2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
24 #define DM_MSG_PREFIX "table"
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32 struct mapped_device
*md
;
37 unsigned int counts
[MAX_DEPTH
]; /* in nodes */
38 sector_t
*index
[MAX_DEPTH
];
40 unsigned int num_targets
;
41 unsigned int num_allocated
;
43 struct dm_target
*targets
;
45 struct target_type
*immutable_target_type
;
47 bool integrity_supported
:1;
52 * Indicates the rw permissions for the new logical
53 * device. This should be a combination of FMODE_READ
58 /* a list of devices used by this table */
59 struct list_head devices
;
61 /* events get handed up using this callback */
62 void (*event_fn
)(void *);
65 struct dm_md_mempools
*mempools
;
67 struct list_head target_callbacks
;
71 * Similar to ceiling(log_size(n))
73 static unsigned int int_log(unsigned int n
, unsigned int base
)
78 n
= dm_div_up(n
, base
);
86 * Calculate the index of the child node of the n'th node k'th key.
88 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
90 return (n
* CHILDREN_PER_NODE
) + k
;
94 * Return the n'th node of level l from table t.
96 static inline sector_t
*get_node(struct dm_table
*t
,
97 unsigned int l
, unsigned int n
)
99 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
103 * Return the highest key that you could lookup from the n'th
104 * node on level l of the btree.
106 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
108 for (; l
< t
->depth
- 1; l
++)
109 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
111 if (n
>= t
->counts
[l
])
112 return (sector_t
) - 1;
114 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
118 * Fills in a level of the btree based on the highs of the level
121 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
126 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
127 node
= get_node(t
, l
, n
);
129 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
130 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
136 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
142 * Check that we're not going to overflow.
144 if (nmemb
> (ULONG_MAX
/ elem_size
))
147 size
= nmemb
* elem_size
;
148 addr
= vzalloc(size
);
152 EXPORT_SYMBOL(dm_vcalloc
);
155 * highs, and targets are managed as dynamic arrays during a
158 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
161 struct dm_target
*n_targets
;
164 * Allocate both the target array and offset array at once.
165 * Append an empty entry to catch sectors beyond the end of
168 n_highs
= (sector_t
*) dm_vcalloc(num
+ 1, sizeof(struct dm_target
) +
173 n_targets
= (struct dm_target
*) (n_highs
+ num
);
175 memset(n_highs
, -1, sizeof(*n_highs
) * num
);
178 t
->num_allocated
= num
;
180 t
->targets
= n_targets
;
185 int dm_table_create(struct dm_table
**result
, fmode_t mode
,
186 unsigned num_targets
, struct mapped_device
*md
)
188 struct dm_table
*t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
193 INIT_LIST_HEAD(&t
->devices
);
194 INIT_LIST_HEAD(&t
->target_callbacks
);
197 num_targets
= KEYS_PER_NODE
;
199 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
206 if (alloc_targets(t
, num_targets
)) {
211 t
->type
= DM_TYPE_NONE
;
218 static void free_devices(struct list_head
*devices
, struct mapped_device
*md
)
220 struct list_head
*tmp
, *next
;
222 list_for_each_safe(tmp
, next
, devices
) {
223 struct dm_dev_internal
*dd
=
224 list_entry(tmp
, struct dm_dev_internal
, list
);
225 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226 dm_device_name(md
), dd
->dm_dev
->name
);
227 dm_put_table_device(md
, dd
->dm_dev
);
232 void dm_table_destroy(struct dm_table
*t
)
239 /* free the indexes */
241 vfree(t
->index
[t
->depth
- 2]);
243 /* free the targets */
244 for (i
= 0; i
< t
->num_targets
; i
++) {
245 struct dm_target
*tgt
= t
->targets
+ i
;
250 dm_put_target_type(tgt
->type
);
255 /* free the device list */
256 free_devices(&t
->devices
, t
->md
);
258 dm_free_md_mempools(t
->mempools
);
264 * See if we've already got a device in the list.
266 static struct dm_dev_internal
*find_device(struct list_head
*l
, dev_t dev
)
268 struct dm_dev_internal
*dd
;
270 list_for_each_entry (dd
, l
, list
)
271 if (dd
->dm_dev
->bdev
->bd_dev
== dev
)
278 * If possible, this checks an area of a destination device is invalid.
280 static int device_area_is_invalid(struct dm_target
*ti
, struct dm_dev
*dev
,
281 sector_t start
, sector_t len
, void *data
)
283 struct request_queue
*q
;
284 struct queue_limits
*limits
= data
;
285 struct block_device
*bdev
= dev
->bdev
;
287 i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
288 unsigned short logical_block_size_sectors
=
289 limits
->logical_block_size
>> SECTOR_SHIFT
;
290 char b
[BDEVNAME_SIZE
];
293 * Some devices exist without request functions,
294 * such as loop devices not yet bound to backing files.
295 * Forbid the use of such devices.
