx
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
896 skcipher_request_set_tfm(ctx
->req
, cc
->tfms
[key_index
]);
899 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
900 * requests if driver request queue is full.
902 skcipher_request_set_callback(ctx
->req
,
903 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
904 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->req
));
907 static void crypt_free_req(struct crypt_config
*cc
,
908 struct skcipher_request
*req
, struct bio
*base_bio
)
910 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
912 if ((struct skcipher_request
*)(io
+ 1) != req
)
913 mempool_free(req
, cc
->req_pool
);
917 * Encrypt / decrypt data from one bio to another one (can be the same one)
919 static int crypt_convert(struct crypt_config
*cc
,
920 struct convert_context
*ctx
)
924 atomic_set(&ctx
->cc_pending
, 1);
926 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
928 crypt_alloc_req(cc
, ctx
);
930 atomic_inc(&ctx
->cc_pending
);
932 r
= crypt_convert_block(cc
, ctx
, ctx
->req
);
936 * The request was queued by a crypto driver
937 * but the driver request queue is full, let's wait.
940 wait_for_completion(&ctx
->restart
);
941 reinit_completion(&ctx
->restart
);
944 * The request is queued and processed asynchronously,
945 * completion function kcryptd_async_done() will be called.
952 * The request was already processed (synchronously).
955 atomic_dec(&ctx
->cc_pending
);
960 /* There was an error while processing the request. */
962 atomic_dec(&ctx
->cc_pending
);
970 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
973 * Generate a new unfragmented bio with the given size
974 * This should never violate the device limitations (but only because
975 * max_segment_size is being constrained to PAGE_SIZE).
977 * This function may be called concurrently. If we allocate from the mempool
978 * concurrently, there is a possibility of deadlock. For example, if we have
979 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
980 * the mempool concurrently, it may deadlock in a situation where both processes
981 * have allocated 128 pages and the mempool is exhausted.
983 * In order to avoid this scenario we allocate the pages under a mutex.
985 * In order to not degrade performance with excessive locking, we try
986 * non-blocking allocations without a mutex first but on failure we fallback
987 * to blocking allocations with a mutex.
989 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
991 struct crypt_config
*cc
= io
->cc
;
993 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
994 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
995 unsigned i
, len
, remaining_size
;
997 struct bio_vec
*bvec
;
1000 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1001 mutex_lock(&cc
->bio_alloc_lock
);
1003 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
1007 clone_init(io
, clone
);
1009 remaining_size
= size
;
1011 for (i
= 0; i
< nr_iovecs
; i
++) {
1012 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
1014 crypt_free_buffer_pages(cc
, clone
);
1016 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1020 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1022 bvec
= &clone
->bi_io_vec
[clone
->bi_vcnt
++];
1023 bvec
->bv_page
= page
;
1025 bvec
->bv_offset
= 0;
1027 clone
->bi_iter
.bi_size
+= len
;
1029 remaining_size
-= len
;
1033 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1034 mutex_unlock(&cc
->bio_alloc_lock
);
1039 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1044 bio_for_each_segment_all(bv
, clone
, i
) {
1045 BUG_ON(!bv
->bv_page
);
1046 mempool_free(bv
->bv_page
, cc
->page_pool
);
1051 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1052 struct bio
*bio
, sector_t sector
)
1056 io
->sector
= sector
;
1059 atomic_set(&io
->io_pending
, 0);
1062 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1064 atomic_inc(&io
->io_pending
);
1068 * One of the bios was finished. Check for completion of
1069 * the whole request and correctly clean up the buffer.
1071 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1073 struct crypt_config
*cc
= io
->cc
;
1074 struct bio
*base_bio
= io
->base_bio
;
1075 int error
= io
->error
;
1077 if (!atomic_dec_and_test(&io
->io_pending
))
1081 crypt_free_req(cc
, io
->ctx
.req
, base_bio
);
1083 base_bio
->bi_error
= error
;
1084 bio_endio(base_bio
);
1088 * kcryptd/kcryptd_io:
1090 * Needed because it would be very unwise to do decryption in an
1091 * interrupt context.
1093 * kcryptd performs the actual encryption or decryption.
1095 * kcryptd_io performs the IO submission.
1097 * They must be separated as otherwise the final stages could be
1098 * starved by new requests which can block in the first stages due
1099 * to memory allocation.
