Linux 4.9.243
[linux/fpc-iii.git] / drivers / md / dm-table.c
blob2d3ff028f50c920d89c802439f0c74cc07df1743
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
24 #define DM_MSG_PREFIX "table"
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 struct dm_table {
32 struct mapped_device *md;
33 unsigned type;
35 /* btree table */
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
45 struct target_type *immutable_target_type;
47 bool integrity_supported:1;
48 bool singleton:1;
49 bool all_blk_mq:1;
52 * Indicates the rw permissions for the new logical
53 * device. This should be a combination of FMODE_READ
54 * and FMODE_WRITE.
56 fmode_t mode;
58 /* a list of devices used by this table */
59 struct list_head devices;
61 /* events get handed up using this callback */
62 void (*event_fn)(void *);
63 void *event_context;
65 struct dm_md_mempools *mempools;
67 struct list_head target_callbacks;
71 * Similar to ceiling(log_size(n))
73 static unsigned int int_log(unsigned int n, unsigned int base)
75 int result = 0;
77 while (n > 1) {
78 n = dm_div_up(n, base);
79 result++;
82 return result;
86 * Calculate the index of the child node of the n'th node k'th key.
88 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 return (n * CHILDREN_PER_NODE) + k;
94 * Return the n'th node of level l from table t.
96 static inline sector_t *get_node(struct dm_table *t,
97 unsigned int l, unsigned int n)
99 return t->index[l] + (n * KEYS_PER_NODE);
103 * Return the highest key that you could lookup from the n'th
104 * node on level l of the btree.
106 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 for (; l < t->depth - 1; l++)
109 n = get_child(n, CHILDREN_PER_NODE - 1);
111 if (n >= t->counts[l])
112 return (sector_t) - 1;
114 return get_node(t, l, n)[KEYS_PER_NODE - 1];
118 * Fills in a level of the btree based on the highs of the level
119 * below it.
121 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 unsigned int n, k;
124 sector_t *node;
126 for (n = 0U; n < t->counts[l]; n++) {
127 node = get_node(t, l, n);
129 for (k = 0U; k < KEYS_PER_NODE; k++)
130 node[k] = high(t, l + 1, get_child(n, k));
133 return 0;
136 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 unsigned long size;
139 void *addr;
142 * Check that we're not going to overflow.
144 if (nmemb > (ULONG_MAX / elem_size))
145 return NULL;
147 size = nmemb * elem_size;
148 addr = vzalloc(size);
150 return addr;
152 EXPORT_SYMBOL(dm_vcalloc);
155 * highs, and targets are managed as dynamic arrays during a
156 * table load.
158 static int alloc_targets(struct dm_table *t, unsigned int num)
160 sector_t *n_highs;
161 struct dm_target *n_targets;
164 * Allocate both the target array and offset array at once.
165 * Append an empty entry to catch sectors beyond the end of
166 * the device.
168 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
169 sizeof(sector_t));
170 if (!n_highs)
171 return -ENOMEM;
173 n_targets = (struct dm_target *) (n_highs + num);
175 memset(n_highs, -1, sizeof(*n_highs) * num);
176 vfree(t->highs);
178 t->num_allocated = num;
179 t->highs = n_highs;
180 t->targets = n_targets;
182 return 0;
185 int dm_table_create(struct dm_table **result, fmode_t mode,
186 unsigned num_targets, struct mapped_device *md)
188 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
190 if (!t)
191 return -ENOMEM;
193 INIT_LIST_HEAD(&t->devices);
194 INIT_LIST_HEAD(&t->target_callbacks);
196 if (!num_targets)
197 num_targets = KEYS_PER_NODE;
199 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
201 if (!num_targets) {
202 kfree(t);
203 return -ENOMEM;
206 if (alloc_targets(t, num_targets)) {
207 kfree(t);
208 return -ENOMEM;
211 t->type = DM_TYPE_NONE;
212 t->mode = mode;
213 t->md = md;
214 *result = t;
215 return 0;
218 static void free_devices(struct list_head *devices, struct mapped_device *md)
220 struct list_head *tmp, *next;
222 list_for_each_safe(tmp, next, devices) {
223 struct dm_dev_internal *dd =
224 list_entry(tmp, struct dm_dev_internal, list);
225 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226 dm_device_name(md), dd->dm_dev->name);
227 dm_put_table_device(md, dd->dm_dev);
228 kfree(dd);
232 void dm_table_destroy(struct dm_table *t)
234 unsigned int i;
236 if (!t)
237 return;
239 /* free the indexes */
240 if (t->depth >= 2)
241 vfree(t->index[t->depth - 2]);
243 /* free the targets */
244 for (i = 0; i < t->num_targets; i++) {
245 struct dm_target *tgt = t->targets + i;
247 if (tgt->type->dtr)
248 tgt->type->dtr(tgt);
250 dm_put_target_type(tgt->type);
253 vfree(t->highs);
255 /* free the device list */
256 free_devices(&t->devices, t->md);
258 dm_free_md_mempools(t->mempools);
260 kfree(t);
264 * See if we've already got a device in the list.
266 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
268 struct dm_dev_internal *dd;
270 list_for_each_entry (dd, l, list)
271 if (dd->dm_dev->bdev->bd_dev == dev)
272 return dd;
274 return NULL;
278 * If possible, this checks an area of a destination device is invalid.