297 q
= bdev_get_queue(bdev
);
298 if (!q
|| !q
->make_request_fn
) {
299 DMWARN("%s: %s is not yet initialised: "
300 "start=%llu, len=%llu, dev_size=%llu",
301 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
302 (unsigned long long)start
,
303 (unsigned long long)len
,
304 (unsigned long long)dev_size
);
311 if ((start
>= dev_size
) || (start
+ len
> dev_size
)) {
312 DMWARN("%s: %s too small for target: "
313 "start=%llu, len=%llu, dev_size=%llu",
314 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
315 (unsigned long long)start
,
316 (unsigned long long)len
,
317 (unsigned long long)dev_size
);
321 if (logical_block_size_sectors
<= 1)
324 if (start
& (logical_block_size_sectors
- 1)) {
325 DMWARN("%s: start=%llu not aligned to h/w "
326 "logical block size %u of %s",
327 dm_device_name(ti
->table
->md
),
328 (unsigned long long)start
,
329 limits
->logical_block_size
, bdevname(bdev
, b
));
333 if (len
& (logical_block_size_sectors
- 1)) {
334 DMWARN("%s: len=%llu not aligned to h/w "
335 "logical block size %u of %s",
336 dm_device_name(ti
->table
->md
),
337 (unsigned long long)len
,
338 limits
->logical_block_size
, bdevname(bdev
, b
));
346 * This upgrades the mode on an already open dm_dev, being
347 * careful to leave things as they were if we fail to reopen the
348 * device and not to touch the existing bdev field in case
349 * it is accessed concurrently inside dm_table_any_congested().
351 static int upgrade_mode(struct dm_dev_internal
*dd
, fmode_t new_mode
,
352 struct mapped_device
*md
)
355 struct dm_dev
*old_dev
, *new_dev
;
357 old_dev
= dd
->dm_dev
;
359 r
= dm_get_table_device(md
, dd
->dm_dev
->bdev
->bd_dev
,
360 dd
->dm_dev
->mode
| new_mode
, &new_dev
);
364 dd
->dm_dev
= new_dev
;
365 dm_put_table_device(md
, old_dev
);
371 * Convert the path to a device
373 dev_t
dm_get_dev_t(const char *path
)
375 dev_t
uninitialized_var(dev
);
376 struct block_device
*bdev
;
378 bdev
= lookup_bdev(path
);
380 dev
= name_to_dev_t(path
);
388 EXPORT_SYMBOL_GPL(dm_get_dev_t
);
391 * Add a device to the list, or just increment the usage count if
392 * it's already present.
394 int dm_get_device(struct dm_target
*ti
, const char *path
, fmode_t mode
,
395 struct dm_dev
**result
)
399 struct dm_dev_internal
*dd
;
400 struct dm_table
*t
= ti
->table
;
404 dev
= dm_get_dev_t(path
);
408 dd
= find_device(&t
->devices
, dev
);
410 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
414 if ((r
= dm_get_table_device(t
->md
, dev
, mode
, &dd
->dm_dev
))) {
419 atomic_set(&dd
->count
, 0);
420 list_add(&dd
->list
, &t
->devices
);
422 } else if (dd
->dm_dev
->mode
!= (mode
| dd
->dm_dev
->mode
)) {
423 r
= upgrade_mode(dd
, mode
, t
->md
);
427 atomic_inc(&dd
->count
);
429 *result
= dd
->dm_dev
;
432 EXPORT_SYMBOL(dm_get_device
);
434 static int dm_set_device_limits(struct dm_target
*ti
, struct dm_dev
*dev
,
435 sector_t start
, sector_t len
, void *data
)
437 struct queue_limits
*limits
= data
;
438 struct block_device
*bdev
= dev
->bdev
;
439 struct request_queue
*q
= bdev_get_queue(bdev
);
440 char b
[BDEVNAME_SIZE
];
443 DMWARN("%s: Cannot set limits for nonexistent device %s",
444 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
));
448 if (bdev_stack_limits(limits
, bdev
, start
) < 0)
449 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450 "physical_block_size=%u, logical_block_size=%u, "
451 "alignment_offset=%u, start=%llu",
452 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
453 q
->limits
.physical_block_size
,
454 q
->limits
.logical_block_size
,
455 q
->limits
.alignment_offset
,
456 (unsigned long long) start
<< SECTOR_SHIFT
);
462 * Decrement a device's use count and remove it if necessary.
464 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*d
)
467 struct list_head
*devices
= &ti
->table
->devices
;
468 struct dm_dev_internal
*dd
;
470 list_for_each_entry(dd
, devices
, list
) {
471 if (dd
->dm_dev
== d
) {
477 DMWARN("%s: device %s not in table devices list",
478 dm_device_name(ti
->table
->md
), d
->name
);
481 if (atomic_dec_and_test(&dd
->count
)) {
482 dm_put_table_device(ti
->table
->md
, d
);
487 EXPORT_SYMBOL(dm_put_device
);
490 * Checks to see if the target joins onto the end of the table.
492 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
494 struct dm_target
*prev
;
496 if (!table
->num_targets
)
499 prev
= &table
->targets
[table
->num_targets
- 1];
500 return (ti
->begin
== (prev
->begin
+ prev
->len
));
504 * Used to dynamically allocate the arg array.
506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
507 * process messages even if some device is suspended. These messages have a
508 * small fixed number of arguments.
510 * On the other hand, dm-switch needs to process bulk data using messages and
511 * excessive use of GFP_NOIO could cause trouble.
