Linux 4.9.243
[linux/fpc-iii.git] / drivers / md / dm.c
blobdd154027adc9d348137bb77f03aed2d27a3dcf5e
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pr.h>
24 #include <linux/vmalloc.h>
26 #define DM_MSG_PREFIX "core"
28 #ifdef CONFIG_PRINTK
30 * ratelimit state to be used in DMXXX_LIMIT().
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 DEFAULT_RATELIMIT_INTERVAL,
34 DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
45 static const char *_name = DM_NAME;
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
50 static DEFINE_IDR(_minor_idr);
52 static DEFINE_SPINLOCK(_minor_lock);
54 static void do_deferred_remove(struct work_struct *w);
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58 static struct workqueue_struct *deferred_remove_workqueue;
61 * One of these is allocated per bio.
63 struct dm_io {
64 struct mapped_device *md;
65 int error;
66 atomic_t io_count;
67 struct bio *bio;
68 unsigned long start_time;
69 spinlock_t endio_lock;
70 struct dm_stats_aux stats_aux;
73 #define MINOR_ALLOCED ((void *)-1)
76 * Bits for the md->flags field.
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
80 #define DMF_FROZEN 2
81 #define DMF_FREEING 3
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node = DM_NUMA_NODE;
91 * For mempools pre-allocation at the table loading time.
93 struct dm_md_mempools {
94 mempool_t *io_pool;
95 mempool_t *rq_pool;
96 struct bio_set *bs;
99 struct table_device {
100 struct list_head list;
101 atomic_t count;
102 struct dm_dev dm_dev;
105 static struct kmem_cache *_io_cache;
106 static struct kmem_cache *_rq_tio_cache;
107 static struct kmem_cache *_rq_cache;
110 * Bio-based DM's mempools' reserved IOs set by the user.
112 #define RESERVED_BIO_BASED_IOS 16
113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 int param = ACCESS_ONCE(*module_param);
118 int modified_param = 0;
119 bool modified = true;
121 if (param < min)
122 modified_param = min;
123 else if (param > max)
124 modified_param = max;
125 else
126 modified = false;
128 if (modified) {
129 (void)cmpxchg(module_param, param, modified_param);
130 param = modified_param;
133 return param;
136 unsigned __dm_get_module_param(unsigned *module_param,
137 unsigned def, unsigned max)
139 unsigned param = ACCESS_ONCE(*module_param);
140 unsigned modified_param = 0;
142 if (!param)
143 modified_param = def;
144 else if (param > max)
145 modified_param = max;
147 if (modified_param) {
148 (void)cmpxchg(module_param, param, modified_param);
149 param = modified_param;
152 return param;
155 unsigned dm_get_reserved_bio_based_ios(void)
157 return __dm_get_module_param(&reserved_bio_based_ios,
158 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162 static unsigned dm_get_numa_node(void)
164 return __dm_get_module_param_int(&dm_numa_node,
165 DM_NUMA_NODE, num_online_nodes() - 1);
168 static int __init local_init(void)
170 int r = -ENOMEM;
172 /* allocate a slab for the dm_ios */
173 _io_cache = KMEM_CACHE(dm_io, 0);
174 if (!_io_cache)
175 return r;
177 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
178 if (!_rq_tio_cache)
179 goto out_free_io_cache;
181 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
182 __alignof__(struct request), 0, NULL);
183 if (!_rq_cache)
184 goto out_free_rq_tio_cache;
186 r = dm_uevent_init();
187 if (r)
188 goto out_free_rq_cache;
190 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
191 if (!deferred_remove_workqueue) {
192 r = -ENOMEM;
193 goto out_uevent_exit;
196 _major = major;
197 r = register_blkdev(_major, _name);
198 if (r < 0)
199 goto out_free_workqueue;
201 if (!_major)
202 _major = r;
204 return 0;
206 out_free_workqueue:
207 destroy_workqueue(deferred_remove_workqueue);
208 out_uevent_exit:
209 dm_uevent_exit();
210 out_free_rq_cache:
211 kmem_cache_destroy(_rq_cache);
212 out_free_rq_tio_cache:
213 kmem_cache_destroy(_rq_tio_cache);
214 out_free_io_cache:
215 kmem_cache_destroy(_io_cache);
217 return r;
220 static void local_exit(void)
222 flush_scheduled_work();
223 destroy_workqueue(deferred_remove_workqueue);
225 kmem_cache_destroy(_rq_cache);
226 kmem_cache_destroy(_rq_tio_cache);
227 kmem_cache_destroy(_io_cache);
228 unregister_blkdev(_major, _name);
229 dm_uevent_exit();
231 _major = 0;
233 DMINFO("cleaned up");
236 static int (*_inits[])(void) __initdata = {
237 local_init,
238 dm_target_init,
239 dm_linear_init,
240 dm_stripe_init,
241 dm_io_init,
242 dm_kcopyd_init,
243 dm_interface_init,
244 dm_statistics_init,
247 static void (*_exits[])(void) = {
248 local_exit,
249 dm_target_exit,
250 dm_linear_exit,
251 dm_stripe_exit,
252 dm_io_exit,
253 dm_kcopyd_exit,
254 dm_interface_exit,
255 dm_statistics_exit,
258 static int __init dm_init(void)
260 const int count = ARRAY_SIZE(_inits);
262 int r, i;
264 for (i = 0; i < count; i++) {
265 r = _inits[i]();
266 if (r)
267 goto bad;
270 return 0;
272 bad:
273 while (i--)
274 _exits[i]();
276 return r;
279 static void __exit dm_exit(void)
281 int i = ARRAY_SIZE(_exits);
283 while (i--)
284 _exits[i]();
287 * Should be empty by this point.