280 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
281 sector_t start, sector_t len, void *data)
283 struct request_queue *q;
284 struct queue_limits *limits = data;
285 struct block_device *bdev = dev->bdev;
286 sector_t dev_size =
287 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
288 unsigned short logical_block_size_sectors =
289 limits->logical_block_size >> SECTOR_SHIFT;
290 char b[BDEVNAME_SIZE];
293 * Some devices exist without request functions,
294 * such as loop devices not yet bound to backing files.
295 * Forbid the use of such devices.
297 q = bdev_get_queue(bdev);
298 if (!q || !q->make_request_fn) {
299 DMWARN("%s: %s is not yet initialised: "
300 "start=%llu, len=%llu, dev_size=%llu",
301 dm_device_name(ti->table->md), bdevname(bdev, b),
302 (unsigned long long)start,
303 (unsigned long long)len,
304 (unsigned long long)dev_size);
305 return 1;
308 if (!dev_size)
309 return 0;
311 if ((start >= dev_size) || (start + len > dev_size)) {
312 DMWARN("%s: %s too small for target: "
313 "start=%llu, len=%llu, dev_size=%llu",
314 dm_device_name(ti->table->md), bdevname(bdev, b),
315 (unsigned long long)start,
316 (unsigned long long)len,
317 (unsigned long long)dev_size);
318 return 1;
321 if (logical_block_size_sectors <= 1)
322 return 0;
324 if (start & (logical_block_size_sectors - 1)) {
325 DMWARN("%s: start=%llu not aligned to h/w "
326 "logical block size %u of %s",
327 dm_device_name(ti->table->md),
328 (unsigned long long)start,
329 limits->logical_block_size, bdevname(bdev, b));
330 return 1;
333 if (len & (logical_block_size_sectors - 1)) {
334 DMWARN("%s: len=%llu not aligned to h/w "
335 "logical block size %u of %s",
336 dm_device_name(ti->table->md),
337 (unsigned long long)len,
338 limits->logical_block_size, bdevname(bdev, b));
339 return 1;
342 return 0;
346 * This upgrades the mode on an already open dm_dev, being
347 * careful to leave things as they were if we fail to reopen the
348 * device and not to touch the existing bdev field in case
349 * it is accessed concurrently inside dm_table_any_congested().
351 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
352 struct mapped_device *md)
354 int r;
355 struct dm_dev *old_dev, *new_dev;
357 old_dev = dd->dm_dev;
359 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
360 dd->dm_dev->mode | new_mode, &new_dev);
361 if (r)
362 return r;
364 dd->dm_dev = new_dev;
365 dm_put_table_device(md, old_dev);
367 return 0;
371 * Convert the path to a device
373 dev_t dm_get_dev_t(const char *path)
375 dev_t uninitialized_var(dev);
376 struct block_device *bdev;
378 bdev = lookup_bdev(path);
379 if (IS_ERR(bdev))
380 dev = name_to_dev_t(path);
381 else {
382 dev = bdev->bd_dev;
383 bdput(bdev);
386 return dev;
388 EXPORT_SYMBOL_GPL(dm_get_dev_t);
391 * Add a device to the list, or just increment the usage count if
392 * it's already present.
394 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
395 struct dm_dev **result)
397 int r;
398 dev_t dev;
399 struct dm_dev_internal *dd;
400 struct dm_table *t = ti->table;
402 BUG_ON(!t);
404 dev = dm_get_dev_t(path);
405 if (!dev)
406 return -ENODEV;
408 dd = find_device(&t->devices, dev);
409 if (!dd) {
410 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
411 if (!dd)
412 return -ENOMEM;
414 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
415 kfree(dd);
416 return r;
419 atomic_set(&dd->count, 0);
420 list_add(&dd->list, &t->devices);
422 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
423 r = upgrade_mode(dd, mode, t->md);
424 if (r)
425 return r;
427 atomic_inc(&dd->count);
429 *result = dd->dm_dev;
430 return 0;
432 EXPORT_SYMBOL(dm_get_device);
434 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
435 sector_t start, sector_t len, void *data)
437 struct queue_limits *limits = data;
438 struct block_device *bdev = dev->bdev;
439 struct request_queue *q = bdev_get_queue(bdev);
440 char b[BDEVNAME_SIZE];
442 if (unlikely(!q)) {
443 DMWARN("%s: Cannot set limits for nonexistent device %s",
444 dm_device_name(ti->table->md), bdevname(bdev, b));
445 return 0;
448 if (bdev_stack_limits(limits, bdev, start) < 0)
449 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450 "physical_block_size=%u, logical_block_size=%u, "
451 "alignment_offset=%u, start=%llu",
452 dm_device_name(ti->table->md), bdevname(bdev, b),
453 q->limits.physical_block_size,
454 q->limits.logical_block_size,
455 q->limits.alignment_offset,
456 (unsigned long long) start << SECTOR_SHIFT);
458 return 0;
462 * Decrement a device's use count and remove it if necessary.
464 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
466 int found = 0;
467 struct list_head *devices = &ti->table->devices;
468 struct dm_dev_internal *dd;
470 list_for_each_entry(dd, devices, list) {
471 if (dd->dm_dev == d) {
472 found = 1;
473 break;
476 if (!found) {
477 DMWARN("%s: device %s not in table devices list",
478 dm_device_name(ti->table->md), d->name);
479 return;
481 if (atomic_dec_and_test(&dd->count)) {
482 dm_put_table_device(ti->table->md, d);
483 list_del(&dd->list);
484 kfree(dd);
487 EXPORT_SYMBOL(dm_put_device);
490 * Checks to see if the target joins onto the end of the table.
