2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
24 #include <linux/vmalloc.h>
26 #define DM_MSG_PREFIX "core"
30 * ratelimit state to be used in DMXXX_LIMIT().
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
33 DEFAULT_RATELIMIT_INTERVAL
,
34 DEFAULT_RATELIMIT_BURST
);
35 EXPORT_SYMBOL(dm_ratelimit_state
);
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
45 static const char *_name
= DM_NAME
;
47 static unsigned int major
= 0;
48 static unsigned int _major
= 0;
50 static DEFINE_IDR(_minor_idr
);
52 static DEFINE_SPINLOCK(_minor_lock
);
54 static void do_deferred_remove(struct work_struct
*w
);
56 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
58 static struct workqueue_struct
*deferred_remove_workqueue
;
61 * One of these is allocated per bio.
64 struct mapped_device
*md
;
68 unsigned long start_time
;
69 spinlock_t endio_lock
;
70 struct dm_stats_aux stats_aux
;
73 #define MINOR_ALLOCED ((void *)-1)
76 * Bits for the md->flags field.
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node
= DM_NUMA_NODE
;
91 * For mempools pre-allocation at the table loading time.
93 struct dm_md_mempools
{
100 struct list_head list
;
102 struct dm_dev dm_dev
;
105 static struct kmem_cache
*_io_cache
;
106 static struct kmem_cache
*_rq_tio_cache
;
107 static struct kmem_cache
*_rq_cache
;
110 * Bio-based DM's mempools' reserved IOs set by the user.
112 #define RESERVED_BIO_BASED_IOS 16
113 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
115 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
117 int param
= ACCESS_ONCE(*module_param
);
118 int modified_param
= 0;
119 bool modified
= true;
122 modified_param
= min
;
123 else if (param
> max
)
124 modified_param
= max
;
129 (void)cmpxchg(module_param
, param
, modified_param
);
130 param
= modified_param
;
136 unsigned __dm_get_module_param(unsigned *module_param
,
137 unsigned def
, unsigned max
)
139 unsigned param
= ACCESS_ONCE(*module_param
);
140 unsigned modified_param
= 0;
143 modified_param
= def
;
144 else if (param
> max
)
145 modified_param
= max
;
147 if (modified_param
) {
148 (void)cmpxchg(module_param
, param
, modified_param
);
149 param
= modified_param
;
155 unsigned dm_get_reserved_bio_based_ios(void)
157 return __dm_get_module_param(&reserved_bio_based_ios
,
158 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
162 static unsigned dm_get_numa_node(void)
164 return __dm_get_module_param_int(&dm_numa_node
,
165 DM_NUMA_NODE
, num_online_nodes() - 1);
168 static int __init
local_init(void)
172 /* allocate a slab for the dm_ios */
173 _io_cache
= KMEM_CACHE(dm_io
, 0);
177 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
179 goto out_free_io_cache
;
181 _rq_cache
= kmem_cache_create("dm_old_clone_request", sizeof(struct request
),
182 __alignof__(struct request
), 0, NULL
);
184 goto out_free_rq_tio_cache
;
186 r
= dm_uevent_init();
188 goto out_free_rq_cache
;
190 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
191 if (!deferred_remove_workqueue
) {
193 goto out_uevent_exit
;
197 r
= register_blkdev(_major
, _name
);
199 goto out_free_workqueue
;
207 destroy_workqueue(deferred_remove_workqueue
);
211 kmem_cache_destroy(_rq_cache
);
212 out_free_rq_tio_cache
:
213 kmem_cache_destroy(_rq_tio_cache
);
215 kmem_cache_destroy(_io_cache
);
220 static void local_exit(void)
222 flush_scheduled_work();
223 destroy_workqueue(deferred_remove_workqueue
);
225 kmem_cache_destroy(_rq_cache
);
226 kmem_cache_destroy(_rq_tio_cache
);
227 kmem_cache_destroy(_io_cache
);
228 unregister_blkdev(_major
, _name
);
233 DMINFO("cleaned up");
236 static int (*_inits
[])(void) __initdata
= {
247 static void (*_exits
[])(void) = {
258 static int __init
dm_init(void)
260 const int count
= ARRAY_SIZE(_inits
);
264 for (i
= 0; i
< count
; i
++) {
279 static void __exit
dm_exit(void)
281 int i
= ARRAY_SIZE(_exits
);
287 * Should be empty by this point.
289 idr_destroy(&_minor_idr
);
293 * Block device functions
295 int dm_deleting_md(struct mapped_device
*md
)
297 return test_bit(DMF_DELETING
, &md
->flags
);
300 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
302 struct mapped_device
*md
;
304 spin_lock(&_minor_lock
);
306 md
= bdev
->bd_disk
->private_data
;
310 if (test_bit(DMF_FREEING
, &md
->flags
) ||
311 dm_deleting_md(md
)) {
317 atomic_inc(&md
->open_count
);
319 spin_unlock(&_minor_lock
);
321 return md
? 0 : -ENXIO
;
324 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
326 struct mapped_device
*md
;
328 spin_lock(&_minor_lock
);
330 md
= disk
->private_data
;
334 if (atomic_dec_and_test(&md
->open_count
) &&
335 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
336 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
340 spin_unlock(&_minor_lock
);
343 int dm_open_count(struct mapped_device
*md
)
345 return atomic_read(&md
->open_count
);
349 * Guarantees nothing is using the device before it's deleted.
351 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
355 spin_lock(&_minor_lock
);
357 if (dm_open_count(md
)) {
360 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
361 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
364 set_bit(DMF_DELETING
, &md
->flags
);
366 spin_unlock(&_minor_lock
);
371 int dm_cancel_deferred_remove(struct mapped_device
*md
)
375 spin_lock(&_minor_lock
);
377 if (test_bit(DMF_DELETING
, &md
->flags
))
380 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
382 spin_unlock(&_minor_lock
);
387 static void do_deferred_remove(struct work_struct
*w
)
389 dm_deferred_remove();
392 sector_t
dm_get_size(struct mapped_device
*md
)
394 return get_capacity(md
->disk
);
397 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
402 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
407 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
409 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
411 return dm_get_geometry(md
, geo
);
414 static int dm_grab_bdev_for_ioctl(struct mapped_device
*md
,
415 struct block_device
**bdev
,
418 struct dm_target
*tgt
;
419 struct dm_table
*map
;
424 map
= dm_get_live_table(md
, &srcu_idx
);
425 if (!map
|| !dm_table_get_size(map
))
428 /* We only support devices that have a single target */
429 if (dm_table_get_num_targets(map
) != 1)
432 tgt
= dm_table_get_target(map
, 0);
433 if (!tgt
->type
->prepare_ioctl
)
436 if (dm_suspended_md(md
)) {
441 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
, mode
);
446 dm_put_live_table(md
, srcu_idx
);
450 dm_put_live_table(md
, srcu_idx
);
451 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
458 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
459 unsigned int cmd
, unsigned long arg
)
461 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
464 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
470 * Target determined this ioctl is being issued against
471 * a logical partition of the parent bdev; so extra
472 * validation is needed.