1101 * The work is done per CPU global for all dm-crypt instances.
1102 * They should not depend on each other and do not block.
1104 static void crypt_endio(struct bio
*clone
)
1106 struct dm_crypt_io
*io
= clone
->bi_private
;
1107 struct crypt_config
*cc
= io
->cc
;
1108 unsigned rw
= bio_data_dir(clone
);
1112 * free the processed pages
1115 crypt_free_buffer_pages(cc
, clone
);
1117 error
= clone
->bi_error
;
1120 if (rw
== READ
&& !error
) {
1121 kcryptd_queue_crypt(io
);
1125 if (unlikely(error
))
1128 crypt_dec_pending(io
);
1131 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1133 struct crypt_config
*cc
= io
->cc
;
1135 clone
->bi_private
= io
;
1136 clone
->bi_end_io
= crypt_endio
;
1137 clone
->bi_bdev
= cc
->dev
->bdev
;
1138 bio_set_op_attrs(clone
, bio_op(io
->base_bio
), bio_flags(io
->base_bio
));
1141 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1143 struct crypt_config
*cc
= io
->cc
;
1147 * We need the original biovec array in order to decrypt
1148 * the whole bio data *afterwards* -- thanks to immutable
1149 * biovecs we don't need to worry about the block layer
1150 * modifying the biovec array; so leverage bio_clone_fast().
1152 clone
= bio_clone_fast(io
->base_bio
, gfp
, cc
->bs
);
1156 crypt_inc_pending(io
);
1158 clone_init(io
, clone
);
1159 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1161 generic_make_request(clone
);
1165 static void kcryptd_io_read_work(struct work_struct
*work
)
1167 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1169 crypt_inc_pending(io
);
1170 if (kcryptd_io_read(io
, GFP_NOIO
))
1171 io
->error
= -ENOMEM
;
1172 crypt_dec_pending(io
);
1175 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1177 struct crypt_config
*cc
= io
->cc
;
1179 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1180 queue_work(cc
->io_queue
, &io
->work
);
1183 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1185 struct bio
*clone
= io
->ctx
.bio_out
;
1187 generic_make_request(clone
);
1190 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1192 static int dmcrypt_write(void *data
)
1194 struct crypt_config
*cc
= data
;
1195 struct dm_crypt_io
*io
;
1198 struct rb_root write_tree
;
1199 struct blk_plug plug
;
1201 DECLARE_WAITQUEUE(wait
, current
);
1203 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1206 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1209 set_current_state(TASK_INTERRUPTIBLE
);
1210 __add_wait_queue(&cc
->write_thread_wait
, &wait
);
1212 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1214 if (unlikely(kthread_should_stop())) {
1215 set_task_state(current
, TASK_RUNNING
);
1216 remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1222 set_task_state(current
, TASK_RUNNING
);
1223 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1224 __remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1225 goto continue_locked
;
1228 write_tree
= cc
->write_tree
;
1229 cc
->write_tree
= RB_ROOT
;
1230 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1232 BUG_ON(rb_parent(write_tree
.rb_node
));
1235 * Note: we cannot walk the tree here with rb_next because
1236 * the structures may be freed when kcryptd_io_write is called.
1238 blk_start_plug(&plug
);
1240 io
= crypt_io_from_node(rb_first(&write_tree
));
1241 rb_erase(&io
->rb_node
, &write_tree
);
1242 kcryptd_io_write(io
);
1243 } while (!RB_EMPTY_ROOT(&write_tree
));
1244 blk_finish_plug(&plug
);
1249 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1251 struct bio
*clone
= io
->ctx
.bio_out
;
1252 struct crypt_config
*cc
= io
->cc
;
1253 unsigned long flags
;
1255 struct rb_node
**rbp
, *parent
;
1257 if (unlikely(io
->error
< 0)) {
1258 crypt_free_buffer_pages(cc
, clone
);
1260 crypt_dec_pending(io
);
1264 /* crypt_convert should have filled the clone bio */
1265 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1267 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1269 if (likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) {
1270 generic_make_request(clone
);
1274 spin_lock_irqsave(&cc
->write_thread_wait
.lock
, flags
);
1275 rbp
= &cc
->write_tree
.rb_node
;
1277 sector
= io
->sector
;
1280 if (sector
< crypt_io_from_node(parent
)->sector
)
1281 rbp
= &(*rbp
)->rb_left
;
1283 rbp
= &(*rbp
)->rb_right
;
1285 rb_link_node(&io
->rb_node
, parent
, rbp
);
1286 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1288 wake_up_locked(&cc
->write_thread_wait
);
1289 spin_unlock_irqrestore(&cc
->write_thread_wait
.lock
, flags
);
1292 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1294 struct crypt_config
*cc
= io
->cc
;
1297 sector_t sector
= io
->sector
;
1301 * Prevent io from disappearing until this function completes.