289 idr_destroy(&_minor_idr);
293 * Block device functions
295 int dm_deleting_md(struct mapped_device *md)
297 return test_bit(DMF_DELETING, &md->flags);
300 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 struct mapped_device *md;
304 spin_lock(&_minor_lock);
306 md = bdev->bd_disk->private_data;
307 if (!md)
308 goto out;
310 if (test_bit(DMF_FREEING, &md->flags) ||
311 dm_deleting_md(md)) {
312 md = NULL;
313 goto out;
316 dm_get(md);
317 atomic_inc(&md->open_count);
318 out:
319 spin_unlock(&_minor_lock);
321 return md ? 0 : -ENXIO;
324 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 struct mapped_device *md;
328 spin_lock(&_minor_lock);
330 md = disk->private_data;
331 if (WARN_ON(!md))
332 goto out;
334 if (atomic_dec_and_test(&md->open_count) &&
335 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
336 queue_work(deferred_remove_workqueue, &deferred_remove_work);
338 dm_put(md);
339 out:
340 spin_unlock(&_minor_lock);
343 int dm_open_count(struct mapped_device *md)
345 return atomic_read(&md->open_count);
349 * Guarantees nothing is using the device before it's deleted.
351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 int r = 0;
355 spin_lock(&_minor_lock);
357 if (dm_open_count(md)) {
358 r = -EBUSY;
359 if (mark_deferred)
360 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
361 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
362 r = -EEXIST;
363 else
364 set_bit(DMF_DELETING, &md->flags);
366 spin_unlock(&_minor_lock);
368 return r;
371 int dm_cancel_deferred_remove(struct mapped_device *md)
373 int r = 0;
375 spin_lock(&_minor_lock);
377 if (test_bit(DMF_DELETING, &md->flags))
378 r = -EBUSY;
379 else
380 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382 spin_unlock(&_minor_lock);
384 return r;
387 static void do_deferred_remove(struct work_struct *w)
389 dm_deferred_remove();
392 sector_t dm_get_size(struct mapped_device *md)
394 return get_capacity(md->disk);
397 struct request_queue *dm_get_md_queue(struct mapped_device *md)
399 return md->queue;
402 struct dm_stats *dm_get_stats(struct mapped_device *md)
404 return &md->stats;
407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 struct mapped_device *md = bdev->bd_disk->private_data;
411 return dm_get_geometry(md, geo);
414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
415 struct block_device **bdev,
416 fmode_t *mode)
418 struct dm_target *tgt;
419 struct dm_table *map;
420 int srcu_idx, r;
422 retry:
423 r = -ENOTTY;
424 map = dm_get_live_table(md, &srcu_idx);
425 if (!map || !dm_table_get_size(map))
426 goto out;
428 /* We only support devices that have a single target */
429 if (dm_table_get_num_targets(map) != 1)
430 goto out;
432 tgt = dm_table_get_target(map, 0);
433 if (!tgt->type->prepare_ioctl)
434 goto out;
436 if (dm_suspended_md(md)) {
437 r = -EAGAIN;
438 goto out;
441 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
442 if (r < 0)
443 goto out;
445 bdgrab(*bdev);
446 dm_put_live_table(md, srcu_idx);
447 return r;
449 out:
450 dm_put_live_table(md, srcu_idx);
451 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
452 msleep(10);
453 goto retry;
455 return r;
458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
459 unsigned int cmd, unsigned long arg)
461 struct mapped_device *md = bdev->bd_disk->private_data;
462 int r;
464 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
465 if (r < 0)
466 return r;
468 if (r > 0) {
470 * Target determined this ioctl is being issued against
471 * a logical partition of the parent bdev; so extra
472 * validation is needed.