474 r
= scsi_verify_blk_ioctl(NULL
, cmd
);
479 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
485 static struct dm_io
*alloc_io(struct mapped_device
*md
)
487 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
490 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
492 mempool_free(io
, md
->io_pool
);
495 static void free_tio(struct dm_target_io
*tio
)
497 bio_put(&tio
->clone
);
500 int md_in_flight(struct mapped_device
*md
)
502 return atomic_read(&md
->pending
[READ
]) +
503 atomic_read(&md
->pending
[WRITE
]);
506 static void start_io_acct(struct dm_io
*io
)
508 struct mapped_device
*md
= io
->md
;
509 struct bio
*bio
= io
->bio
;
511 int rw
= bio_data_dir(bio
);
513 io
->start_time
= jiffies
;
515 cpu
= part_stat_lock();
516 part_round_stats(cpu
, &dm_disk(md
)->part0
);
518 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
519 atomic_inc_return(&md
->pending
[rw
]));
521 if (unlikely(dm_stats_used(&md
->stats
)))
522 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
523 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
524 false, 0, &io
->stats_aux
);
527 static void end_io_acct(struct dm_io
*io
)
529 struct mapped_device
*md
= io
->md
;
530 struct bio
*bio
= io
->bio
;
531 unsigned long duration
= jiffies
- io
->start_time
;
533 int rw
= bio_data_dir(bio
);
535 generic_end_io_acct(rw
, &dm_disk(md
)->part0
, io
->start_time
);
537 if (unlikely(dm_stats_used(&md
->stats
)))
538 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
539 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
540 true, duration
, &io
->stats_aux
);
543 * After this is decremented the bio must not be touched if it is
546 pending
= atomic_dec_return(&md
->pending
[rw
]);
547 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
548 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
550 /* nudge anyone waiting on suspend queue */
556 * Add the bio to the list of deferred io.
558 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
562 spin_lock_irqsave(&md
->deferred_lock
, flags
);
563 bio_list_add(&md
->deferred
, bio
);
564 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
565 queue_work(md
->wq
, &md
->work
);
569 * Everyone (including functions in this file), should use this
570 * function to access the md->map field, and make sure they call
571 * dm_put_live_table() when finished.
573 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
575 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
577 return srcu_dereference(md
->map
, &md
->io_barrier
);
580 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
582 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
585 void dm_sync_table(struct mapped_device
*md
)
587 synchronize_srcu(&md
->io_barrier
);
588 synchronize_rcu_expedited();
592 * A fast alternative to dm_get_live_table/dm_put_live_table.
593 * The caller must not block between these two functions.
595 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
598 return rcu_dereference(md
->map
);
601 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
607 * Open a table device so we can use it as a map destination.
609 static int open_table_device(struct table_device
*td
, dev_t dev
,
610 struct mapped_device
*md
)
612 static char *_claim_ptr
= "I belong to device-mapper";
613 struct block_device
*bdev
;
617 BUG_ON(td
->dm_dev
.bdev
);
619 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _claim_ptr
);
621 return PTR_ERR(bdev
);
623 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
625 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
629 td
->dm_dev
.bdev
= bdev
;
634 * Close a table device that we've been using.
636 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
638 if (!td
->dm_dev
.bdev
)
641 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
642 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
643 td
->dm_dev
.bdev
= NULL
;
646 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
648 struct table_device
*td
;
650 list_for_each_entry(td
, l
, list
)
651 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
657 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
658 struct dm_dev
**result
) {
660 struct table_device
*td
;
662 mutex_lock(&md
->table_devices_lock
);
663 td
= find_table_device(&md
->table_devices
, dev
, mode
);
665 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
667 mutex_unlock(&md
->table_devices_lock
);
671 td
->dm_dev
.mode
= mode
;
672 td
->dm_dev
.bdev
= NULL
;
674 if ((r
= open_table_device(td
, dev
, md
))) {
675 mutex_unlock(&md
->table_devices_lock
);
680 format_dev_t(td
->dm_dev
.name
, dev
);
682 atomic_set(&td
->count
, 0);
683 list_add(&td
->list
, &md
->table_devices
);
685 atomic_inc(&td
->count
);
686 mutex_unlock(&md
->table_devices_lock
);
688 *result
= &td
->dm_dev
;
691 EXPORT_SYMBOL_GPL(dm_get_table_device
);
693 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
695 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
697 mutex_lock(&md
->table_devices_lock
);
698 if (atomic_dec_and_test(&td
->count
)) {
699 close_table_device(td
, md
);
703 mutex_unlock(&md
->table_devices_lock
);
705 EXPORT_SYMBOL(dm_put_table_device
);
707 static void free_table_devices(struct list_head
*devices
)
709 struct list_head
*tmp
, *next
;
711 list_for_each_safe(tmp
, next
, devices
) {
712 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
714 DMWARN("dm_destroy: %s still exists with %d references",
715 td
->dm_dev
.name
, atomic_read(&td
->count
));
721 * Get the geometry associated with a dm device
723 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
731 * Set the geometry of a device.
733 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
735 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
737 if (geo
->start
> sz
) {
738 DMWARN("Start sector is beyond the geometry limits.");
747 /*-----------------------------------------------------------------
749 * A more elegant soln is in the works that uses the queue
750 * merge fn, unfortunately there are a couple of changes to
751 * the block layer that I want to make for this. So in the
752 * interests of getting something for people to use I give
753 * you this clearly demarcated crap.
754 *---------------------------------------------------------------*/
756 static int __noflush_suspending(struct mapped_device
*md
)
758 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
762 * Decrements the number of outstanding ios that a bio has been
763 * cloned into, completing the original io if necc.
765 static void dec_pending(struct dm_io
*io
, int error
)
770 struct mapped_device
*md
= io
->md
;
772 /* Push-back supersedes any I/O errors */
773 if (unlikely(error
)) {
774 spin_lock_irqsave(&io
->endio_lock
, flags
);
775 if (!(io
->error
> 0 && __noflush_suspending(md
)))
777 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
780 if (atomic_dec_and_test(&io
->io_count
)) {
781 if (io
->error
== DM_ENDIO_REQUEUE
) {
783 * Target requested pushing back the I/O.
785 spin_lock_irqsave(&md
->deferred_lock
, flags
);
786 if (__noflush_suspending(md
))
787 bio_list_add_head(&md
->deferred
, io
->bio
);
789 /* noflush suspend was interrupted. */
791 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
794 io_error
= io
->error
;
799 if (io_error
== DM_ENDIO_REQUEUE
)
802 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
804 * Preflush done for flush with data, reissue
805 * without REQ_PREFLUSH.