1303 crypt_inc_pending(io
);
1304 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1306 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1307 if (unlikely(!clone
)) {
1312 io
->ctx
.bio_out
= clone
;
1313 io
->ctx
.iter_out
= clone
->bi_iter
;
1315 sector
+= bio_sectors(clone
);
1317 crypt_inc_pending(io
);
1318 r
= crypt_convert(cc
, &io
->ctx
);
1321 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1323 /* Encryption was already finished, submit io now */
1324 if (crypt_finished
) {
1325 kcryptd_crypt_write_io_submit(io
, 0);
1326 io
->sector
= sector
;
1330 crypt_dec_pending(io
);
1333 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1335 crypt_dec_pending(io
);
1338 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1340 struct crypt_config
*cc
= io
->cc
;
1343 crypt_inc_pending(io
);
1345 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1348 r
= crypt_convert(cc
, &io
->ctx
);
1352 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1353 kcryptd_crypt_read_done(io
);
1355 crypt_dec_pending(io
);
1358 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1361 struct dm_crypt_request
*dmreq
= async_req
->data
;
1362 struct convert_context
*ctx
= dmreq
->ctx
;
1363 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1364 struct crypt_config
*cc
= io
->cc
;
1367 * A request from crypto driver backlog is going to be processed now,
1368 * finish the completion and continue in crypt_convert().
1369 * (Callback will be called for the second time for this request.)
1371 if (error
== -EINPROGRESS
) {
1372 complete(&ctx
->restart
);
1376 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1377 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1382 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
1384 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1387 if (bio_data_dir(io
->base_bio
) == READ
)
1388 kcryptd_crypt_read_done(io
);
1390 kcryptd_crypt_write_io_submit(io
, 1);
1393 static void kcryptd_crypt(struct work_struct
*work
)
1395 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1397 if (bio_data_dir(io
->base_bio
) == READ
)
1398 kcryptd_crypt_read_convert(io
);
1400 kcryptd_crypt_write_convert(io
);
1403 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1405 struct crypt_config
*cc
= io
->cc
;
1407 INIT_WORK(&io
->work
, kcryptd_crypt
);
1408 queue_work(cc
->crypt_queue
, &io
->work
);
1412 * Decode key from its hex representation
1414 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1421 for (i
= 0; i
< size
; i
++) {
1425 if (kstrtou8(buffer
, 16, &key
[i
]))
1435 static void crypt_free_tfms(struct crypt_config
*cc
)
1442 for (i
= 0; i
< cc
->tfms_count
; i
++)
1443 if (cc
->tfms
[i
] && !IS_ERR(cc
->tfms
[i
])) {
1444 crypto_free_skcipher(cc
->tfms
[i
]);
1452 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1457 cc
->tfms
= kzalloc(cc
->tfms_count
* sizeof(struct crypto_skcipher
*),
1462 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1463 cc
->tfms
[i
] = crypto_alloc_skcipher(ciphermode
, 0, 0);
1464 if (IS_ERR(cc
->tfms
[i
])) {
1465 err
= PTR_ERR(cc
->tfms
[i
]);
1466 crypt_free_tfms(cc
);
1474 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1476 unsigned subkey_size
;
1479 /* Ignore extra keys (which are used for IV etc) */
1480 subkey_size
= (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
1482 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1483 r
= crypto_skcipher_setkey(cc
->tfms
[i
],
1484 cc
->key
+ (i
* subkey_size
),
1493 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1496 int key_string_len
= strlen(key
);
1498 /* The key size may not be changed. */
1499 if (cc
->key_size
!= (key_string_len
>> 1))
1502 /* Hyphen (which gives a key_size of zero) means there is no key. */
1503 if (!cc
->key_size
&& strcmp(key
, "-"))
1506 /* clear the flag since following operations may invalidate previously valid key */