492 static int adjoin(struct dm_table *table, struct dm_target *ti)
494 struct dm_target *prev;
496 if (!table->num_targets)
497 return !ti->begin;
499 prev = &table->targets[table->num_targets - 1];
500 return (ti->begin == (prev->begin + prev->len));
504 * Used to dynamically allocate the arg array.
506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
507 * process messages even if some device is suspended. These messages have a
508 * small fixed number of arguments.
510 * On the other hand, dm-switch needs to process bulk data using messages and
511 * excessive use of GFP_NOIO could cause trouble.
513 static char **realloc_argv(unsigned *size, char **old_argv)
515 char **argv;
516 unsigned new_size;
517 gfp_t gfp;
519 if (*size) {
520 new_size = *size * 2;
521 gfp = GFP_KERNEL;
522 } else {
523 new_size = 8;
524 gfp = GFP_NOIO;
526 argv = kmalloc(new_size * sizeof(*argv), gfp);
527 if (argv) {
528 memcpy(argv, old_argv, *size * sizeof(*argv));
529 *size = new_size;
532 kfree(old_argv);
533 return argv;
537 * Destructively splits up the argument list to pass to ctr.
539 int dm_split_args(int *argc, char ***argvp, char *input)
541 char *start, *end = input, *out, **argv = NULL;
542 unsigned array_size = 0;
544 *argc = 0;
546 if (!input) {
547 *argvp = NULL;
548 return 0;
551 argv = realloc_argv(&array_size, argv);
552 if (!argv)
553 return -ENOMEM;
555 while (1) {
556 /* Skip whitespace */
557 start = skip_spaces(end);
559 if (!*start)
560 break; /* success, we hit the end */
562 /* 'out' is used to remove any back-quotes */
563 end = out = start;
564 while (*end) {
565 /* Everything apart from '\0' can be quoted */
566 if (*end == '\\' && *(end + 1)) {
567 *out++ = *(end + 1);
568 end += 2;
569 continue;
572 if (isspace(*end))
573 break; /* end of token */
575 *out++ = *end++;
578 /* have we already filled the array ? */
579 if ((*argc + 1) > array_size) {
580 argv = realloc_argv(&array_size, argv);
581 if (!argv)
582 return -ENOMEM;
585 /* we know this is whitespace */
586 if (*end)
587 end++;
589 /* terminate the string and put it in the array */
590 *out = '\0';
591 argv[*argc] = start;
592 (*argc)++;
595 *argvp = argv;
596 return 0;
600 * Impose necessary and sufficient conditions on a devices's table such
601 * that any incoming bio which respects its logical_block_size can be
602 * processed successfully. If it falls across the boundary between
603 * two or more targets, the size of each piece it gets split into must
604 * be compatible with the logical_block_size of the target processing it.
606 static int validate_hardware_logical_block_alignment(struct dm_table *table,
607 struct queue_limits *limits)
610 * This function uses arithmetic modulo the logical_block_size
611 * (in units of 512-byte sectors).
613 unsigned short device_logical_block_size_sects =
614 limits->logical_block_size >> SECTOR_SHIFT;
617 * Offset of the start of the next table entry, mod logical_block_size.
619 unsigned short next_target_start = 0;
622 * Given an aligned bio that extends beyond the end of a
623 * target, how many sectors must the next target handle?
625 unsigned short remaining = 0;
627 struct dm_target *uninitialized_var(ti);
628 struct queue_limits ti_limits;
629 unsigned i = 0;
632 * Check each entry in the table in turn.
634 while (i < dm_table_get_num_targets(table)) {
635 ti = dm_table_get_target(table, i++);
637 blk_set_stacking_limits(&ti_limits);
639 /* combine all target devices' limits */
640 if (ti->type->iterate_devices)
641 ti->type->iterate_devices(ti, dm_set_device_limits,
642 &ti_limits);
645 * If the remaining sectors fall entirely within this
646 * table entry are they compatible with its logical_block_size?
648 if (remaining < ti->len &&
649 remaining & ((ti_limits.logical_block_size >>
650 SECTOR_SHIFT) - 1))
651 break; /* Error */
653 next_target_start =
654 (unsigned short) ((next_target_start + ti->len) &
655 (device_logical_block_size_sects - 1));
656 remaining = next_target_start ?