807 bio
->bi_opf
&= ~REQ_PREFLUSH
;
810 /* done with normal IO or empty flush */
811 trace_block_bio_complete(md
->queue
, bio
, io_error
);
813 bio
->bi_error
= io_error
;
819 void disable_write_same(struct mapped_device
*md
)
821 struct queue_limits
*limits
= dm_get_queue_limits(md
);
823 /* device doesn't really support WRITE SAME, disable it */
824 limits
->max_write_same_sectors
= 0;
827 static void clone_endio(struct bio
*bio
)
829 int error
= bio
->bi_error
;
831 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
832 struct dm_io
*io
= tio
->io
;
833 struct mapped_device
*md
= tio
->io
->md
;
834 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
837 r
= endio(tio
->ti
, bio
, error
);
838 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
840 * error and requeue request are handled
844 else if (r
== DM_ENDIO_INCOMPLETE
)
845 /* The target will handle the io */
848 DMWARN("unimplemented target endio return value: %d", r
);
853 if (unlikely(r
== -EREMOTEIO
&& (bio_op(bio
) == REQ_OP_WRITE_SAME
) &&
854 !bdev_get_queue(bio
->bi_bdev
)->limits
.max_write_same_sectors
))
855 disable_write_same(md
);
858 dec_pending(io
, error
);
862 * Return maximum size of I/O possible at the supplied sector up to the current
865 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
867 sector_t target_offset
= dm_target_offset(ti
, sector
);
869 return ti
->len
- target_offset
;
872 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
874 sector_t len
= max_io_len_target_boundary(sector
, ti
);
875 sector_t offset
, max_len
;
878 * Does the target need to split even further?
880 if (ti
->max_io_len
) {
881 offset
= dm_target_offset(ti
, sector
);
882 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
883 max_len
= sector_div(offset
, ti
->max_io_len
);
885 max_len
= offset
& (ti
->max_io_len
- 1);
886 max_len
= ti
->max_io_len
- max_len
;
895 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
897 if (len
> UINT_MAX
) {
898 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
899 (unsigned long long)len
, UINT_MAX
);
900 ti
->error
= "Maximum size of target IO is too large";
904 ti
->max_io_len
= (uint32_t) len
;
908 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
910 static long dm_blk_direct_access(struct block_device
*bdev
, sector_t sector
,
911 void **kaddr
, pfn_t
*pfn
, long size
)
913 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
914 struct dm_table
*map
;
915 struct dm_target
*ti
;
917 long len
, ret
= -EIO
;
919 map
= dm_get_live_table(md
, &srcu_idx
);
923 ti
= dm_table_find_target(map
, sector
);
924 if (!dm_target_is_valid(ti
))
927 len
= max_io_len(sector
, ti
) << SECTOR_SHIFT
;
928 size
= min(len
, size
);
930 if (ti
->type
->direct_access
)
931 ret
= ti
->type
->direct_access(ti
, sector
, kaddr
, pfn
, size
);
933 dm_put_live_table(md
, srcu_idx
);
934 return min(ret
, size
);
938 * A target may call dm_accept_partial_bio only from the map routine. It is
939 * allowed for all bio types except REQ_PREFLUSH.
941 * dm_accept_partial_bio informs the dm that the target only wants to process
942 * additional n_sectors sectors of the bio and the rest of the data should be
943 * sent in a next bio.
945 * A diagram that explains the arithmetics:
946 * +--------------------+---------------+-------+
948 * +--------------------+---------------+-------+
950 * <-------------- *tio->len_ptr --------------->
951 * <------- bi_size ------->
954 * Region 1 was already iterated over with bio_advance or similar function.
955 * (it may be empty if the target doesn't use bio_advance)
956 * Region 2 is the remaining bio size that the target wants to process.
957 * (it may be empty if region 1 is non-empty, although there is no reason
959 * The target requires that region 3 is to be sent in the next bio.
961 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
962 * the partially processed part (the sum of regions 1+2) must be the same for all
965 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
967 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
968 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
969 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
970 BUG_ON(bi_size
> *tio
->len_ptr
);
971 BUG_ON(n_sectors
> bi_size
);
972 *tio
->len_ptr
-= bi_size
- n_sectors
;
973 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
975 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
978 * Flush current->bio_list when the target map method blocks.
979 * This fixes deadlocks in snapshot and possibly in other targets.
982 struct blk_plug plug
;
983 struct blk_plug_cb cb
;
986 static void flush_current_bio_list(struct blk_plug_cb
*cb
, bool from_schedule
)
988 struct dm_offload
*o
= container_of(cb
, struct dm_offload
, cb
);
989 struct bio_list list
;
993 INIT_LIST_HEAD(&o
->cb
.list
);
995 if (unlikely(!current
->bio_list
))
998 for (i
= 0; i
< 2; i
++) {
999 list
= current
->bio_list
[i
];
1000 bio_list_init(¤t
->bio_list
[i
]);
1002 while ((bio
= bio_list_pop(&list
))) {
1003 struct bio_set
*bs
= bio
->bi_pool
;
1004 if (unlikely(!bs
) || bs
== fs_bio_set
) {
1005 bio_list_add(¤t
->bio_list
[i
], bio
);
1009 spin_lock(&bs
->rescue_lock
);
1010 bio_list_add(&bs
->rescue_list
, bio
);
1011 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
1012 spin_unlock(&bs
->rescue_lock
);
1017 static void dm_offload_start(struct dm_offload
*o
)
1019 blk_start_plug(&o
->plug
);
1020 o
->cb
.callback
= flush_current_bio_list
;
1021 list_add(&o
->cb
.list
, ¤t
->plug
->cb_list
);
1024 static void dm_offload_end(struct dm_offload
*o
)
1026 list_del(&o
->cb
.list
);
1027 blk_finish_plug(&o
->plug
);
1030 static void __map_bio(struct dm_target_io
*tio
)
1034 struct dm_offload o
;
1035 struct bio
*clone
= &tio
->clone
;
1036 struct dm_target
*ti
= tio
->ti
;
1038 clone
->bi_end_io
= clone_endio
;
1041 * Map the clone. If r == 0 we don't need to do
1042 * anything, the target has assumed ownership of
1045 atomic_inc(&tio
->io
->io_count
);
1046 sector
= clone
->bi_iter
.bi_sector
;
1048 dm_offload_start(&o
);
1049 r
= ti
->type
->map(ti
, clone
);
1052 if (r
== DM_MAPIO_REMAPPED
) {
1053 /* the bio has been remapped so dispatch it */
1055 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1056 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1058 generic_make_request(clone
);
1059 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1060 /* error the io and bail out, or requeue it if needed */
1061 dec_pending(tio
->io
, r
);
1063 } else if (r
!= DM_MAPIO_SUBMITTED
) {
1064 DMWARN("unimplemented target map return value: %d", r
);
1070 struct mapped_device
*md
;
1071 struct dm_table
*map
;
1075 unsigned sector_count
;
1078 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1080 bio
->bi_iter
.bi_sector
= sector
;
1081 bio
->bi_iter
.bi_size
= to_bytes(len
);
1085 * Creates a bio that consists of range of complete bvecs.