513 static char **realloc_argv(unsigned *size
, char **old_argv
)
520 new_size
= *size
* 2;
526 argv
= kmalloc(new_size
* sizeof(*argv
), gfp
);
528 memcpy(argv
, old_argv
, *size
* sizeof(*argv
));
537 * Destructively splits up the argument list to pass to ctr.
539 int dm_split_args(int *argc
, char ***argvp
, char *input
)
541 char *start
, *end
= input
, *out
, **argv
= NULL
;
542 unsigned array_size
= 0;
551 argv
= realloc_argv(&array_size
, argv
);
556 /* Skip whitespace */
557 start
= skip_spaces(end
);
560 break; /* success, we hit the end */
562 /* 'out' is used to remove any back-quotes */
565 /* Everything apart from '\0' can be quoted */
566 if (*end
== '\\' && *(end
+ 1)) {
573 break; /* end of token */
578 /* have we already filled the array ? */
579 if ((*argc
+ 1) > array_size
) {
580 argv
= realloc_argv(&array_size
, argv
);
585 /* we know this is whitespace */
589 /* terminate the string and put it in the array */
600 * Impose necessary and sufficient conditions on a devices's table such
601 * that any incoming bio which respects its logical_block_size can be
602 * processed successfully. If it falls across the boundary between
603 * two or more targets, the size of each piece it gets split into must
604 * be compatible with the logical_block_size of the target processing it.
606 static int validate_hardware_logical_block_alignment(struct dm_table
*table
,
607 struct queue_limits
*limits
)
610 * This function uses arithmetic modulo the logical_block_size
611 * (in units of 512-byte sectors).
613 unsigned short device_logical_block_size_sects
=
614 limits
->logical_block_size
>> SECTOR_SHIFT
;
617 * Offset of the start of the next table entry, mod logical_block_size.
619 unsigned short next_target_start
= 0;
622 * Given an aligned bio that extends beyond the end of a
623 * target, how many sectors must the next target handle?
625 unsigned short remaining
= 0;
627 struct dm_target
*uninitialized_var(ti
);
628 struct queue_limits ti_limits
;
632 * Check each entry in the table in turn.
634 while (i
< dm_table_get_num_targets(table
)) {
635 ti
= dm_table_get_target(table
, i
++);
637 blk_set_stacking_limits(&ti_limits
);
639 /* combine all target devices' limits */
640 if (ti
->type
->iterate_devices
)
641 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
645 * If the remaining sectors fall entirely within this
646 * table entry are they compatible with its logical_block_size?
648 if (remaining
< ti
->len
&&
649 remaining
& ((ti_limits
.logical_block_size
>>
654 (unsigned short) ((next_target_start
+ ti
->len
) &
655 (device_logical_block_size_sects
- 1));
656 remaining
= next_target_start
?
657 device_logical_block_size_sects
- next_target_start
: 0;
661 DMWARN("%s: table line %u (start sect %llu len %llu) "
662 "not aligned to h/w logical block size %u",
663 dm_device_name(table
->md
), i
,
664 (unsigned long long) ti
->begin
,
665 (unsigned long long) ti
->len
,
666 limits
->logical_block_size
);
673 int dm_table_add_target(struct dm_table
*t
, const char *type
,
674 sector_t start
, sector_t len
, char *params
)
676 int r
= -EINVAL
, argc
;
678 struct dm_target
*tgt
;
681 DMERR("%s: target type %s must appear alone in table",
682 dm_device_name(t
->md
), t
->targets
->type
->name
);
686 BUG_ON(t
->num_targets
>= t
->num_allocated
);
688 tgt
= t
->targets
+ t
->num_targets
;
689 memset(tgt
, 0, sizeof(*tgt
));
692 DMERR("%s: zero-length target", dm_device_name(t
->md
));
696 tgt
->type
= dm_get_target_type(type
);
698 DMERR("%s: %s: unknown target type", dm_device_name(t
->md
), type
);
702 if (dm_target_needs_singleton(tgt
->type
)) {
703 if (t
->num_targets
) {
704 tgt
->error
= "singleton target type must appear alone in table";
710 if (dm_target_always_writeable(tgt
->type
) && !(t
->mode
& FMODE_WRITE
)) {
711 tgt
->error
= "target type may not be included in a read-only table";
715 if (t
->immutable_target_type
) {
716 if (t
->immutable_target_type
!= tgt
->type
) {
717 tgt
->error
= "immutable target type cannot be mixed with other target types";
720 } else if (dm_target_is_immutable(tgt
->type
)) {
721 if (t
->num_targets
) {
722 tgt
->error
= "immutable target type cannot be mixed with other target types";
725 t
->immutable_target_type
= tgt
->type
;
731 tgt
->error
= "Unknown error";
734 * Does this target adjoin the previous one ?
736 if (!adjoin(t
, tgt
)) {
737 tgt
->error
= "Gap in table";
741 r
= dm_split_args(&argc
, &argv
, params
);
743 tgt
->error
= "couldn't split parameters (insufficient memory)";
747 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
752 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
754 if (!tgt
->num_discard_bios
&& tgt
->discards_supported
)
755 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
756 dm_device_name(t
->md
), type
);
761 DMERR("%s: %s: %s", dm_device_name(t
->md
), type
, tgt
->error
);
762 dm_put_target_type(tgt
->type
);
767 * Target argument parsing helpers.