474 r = scsi_verify_blk_ioctl(NULL, cmd);
475 if (r)
476 goto out;
479 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
480 out:
481 bdput(bdev);
482 return r;
485 static struct dm_io *alloc_io(struct mapped_device *md)
487 return mempool_alloc(md->io_pool, GFP_NOIO);
490 static void free_io(struct mapped_device *md, struct dm_io *io)
492 mempool_free(io, md->io_pool);
495 static void free_tio(struct dm_target_io *tio)
497 bio_put(&tio->clone);
500 int md_in_flight(struct mapped_device *md)
502 return atomic_read(&md->pending[READ]) +
503 atomic_read(&md->pending[WRITE]);
506 static void start_io_acct(struct dm_io *io)
508 struct mapped_device *md = io->md;
509 struct bio *bio = io->bio;
510 int cpu;
511 int rw = bio_data_dir(bio);
513 io->start_time = jiffies;
515 cpu = part_stat_lock();
516 part_round_stats(cpu, &dm_disk(md)->part0);
517 part_stat_unlock();
518 atomic_set(&dm_disk(md)->part0.in_flight[rw],
519 atomic_inc_return(&md->pending[rw]));
521 if (unlikely(dm_stats_used(&md->stats)))
522 dm_stats_account_io(&md->stats, bio_data_dir(bio),
523 bio->bi_iter.bi_sector, bio_sectors(bio),
524 false, 0, &io->stats_aux);
527 static void end_io_acct(struct dm_io *io)
529 struct mapped_device *md = io->md;
530 struct bio *bio = io->bio;
531 unsigned long duration = jiffies - io->start_time;
532 int pending;
533 int rw = bio_data_dir(bio);
535 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
537 if (unlikely(dm_stats_used(&md->stats)))
538 dm_stats_account_io(&md->stats, bio_data_dir(bio),
539 bio->bi_iter.bi_sector, bio_sectors(bio),
540 true, duration, &io->stats_aux);
543 * After this is decremented the bio must not be touched if it is
544 * a flush.
546 pending = atomic_dec_return(&md->pending[rw]);
547 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
548 pending += atomic_read(&md->pending[rw^0x1]);
550 /* nudge anyone waiting on suspend queue */
551 if (!pending)
552 wake_up(&md->wait);
556 * Add the bio to the list of deferred io.
558 static void queue_io(struct mapped_device *md, struct bio *bio)
560 unsigned long flags;
562 spin_lock_irqsave(&md->deferred_lock, flags);
563 bio_list_add(&md->deferred, bio);
564 spin_unlock_irqrestore(&md->deferred_lock, flags);
565 queue_work(md->wq, &md->work);
569 * Everyone (including functions in this file), should use this
570 * function to access the md->map field, and make sure they call
571 * dm_put_live_table() when finished.
573 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
575 *srcu_idx = srcu_read_lock(&md->io_barrier);
577 return srcu_dereference(md->map, &md->io_barrier);
580 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
582 srcu_read_unlock(&md->io_barrier, srcu_idx);
585 void dm_sync_table(struct mapped_device *md)
587 synchronize_srcu(&md->io_barrier);
588 synchronize_rcu_expedited();
592 * A fast alternative to dm_get_live_table/dm_put_live_table.
593 * The caller must not block between these two functions.
595 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
597 rcu_read_lock();
598 return rcu_dereference(md->map);
601 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
603 rcu_read_unlock();
607 * Open a table device so we can use it as a map destination.
609 static int open_table_device(struct table_device *td, dev_t dev,
610 struct mapped_device *md)
612 static char *_claim_ptr = "I belong to device-mapper";
613 struct block_device *bdev;
615 int r;
617 BUG_ON(td->dm_dev.bdev);
619 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
620 if (IS_ERR(bdev))
621 return PTR_ERR(bdev);
623 r = bd_link_disk_holder(bdev, dm_disk(md));
624 if (r) {
625 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
626 return r;
629 td->dm_dev.bdev = bdev;
630 return 0;
634 * Close a table device that we've been using.