1087 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1088 sector_t sector
, unsigned len
)
1090 struct bio
*clone
= &tio
->clone
;
1092 __bio_clone_fast(clone
, bio
);
1094 if (bio_integrity(bio
)) {
1095 int r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1100 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1101 clone
->bi_iter
.bi_size
= to_bytes(len
);
1103 if (bio_integrity(bio
))
1104 bio_integrity_trim(clone
, 0, len
);
1109 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1110 struct dm_target
*ti
,
1111 unsigned target_bio_nr
)
1113 struct dm_target_io
*tio
;
1116 clone
= bio_alloc_bioset(GFP_NOIO
, 0, ci
->md
->bs
);
1117 tio
= container_of(clone
, struct dm_target_io
, clone
);
1121 tio
->target_bio_nr
= target_bio_nr
;
1126 static void __clone_and_map_simple_bio(struct clone_info
*ci
,
1127 struct dm_target
*ti
,
1128 unsigned target_bio_nr
, unsigned *len
)
1130 struct dm_target_io
*tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1131 struct bio
*clone
= &tio
->clone
;
1135 __bio_clone_fast(clone
, ci
->bio
);
1137 bio_setup_sector(clone
, ci
->sector
, *len
);
1142 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1143 unsigned num_bios
, unsigned *len
)
1145 unsigned target_bio_nr
;
1147 for (target_bio_nr
= 0; target_bio_nr
< num_bios
; target_bio_nr
++)
1148 __clone_and_map_simple_bio(ci
, ti
, target_bio_nr
, len
);
1151 static int __send_empty_flush(struct clone_info
*ci
)
1153 unsigned target_nr
= 0;
1154 struct dm_target
*ti
;
1156 BUG_ON(bio_has_data(ci
->bio
));
1157 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1158 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1163 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1164 sector_t sector
, unsigned *len
)
1166 struct bio
*bio
= ci
->bio
;
1167 struct dm_target_io
*tio
;
1168 unsigned target_bio_nr
;
1169 unsigned num_target_bios
= 1;
1173 * Does the target want to receive duplicate copies of the bio?
1175 if (bio_data_dir(bio
) == WRITE
&& ti
->num_write_bios
)
1176 num_target_bios
= ti
->num_write_bios(ti
, bio
);
1178 for (target_bio_nr
= 0; target_bio_nr
< num_target_bios
; target_bio_nr
++) {
1179 tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1181 r
= clone_bio(tio
, bio
, sector
, *len
);
1192 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1194 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1196 return ti
->num_discard_bios
;
1199 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1201 return ti
->num_write_same_bios
;
1204 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1206 static bool is_split_required_for_discard(struct dm_target
*ti
)
1208 return ti
->split_discard_bios
;
1211 static int __send_changing_extent_only(struct clone_info
*ci
,
1212 get_num_bios_fn get_num_bios
,
1213 is_split_required_fn is_split_required
)
1215 struct dm_target
*ti
;
1220 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1221 if (!dm_target_is_valid(ti
))
1225 * Even though the device advertised support for this type of
1226 * request, that does not mean every target supports it, and
1227 * reconfiguration might also have changed that since the
1228 * check was performed.
1230 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1234 if (is_split_required
&& !is_split_required(ti
))
1235 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1237 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1239 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1242 } while (ci
->sector_count
-= len
);
1247 static int __send_discard(struct clone_info
*ci
)
1249 return __send_changing_extent_only(ci
, get_num_discard_bios
,
1250 is_split_required_for_discard
);
1253 static int __send_write_same(struct clone_info
*ci
)
1255 return __send_changing_extent_only(ci
, get_num_write_same_bios
, NULL
);
1259 * Select the correct strategy for processing a non-flush bio.
1261 static int __split_and_process_non_flush(struct clone_info
*ci
)
1263 struct bio
*bio
= ci
->bio
;
1264 struct dm_target
*ti
;
1268 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
1269 return __send_discard(ci
);
1270 else if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
1271 return __send_write_same(ci
);
1273 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1274 if (!dm_target_is_valid(ti
))
1277 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1279 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1284 ci
->sector_count
-= len
;
1290 * Entry point to split a bio into clones and submit them to the targets.
1292 static void __split_and_process_bio(struct mapped_device
*md
,
1293 struct dm_table
*map
, struct bio
*bio
)
1295 struct clone_info ci
;
1298 if (unlikely(!map
)) {
1305 ci
.io
= alloc_io(md
);
1307 atomic_set(&ci
.io
->io_count
, 1);
1310 spin_lock_init(&ci
.io
->endio_lock
);
1311 ci
.sector
= bio
->bi_iter
.bi_sector
;
1313 start_io_acct(ci
.io
);
1315 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1316 ci
.bio
= &ci
.md
->flush_bio
;
1317 ci
.sector_count
= 0;
1318 error
= __send_empty_flush(&ci
);
1319 /* dec_pending submits any data associated with flush */
1322 ci
.sector_count
= bio_sectors(bio
);
1323 while (ci
.sector_count
&& !error
)
1324 error
= __split_and_process_non_flush(&ci
);
1327 /* drop the extra reference count */
1328 dec_pending(ci
.io
, error
);
1330 /*-----------------------------------------------------------------
1332 *---------------------------------------------------------------*/
1335 * The request function that just remaps the bio built up by
1338 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1340 int rw
= bio_data_dir(bio
);
1341 struct mapped_device
*md
= q
->queuedata
;
1343 struct dm_table
*map
;
1345 map
= dm_get_live_table(md
, &srcu_idx
);
1347 generic_start_io_acct(rw
, bio_sectors(bio
), &dm_disk(md
)->part0
);
1349 /* if we're suspended, we have to queue this io for later */
1350 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1351 dm_put_live_table(md
, srcu_idx
);
1353 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1357 return BLK_QC_T_NONE
;
1360 __split_and_process_bio(md
, map
, bio
);
1361 dm_put_live_table(md
, srcu_idx
);
1362 return BLK_QC_T_NONE
;
1365 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1368 struct mapped_device
*md
= congested_data
;
1369 struct dm_table
*map
;
1371 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1372 if (dm_request_based(md
)) {
1374 * With request-based DM we only need to check the
1375 * top-level queue for congestion.
1377 r
= md
->queue
->backing_dev_info
.wb
.state
& bdi_bits
;
1379 map
= dm_get_live_table_fast(md
);
1381 r
= dm_table_any_congested(map
, bdi_bits
);
1382 dm_put_live_table_fast(md
);
1389 /*-----------------------------------------------------------------
1390 * An IDR is used to keep track of allocated minor numbers.
1391 *---------------------------------------------------------------*/
1392 static void free_minor(int minor
)
1394 spin_lock(&_minor_lock
);
1395 idr_remove(&_minor_idr
, minor
);
1396 spin_unlock(&_minor_lock
);
1400 * See if the device with a specific minor # is free.
1402 static int specific_minor(int minor
)
1406 if (minor
>= (1 << MINORBITS
))
1409 idr_preload(GFP_KERNEL
);
1410 spin_lock(&_minor_lock
);
1412 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1414 spin_unlock(&_minor_lock
);
1417 return r
== -ENOSPC
? -EBUSY
: r
;
1421 static int next_free_minor(int *minor
)
1425 idr_preload(GFP_KERNEL
);
1426 spin_lock(&_minor_lock
);
1428 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1430 spin_unlock(&_minor_lock
);
1438 static const struct block_device_operations dm_blk_dops
;
1440 static void dm_wq_work(struct work_struct
*work
);
1442 void dm_init_md_queue(struct mapped_device
*md
)
1445 * Request-based dm devices cannot be stacked on top of bio-based dm
1446 * devices. The type of this dm device may not have been decided yet.