769 static int validate_next_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
770 unsigned *value
, char **error
, unsigned grouped
)
772 const char *arg_str
= dm_shift_arg(arg_set
);
776 (sscanf(arg_str
, "%u%c", value
, &dummy
) != 1) ||
777 (*value
< arg
->min
) ||
778 (*value
> arg
->max
) ||
779 (grouped
&& arg_set
->argc
< *value
)) {
787 int dm_read_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
788 unsigned *value
, char **error
)
790 return validate_next_arg(arg
, arg_set
, value
, error
, 0);
792 EXPORT_SYMBOL(dm_read_arg
);
794 int dm_read_arg_group(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
795 unsigned *value
, char **error
)
797 return validate_next_arg(arg
, arg_set
, value
, error
, 1);
799 EXPORT_SYMBOL(dm_read_arg_group
);
801 const char *dm_shift_arg(struct dm_arg_set
*as
)
814 EXPORT_SYMBOL(dm_shift_arg
);
816 void dm_consume_args(struct dm_arg_set
*as
, unsigned num_args
)
818 BUG_ON(as
->argc
< num_args
);
819 as
->argc
-= num_args
;
820 as
->argv
+= num_args
;
822 EXPORT_SYMBOL(dm_consume_args
);
824 static bool __table_type_bio_based(unsigned table_type
)
826 return (table_type
== DM_TYPE_BIO_BASED
||
827 table_type
== DM_TYPE_DAX_BIO_BASED
);
830 static bool __table_type_request_based(unsigned table_type
)
832 return (table_type
== DM_TYPE_REQUEST_BASED
||
833 table_type
== DM_TYPE_MQ_REQUEST_BASED
);
836 void dm_table_set_type(struct dm_table
*t
, unsigned type
)
840 EXPORT_SYMBOL_GPL(dm_table_set_type
);
842 static int device_supports_dax(struct dm_target
*ti
, struct dm_dev
*dev
,
843 sector_t start
, sector_t len
, void *data
)
845 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
847 return q
&& blk_queue_dax(q
);
850 static bool dm_table_supports_dax(struct dm_table
*t
)
852 struct dm_target
*ti
;
855 /* Ensure that all targets support DAX. */
856 while (i
< dm_table_get_num_targets(t
)) {
857 ti
= dm_table_get_target(t
, i
++);
859 if (!ti
->type
->direct_access
)
862 if (!ti
->type
->iterate_devices
||
863 !ti
->type
->iterate_devices(ti
, device_supports_dax
, NULL
))
870 static int dm_table_determine_type(struct dm_table
*t
)
873 unsigned bio_based
= 0, request_based
= 0, hybrid
= 0;
874 bool verify_blk_mq
= false;
875 struct dm_target
*tgt
;
876 struct dm_dev_internal
*dd
;
877 struct list_head
*devices
= dm_table_get_devices(t
);
878 unsigned live_md_type
= dm_get_md_type(t
->md
);
880 if (t
->type
!= DM_TYPE_NONE
) {
881 /* target already set the table's type */
882 if (t
->type
== DM_TYPE_BIO_BASED
)
884 BUG_ON(t
->type
== DM_TYPE_DAX_BIO_BASED
);
885 goto verify_rq_based
;
888 for (i
= 0; i
< t
->num_targets
; i
++) {
889 tgt
= t
->targets
+ i
;
890 if (dm_target_hybrid(tgt
))
892 else if (dm_target_request_based(tgt
))
897 if (bio_based
&& request_based
) {
898 DMWARN("Inconsistent table: different target types"
899 " can't be mixed up");
904 if (hybrid
&& !bio_based
&& !request_based
) {
906 * The targets can work either way.
907 * Determine the type from the live device.
908 * Default to bio-based if device is new.
910 if (__table_type_request_based(live_md_type
))
917 /* We must use this table as bio-based */
918 t
->type
= DM_TYPE_BIO_BASED
;
919 if (dm_table_supports_dax(t
) ||
920 (list_empty(devices
) && live_md_type
== DM_TYPE_DAX_BIO_BASED
))
921 t
->type
= DM_TYPE_DAX_BIO_BASED
;
925 BUG_ON(!request_based
); /* No targets in this table */
928 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
929 * having a compatible target use dm_table_set_type.
931 t
->type
= DM_TYPE_REQUEST_BASED
;
935 * Request-based dm supports only tables that have a single target now.
936 * To support multiple targets, request splitting support is needed,
937 * and that needs lots of changes in the block-layer.
938 * (e.g. request completion process for partial completion.)