657 device_logical_block_size_sects - next_target_start : 0;
660 if (remaining) {
661 DMWARN("%s: table line %u (start sect %llu len %llu) "
662 "not aligned to h/w logical block size %u",
663 dm_device_name(table->md), i,
664 (unsigned long long) ti->begin,
665 (unsigned long long) ti->len,
666 limits->logical_block_size);
667 return -EINVAL;
670 return 0;
673 int dm_table_add_target(struct dm_table *t, const char *type,
674 sector_t start, sector_t len, char *params)
676 int r = -EINVAL, argc;
677 char **argv;
678 struct dm_target *tgt;
680 if (t->singleton) {
681 DMERR("%s: target type %s must appear alone in table",
682 dm_device_name(t->md), t->targets->type->name);
683 return -EINVAL;
686 BUG_ON(t->num_targets >= t->num_allocated);
688 tgt = t->targets + t->num_targets;
689 memset(tgt, 0, sizeof(*tgt));
691 if (!len) {
692 DMERR("%s: zero-length target", dm_device_name(t->md));
693 return -EINVAL;
696 tgt->type = dm_get_target_type(type);
697 if (!tgt->type) {
698 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
699 return -EINVAL;
702 if (dm_target_needs_singleton(tgt->type)) {
703 if (t->num_targets) {
704 tgt->error = "singleton target type must appear alone in table";
705 goto bad;
707 t->singleton = true;
710 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
711 tgt->error = "target type may not be included in a read-only table";
712 goto bad;
715 if (t->immutable_target_type) {
716 if (t->immutable_target_type != tgt->type) {
717 tgt->error = "immutable target type cannot be mixed with other target types";
718 goto bad;
720 } else if (dm_target_is_immutable(tgt->type)) {
721 if (t->num_targets) {
722 tgt->error = "immutable target type cannot be mixed with other target types";
723 goto bad;
725 t->immutable_target_type = tgt->type;
728 tgt->table = t;
729 tgt->begin = start;
730 tgt->len = len;
731 tgt->error = "Unknown error";
734 * Does this target adjoin the previous one ?
736 if (!adjoin(t, tgt)) {
737 tgt->error = "Gap in table";
738 goto bad;
741 r = dm_split_args(&argc, &argv, params);
742 if (r) {
743 tgt->error = "couldn't split parameters (insufficient memory)";
744 goto bad;
747 r = tgt->type->ctr(tgt, argc, argv);
748 kfree(argv);
749 if (r)
750 goto bad;
752 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
754 if (!tgt->num_discard_bios && tgt->discards_supported)
755 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
756 dm_device_name(t->md), type);
758 return 0;
760 bad:
761 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
762 dm_put_target_type(tgt->type);
763 return r;
767 * Target argument parsing helpers.
769 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
770 unsigned *value, char **error, unsigned grouped)
772 const char *arg_str = dm_shift_arg(arg_set);
773 char dummy;
775 if (!arg_str ||
776 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
777 (*value < arg->min) ||
778 (*value > arg->max) ||
779 (grouped && arg_set->argc < *value)) {
780 *error = arg->error;
781 return -EINVAL;
784 return 0;
787 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
788 unsigned *value, char **error)
790 return validate_next_arg(arg, arg_set, value, error, 0);
792 EXPORT_SYMBOL(dm_read_arg);
794 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
795 unsigned *value, char **error)
797 return validate_next_arg(arg, arg_set, value, error, 1);
799 EXPORT_SYMBOL(dm_read_arg_group);
801 const char *dm_shift_arg(struct dm_arg_set *as)
803 char *r;
805 if (as->argc) {
806 as->argc--;
807 r = *as->argv;
808 as->argv++;
809 return r;
812 return NULL;
814 EXPORT_SYMBOL(dm_shift_arg);
816 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
818 BUG_ON(as->argc < num_args);
819 as->argc -= num_args;
820 as->argv += num_args;
822 EXPORT_SYMBOL(dm_consume_args);
824 static bool __table_type_bio_based(unsigned table_type)
826 return (table_type == DM_TYPE_BIO_BASED ||
827 table_type == DM_TYPE_DAX_BIO_BASED);
830 static bool __table_type_request_based(unsigned table_type)
832 return (table_type == DM_TYPE_REQUEST_BASED ||
833 table_type == DM_TYPE_MQ_REQUEST_BASED);
836 void dm_table_set_type(struct dm_table *t, unsigned type)
838 t->type = type;
840 EXPORT_SYMBOL_GPL(dm_table_set_type);
842 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
843 sector_t start, sector_t len, void *data)
845 struct request_queue *q = bdev_get_queue(dev->bdev);
847 return q && blk_queue_dax(q);
850 static bool dm_table_supports_dax(struct dm_table *t)
852 struct dm_target *ti;
853 unsigned i = 0;
855 /* Ensure that all targets support DAX. */
856 while (i < dm_table_get_num_targets(t)) {
857 ti = dm_table_get_target(t, i++);
859 if (!ti->type->direct_access)
860 return false;
862 if (!ti->type->iterate_devices ||
863 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
864 return false;
867 return true;
870 static int dm_table_determine_type(struct dm_table *t)
872 unsigned i;
873 unsigned bio_based = 0, request_based = 0, hybrid = 0;
874 bool verify_blk_mq = false;
875 struct dm_target *tgt;
876 struct dm_dev_internal *dd;
877 struct list_head *devices = dm_table_get_devices(t);
878 unsigned live_md_type = dm_get_md_type(t->md);
880 if (t->type != DM_TYPE_NONE) {
881 /* target already set the table's type */
882 if (t->type == DM_TYPE_BIO_BASED)
883 return 0;
884 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
885 goto verify_rq_based;
888 for (i = 0; i < t->num_targets; i++) {
889 tgt = t->targets + i;
890 if (dm_target_hybrid(tgt))
891 hybrid = 1;
892 else if (dm_target_request_based(tgt))
893 request_based = 1;
894 else
895 bio_based = 1;
897 if (bio_based && request_based) {
898 DMWARN("Inconsistent table: different target types"
899 " can't be mixed up");
900 return -EINVAL;
904 if (hybrid && !bio_based && !request_based) {
906 * The targets can work either way.
907 * Determine the type from the live device.
908 * Default to bio-based if device is new.