1447 * The type is decided at the first table loading time.
1448 * To prevent problematic device stacking, clear the queue flag
1449 * for request stacking support until then.
1451 * This queue is new, so no concurrency on the queue_flags.
1453 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1456 * Initialize data that will only be used by a non-blk-mq DM queue
1457 * - must do so here (in alloc_dev callchain) before queue is used
1459 md
->queue
->queuedata
= md
;
1462 void dm_init_normal_md_queue(struct mapped_device
*md
)
1464 md
->use_blk_mq
= false;
1465 dm_init_md_queue(md
);
1468 * Initialize aspects of queue that aren't relevant for blk-mq
1470 md
->queue
->backing_dev_info
.congested_data
= md
;
1471 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1472 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1475 static void cleanup_mapped_device(struct mapped_device
*md
)
1478 destroy_workqueue(md
->wq
);
1479 if (md
->kworker_task
)
1480 kthread_stop(md
->kworker_task
);
1481 mempool_destroy(md
->io_pool
);
1482 mempool_destroy(md
->rq_pool
);
1484 bioset_free(md
->bs
);
1487 spin_lock(&_minor_lock
);
1488 md
->disk
->private_data
= NULL
;
1489 spin_unlock(&_minor_lock
);
1490 del_gendisk(md
->disk
);
1495 blk_cleanup_queue(md
->queue
);
1497 cleanup_srcu_struct(&md
->io_barrier
);
1504 dm_mq_cleanup_mapped_device(md
);
1508 * Allocate and initialise a blank device with a given minor.
1510 static struct mapped_device
*alloc_dev(int minor
)
1512 int r
, numa_node_id
= dm_get_numa_node();
1513 struct mapped_device
*md
;
1516 md
= vzalloc_node(sizeof(*md
), numa_node_id
);
1518 DMWARN("unable to allocate device, out of memory.");
1522 if (!try_module_get(THIS_MODULE
))
1523 goto bad_module_get
;
1525 /* get a minor number for the dev */
1526 if (minor
== DM_ANY_MINOR
)
1527 r
= next_free_minor(&minor
);
1529 r
= specific_minor(minor
);
1533 r
= init_srcu_struct(&md
->io_barrier
);
1535 goto bad_io_barrier
;
1537 md
->numa_node_id
= numa_node_id
;
1538 md
->use_blk_mq
= dm_use_blk_mq_default();
1539 md
->init_tio_pdu
= false;
1540 md
->type
= DM_TYPE_NONE
;
1541 mutex_init(&md
->suspend_lock
);
1542 mutex_init(&md
->type_lock
);
1543 mutex_init(&md
->table_devices_lock
);
1544 spin_lock_init(&md
->deferred_lock
);
1545 atomic_set(&md
->holders
, 1);
1546 atomic_set(&md
->open_count
, 0);
1547 atomic_set(&md
->event_nr
, 0);
1548 atomic_set(&md
->uevent_seq
, 0);
1549 INIT_LIST_HEAD(&md
->uevent_list
);
1550 INIT_LIST_HEAD(&md
->table_devices
);
1551 spin_lock_init(&md
->uevent_lock
);
1553 md
->queue
= blk_alloc_queue_node(GFP_KERNEL
, numa_node_id
);
1557 dm_init_md_queue(md
);
1559 * default to bio-based required ->make_request_fn until DM
1560 * table is loaded and md->type established. If request-based
1561 * table is loaded: blk-mq will override accordingly.
1563 blk_queue_make_request(md
->queue
, dm_make_request
);
1565 md
->disk
= alloc_disk_node(1, numa_node_id
);
1569 atomic_set(&md
->pending
[0], 0);
1570 atomic_set(&md
->pending
[1], 0);
1571 init_waitqueue_head(&md
->wait
);
1572 INIT_WORK(&md
->work
, dm_wq_work
);
1573 init_waitqueue_head(&md
->eventq
);
1574 init_completion(&md
->kobj_holder
.completion
);
1575 md
->kworker_task
= NULL
;
1577 md
->disk
->major
= _major
;
1578 md
->disk
->first_minor
= minor
;
1579 md
->disk
->fops
= &dm_blk_dops
;
1580 md
->disk
->queue
= md
->queue
;
1581 md
->disk
->private_data
= md
;
1582 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1584 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1586 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1590 md
->bdev
= bdget_disk(md
->disk
, 0);
1594 bio_init(&md
->flush_bio
);
1595 md
->flush_bio
.bi_bdev
= md
->bdev
;
1596 bio_set_op_attrs(&md
->flush_bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
1598 dm_stats_init(&md
->stats
);
1600 /* Populate the mapping, nobody knows we exist yet */
1601 spin_lock(&_minor_lock
);
1602 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1603 spin_unlock(&_minor_lock
);
1605 BUG_ON(old_md
!= MINOR_ALLOCED
);
1610 cleanup_mapped_device(md
);
1614 module_put(THIS_MODULE
);
1620 static void unlock_fs(struct mapped_device
*md
);
1622 static void free_dev(struct mapped_device
*md
)
1624 int minor
= MINOR(disk_devt(md
->disk
));
1628 cleanup_mapped_device(md
);
1630 free_table_devices(&md
->table_devices
);
1631 dm_stats_cleanup(&md
->stats
);
1634 module_put(THIS_MODULE
);
1638 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1640 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
1643 /* The md already has necessary mempools. */
1644 if (dm_table_bio_based(t
)) {
1646 * Reload bioset because front_pad may have changed
1647 * because a different table was loaded.
1649 bioset_free(md
->bs
);
1654 * There's no need to reload with request-based dm
1655 * because the size of front_pad doesn't change.
1656 * Note for future: If you are to reload bioset,
1657 * prep-ed requests in the queue may refer
1658 * to bio from the old bioset, so you must walk
1659 * through the queue to unprep.
1664 BUG_ON(!p
|| md
->io_pool
|| md
->rq_pool
|| md
->bs
);
1666 md
->io_pool
= p
->io_pool
;
1668 md
->rq_pool
= p
->rq_pool
;
1674 /* mempool bind completed, no longer need any mempools in the table */
1675 dm_table_free_md_mempools(t
);
1679 * Bind a table to the device.
1681 static void event_callback(void *context
)
1683 unsigned long flags
;
1685 struct mapped_device
*md
= (struct mapped_device
*) context
;
1687 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1688 list_splice_init(&md
->uevent_list
, &uevents
);
1689 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1691 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1693 atomic_inc(&md
->event_nr
);
1694 wake_up(&md
->eventq
);
1698 * Protected by md->suspend_lock obtained by dm_swap_table().
1700 static void __set_size(struct mapped_device
*md
, sector_t size
)
1702 set_capacity(md
->disk
, size
);
1704 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1708 * Returns old map, which caller must destroy.
1710 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
1711 struct queue_limits
*limits
)
1713 struct dm_table
*old_map
;
1714 struct request_queue
*q
= md
->queue
;
1717 lockdep_assert_held(&md
->suspend_lock
);
1719 size
= dm_table_get_size(t
);
1722 * Wipe any geometry if the size of the table changed.