940 if (t
->num_targets
> 1) {
941 DMWARN("Request-based dm doesn't support multiple targets yet");
945 if (list_empty(devices
)) {
947 struct dm_table
*live_table
= dm_get_live_table(t
->md
, &srcu_idx
);
949 /* inherit live table's type and all_blk_mq */
951 t
->type
= live_table
->type
;
952 t
->all_blk_mq
= live_table
->all_blk_mq
;
954 dm_put_live_table(t
->md
, srcu_idx
);
958 /* Non-request-stackable devices can't be used for request-based dm */
959 list_for_each_entry(dd
, devices
, list
) {
960 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
->bdev
);
962 if (!blk_queue_stackable(q
)) {
963 DMERR("table load rejected: including"
964 " non-request-stackable devices");
969 verify_blk_mq
= true;
973 /* verify _all_ devices in the table are blk-mq devices */
974 list_for_each_entry(dd
, devices
, list
)
975 if (!bdev_get_queue(dd
->dm_dev
->bdev
)->mq_ops
) {
976 DMERR("table load rejected: not all devices"
977 " are blk-mq request-stackable");
981 t
->all_blk_mq
= true;
984 if (t
->type
== DM_TYPE_MQ_REQUEST_BASED
&& !t
->all_blk_mq
) {
985 DMERR("table load rejected: all devices are not blk-mq request-stackable");
992 unsigned dm_table_get_type(struct dm_table
*t
)
997 struct target_type
*dm_table_get_immutable_target_type(struct dm_table
*t
)
999 return t
->immutable_target_type
;
1002 struct dm_target
*dm_table_get_immutable_target(struct dm_table
*t
)
1004 /* Immutable target is implicitly a singleton */
1005 if (t
->num_targets
> 1 ||
1006 !dm_target_is_immutable(t
->targets
[0].type
))
1012 struct dm_target
*dm_table_get_wildcard_target(struct dm_table
*t
)
1014 struct dm_target
*uninitialized_var(ti
);
1017 while (i
< dm_table_get_num_targets(t
)) {
1018 ti
= dm_table_get_target(t
, i
++);
1019 if (dm_target_is_wildcard(ti
->type
))
1026 bool dm_table_bio_based(struct dm_table
*t
)
1028 return __table_type_bio_based(dm_table_get_type(t
));
1031 bool dm_table_request_based(struct dm_table
*t
)
1033 return __table_type_request_based(dm_table_get_type(t
));
1036 bool dm_table_all_blk_mq_devices(struct dm_table
*t
)
1038 return t
->all_blk_mq
;
1041 static int dm_table_alloc_md_mempools(struct dm_table
*t
, struct mapped_device
*md
)
1043 unsigned type
= dm_table_get_type(t
);
1044 unsigned per_io_data_size
= 0;
1045 struct dm_target
*tgt
;
1048 if (unlikely(type
== DM_TYPE_NONE
)) {
1049 DMWARN("no table type is set, can't allocate mempools");
1053 if (__table_type_bio_based(type
))
1054 for (i
= 0; i
< t
->num_targets
; i
++) {
1055 tgt
= t
->targets
+ i
;
1056 per_io_data_size
= max(per_io_data_size
, tgt
->per_io_data_size
);
1059 t
->mempools
= dm_alloc_md_mempools(md
, type
, t
->integrity_supported
, per_io_data_size
);
1066 void dm_table_free_md_mempools(struct dm_table
*t
)
1068 dm_free_md_mempools(t
->mempools
);
1072 struct dm_md_mempools
*dm_table_get_md_mempools(struct dm_table
*t
)
1077 static int setup_indexes(struct dm_table
*t
)
1080 unsigned int total
= 0;
1083 /* allocate the space for *all* the indexes */
1084 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1085 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
1086 total
+= t
->counts
[i
];
1089 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
1093 /* set up internal nodes, bottom-up */
1094 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1095 t
->index
[i
] = indexes
;
1096 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
1097 setup_btree_index(i
, t
);
1104 * Builds the btree to index the map.
1106 static int dm_table_build_index(struct dm_table
*t
)
1109 unsigned int leaf_nodes
;
1111 /* how many indexes will the btree have ? */
1112 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
1113 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
1115 /* leaf layer has already been set up */
1116 t
->counts
[t
->depth
- 1] = leaf_nodes
;
1117 t
->index
[t
->depth
- 1] = t
->highs
;
1120 r
= setup_indexes(t
);
1125 static bool integrity_profile_exists(struct gendisk
*disk
)
1127 return !!blk_get_integrity(disk
);
1131 * Get a disk whose integrity profile reflects the table's profile.
1132 * Returns NULL if integrity support was inconsistent or unavailable.
1134 static struct gendisk
* dm_table_get_integrity_disk(struct dm_table
*t
)
1136 struct list_head
*devices
= dm_table_get_devices(t
);
1137 struct dm_dev_internal
*dd
= NULL
;
1138 struct gendisk
*prev_disk
= NULL
, *template_disk
= NULL
;
1140 list_for_each_entry(dd
, devices
, list
) {
1141 template_disk
= dd
->dm_dev
->bdev
->bd_disk
;
1142 if (!integrity_profile_exists(template_disk
))
1144 else if (prev_disk
&&
1145 blk_integrity_compare(prev_disk
, template_disk
) < 0)
1147 prev_disk
= template_disk
;
1150 return template_disk
;
1154 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1155 dm_device_name(t
->md
),
1156 prev_disk
->disk_name
,
1157 template_disk
->disk_name
);
1162 * Register the mapped device for blk_integrity support if the
1163 * underlying devices have an integrity profile. But all devices may
1164 * not have matching profiles (checking all devices isn't reliable
1165 * during table load because this table may use other DM device(s) which
1166 * must be resumed before they will have an initialized integity
1167 * profile). Consequently, stacked DM devices force a 2 stage integrity
1168 * profile validation: First pass during table load, final pass during
1171 static int dm_table_register_integrity(struct dm_table
*t
)
1173 struct mapped_device
*md
= t
->md
;
1174 struct gendisk
*template_disk
= NULL
;
1176 template_disk
= dm_table_get_integrity_disk(t
);
1180 if (!integrity_profile_exists(dm_disk(md
))) {
1181 t
->integrity_supported
= true;
1183 * Register integrity profile during table load; we can do
1184 * this because the final profile must match during resume.