636 static void close_table_device(struct table_device *td, struct mapped_device *md)
638 if (!td->dm_dev.bdev)
639 return;
641 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
642 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
643 td->dm_dev.bdev = NULL;
646 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
647 fmode_t mode) {
648 struct table_device *td;
650 list_for_each_entry(td, l, list)
651 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
652 return td;
654 return NULL;
657 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
658 struct dm_dev **result) {
659 int r;
660 struct table_device *td;
662 mutex_lock(&md->table_devices_lock);
663 td = find_table_device(&md->table_devices, dev, mode);
664 if (!td) {
665 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
666 if (!td) {
667 mutex_unlock(&md->table_devices_lock);
668 return -ENOMEM;
671 td->dm_dev.mode = mode;
672 td->dm_dev.bdev = NULL;
674 if ((r = open_table_device(td, dev, md))) {
675 mutex_unlock(&md->table_devices_lock);
676 kfree(td);
677 return r;
680 format_dev_t(td->dm_dev.name, dev);
682 atomic_set(&td->count, 0);
683 list_add(&td->list, &md->table_devices);
685 atomic_inc(&td->count);
686 mutex_unlock(&md->table_devices_lock);
688 *result = &td->dm_dev;
689 return 0;
691 EXPORT_SYMBOL_GPL(dm_get_table_device);
693 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
695 struct table_device *td = container_of(d, struct table_device, dm_dev);
697 mutex_lock(&md->table_devices_lock);
698 if (atomic_dec_and_test(&td->count)) {
699 close_table_device(td, md);
700 list_del(&td->list);
701 kfree(td);
703 mutex_unlock(&md->table_devices_lock);
705 EXPORT_SYMBOL(dm_put_table_device);
707 static void free_table_devices(struct list_head *devices)
709 struct list_head *tmp, *next;
711 list_for_each_safe(tmp, next, devices) {
712 struct table_device *td = list_entry(tmp, struct table_device, list);
714 DMWARN("dm_destroy: %s still exists with %d references",
715 td->dm_dev.name, atomic_read(&td->count));
716 kfree(td);
721 * Get the geometry associated with a dm device
723 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
725 *geo = md->geometry;
727 return 0;
731 * Set the geometry of a device.
733 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
735 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
737 if (geo->start > sz) {
738 DMWARN("Start sector is beyond the geometry limits.");
739 return -EINVAL;
742 md->geometry = *geo;
744 return 0;
747 /*-----------------------------------------------------------------
748 * CRUD START:
749 * A more elegant soln is in the works that uses the queue
750 * merge fn, unfortunately there are a couple of changes to
751 * the block layer that I want to make for this. So in the
752 * interests of getting something for people to use I give
753 * you this clearly demarcated crap.
754 *---------------------------------------------------------------*/
756 static int __noflush_suspending(struct mapped_device *md)
758 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
762 * Decrements the number of outstanding ios that a bio has been
763 * cloned into, completing the original io if necc.
765 static void dec_pending(struct dm_io *io, int error)
767 unsigned long flags;
768 int io_error;
769 struct bio *bio;
770 struct mapped_device *md = io->md;
772 /* Push-back supersedes any I/O errors */
773 if (unlikely(error)) {
774 spin_lock_irqsave(&io->endio_lock, flags);
775 if (!(io->error > 0 && __noflush_suspending(md)))
776 io->error = error;
777 spin_unlock_irqrestore(&io->endio_lock, flags);
780 if (atomic_dec_and_test(&io->io_count)) {
781 if (io->error == DM_ENDIO_REQUEUE) {
783 * Target requested pushing back the I/O.
785 spin_lock_irqsave(&md->deferred_lock, flags);
786 if (__noflush_suspending(md))
787 bio_list_add_head(&md->deferred, io->bio);
788 else
789 /* noflush suspend was interrupted. */
790 io->error = -EIO;
791 spin_unlock_irqrestore(&md->deferred_lock, flags);
794 io_error = io->error;
795 bio = io->bio;
796 end_io_acct(io);
797 free_io(md, io);
799 if (io_error == DM_ENDIO_REQUEUE)
800 return;
802 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
804 * Preflush done for flush with data, reissue
805 * without REQ_PREFLUSH.