1724 if (size
!= dm_get_size(md
))
1725 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1727 __set_size(md
, size
);
1729 dm_table_event_callback(t
, event_callback
, md
);
1732 * The queue hasn't been stopped yet, if the old table type wasn't
1733 * for request-based during suspension. So stop it to prevent
1734 * I/O mapping before resume.
1735 * This must be done before setting the queue restrictions,
1736 * because request-based dm may be run just after the setting.
1738 if (dm_table_request_based(t
)) {
1741 * Leverage the fact that request-based DM targets are
1742 * immutable singletons and establish md->immutable_target
1743 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1745 md
->immutable_target
= dm_table_get_immutable_target(t
);
1748 __bind_mempools(md
, t
);
1750 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
1751 rcu_assign_pointer(md
->map
, (void *)t
);
1752 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
1754 dm_table_set_restrictions(t
, q
, limits
);
1762 * Returns unbound table for the caller to free.
1764 static struct dm_table
*__unbind(struct mapped_device
*md
)
1766 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
1771 dm_table_event_callback(map
, NULL
, NULL
);
1772 RCU_INIT_POINTER(md
->map
, NULL
);
1779 * Constructor for a new device.
1781 int dm_create(int minor
, struct mapped_device
**result
)
1783 struct mapped_device
*md
;
1785 md
= alloc_dev(minor
);
1796 * Functions to manage md->type.
1797 * All are required to hold md->type_lock.
1799 void dm_lock_md_type(struct mapped_device
*md
)
1801 mutex_lock(&md
->type_lock
);
1804 void dm_unlock_md_type(struct mapped_device
*md
)
1806 mutex_unlock(&md
->type_lock
);
1809 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
1811 BUG_ON(!mutex_is_locked(&md
->type_lock
));
1815 unsigned dm_get_md_type(struct mapped_device
*md
)
1820 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
1822 return md
->immutable_target_type
;
1826 * The queue_limits are only valid as long as you have a reference
1829 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
1831 BUG_ON(!atomic_read(&md
->holders
));
1832 return &md
->queue
->limits
;
1834 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
1837 * Setup the DM device's queue based on md's type
1839 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
1842 unsigned type
= dm_get_md_type(md
);
1845 case DM_TYPE_REQUEST_BASED
:
1846 r
= dm_old_init_request_queue(md
);
1848 DMERR("Cannot initialize queue for request-based mapped device");
1852 case DM_TYPE_MQ_REQUEST_BASED
:
1853 r
= dm_mq_init_request_queue(md
, t
);
1855 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1859 case DM_TYPE_BIO_BASED
:
1860 case DM_TYPE_DAX_BIO_BASED
:
1861 dm_init_normal_md_queue(md
);
1863 * DM handles splitting bios as needed. Free the bio_split bioset
1864 * since it won't be used (saves 1 process per bio-based DM device).
1866 bioset_free(md
->queue
->bio_split
);
1867 md
->queue
->bio_split
= NULL
;
1869 if (type
== DM_TYPE_DAX_BIO_BASED
)
1870 queue_flag_set_unlocked(QUEUE_FLAG_DAX
, md
->queue
);
1877 struct mapped_device
*dm_get_md(dev_t dev
)
1879 struct mapped_device
*md
;
1880 unsigned minor
= MINOR(dev
);
1882 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
1885 spin_lock(&_minor_lock
);
1887 md
= idr_find(&_minor_idr
, minor
);
1889 if ((md
== MINOR_ALLOCED
||
1890 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
1891 dm_deleting_md(md
) ||
1892 test_bit(DMF_FREEING
, &md
->flags
))) {
1900 spin_unlock(&_minor_lock
);
1904 EXPORT_SYMBOL_GPL(dm_get_md
);
1906 void *dm_get_mdptr(struct mapped_device
*md
)
1908 return md
->interface_ptr
;
1911 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
1913 md
->interface_ptr
= ptr
;
1916 void dm_get(struct mapped_device
*md
)
1918 atomic_inc(&md
->holders
);
1919 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
1922 int dm_hold(struct mapped_device
*md
)
1924 spin_lock(&_minor_lock
);
1925 if (test_bit(DMF_FREEING
, &md
->flags
)) {
1926 spin_unlock(&_minor_lock
);
1930 spin_unlock(&_minor_lock
);
1933 EXPORT_SYMBOL_GPL(dm_hold
);
1935 const char *dm_device_name(struct mapped_device
*md
)
1939 EXPORT_SYMBOL_GPL(dm_device_name
);
1941 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
1943 struct request_queue
*q
= dm_get_md_queue(md
);
1944 struct dm_table
*map
;
1949 spin_lock(&_minor_lock
);
1950 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
1951 set_bit(DMF_FREEING
, &md
->flags
);
1952 spin_unlock(&_minor_lock
);
1954 blk_set_queue_dying(q
);
1956 if (dm_request_based(md
) && md
->kworker_task
)
1957 kthread_flush_worker(&md
->kworker
);
1960 * Take suspend_lock so that presuspend and postsuspend methods
1961 * do not race with internal suspend.
1963 mutex_lock(&md
->suspend_lock
);
1964 map
= dm_get_live_table(md
, &srcu_idx
);
1965 if (!dm_suspended_md(md
)) {
1966 dm_table_presuspend_targets(map
);
1967 dm_table_postsuspend_targets(map
);
1969 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1970 dm_put_live_table(md
, srcu_idx
);
1971 mutex_unlock(&md
->suspend_lock
);
1974 * Rare, but there may be I/O requests still going to complete,
1975 * for example. Wait for all references to disappear.
1976 * No one should increment the reference count of the mapped_device,
1977 * after the mapped_device state becomes DMF_FREEING.
1980 while (atomic_read(&md
->holders
))
1982 else if (atomic_read(&md
->holders
))
1983 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1984 dm_device_name(md
), atomic_read(&md
->holders
));
1987 dm_table_destroy(__unbind(md
));
1991 void dm_destroy(struct mapped_device
*md
)
1993 __dm_destroy(md
, true);
1996 void dm_destroy_immediate(struct mapped_device
*md
)
1998 __dm_destroy(md
, false);
2001 void dm_put(struct mapped_device
*md
)
2003 atomic_dec(&md
->holders
);
2005 EXPORT_SYMBOL_GPL(dm_put
);
2007 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2013 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2015 if (!md_in_flight(md
))
2018 if (signal_pending_state(task_state
, current
)) {
2025 finish_wait(&md
->wait
, &wait
);
2031 * Process the deferred bios
2033 static void dm_wq_work(struct work_struct
*work
)
2035 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2039 struct dm_table
*map
;
2041 map
= dm_get_live_table(md
, &srcu_idx
);
2043 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2044 spin_lock_irq(&md
->deferred_lock
);
2045 c
= bio_list_pop(&md
->deferred
);
2046 spin_unlock_irq(&md
->deferred_lock
);
2051 if (dm_request_based(md
))
2052 generic_make_request(c
);
2054 __split_and_process_bio(md
, map
, c
);
2057 dm_put_live_table(md
, srcu_idx
);
2060 static void dm_queue_flush(struct mapped_device
*md
)
2062 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2063 smp_mb__after_atomic();
2064 queue_work(md
->wq
, &md
->work
);
2068 * Swap in a new table, returning the old one for the caller to destroy.