1186 blk_integrity_register(dm_disk(md
),
1187 blk_get_integrity(template_disk
));
1192 * If DM device already has an initialized integrity
1193 * profile the new profile should not conflict.
1195 if (blk_integrity_compare(dm_disk(md
), template_disk
) < 0) {
1196 DMWARN("%s: conflict with existing integrity profile: "
1197 "%s profile mismatch",
1198 dm_device_name(t
->md
),
1199 template_disk
->disk_name
);
1203 /* Preserve existing integrity profile */
1204 t
->integrity_supported
= true;
1209 * Prepares the table for use by building the indices,
1210 * setting the type, and allocating mempools.
1212 int dm_table_complete(struct dm_table
*t
)
1216 r
= dm_table_determine_type(t
);
1218 DMERR("unable to determine table type");
1222 r
= dm_table_build_index(t
);
1224 DMERR("unable to build btrees");
1228 r
= dm_table_register_integrity(t
);
1230 DMERR("could not register integrity profile.");
1234 r
= dm_table_alloc_md_mempools(t
, t
->md
);
1236 DMERR("unable to allocate mempools");
1241 static DEFINE_MUTEX(_event_lock
);
1242 void dm_table_event_callback(struct dm_table
*t
,
1243 void (*fn
)(void *), void *context
)
1245 mutex_lock(&_event_lock
);
1247 t
->event_context
= context
;
1248 mutex_unlock(&_event_lock
);
1251 void dm_table_event(struct dm_table
*t
)
1254 * You can no longer call dm_table_event() from interrupt
1255 * context, use a bottom half instead.
1257 BUG_ON(in_interrupt());
1259 mutex_lock(&_event_lock
);
1261 t
->event_fn(t
->event_context
);
1262 mutex_unlock(&_event_lock
);
1264 EXPORT_SYMBOL(dm_table_event
);
1266 inline sector_t
dm_table_get_size(struct dm_table
*t
)
1268 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
1270 EXPORT_SYMBOL(dm_table_get_size
);
1272 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
1274 if (index
>= t
->num_targets
)
1277 return t
->targets
+ index
;
1281 * Search the btree for the correct target.
1283 * Caller should check returned pointer with dm_target_is_valid()
1284 * to trap I/O beyond end of device.
1286 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
1288 unsigned int l
, n
= 0, k
= 0;
1291 if (unlikely(sector
>= dm_table_get_size(t
)))
1292 return &t
->targets
[t
->num_targets
];
1294 for (l
= 0; l
< t
->depth
; l
++) {
1295 n
= get_child(n
, k
);
1296 node
= get_node(t
, l
, n
);
1298 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
1299 if (node
[k
] >= sector
)
1303 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
1306 static int count_device(struct dm_target
*ti
, struct dm_dev
*dev
,
1307 sector_t start
, sector_t len
, void *data
)
1309 unsigned *num_devices
= data
;
1317 * Check whether a table has no data devices attached using each
1318 * target's iterate_devices method.
1319 * Returns false if the result is unknown because a target doesn't
1320 * support iterate_devices.
1322 bool dm_table_has_no_data_devices(struct dm_table
*table
)
1324 struct dm_target
*uninitialized_var(ti
);
1325 unsigned i
= 0, num_devices
= 0;
1327 while (i
< dm_table_get_num_targets(table
)) {
1328 ti
= dm_table_get_target(table
, i
++);
1330 if (!ti
->type
->iterate_devices
)
1333 ti
->type
->iterate_devices(ti
, count_device
, &num_devices
);
1342 * Establish the new table's queue_limits and validate them.
1344 int dm_calculate_queue_limits(struct dm_table
*table
,
1345 struct queue_limits
*limits
)
1347 struct dm_target
*uninitialized_var(ti
);
1348 struct queue_limits ti_limits
;
1351 blk_set_stacking_limits(limits
);
1353 while (i
< dm_table_get_num_targets(table
)) {
1354 blk_set_stacking_limits(&ti_limits
);
1356 ti
= dm_table_get_target(table
, i
++);
1358 if (!ti
->type
->iterate_devices
)
1359 goto combine_limits
;
1362 * Combine queue limits of all the devices this target uses.
1364 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
1367 /* Set I/O hints portion of queue limits */
1368 if (ti
->type
->io_hints
)
1369 ti
->type
->io_hints(ti
, &ti_limits
);
1372 * Check each device area is consistent with the target's
1373 * overall queue limits.