807 bio->bi_opf &= ~REQ_PREFLUSH;
808 queue_io(md, bio);
809 } else {
810 /* done with normal IO or empty flush */
811 trace_block_bio_complete(md->queue, bio, io_error);
812 if (io_error)
813 bio->bi_error = io_error;
814 bio_endio(bio);
819 void disable_write_same(struct mapped_device *md)
821 struct queue_limits *limits = dm_get_queue_limits(md);
823 /* device doesn't really support WRITE SAME, disable it */
824 limits->max_write_same_sectors = 0;
827 static void clone_endio(struct bio *bio)
829 int error = bio->bi_error;
830 int r = error;
831 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
832 struct dm_io *io = tio->io;
833 struct mapped_device *md = tio->io->md;
834 dm_endio_fn endio = tio->ti->type->end_io;
836 if (endio) {
837 r = endio(tio->ti, bio, error);
838 if (r < 0 || r == DM_ENDIO_REQUEUE)
840 * error and requeue request are handled
841 * in dec_pending().
843 error = r;
844 else if (r == DM_ENDIO_INCOMPLETE)
845 /* The target will handle the io */
846 return;
847 else if (r) {
848 DMWARN("unimplemented target endio return value: %d", r);
849 BUG();
853 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
854 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
855 disable_write_same(md);
857 free_tio(tio);
858 dec_pending(io, error);
862 * Return maximum size of I/O possible at the supplied sector up to the current
863 * target boundary.
865 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
867 sector_t target_offset = dm_target_offset(ti, sector);
869 return ti->len - target_offset;
872 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
874 sector_t len = max_io_len_target_boundary(sector, ti);
875 sector_t offset, max_len;
878 * Does the target need to split even further?
880 if (ti->max_io_len) {
881 offset = dm_target_offset(ti, sector);
882 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
883 max_len = sector_div(offset, ti->max_io_len);
884 else
885 max_len = offset & (ti->max_io_len - 1);
886 max_len = ti->max_io_len - max_len;
888 if (len > max_len)
889 len = max_len;
892 return len;
895 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
897 if (len > UINT_MAX) {
898 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
899 (unsigned long long)len, UINT_MAX);
900 ti->error = "Maximum size of target IO is too large";
901 return -EINVAL;
904 ti->max_io_len = (uint32_t) len;
906 return 0;
908 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
910 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
911 void **kaddr, pfn_t *pfn, long size)
913 struct mapped_device *md = bdev->bd_disk->private_data;
914 struct dm_table *map;
915 struct dm_target *ti;
916 int srcu_idx;
917 long len, ret = -EIO;
919 map = dm_get_live_table(md, &srcu_idx);
920 if (!map)
921 goto out;
923 ti = dm_table_find_target(map, sector);
924 if (!dm_target_is_valid(ti))
925 goto out;
927 len = max_io_len(sector, ti) << SECTOR_SHIFT;
928 size = min(len, size);
930 if (ti->type->direct_access)
931 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
932 out:
933 dm_put_live_table(md, srcu_idx);
934 return min(ret, size);
938 * A target may call dm_accept_partial_bio only from the map routine. It is
939 * allowed for all bio types except REQ_PREFLUSH.
941 * dm_accept_partial_bio informs the dm that the target only wants to process
942 * additional n_sectors sectors of the bio and the rest of the data should be
943 * sent in a next bio.
945 * A diagram that explains the arithmetics:
946 * +--------------------+---------------+-------+
947 * | 1 | 2 | 3 |
948 * +--------------------+---------------+-------+
950 * <-------------- *tio->len_ptr --------------->
951 * <------- bi_size ------->
952 * <-- n_sectors -->
954 * Region 1 was already iterated over with bio_advance or similar function.
955 * (it may be empty if the target doesn't use bio_advance)
956 * Region 2 is the remaining bio size that the target wants to process.
957 * (it may be empty if region 1 is non-empty, although there is no reason
958 * to make it empty)
959 * The target requires that region 3 is to be sent in the next bio.
961 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
962 * the partially processed part (the sum of regions 1+2) must be the same for all
963 * copies of the bio.
965 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
967 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
968 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
969 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
970 BUG_ON(bi_size > *tio->len_ptr);
971 BUG_ON(n_sectors > bi_size);
972 *tio->len_ptr -= bi_size - n_sectors;
973 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
975 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
978 * Flush current->bio_list when the target map method blocks.
979 * This fixes deadlocks in snapshot and possibly in other targets.