910 if (__table_type_request_based(live_md_type))
911 request_based = 1;
912 else
913 bio_based = 1;
916 if (bio_based) {
917 /* We must use this table as bio-based */
918 t->type = DM_TYPE_BIO_BASED;
919 if (dm_table_supports_dax(t) ||
920 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
921 t->type = DM_TYPE_DAX_BIO_BASED;
922 return 0;
925 BUG_ON(!request_based); /* No targets in this table */
928 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
929 * having a compatible target use dm_table_set_type.
931 t->type = DM_TYPE_REQUEST_BASED;
933 verify_rq_based:
935 * Request-based dm supports only tables that have a single target now.
936 * To support multiple targets, request splitting support is needed,
937 * and that needs lots of changes in the block-layer.
938 * (e.g. request completion process for partial completion.)
940 if (t->num_targets > 1) {
941 DMWARN("Request-based dm doesn't support multiple targets yet");
942 return -EINVAL;
945 if (list_empty(devices)) {
946 int srcu_idx;
947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
949 /* inherit live table's type and all_blk_mq */
950 if (live_table) {
951 t->type = live_table->type;
952 t->all_blk_mq = live_table->all_blk_mq;
954 dm_put_live_table(t->md, srcu_idx);
955 return 0;
958 /* Non-request-stackable devices can't be used for request-based dm */
959 list_for_each_entry(dd, devices, list) {
960 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
962 if (!blk_queue_stackable(q)) {
963 DMERR("table load rejected: including"
964 " non-request-stackable devices");
965 return -EINVAL;
968 if (q->mq_ops)
969 verify_blk_mq = true;
972 if (verify_blk_mq) {
973 /* verify _all_ devices in the table are blk-mq devices */
974 list_for_each_entry(dd, devices, list)
975 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
976 DMERR("table load rejected: not all devices"
977 " are blk-mq request-stackable");
978 return -EINVAL;
981 t->all_blk_mq = true;
984 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
985 DMERR("table load rejected: all devices are not blk-mq request-stackable");
986 return -EINVAL;
989 return 0;
992 unsigned dm_table_get_type(struct dm_table *t)
994 return t->type;
997 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
999 return t->immutable_target_type;
1002 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1004 /* Immutable target is implicitly a singleton */
1005 if (t->num_targets > 1 ||
1006 !dm_target_is_immutable(t->targets[0].type))
1007 return NULL;
1009 return t->targets;
1012 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1014 struct dm_target *uninitialized_var(ti);
1015 unsigned i = 0;
1017 while (i < dm_table_get_num_targets(t)) {
1018 ti = dm_table_get_target(t, i++);
1019 if (dm_target_is_wildcard(ti->type))
1020 return ti;
1023 return NULL;
1026 bool dm_table_bio_based(struct dm_table *t)
1028 return __table_type_bio_based(dm_table_get_type(t));
1031 bool dm_table_request_based(struct dm_table *t)
1033 return __table_type_request_based(dm_table_get_type(t));
1036 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1038 return t->all_blk_mq;
1041 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1043 unsigned type = dm_table_get_type(t);
1044 unsigned per_io_data_size = 0;
1045 struct dm_target *tgt;
1046 unsigned i;
1048 if (unlikely(type == DM_TYPE_NONE)) {
1049 DMWARN("no table type is set, can't allocate mempools");
1050 return -EINVAL;
1053 if (__table_type_bio_based(type))
1054 for (i = 0; i < t->num_targets; i++) {
1055 tgt = t->targets + i;
1056 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1059 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1060 if (!t->mempools)
1061 return -ENOMEM;
1063 return 0;
1066 void dm_table_free_md_mempools(struct dm_table *t)
1068 dm_free_md_mempools(t->mempools);
1069 t->mempools = NULL;
1072 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1074 return t->mempools;
1077 static int setup_indexes(struct dm_table *t)
1079 int i;
1080 unsigned int total = 0;
1081 sector_t *indexes;
1083 /* allocate the space for *all* the indexes */
1084 for (i = t->depth - 2; i >= 0; i--) {
1085 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1086 total += t->counts[i];
1089 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1090 if (!indexes)
1091 return -ENOMEM;
1093 /* set up internal nodes, bottom-up */
1094 for (i = t->depth - 2; i >= 0; i--) {
1095 t->index[i] = indexes;
1096 indexes += (KEYS_PER_NODE * t->counts[i]);
1097 setup_btree_index(i, t);
1100 return 0;
1104 * Builds the btree to index the map.
1106 static int dm_table_build_index(struct dm_table *t)
1108 int r = 0;
1109 unsigned int leaf_nodes;
1111 /* how many indexes will the btree have ? */
1112 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1113 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1115 /* leaf layer has already been set up */
1116 t->counts[t->depth - 1] = leaf_nodes;
1117 t->index[t->depth - 1] = t->highs;
1119 if (t->depth >= 2)
1120 r = setup_indexes(t);
1122 return r;
1125 static bool integrity_profile_exists(struct gendisk *disk)
1127 return !!blk_get_integrity(disk);
1131 * Get a disk whose integrity profile reflects the table's profile.
1132 * Returns NULL if integrity support was inconsistent or unavailable.