1375 if (ti
->type
->iterate_devices(ti
, device_area_is_invalid
,
1381 * Merge this target's queue limits into the overall limits
1384 if (blk_stack_limits(limits
, &ti_limits
, 0) < 0)
1385 DMWARN("%s: adding target device "
1386 "(start sect %llu len %llu) "
1387 "caused an alignment inconsistency",
1388 dm_device_name(table
->md
),
1389 (unsigned long long) ti
->begin
,
1390 (unsigned long long) ti
->len
);
1393 return validate_hardware_logical_block_alignment(table
, limits
);
1397 * Verify that all devices have an integrity profile that matches the
1398 * DM device's registered integrity profile. If the profiles don't
1399 * match then unregister the DM device's integrity profile.
1401 static void dm_table_verify_integrity(struct dm_table
*t
)
1403 struct gendisk
*template_disk
= NULL
;
1405 if (t
->integrity_supported
) {
1407 * Verify that the original integrity profile
1408 * matches all the devices in this table.
1410 template_disk
= dm_table_get_integrity_disk(t
);
1411 if (template_disk
&&
1412 blk_integrity_compare(dm_disk(t
->md
), template_disk
) >= 0)
1416 if (integrity_profile_exists(dm_disk(t
->md
))) {
1417 DMWARN("%s: unable to establish an integrity profile",
1418 dm_device_name(t
->md
));
1419 blk_integrity_unregister(dm_disk(t
->md
));
1423 static int device_flush_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1424 sector_t start
, sector_t len
, void *data
)
1426 unsigned long flush
= (unsigned long) data
;
1427 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1429 return q
&& (q
->queue_flags
& flush
);
1432 static bool dm_table_supports_flush(struct dm_table
*t
, unsigned long flush
)
1434 struct dm_target
*ti
;
1438 * Require at least one underlying device to support flushes.
1439 * t->devices includes internal dm devices such as mirror logs
1440 * so we need to use iterate_devices here, which targets
1441 * supporting flushes must provide.
1443 while (i
< dm_table_get_num_targets(t
)) {
1444 ti
= dm_table_get_target(t
, i
++);
1446 if (!ti
->num_flush_bios
)
1449 if (ti
->flush_supported
)
1452 if (ti
->type
->iterate_devices
&&
1453 ti
->type
->iterate_devices(ti
, device_flush_capable
, (void *) flush
))
1460 static bool dm_table_discard_zeroes_data(struct dm_table
*t
)
1462 struct dm_target
*ti
;
1465 /* Ensure that all targets supports discard_zeroes_data. */
1466 while (i
< dm_table_get_num_targets(t
)) {
1467 ti
= dm_table_get_target(t
, i
++);
1469 if (ti
->discard_zeroes_data_unsupported
)
1476 static int device_is_nonrot(struct dm_target
*ti
, struct dm_dev
*dev
,
1477 sector_t start
, sector_t len
, void *data
)
1479 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1481 return q
&& blk_queue_nonrot(q
);
1484 static int device_is_not_random(struct dm_target
*ti
, struct dm_dev
*dev
,
1485 sector_t start
, sector_t len
, void *data
)
1487 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1489 return q
&& !blk_queue_add_random(q
);
1492 static int queue_supports_sg_merge(struct dm_target
*ti
, struct dm_dev
*dev
,
1493 sector_t start
, sector_t len
, void *data
)
1495 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1497 return q
&& !test_bit(QUEUE_FLAG_NO_SG_MERGE
, &q
->queue_flags
);
1500 static bool dm_table_all_devices_attribute(struct dm_table
*t
,
1501 iterate_devices_callout_fn func
)
1503 struct dm_target
*ti
;
1506 while (i
< dm_table_get_num_targets(t
)) {
1507 ti
= dm_table_get_target(t
, i
++);
1509 if (!ti
->type
->iterate_devices
||
1510 !ti
->type
->iterate_devices(ti
, func
, NULL
))
1517 static int device_not_write_same_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1518 sector_t start
, sector_t len
, void *data
)
1520 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1522 return q
&& !q
->limits
.max_write_same_sectors
;
1525 static bool dm_table_supports_write_same(struct dm_table
*t
)
1527 struct dm_target
*ti
;
1530 while (i
< dm_table_get_num_targets(t
)) {
1531 ti
= dm_table_get_target(t
, i
++);
1533 if (!ti
->num_write_same_bios
)
1536 if (!ti
->type
->iterate_devices
||
1537 ti
->type
->iterate_devices(ti
, device_not_write_same_capable
, NULL
))
1544 static int device_discard_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1545 sector_t start
, sector_t len
, void *data
)
1547 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1549 return q
&& blk_queue_discard(q
);
1552 static bool dm_table_supports_discards(struct dm_table
*t
)
1554 struct dm_target
*ti
;
1558 * Unless any target used by the table set discards_supported,
1559 * require at least one underlying device to support discards.
1560 * t->devices includes internal dm devices such as mirror logs
1561 * so we need to use iterate_devices here, which targets
1562 * supporting discard selectively must provide.