981 struct dm_offload {
982 struct blk_plug plug;
983 struct blk_plug_cb cb;
986 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
988 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
989 struct bio_list list;
990 struct bio *bio;
991 int i;
993 INIT_LIST_HEAD(&o->cb.list);
995 if (unlikely(!current->bio_list))
996 return;
998 for (i = 0; i < 2; i++) {
999 list = current->bio_list[i];
1000 bio_list_init(&current->bio_list[i]);
1002 while ((bio = bio_list_pop(&list))) {
1003 struct bio_set *bs = bio->bi_pool;
1004 if (unlikely(!bs) || bs == fs_bio_set) {
1005 bio_list_add(&current->bio_list[i], bio);
1006 continue;
1009 spin_lock(&bs->rescue_lock);
1010 bio_list_add(&bs->rescue_list, bio);
1011 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1012 spin_unlock(&bs->rescue_lock);
1017 static void dm_offload_start(struct dm_offload *o)
1019 blk_start_plug(&o->plug);
1020 o->cb.callback = flush_current_bio_list;
1021 list_add(&o->cb.list, &current->plug->cb_list);
1024 static void dm_offload_end(struct dm_offload *o)
1026 list_del(&o->cb.list);
1027 blk_finish_plug(&o->plug);
1030 static void __map_bio(struct dm_target_io *tio)
1032 int r;
1033 sector_t sector;
1034 struct dm_offload o;
1035 struct bio *clone = &tio->clone;
1036 struct dm_target *ti = tio->ti;
1038 clone->bi_end_io = clone_endio;
1041 * Map the clone. If r == 0 we don't need to do
1042 * anything, the target has assumed ownership of
1043 * this io.
1045 atomic_inc(&tio->io->io_count);
1046 sector = clone->bi_iter.bi_sector;
1048 dm_offload_start(&o);
1049 r = ti->type->map(ti, clone);
1050 dm_offload_end(&o);
1052 if (r == DM_MAPIO_REMAPPED) {
1053 /* the bio has been remapped so dispatch it */
1055 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1056 tio->io->bio->bi_bdev->bd_dev, sector);
1058 generic_make_request(clone);
1059 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1060 /* error the io and bail out, or requeue it if needed */
1061 dec_pending(tio->io, r);
1062 free_tio(tio);
1063 } else if (r != DM_MAPIO_SUBMITTED) {
1064 DMWARN("unimplemented target map return value: %d", r);
1065 BUG();
1069 struct clone_info {
1070 struct mapped_device *md;
1071 struct dm_table *map;
1072 struct bio *bio;
1073 struct dm_io *io;
1074 sector_t sector;
1075 unsigned sector_count;
1078 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1080 bio->bi_iter.bi_sector = sector;
1081 bio->bi_iter.bi_size = to_bytes(len);
1085 * Creates a bio that consists of range of complete bvecs.
1087 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1088 sector_t sector, unsigned len)
1090 struct bio *clone = &tio->clone;
1092 __bio_clone_fast(clone, bio);
1094 if (bio_integrity(bio)) {
1095 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1096 if (r < 0)
1097 return r;
1100 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1101 clone->bi_iter.bi_size = to_bytes(len);
1103 if (bio_integrity(bio))
1104 bio_integrity_trim(clone, 0, len);
1106 return 0;
1109 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1110 struct dm_target *ti,
1111 unsigned target_bio_nr)
1113 struct dm_target_io *tio;
1114 struct bio *clone;
1116 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1117 tio = container_of(clone, struct dm_target_io, clone);
1119 tio->io = ci->io;
1120 tio->ti = ti;
1121 tio->target_bio_nr = target_bio_nr;
1123 return tio;
1126 static void __clone_and_map_simple_bio(struct clone_info *ci,
1127 struct dm_target *ti,
1128 unsigned target_bio_nr, unsigned *len)
1130 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1131 struct bio *clone = &tio->clone;
1133 tio->len_ptr = len;
1135 __bio_clone_fast(clone, ci->bio);
1136 if (len)
1137 bio_setup_sector(clone, ci->sector, *len);
1139 __map_bio(tio);
1142 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1143 unsigned num_bios, unsigned *len)
1145 unsigned target_bio_nr;
1147 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1148 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1151 static int __send_empty_flush(struct clone_info *ci)
1153 unsigned target_nr = 0;
1154 struct dm_target *ti;
1156 BUG_ON(bio_has_data(ci->bio));
1157 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1158 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1160 return 0;
1163 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1164 sector_t sector, unsigned *len)
1166 struct bio *bio = ci->bio;
1167 struct dm_target_io *tio;
1168 unsigned target_bio_nr;
1169 unsigned num_target_bios = 1;
1170 int r = 0;
1173 * Does the target want to receive duplicate copies of the bio?