1134 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1136 struct list_head *devices = dm_table_get_devices(t);
1137 struct dm_dev_internal *dd = NULL;
1138 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1140 list_for_each_entry(dd, devices, list) {
1141 template_disk = dd->dm_dev->bdev->bd_disk;
1142 if (!integrity_profile_exists(template_disk))
1143 goto no_integrity;
1144 else if (prev_disk &&
1145 blk_integrity_compare(prev_disk, template_disk) < 0)
1146 goto no_integrity;
1147 prev_disk = template_disk;
1150 return template_disk;
1152 no_integrity:
1153 if (prev_disk)
1154 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1155 dm_device_name(t->md),
1156 prev_disk->disk_name,
1157 template_disk->disk_name);
1158 return NULL;
1162 * Register the mapped device for blk_integrity support if the
1163 * underlying devices have an integrity profile. But all devices may
1164 * not have matching profiles (checking all devices isn't reliable
1165 * during table load because this table may use other DM device(s) which
1166 * must be resumed before they will have an initialized integity
1167 * profile). Consequently, stacked DM devices force a 2 stage integrity
1168 * profile validation: First pass during table load, final pass during
1169 * resume.
1171 static int dm_table_register_integrity(struct dm_table *t)
1173 struct mapped_device *md = t->md;
1174 struct gendisk *template_disk = NULL;
1176 template_disk = dm_table_get_integrity_disk(t);
1177 if (!template_disk)
1178 return 0;
1180 if (!integrity_profile_exists(dm_disk(md))) {
1181 t->integrity_supported = true;
1183 * Register integrity profile during table load; we can do
1184 * this because the final profile must match during resume.
1186 blk_integrity_register(dm_disk(md),
1187 blk_get_integrity(template_disk));
1188 return 0;
1192 * If DM device already has an initialized integrity
1193 * profile the new profile should not conflict.
1195 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1196 DMWARN("%s: conflict with existing integrity profile: "
1197 "%s profile mismatch",
1198 dm_device_name(t->md),
1199 template_disk->disk_name);
1200 return 1;
1203 /* Preserve existing integrity profile */
1204 t->integrity_supported = true;
1205 return 0;
1209 * Prepares the table for use by building the indices,
1210 * setting the type, and allocating mempools.
1212 int dm_table_complete(struct dm_table *t)
1214 int r;
1216 r = dm_table_determine_type(t);
1217 if (r) {
1218 DMERR("unable to determine table type");
1219 return r;
1222 r = dm_table_build_index(t);
1223 if (r) {
1224 DMERR("unable to build btrees");
1225 return r;
1228 r = dm_table_register_integrity(t);
1229 if (r) {
1230 DMERR("could not register integrity profile.");
1231 return r;
1234 r = dm_table_alloc_md_mempools(t, t->md);
1235 if (r)
1236 DMERR("unable to allocate mempools");
1238 return r;
1241 static DEFINE_MUTEX(_event_lock);
1242 void dm_table_event_callback(struct dm_table *t,
1243 void (*fn)(void *), void *context)
1245 mutex_lock(&_event_lock);
1246 t->event_fn = fn;
1247 t->event_context = context;
1248 mutex_unlock(&_event_lock);
1251 void dm_table_event(struct dm_table *t)
1254 * You can no longer call dm_table_event() from interrupt
1255 * context, use a bottom half instead.
1257 BUG_ON(in_interrupt());
1259 mutex_lock(&_event_lock);
1260 if (t->event_fn)
1261 t->event_fn(t->event_context);
1262 mutex_unlock(&_event_lock);
1264 EXPORT_SYMBOL(dm_table_event);
1266 inline sector_t dm_table_get_size(struct dm_table *t)
1268 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1270 EXPORT_SYMBOL(dm_table_get_size);
1272 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1274 if (index >= t->num_targets)
1275 return NULL;
1277 return t->targets + index;
1281 * Search the btree for the correct target.
1283 * Caller should check returned pointer with dm_target_is_valid()
1284 * to trap I/O beyond end of device.
1286 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1288 unsigned int l, n = 0, k = 0;
1289 sector_t *node;
1291 if (unlikely(sector >= dm_table_get_size(t)))
1292 return &t->targets[t->num_targets];
1294 for (l = 0; l < t->depth; l++) {
1295 n = get_child(n, k);
1296 node = get_node(t, l, n);
1298 for (k = 0; k < KEYS_PER_NODE; k++)
1299 if (node[k] >= sector)
1300 break;
1303 return &t->targets[(KEYS_PER_NODE * n) + k];
1306 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1307 sector_t start, sector_t len, void *data)
1309 unsigned *num_devices = data;
1311 (*num_devices)++;
1313 return 0;
1317 * Check whether a table has no data devices attached using each
1318 * target's iterate_devices method.
1319 * Returns false if the result is unknown because a target doesn't
1320 * support iterate_devices.
1322 bool dm_table_has_no_data_devices(struct dm_table *table)
1324 struct dm_target *uninitialized_var(ti);
1325 unsigned i = 0, num_devices = 0;
1327 while (i < dm_table_get_num_targets(table)) {
1328 ti = dm_table_get_target(table, i++);
1330 if (!ti->type->iterate_devices)
1331 return false;
1333 ti->type->iterate_devices(ti, count_device, &num_devices);
1334 if (num_devices)
1335 return false;
1338 return true;
1342 * Establish the new table's queue_limits and validate them.
1344 int dm_calculate_queue_limits(struct dm_table *table,
1345 struct queue_limits *limits)
1347 struct dm_target *uninitialized_var(ti);
1348 struct queue_limits ti_limits;
1349 unsigned i = 0;
1351 blk_set_stacking_limits(limits);
1353 while (i < dm_table_get_num_targets(table)) {
1354 blk_set_stacking_limits(&ti_limits);
1356 ti = dm_table_get_target(table, i++);
1358 if (!ti->type->iterate_devices)
1359 goto combine_limits;
1362 * Combine queue limits of all the devices this target uses.