1507 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1509 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1512 r
= crypt_setkey_allcpus(cc
);
1514 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1517 /* Hex key string not needed after here, so wipe it. */
1518 memset(key
, '0', key_string_len
);
1523 static int crypt_wipe_key(struct crypt_config
*cc
)
1525 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1526 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1528 return crypt_setkey_allcpus(cc
);
1531 static void crypt_dtr(struct dm_target
*ti
)
1533 struct crypt_config
*cc
= ti
->private;
1540 if (cc
->write_thread
)
1541 kthread_stop(cc
->write_thread
);
1544 destroy_workqueue(cc
->io_queue
);
1545 if (cc
->crypt_queue
)
1546 destroy_workqueue(cc
->crypt_queue
);
1548 crypt_free_tfms(cc
);
1551 bioset_free(cc
->bs
);
1553 mempool_destroy(cc
->page_pool
);
1554 mempool_destroy(cc
->req_pool
);
1556 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1557 cc
->iv_gen_ops
->dtr(cc
);
1560 dm_put_device(ti
, cc
->dev
);
1563 kzfree(cc
->cipher_string
);
1565 /* Must zero key material before freeing */
1569 static int crypt_ctr_cipher(struct dm_target
*ti
,
1570 char *cipher_in
, char *key
)
1572 struct crypt_config
*cc
= ti
->private;
1573 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1574 char *cipher_api
= NULL
;
1578 /* Convert to crypto api definition? */
1579 if (strchr(cipher_in
, '(')) {
1580 ti
->error
= "Bad cipher specification";
1584 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1585 if (!cc
->cipher_string
)
1589 * Legacy dm-crypt cipher specification
1590 * cipher[:keycount]-mode-iv:ivopts
1593 keycount
= strsep(&tmp
, "-");
1594 cipher
= strsep(&keycount
, ":");
1598 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
1599 !is_power_of_2(cc
->tfms_count
)) {
1600 ti
->error
= "Bad cipher key count specification";
1603 cc
->key_parts
= cc
->tfms_count
;
1604 cc
->key_extra_size
= 0;
1606 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1610 chainmode
= strsep(&tmp
, "-");
1611 ivopts
= strsep(&tmp
, "-");
1612 ivmode
= strsep(&ivopts
, ":");
1615 DMWARN("Ignoring unexpected additional cipher options");
1618 * For compatibility with the original dm-crypt mapping format, if
1619 * only the cipher name is supplied, use cbc-plain.
1621 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1626 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1627 ti
->error
= "IV mechanism required";
1631 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1635 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1636 "%s(%s)", chainmode
, cipher
);
1642 /* Allocate cipher */
1643 ret
= crypt_alloc_tfms(cc
, cipher_api
);
1645 ti
->error
= "Error allocating crypto tfm";
1650 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
1652 /* at least a 64 bit sector number should fit in our buffer */
1653 cc
->iv_size
= max(cc
->iv_size
,
1654 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1656 DMWARN("Selected cipher does not support IVs");
1660 /* Choose ivmode, see comments at iv code. */
1662 cc
->iv_gen_ops
= NULL
;
1663 else if (strcmp(ivmode
, "plain") == 0)
1664 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1665 else if (strcmp(ivmode
, "plain64") == 0)
1666 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1667 else if (strcmp(ivmode
, "essiv") == 0)
1668 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1669 else if (strcmp(ivmode
, "benbi") == 0)
1670 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1671 else if (strcmp(ivmode
, "null") == 0)
1672 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1673 else if (strcmp(ivmode
, "lmk") == 0) {
1674 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1676 * Version 2 and 3 is recognised according
1677 * to length of provided multi-key string.
1678 * If present (version 3), last key is used as IV seed.
1679 * All keys (including IV seed) are always the same size.