2070 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2072 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2073 struct queue_limits limits
;
2076 mutex_lock(&md
->suspend_lock
);
2078 /* device must be suspended */
2079 if (!dm_suspended_md(md
))
2083 * If the new table has no data devices, retain the existing limits.
2084 * This helps multipath with queue_if_no_path if all paths disappear,
2085 * then new I/O is queued based on these limits, and then some paths
2088 if (dm_table_has_no_data_devices(table
)) {
2089 live_map
= dm_get_live_table_fast(md
);
2091 limits
= md
->queue
->limits
;
2092 dm_put_live_table_fast(md
);
2096 r
= dm_calculate_queue_limits(table
, &limits
);
2103 map
= __bind(md
, table
, &limits
);
2106 mutex_unlock(&md
->suspend_lock
);
2111 * Functions to lock and unlock any filesystem running on the
2114 static int lock_fs(struct mapped_device
*md
)
2118 WARN_ON(md
->frozen_sb
);
2120 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2121 if (IS_ERR(md
->frozen_sb
)) {
2122 r
= PTR_ERR(md
->frozen_sb
);
2123 md
->frozen_sb
= NULL
;
2127 set_bit(DMF_FROZEN
, &md
->flags
);
2132 static void unlock_fs(struct mapped_device
*md
)
2134 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2137 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2138 md
->frozen_sb
= NULL
;
2139 clear_bit(DMF_FROZEN
, &md
->flags
);
2143 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2144 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2145 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2147 * If __dm_suspend returns 0, the device is completely quiescent
2148 * now. There is no request-processing activity. All new requests
2149 * are being added to md->deferred list.
2151 * Caller must hold md->suspend_lock
2153 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2154 unsigned suspend_flags
, long task_state
,
2155 int dmf_suspended_flag
)
2157 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2158 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2161 lockdep_assert_held(&md
->suspend_lock
);
2164 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2165 * This flag is cleared before dm_suspend returns.
2168 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2171 * This gets reverted if there's an error later and the targets
2172 * provide the .presuspend_undo hook.
2174 dm_table_presuspend_targets(map
);
2177 * Flush I/O to the device.
2178 * Any I/O submitted after lock_fs() may not be flushed.
2179 * noflush takes precedence over do_lockfs.
2180 * (lock_fs() flushes I/Os and waits for them to complete.)
2182 if (!noflush
&& do_lockfs
) {
2185 dm_table_presuspend_undo_targets(map
);
2191 * Here we must make sure that no processes are submitting requests
2192 * to target drivers i.e. no one may be executing
2193 * __split_and_process_bio. This is called from dm_request and
2196 * To get all processes out of __split_and_process_bio in dm_request,
2197 * we take the write lock. To prevent any process from reentering
2198 * __split_and_process_bio from dm_request and quiesce the thread
2199 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2200 * flush_workqueue(md->wq).
2202 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2204 synchronize_srcu(&md
->io_barrier
);
2207 * Stop md->queue before flushing md->wq in case request-based
2208 * dm defers requests to md->wq from md->queue.
2210 if (dm_request_based(md
)) {
2211 dm_stop_queue(md
->queue
);
2212 if (md
->kworker_task
)
2213 kthread_flush_worker(&md
->kworker
);
2216 flush_workqueue(md
->wq
);
2219 * At this point no more requests are entering target request routines.
2220 * We call dm_wait_for_completion to wait for all existing requests
2223 r
= dm_wait_for_completion(md
, task_state
);
2225 set_bit(dmf_suspended_flag
, &md
->flags
);
2228 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2230 synchronize_srcu(&md
->io_barrier
);
2232 /* were we interrupted ? */
2236 if (dm_request_based(md
))
2237 dm_start_queue(md
->queue
);
2240 dm_table_presuspend_undo_targets(map
);
2241 /* pushback list is already flushed, so skip flush */
2248 * We need to be able to change a mapping table under a mounted
2249 * filesystem. For example we might want to move some data in
2250 * the background. Before the table can be swapped with
2251 * dm_bind_table, dm_suspend must be called to flush any in
2252 * flight bios and ensure that any further io gets deferred.
2255 * Suspend mechanism in request-based dm.
2257 * 1. Flush all I/Os by lock_fs() if needed.
2258 * 2. Stop dispatching any I/O by stopping the request_queue.
2259 * 3. Wait for all in-flight I/Os to be completed or requeued.
2261 * To abort suspend, start the request_queue.
2263 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2265 struct dm_table
*map
= NULL
;
2269 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2271 if (dm_suspended_md(md
)) {
2276 if (dm_suspended_internally_md(md
)) {
2277 /* already internally suspended, wait for internal resume */
2278 mutex_unlock(&md
->suspend_lock
);
2279 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2285 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2287 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2291 dm_table_postsuspend_targets(map
);
2294 mutex_unlock(&md
->suspend_lock
);
2298 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2301 int r
= dm_table_resume_targets(map
);
2309 * Flushing deferred I/Os must be done after targets are resumed
2310 * so that mapping of targets can work correctly.
2311 * Request-based dm is queueing the deferred I/Os in its request_queue.
2313 if (dm_request_based(md
))
2314 dm_start_queue(md
->queue
);
2321 int dm_resume(struct mapped_device
*md
)
2324 struct dm_table
*map
= NULL
;
2328 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2330 if (!dm_suspended_md(md
))
2333 if (dm_suspended_internally_md(md
)) {
2334 /* already internally suspended, wait for internal resume */
2335 mutex_unlock(&md
->suspend_lock
);
2336 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2342 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2343 if (!map
|| !dm_table_get_size(map
))
2346 r
= __dm_resume(md
, map
);
2350 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2352 mutex_unlock(&md
->suspend_lock
);
2358 * Internal suspend/resume works like userspace-driven suspend. It waits
2359 * until all bios finish and prevents issuing new bios to the target drivers.
2360 * It may be used only from the kernel.
2363 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2365 struct dm_table
*map
= NULL
;
2367 if (md
->internal_suspend_count
++)
2368 return; /* nested internal suspend */
2370 if (dm_suspended_md(md
)) {
2371 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2372 return; /* nest suspend */
2375 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2378 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2379 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2380 * would require changing .presuspend to return an error -- avoid this
2381 * until there is a need for more elaborate variants of internal suspend.