1364 ti->type->iterate_devices(ti, dm_set_device_limits,
1365 &ti_limits);
1367 /* Set I/O hints portion of queue limits */
1368 if (ti->type->io_hints)
1369 ti->type->io_hints(ti, &ti_limits);
1372 * Check each device area is consistent with the target's
1373 * overall queue limits.
1375 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1376 &ti_limits))
1377 return -EINVAL;
1379 combine_limits:
1381 * Merge this target's queue limits into the overall limits
1382 * for the table.
1384 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1385 DMWARN("%s: adding target device "
1386 "(start sect %llu len %llu) "
1387 "caused an alignment inconsistency",
1388 dm_device_name(table->md),
1389 (unsigned long long) ti->begin,
1390 (unsigned long long) ti->len);
1393 return validate_hardware_logical_block_alignment(table, limits);
1397 * Verify that all devices have an integrity profile that matches the
1398 * DM device's registered integrity profile. If the profiles don't
1399 * match then unregister the DM device's integrity profile.
1401 static void dm_table_verify_integrity(struct dm_table *t)
1403 struct gendisk *template_disk = NULL;
1405 if (t->integrity_supported) {
1407 * Verify that the original integrity profile
1408 * matches all the devices in this table.
1410 template_disk = dm_table_get_integrity_disk(t);
1411 if (template_disk &&
1412 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1413 return;
1416 if (integrity_profile_exists(dm_disk(t->md))) {
1417 DMWARN("%s: unable to establish an integrity profile",
1418 dm_device_name(t->md));
1419 blk_integrity_unregister(dm_disk(t->md));
1423 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1424 sector_t start, sector_t len, void *data)
1426 unsigned long flush = (unsigned long) data;
1427 struct request_queue *q = bdev_get_queue(dev->bdev);
1429 return q && (q->queue_flags & flush);
1432 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1434 struct dm_target *ti;
1435 unsigned i = 0;
1438 * Require at least one underlying device to support flushes.
1439 * t->devices includes internal dm devices such as mirror logs
1440 * so we need to use iterate_devices here, which targets
1441 * supporting flushes must provide.
1443 while (i < dm_table_get_num_targets(t)) {
1444 ti = dm_table_get_target(t, i++);
1446 if (!ti->num_flush_bios)
1447 continue;
1449 if (ti->flush_supported)
1450 return true;
1452 if (ti->type->iterate_devices &&
1453 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1454 return true;
1457 return false;
1460 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1462 struct dm_target *ti;
1463 unsigned i = 0;
1465 /* Ensure that all targets supports discard_zeroes_data. */
1466 while (i < dm_table_get_num_targets(t)) {
1467 ti = dm_table_get_target(t, i++);
1469 if (ti->discard_zeroes_data_unsupported)
1470 return false;
1473 return true;
1476 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1477 sector_t start, sector_t len, void *data)
1479 struct request_queue *q = bdev_get_queue(dev->bdev);
1481 return q && blk_queue_nonrot(q);
1484 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1485 sector_t start, sector_t len, void *data)
1487 struct request_queue *q = bdev_get_queue(dev->bdev);
1489 return q && !blk_queue_add_random(q);
1492 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1493 sector_t start, sector_t len, void *data)
1495 struct request_queue *q = bdev_get_queue(dev->bdev);
1497 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1500 static bool dm_table_all_devices_attribute(struct dm_table *t,
1501 iterate_devices_callout_fn func)
1503 struct dm_target *ti;
1504 unsigned i = 0;
1506 while (i < dm_table_get_num_targets(t)) {
1507 ti = dm_table_get_target(t, i++);
1509 if (!ti->type->iterate_devices ||
1510 !ti->type->iterate_devices(ti, func, NULL))
1511 return false;
1514 return true;
1517 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1518 sector_t start, sector_t len, void *data)
1520 struct request_queue *q = bdev_get_queue(dev->bdev);
1522 return q && !q->limits.max_write_same_sectors;
1525 static bool dm_table_supports_write_same(struct dm_table *t)
1527 struct dm_target *ti;
1528 unsigned i = 0;
1530 while (i < dm_table_get_num_targets(t)) {
1531 ti = dm_table_get_target(t, i++);
1533 if (!ti->num_write_same_bios)
1534 return false;
1536 if (!ti->type->iterate_devices ||
1537 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1538 return false;
1541 return true;
1544 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1545 sector_t start, sector_t len, void *data)
1547 struct request_queue *q = bdev_get_queue(dev->bdev);
1549 return q && blk_queue_discard(q);
1552 static bool dm_table_supports_discards(struct dm_table *t)
1554 struct dm_target *ti;
1555 unsigned i = 0;
1558 * Unless any target used by the table set discards_supported,
1559 * require at least one underlying device to support discards.
1560 * t->devices includes internal dm devices such as mirror logs
1561 * so we need to use iterate_devices here, which targets
1562 * supporting discard selectively must provide.