1564 while (i
< dm_table_get_num_targets(t
)) {
1565 ti
= dm_table_get_target(t
, i
++);
1567 if (!ti
->num_discard_bios
)
1570 if (ti
->discards_supported
)
1573 if (ti
->type
->iterate_devices
&&
1574 ti
->type
->iterate_devices(ti
, device_discard_capable
, NULL
))
1581 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
,
1582 struct queue_limits
*limits
)
1584 bool wc
= false, fua
= false;
1587 * Copy table's limits to the DM device's request_queue
1589 q
->limits
= *limits
;
1591 if (!dm_table_supports_discards(t
))
1592 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
1594 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
1596 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_WC
))) {
1598 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_FUA
)))
1601 blk_queue_write_cache(q
, wc
, fua
);
1603 if (!dm_table_discard_zeroes_data(t
))
1604 q
->limits
.discard_zeroes_data
= 0;
1606 /* Ensure that all underlying devices are non-rotational. */
1607 if (dm_table_all_devices_attribute(t
, device_is_nonrot
))
1608 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, q
);
1610 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT
, q
);
1612 if (!dm_table_supports_write_same(t
))
1613 q
->limits
.max_write_same_sectors
= 0;
1615 if (dm_table_all_devices_attribute(t
, queue_supports_sg_merge
))
1616 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
1618 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
1620 dm_table_verify_integrity(t
);
1623 * Determine whether or not this queue's I/O timings contribute
1624 * to the entropy pool, Only request-based targets use this.
1625 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1628 if (blk_queue_add_random(q
) && dm_table_all_devices_attribute(t
, device_is_not_random
))
1629 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM
, q
);
1632 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1633 * visible to other CPUs because, once the flag is set, incoming bios
1634 * are processed by request-based dm, which refers to the queue
1636 * Until the flag set, bios are passed to bio-based dm and queued to
1637 * md->deferred where queue settings are not needed yet.
1638 * Those bios are passed to request-based dm at the resume time.
1641 if (dm_table_request_based(t
))
1642 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE
, q
);
1645 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
1647 return t
->num_targets
;
1650 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
1655 fmode_t
dm_table_get_mode(struct dm_table
*t
)
1659 EXPORT_SYMBOL(dm_table_get_mode
);
1667 static void suspend_targets(struct dm_table
*t
, enum suspend_mode mode
)
1669 int i
= t
->num_targets
;
1670 struct dm_target
*ti
= t
->targets
;
1675 if (ti
->type
->presuspend
)
1676 ti
->type
->presuspend(ti
);
1678 case PRESUSPEND_UNDO
:
1679 if (ti
->type
->presuspend_undo
)
1680 ti
->type
->presuspend_undo(ti
);
1683 if (ti
->type
->postsuspend
)
1684 ti
->type
->postsuspend(ti
);
1691 void dm_table_presuspend_targets(struct dm_table
*t
)
1696 suspend_targets(t
, PRESUSPEND
);
1699 void dm_table_presuspend_undo_targets(struct dm_table
*t
)
1704 suspend_targets(t
, PRESUSPEND_UNDO
);
1707 void dm_table_postsuspend_targets(struct dm_table
*t
)
1712 suspend_targets(t
, POSTSUSPEND
);
1715 int dm_table_resume_targets(struct dm_table
*t
)
1719 for (i
= 0; i
< t
->num_targets
; i
++) {
1720 struct dm_target
*ti
= t
->targets
+ i
;
1722 if (!ti
->type
->preresume
)
1725 r
= ti
->type
->preresume(ti
);
1727 DMERR("%s: %s: preresume failed, error = %d",
1728 dm_device_name(t
->md
), ti
->type
->name
, r
);
1733 for (i
= 0; i
< t
->num_targets
; i
++) {
1734 struct dm_target
*ti
= t
->targets
+ i
;
1736 if (ti
->type
->resume
)
1737 ti
->type
->resume(ti
);
1743 void dm_table_add_target_callbacks(struct dm_table
*t
, struct dm_target_callbacks
*cb
)
1745 list_add(&cb
->list
, &t
->target_callbacks
);
1747 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks
);
1749 int dm_table_any_congested(struct dm_table
*t
, int bdi_bits
)
1751 struct dm_dev_internal
*dd
;
1752 struct list_head
*devices
= dm_table_get_devices(t
);
1753 struct dm_target_callbacks
*cb
;
1756 list_for_each_entry(dd
, devices
, list
) {
1757 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
->bdev
);
1758 char b
[BDEVNAME_SIZE
];
1761 r
|= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1763 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1764 dm_device_name(t
->md
),
1765 bdevname(dd
->dm_dev
->bdev
, b
));
1768 list_for_each_entry(cb
, &t
->target_callbacks
, list
)
1769 if (cb
->congested_fn
)
1770 r
|= cb
->congested_fn(cb
, bdi_bits
);
1775 struct mapped_device
*dm_table_get_md(struct dm_table
*t
)
1779 EXPORT_SYMBOL(dm_table_get_md
);
1781 void dm_table_run_md_queue_async(struct dm_table
*t
)
1783 struct mapped_device
*md
;
1784 struct request_queue
*queue
;
1785 unsigned long flags
;
1787 if (!dm_table_request_based(t
))
1790 md
= dm_table_get_md(t
);
1791 queue
= dm_get_md_queue(md
);
1794 blk_mq_run_hw_queues(queue
, true);
1796 spin_lock_irqsave(queue
->queue_lock
, flags
);
1797 blk_run_queue_async(queue
);
1798 spin_unlock_irqrestore(queue
->queue_lock
, flags
);
1802 EXPORT_SYMBOL(dm_table_run_md_queue_async
);