1681 if (cc
->key_size
% cc
->key_parts
) {
1683 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
1685 } else if (strcmp(ivmode
, "tcw") == 0) {
1686 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
1687 cc
->key_parts
+= 2; /* IV + whitening */
1688 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
1691 ti
->error
= "Invalid IV mode";
1695 /* Initialize and set key */
1696 ret
= crypt_set_key(cc
, key
);
1698 ti
->error
= "Error decoding and setting key";
1703 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1704 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1706 ti
->error
= "Error creating IV";
1711 /* Initialize IV (set keys for ESSIV etc) */
1712 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1713 ret
= cc
->iv_gen_ops
->init(cc
);
1715 ti
->error
= "Error initialising IV";
1726 ti
->error
= "Cannot allocate cipher strings";
1731 * Construct an encryption mapping:
1732 * <cipher> <key> <iv_offset> <dev_path> <start>
1734 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1736 struct crypt_config
*cc
;
1737 unsigned int key_size
, opt_params
;
1738 unsigned long long tmpll
;
1740 size_t iv_size_padding
;
1741 struct dm_arg_set as
;
1742 const char *opt_string
;
1745 static struct dm_arg _args
[] = {
1746 {0, 3, "Invalid number of feature args"},
1750 ti
->error
= "Not enough arguments";
1754 key_size
= strlen(argv
[1]) >> 1;
1756 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1758 ti
->error
= "Cannot allocate encryption context";
1761 cc
->key_size
= key_size
;
1764 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1768 cc
->dmreq_start
= sizeof(struct skcipher_request
);
1769 cc
->dmreq_start
+= crypto_skcipher_reqsize(any_tfm(cc
));
1770 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
1772 if (crypto_skcipher_alignmask(any_tfm(cc
)) < CRYPTO_MINALIGN
) {
1773 /* Allocate the padding exactly */
1774 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
1775 & crypto_skcipher_alignmask(any_tfm(cc
));
1778 * If the cipher requires greater alignment than kmalloc
1779 * alignment, we don't know the exact position of the
1780 * initialization vector. We must assume worst case.
1782 iv_size_padding
= crypto_skcipher_alignmask(any_tfm(cc
));
1786 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1787 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
);
1788 if (!cc
->req_pool
) {
1789 ti
->error
= "Cannot allocate crypt request mempool";
1793 cc
->per_bio_data_size
= ti
->per_io_data_size
=
1794 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+
1795 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
,
1796 ARCH_KMALLOC_MINALIGN
);
1798 cc
->page_pool
= mempool_create_page_pool(BIO_MAX_PAGES
, 0);
1799 if (!cc
->page_pool
) {
1800 ti
->error
= "Cannot allocate page mempool";
1804 cc
->bs
= bioset_create(MIN_IOS
, 0);
1806 ti
->error
= "Cannot allocate crypt bioset";
1810 mutex_init(&cc
->bio_alloc_lock
);
1813 if (sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) {
1814 ti
->error
= "Invalid iv_offset sector";
1817 cc
->iv_offset
= tmpll
;
1819 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
1821 ti
->error
= "Device lookup failed";
1826 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
1827 ti
->error
= "Invalid device sector";
1835 /* Optional parameters */
1840 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1845 while (opt_params
--) {
1846 opt_string
= dm_shift_arg(&as
);
1848 ti
->error
= "Not enough feature arguments";
1852 if (!strcasecmp(opt_string
, "allow_discards"))
1853 ti
->num_discard_bios
= 1;
1855 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
1856 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1858 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
1859 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1862 ti
->error
= "Invalid feature arguments";
1869 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM
, 1);
1870 if (!cc
->io_queue
) {
1871 ti
->error
= "Couldn't create kcryptd io queue";
1875 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1876 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
1878 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
1880 if (!cc
->crypt_queue
) {
1881 ti
->error
= "Couldn't create kcryptd queue";
1885 init_waitqueue_head(&cc
->write_thread_wait
);
1886 cc
->write_tree
= RB_ROOT
;
1888 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write");
1889 if (IS_ERR(cc
->write_thread
)) {
1890 ret
= PTR_ERR(cc
->write_thread
);
1891 cc
->write_thread
= NULL
;
1892 ti
->error
= "Couldn't spawn write thread";
1895 wake_up_process(cc
->write_thread
);
1897 ti
->num_flush_bios
= 1;
1898 ti
->discard_zeroes_data_unsupported
= true;
1907 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
1909 struct dm_crypt_io
*io
;
1910 struct crypt_config
*cc
= ti
->private;
1913 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
1914 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
1915 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
1917 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
||
1918 bio_op(bio
) == REQ_OP_DISCARD
)) {
1919 bio
->bi_bdev
= cc
->dev
->bdev
;
1920 if (bio_sectors(bio
))
1921 bio
->bi_iter
.bi_sector
= cc
->start
+
1922 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1923 return DM_MAPIO_REMAPPED
;
1927 * Check if bio is too large, split as needed.