1564 while (i < dm_table_get_num_targets(t)) {
1565 ti = dm_table_get_target(t, i++);
1567 if (!ti->num_discard_bios)
1568 continue;
1570 if (ti->discards_supported)
1571 return true;
1573 if (ti->type->iterate_devices &&
1574 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1575 return true;
1578 return false;
1581 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1582 struct queue_limits *limits)
1584 bool wc = false, fua = false;
1587 * Copy table's limits to the DM device's request_queue
1589 q->limits = *limits;
1591 if (!dm_table_supports_discards(t))
1592 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1593 else
1594 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1596 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1597 wc = true;
1598 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1599 fua = true;
1601 blk_queue_write_cache(q, wc, fua);
1603 if (!dm_table_discard_zeroes_data(t))
1604 q->limits.discard_zeroes_data = 0;
1606 /* Ensure that all underlying devices are non-rotational. */
1607 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1608 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1609 else
1610 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1612 if (!dm_table_supports_write_same(t))
1613 q->limits.max_write_same_sectors = 0;
1615 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1616 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1617 else
1618 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1620 dm_table_verify_integrity(t);
1623 * Determine whether or not this queue's I/O timings contribute
1624 * to the entropy pool, Only request-based targets use this.
1625 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1626 * have it set.
1628 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1629 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1632 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1633 * visible to other CPUs because, once the flag is set, incoming bios
1634 * are processed by request-based dm, which refers to the queue
1635 * settings.
1636 * Until the flag set, bios are passed to bio-based dm and queued to
1637 * md->deferred where queue settings are not needed yet.
1638 * Those bios are passed to request-based dm at the resume time.
1640 smp_mb();
1641 if (dm_table_request_based(t))
1642 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1645 unsigned int dm_table_get_num_targets(struct dm_table *t)
1647 return t->num_targets;
1650 struct list_head *dm_table_get_devices(struct dm_table *t)
1652 return &t->devices;
1655 fmode_t dm_table_get_mode(struct dm_table *t)
1657 return t->mode;
1659 EXPORT_SYMBOL(dm_table_get_mode);
1661 enum suspend_mode {
1662 PRESUSPEND,
1663 PRESUSPEND_UNDO,
1664 POSTSUSPEND,
1667 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1669 int i = t->num_targets;
1670 struct dm_target *ti = t->targets;
1672 while (i--) {
1673 switch (mode) {
1674 case PRESUSPEND:
1675 if (ti->type->presuspend)
1676 ti->type->presuspend(ti);
1677 break;
1678 case PRESUSPEND_UNDO:
1679 if (ti->type->presuspend_undo)
1680 ti->type->presuspend_undo(ti);
1681 break;
1682 case POSTSUSPEND:
1683 if (ti->type->postsuspend)
1684 ti->type->postsuspend(ti);
1685 break;
1687 ti++;
1691 void dm_table_presuspend_targets(struct dm_table *t)
1693 if (!t)
1694 return;
1696 suspend_targets(t, PRESUSPEND);
1699 void dm_table_presuspend_undo_targets(struct dm_table *t)
1701 if (!t)
1702 return;
1704 suspend_targets(t, PRESUSPEND_UNDO);
1707 void dm_table_postsuspend_targets(struct dm_table *t)
1709 if (!t)
1710 return;
1712 suspend_targets(t, POSTSUSPEND);
1715 int dm_table_resume_targets(struct dm_table *t)
1717 int i, r = 0;
1719 for (i = 0; i < t->num_targets; i++) {
1720 struct dm_target *ti = t->targets + i;
1722 if (!ti->type->preresume)
1723 continue;
1725 r = ti->type->preresume(ti);
1726 if (r) {
1727 DMERR("%s: %s: preresume failed, error = %d",
1728 dm_device_name(t->md), ti->type->name, r);
1729 return r;
1733 for (i = 0; i < t->num_targets; i++) {
1734 struct dm_target *ti = t->targets + i;
1736 if (ti->type->resume)
1737 ti->type->resume(ti);
1740 return 0;
1743 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1745 list_add(&cb->list, &t->target_callbacks);
1747 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1749 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1751 struct dm_dev_internal *dd;
1752 struct list_head *devices = dm_table_get_devices(t);
1753 struct dm_target_callbacks *cb;
1754 int r = 0;
1756 list_for_each_entry(dd, devices, list) {
1757 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1758 char b[BDEVNAME_SIZE];
1760 if (likely(q))
1761 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1762 else
1763 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1764 dm_device_name(t->md),
1765 bdevname(dd->dm_dev->bdev, b));
1768 list_for_each_entry(cb, &t->target_callbacks, list)
1769 if (cb->congested_fn)
1770 r |= cb->congested_fn(cb, bdi_bits);
1772 return r;
1775 struct mapped_device *dm_table_get_md(struct dm_table *t)
1777 return t->md;
1779 EXPORT_SYMBOL(dm_table_get_md);
1781 void dm_table_run_md_queue_async(struct dm_table *t)
1783 struct mapped_device *md;
1784 struct request_queue *queue;
1785 unsigned long flags;
1787 if (!dm_table_request_based(t))
1788 return;
1790 md = dm_table_get_md(t);
1791 queue = dm_get_md_queue(md);
1792 if (queue) {
1793 if (queue->mq_ops)
1794 blk_mq_run_hw_queues(queue, true);
1795 else {
1796 spin_lock_irqsave(queue->queue_lock, flags);
1797 blk_run_queue_async(queue);
1798 spin_unlock_irqrestore(queue->queue_lock, flags);
1802 EXPORT_SYMBOL(dm_table_run_md_queue_async);