2383 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2384 DMF_SUSPENDED_INTERNALLY
);
2386 dm_table_postsuspend_targets(map
);
2389 static void __dm_internal_resume(struct mapped_device
*md
)
2391 BUG_ON(!md
->internal_suspend_count
);
2393 if (--md
->internal_suspend_count
)
2394 return; /* resume from nested internal suspend */
2396 if (dm_suspended_md(md
))
2397 goto done
; /* resume from nested suspend */
2400 * NOTE: existing callers don't need to call dm_table_resume_targets
2401 * (which may fail -- so best to avoid it for now by passing NULL map)
2403 (void) __dm_resume(md
, NULL
);
2406 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2407 smp_mb__after_atomic();
2408 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2411 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2413 mutex_lock(&md
->suspend_lock
);
2414 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2415 mutex_unlock(&md
->suspend_lock
);
2417 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2419 void dm_internal_resume(struct mapped_device
*md
)
2421 mutex_lock(&md
->suspend_lock
);
2422 __dm_internal_resume(md
);
2423 mutex_unlock(&md
->suspend_lock
);
2425 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2428 * Fast variants of internal suspend/resume hold md->suspend_lock,
2429 * which prevents interaction with userspace-driven suspend.
2432 void dm_internal_suspend_fast(struct mapped_device
*md
)
2434 mutex_lock(&md
->suspend_lock
);
2435 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2438 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2439 synchronize_srcu(&md
->io_barrier
);
2440 flush_workqueue(md
->wq
);
2441 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2443 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2445 void dm_internal_resume_fast(struct mapped_device
*md
)
2447 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2453 mutex_unlock(&md
->suspend_lock
);
2455 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2457 /*-----------------------------------------------------------------
2458 * Event notification.
2459 *---------------------------------------------------------------*/
2460 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2463 char udev_cookie
[DM_COOKIE_LENGTH
];
2464 char *envp
[] = { udev_cookie
, NULL
};
2467 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2469 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2470 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2471 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2476 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2478 return atomic_add_return(1, &md
->uevent_seq
);
2481 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2483 return atomic_read(&md
->event_nr
);
2486 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2488 return wait_event_interruptible(md
->eventq
,
2489 (event_nr
!= atomic_read(&md
->event_nr
)));
2492 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2494 unsigned long flags
;
2496 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2497 list_add(elist
, &md
->uevent_list
);
2498 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2502 * The gendisk is only valid as long as you have a reference
2505 struct gendisk
*dm_disk(struct mapped_device
*md
)
2509 EXPORT_SYMBOL_GPL(dm_disk
);
2511 struct kobject
*dm_kobject(struct mapped_device
*md
)
2513 return &md
->kobj_holder
.kobj
;
2516 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2518 struct mapped_device
*md
;
2520 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2522 spin_lock(&_minor_lock
);
2523 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2529 spin_unlock(&_minor_lock
);
2534 int dm_suspended_md(struct mapped_device
*md
)
2536 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2539 int dm_suspended_internally_md(struct mapped_device
*md
)
2541 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2544 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2546 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2549 int dm_suspended(struct dm_target
*ti
)
2551 return dm_suspended_md(dm_table_get_md(ti
->table
));
2553 EXPORT_SYMBOL_GPL(dm_suspended
);
2555 int dm_noflush_suspending(struct dm_target
*ti
)
2557 return __noflush_suspending(dm_table_get_md(ti
->table
));
2559 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2561 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, unsigned type
,
2562 unsigned integrity
, unsigned per_io_data_size
)
2564 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2565 struct kmem_cache
*cachep
= NULL
;
2566 unsigned int pool_size
= 0;
2567 unsigned int front_pad
;
2573 case DM_TYPE_BIO_BASED
:
2574 case DM_TYPE_DAX_BIO_BASED
:
2576 pool_size
= dm_get_reserved_bio_based_ios();
2577 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2579 case DM_TYPE_REQUEST_BASED
:
2580 cachep
= _rq_tio_cache
;
2581 pool_size
= dm_get_reserved_rq_based_ios();
2582 pools
->rq_pool
= mempool_create_slab_pool(pool_size
, _rq_cache
);
2583 if (!pools
->rq_pool
)
2585 /* fall through to setup remaining rq-based pools */
2586 case DM_TYPE_MQ_REQUEST_BASED
:
2588 pool_size
= dm_get_reserved_rq_based_ios();
2589 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2590 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2597 pools
->io_pool
= mempool_create_slab_pool(pool_size
, cachep
);
2598 if (!pools
->io_pool
)
2602 pools
->bs
= bioset_create_nobvec(pool_size
, front_pad
);
2606 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2612 dm_free_md_mempools(pools
);
2617 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2622 mempool_destroy(pools
->io_pool
);
2623 mempool_destroy(pools
->rq_pool
);
2626 bioset_free(pools
->bs
);
2638 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
2641 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2642 struct dm_table
*table
;
2643 struct dm_target
*ti
;
2644 int ret
= -ENOTTY
, srcu_idx
;
2646 table
= dm_get_live_table(md
, &srcu_idx
);
2647 if (!table
|| !dm_table_get_size(table
))
2650 /* We only support devices that have a single target */
2651 if (dm_table_get_num_targets(table
) != 1)
2653 ti
= dm_table_get_target(table
, 0);
2656 if (!ti
->type
->iterate_devices
)
2659 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
2661 dm_put_live_table(md
, srcu_idx
);
2666 * For register / unregister we need to manually call out to every path.
2668 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
2669 sector_t start
, sector_t len
, void *data
)
2671 struct dm_pr
*pr
= data
;
2672 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
2674 if (!ops
|| !ops
->pr_register
)
2676 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
2679 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
2690 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
2691 if (ret
&& new_key
) {
2692 /* unregister all paths if we failed to register any path */
2693 pr
.old_key
= new_key
;
2696 pr
.fail_early
= false;
2697 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
2703 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
2706 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2707 const struct pr_ops
*ops
;
2711 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2715 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2716 if (ops
&& ops
->pr_reserve
)
2717 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
2725 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
2727 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2728 const struct pr_ops
*ops
;
2732 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2736 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2737 if (ops
&& ops
->pr_release
)
2738 r
= ops
->pr_release(bdev
, key
, type
);
2746 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
2747 enum pr_type type
, bool abort
)
2749 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2750 const struct pr_ops
*ops
;
2754 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2758 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2759 if (ops
&& ops
->pr_preempt
)
2760 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
2768 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
2770 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2771 const struct pr_ops
*ops
;
2775 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2779 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2780 if (ops
&& ops
->pr_clear
)
2781 r
= ops
->pr_clear(bdev
, key
);
2789 static const struct pr_ops dm_pr_ops
= {
2790 .pr_register
= dm_pr_register
,
2791 .pr_reserve
= dm_pr_reserve
,
2792 .pr_release
= dm_pr_release
,
2793 .pr_preempt
= dm_pr_preempt
,
2794 .pr_clear
= dm_pr_clear
,
2797 static const struct block_device_operations dm_blk_dops
= {
2798 .open
= dm_blk_open
,
2799 .release
= dm_blk_close
,
2800 .ioctl
= dm_blk_ioctl
,
2801 .direct_access
= dm_blk_direct_access
,
2802 .getgeo
= dm_blk_getgeo
,
2803 .pr_ops
= &dm_pr_ops
,
2804 .owner
= THIS_MODULE
2810 module_init(dm_init
);
2811 module_exit(dm_exit
);
2813 module_param(major
, uint
, 0);
2814 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2816 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
2817 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
2819 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
2820 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
2822 MODULE_DESCRIPTION(DM_NAME
" driver");
2823 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2824 MODULE_LICENSE("GPL");