1929 if (unlikely(bio
->bi_iter
.bi_size
> (BIO_MAX_PAGES
<< PAGE_SHIFT
)) &&
1930 bio_data_dir(bio
) == WRITE
)
1931 dm_accept_partial_bio(bio
, ((BIO_MAX_PAGES
<< PAGE_SHIFT
) >> SECTOR_SHIFT
));
1933 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
1934 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
1935 io
->ctx
.req
= (struct skcipher_request
*)(io
+ 1);
1937 if (bio_data_dir(io
->base_bio
) == READ
) {
1938 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1939 kcryptd_queue_read(io
);
1941 kcryptd_queue_crypt(io
);
1943 return DM_MAPIO_SUBMITTED
;
1946 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
1947 unsigned status_flags
, char *result
, unsigned maxlen
)
1949 struct crypt_config
*cc
= ti
->private;
1951 int num_feature_args
= 0;
1954 case STATUSTYPE_INFO
:
1958 case STATUSTYPE_TABLE
:
1959 DMEMIT("%s ", cc
->cipher_string
);
1961 if (cc
->key_size
> 0)
1962 for (i
= 0; i
< cc
->key_size
; i
++)
1963 DMEMIT("%02x", cc
->key
[i
]);
1967 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1968 cc
->dev
->name
, (unsigned long long)cc
->start
);
1970 num_feature_args
+= !!ti
->num_discard_bios
;
1971 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1972 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1973 if (num_feature_args
) {
1974 DMEMIT(" %d", num_feature_args
);
1975 if (ti
->num_discard_bios
)
1976 DMEMIT(" allow_discards");
1977 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1978 DMEMIT(" same_cpu_crypt");
1979 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
1980 DMEMIT(" submit_from_crypt_cpus");
1987 static void crypt_postsuspend(struct dm_target
*ti
)
1989 struct crypt_config
*cc
= ti
->private;
1991 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1994 static int crypt_preresume(struct dm_target
*ti
)
1996 struct crypt_config
*cc
= ti
->private;
1998 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1999 DMERR("aborting resume - crypt key is not set.");
2006 static void crypt_resume(struct dm_target
*ti
)
2008 struct crypt_config
*cc
= ti
->private;
2010 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
2013 /* Message interface
2017 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2019 struct crypt_config
*cc
= ti
->private;
2025 if (!strcasecmp(argv
[0], "key")) {
2026 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
2027 DMWARN("not suspended during key manipulation.");
2030 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
2031 ret
= crypt_set_key(cc
, argv
[2]);
2034 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
2035 ret
= cc
->iv_gen_ops
->init(cc
);
2038 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
2039 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
2040 ret
= cc
->iv_gen_ops
->wipe(cc
);
2044 return crypt_wipe_key(cc
);
2049 DMWARN("unrecognised message received.");
2053 static int crypt_iterate_devices(struct dm_target
*ti
,
2054 iterate_devices_callout_fn fn
, void *data
)
2056 struct crypt_config
*cc
= ti
->private;
2058 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
2061 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2064 * Unfortunate constraint that is required to avoid the potential
2065 * for exceeding underlying device's max_segments limits -- due to
2066 * crypt_alloc_buffer() possibly allocating pages for the encryption
2067 * bio that are not as physically contiguous as the original bio.
2069 limits
->max_segment_size
= PAGE_SIZE
;
2072 static struct target_type crypt_target
= {
2074 .version
= {1, 14, 1},
2075 .module
= THIS_MODULE
,
2079 .status
= crypt_status
,
2080 .postsuspend
= crypt_postsuspend
,
2081 .preresume
= crypt_preresume
,
2082 .resume
= crypt_resume
,
2083 .message
= crypt_message
,
2084 .iterate_devices
= crypt_iterate_devices
,
2085 .io_hints
= crypt_io_hints
,
2088 static int __init
dm_crypt_init(void)
2092 r
= dm_register_target(&crypt_target
);
2094 DMERR("register failed %d", r
);
2099 static void __exit
dm_crypt_exit(void)
2101 dm_unregister_target(&crypt_target
);
2104 module_init(dm_crypt_init
);
2105 module_exit(dm_crypt_exit
);
2107 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2108 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
2109 MODULE_LICENSE("GPL");