1175 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1176 num_target_bios = ti->num_write_bios(ti, bio);
1178 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1179 tio = alloc_tio(ci, ti, target_bio_nr);
1180 tio->len_ptr = len;
1181 r = clone_bio(tio, bio, sector, *len);
1182 if (r < 0) {
1183 free_tio(tio);
1184 break;
1186 __map_bio(tio);
1189 return r;
1192 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1194 static unsigned get_num_discard_bios(struct dm_target *ti)
1196 return ti->num_discard_bios;
1199 static unsigned get_num_write_same_bios(struct dm_target *ti)
1201 return ti->num_write_same_bios;
1204 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1206 static bool is_split_required_for_discard(struct dm_target *ti)
1208 return ti->split_discard_bios;
1211 static int __send_changing_extent_only(struct clone_info *ci,
1212 get_num_bios_fn get_num_bios,
1213 is_split_required_fn is_split_required)
1215 struct dm_target *ti;
1216 unsigned len;
1217 unsigned num_bios;
1219 do {
1220 ti = dm_table_find_target(ci->map, ci->sector);
1221 if (!dm_target_is_valid(ti))
1222 return -EIO;
1225 * Even though the device advertised support for this type of
1226 * request, that does not mean every target supports it, and
1227 * reconfiguration might also have changed that since the
1228 * check was performed.
1230 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1231 if (!num_bios)
1232 return -EOPNOTSUPP;
1234 if (is_split_required && !is_split_required(ti))
1235 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1236 else
1237 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1239 __send_duplicate_bios(ci, ti, num_bios, &len);
1241 ci->sector += len;
1242 } while (ci->sector_count -= len);
1244 return 0;
1247 static int __send_discard(struct clone_info *ci)
1249 return __send_changing_extent_only(ci, get_num_discard_bios,
1250 is_split_required_for_discard);
1253 static int __send_write_same(struct clone_info *ci)
1255 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1259 * Select the correct strategy for processing a non-flush bio.
1261 static int __split_and_process_non_flush(struct clone_info *ci)
1263 struct bio *bio = ci->bio;
1264 struct dm_target *ti;
1265 unsigned len;
1266 int r;
1268 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1269 return __send_discard(ci);
1270 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1271 return __send_write_same(ci);
1273 ti = dm_table_find_target(ci->map, ci->sector);
1274 if (!dm_target_is_valid(ti))
1275 return -EIO;
1277 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1279 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1280 if (r < 0)
1281 return r;
1283 ci->sector += len;
1284 ci->sector_count -= len;
1286 return 0;
1290 * Entry point to split a bio into clones and submit them to the targets.
1292 static void __split_and_process_bio(struct mapped_device *md,
1293 struct dm_table *map, struct bio *bio)
1295 struct clone_info ci;
1296 int error = 0;
1298 if (unlikely(!map)) {
1299 bio_io_error(bio);
1300 return;
1303 ci.map = map;
1304 ci.md = md;
1305 ci.io = alloc_io(md);
1306 ci.io->error = 0;
1307 atomic_set(&ci.io->io_count, 1);
1308 ci.io->bio = bio;
1309 ci.io->md = md;
1310 spin_lock_init(&ci.io->endio_lock);
1311 ci.sector = bio->bi_iter.bi_sector;
1313 start_io_acct(ci.io);
1315 if (bio->bi_opf & REQ_PREFLUSH) {
1316 ci.bio = &ci.md->flush_bio;
1317 ci.sector_count = 0;
1318 error = __send_empty_flush(&ci);
1319 /* dec_pending submits any data associated with flush */
1320 } else {
1321 ci.bio = bio;
1322 ci.sector_count = bio_sectors(bio);
1323 while (ci.sector_count && !error)
1324 error = __split_and_process_non_flush(&ci);
1327 /* drop the extra reference count */
1328 dec_pending(ci.io, error);
1330 /*-----------------------------------------------------------------
1331 * CRUD END
1332 *---------------------------------------------------------------*/
1335 * The request function that just remaps the bio built up by
1336 * dm_merge_bvec.
1338 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1340 int rw = bio_data_dir(bio);
1341 struct mapped_device *md = q->queuedata;
1342 int srcu_idx;
1343 struct dm_table *map;
1345 map = dm_get_live_table(md, &srcu_idx);
1347 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1349 /* if we're suspended, we have to queue this io for later */
1350 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1351 dm_put_live_table(md, srcu_idx);
1353 if (!(bio->bi_opf & REQ_RAHEAD))
1354 queue_io(md, bio);
1355 else
1356 bio_io_error(bio);
1357 return BLK_QC_T_NONE;
1360 __split_and_process_bio(md, map, bio);
1361 dm_put_live_table(md, srcu_idx);
1362 return BLK_QC_T_NONE;
1365 static int dm_any_congested(void *congested_data, int bdi_bits)
1367 int r = bdi_bits;
1368 struct mapped_device *md = congested_data;
1369 struct dm_table *map;
1371 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1372 if (dm_request_based(md)) {
1374 * With request-based DM we only need to check the
1375 * top-level queue for congestion.
1377 r = md->queue->backing_dev_info.wb.state & bdi_bits;
1378 } else {
1379 map = dm_get_live_table_fast(md);
1380 if (map)
1381 r = dm_table_any_congested(map, bdi_bits);
1382 dm_put_live_table_fast(md);
1386 return r;
1389 /*-----------------------------------------------------------------
1390 * An IDR is used to keep track of allocated minor numbers.
1391 *---------------------------------------------------------------*/
1392 static void free_minor(int minor)
1394 spin_lock(&_minor_lock);
1395 idr_remove(&_minor_idr, minor);
1396 spin_unlock(&_minor_lock);
1400 * See if the device with a specific minor # is free.
1402 static int specific_minor(int minor)
1404 int r;
1406 if (minor >= (1 << MINORBITS))
1407 return -EINVAL;
1409 idr_preload(GFP_KERNEL);
1410 spin_lock(&_minor_lock);
1412 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1414 spin_unlock(&_minor_lock);
1415 idr_preload_end();
1416 if (r < 0)
1417 return r == -ENOSPC ? -EBUSY : r;
1418 return 0;
1421 static int next_free_minor(int *minor)
1423 int r;
1425 idr_preload(GFP_KERNEL);
1426 spin_lock(&_minor_lock);
1428 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1430 spin_unlock(&_minor_lock);
1431 idr_preload_end();
1432 if (r < 0)
1433 return r;
1434 *minor = r;
1435 return 0;
1438 static const struct block_device_operations dm_blk_dops;
1440 static void dm_wq_work(struct work_struct *work);
1442 void dm_init_md_queue(struct mapped_device *md)
1445 * Request-based dm devices cannot be stacked on top of bio-based dm
1446 * devices. The type of this dm device may not have been decided yet.
1447 * The type is decided at the first table loading time.
1448 * To prevent problematic device stacking, clear the queue flag
1449 * for request stacking support until then.
1451 * This queue is new, so no concurrency on the queue_flags.
1453 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1456 * Initialize data that will only be used by a non-blk-mq DM queue
1457 * - must do so here (in alloc_dev callchain) before queue is used
1459 md->queue->queuedata = md;
1462 void dm_init_normal_md_queue(struct mapped_device *md)
1464 md->use_blk_mq = false;
1465 dm_init_md_queue(md);
1468 * Initialize aspects of queue that aren't relevant for blk-mq
1470 md->queue->backing_dev_info.congested_data = md;
1471 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1472 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1475 static void cleanup_mapped_device(struct mapped_device *md)
1477 if (md->wq)
1478 destroy_workqueue(md->wq);
1479 if (md->kworker_task)
1480 kthread_stop(md->kworker_task);
1481 mempool_destroy(md->io_pool);
1482 mempool_destroy(md->rq_pool);
1483 if (md->bs)
1484 bioset_free(md->bs);
1486 if (md->disk) {
1487 spin_lock(&_minor_lock);
1488 md->disk->private_data = NULL;
1489 spin_unlock(&_minor_lock);
1490 del_gendisk(md->disk);
1491 put_disk(md->disk);
1494 if (md->queue)
1495 blk_cleanup_queue(md->queue);
1497 cleanup_srcu_struct(&md->io_barrier);
1499 if (md->bdev) {
1500 bdput(md->bdev);
1501 md->bdev = NULL;
1504 dm_mq_cleanup_mapped_device(md);
1508 * Allocate and initialise a blank device with a given minor.
1510 static struct mapped_device *alloc_dev(int minor)
1512 int r, numa_node_id = dm_get_numa_node();
1513 struct mapped_device *md;
1514 void *old_md;
1516 md = vzalloc_node(sizeof(*md), numa_node_id);
1517 if (!md) {
1518 DMWARN("unable to allocate device, out of memory.");
1519 return NULL;
1522 if (!try_module_get(THIS_MODULE))
1523 goto bad_module_get;
1525 /* get a minor number for the dev */
1526 if (minor == DM_ANY_MINOR)
1527 r = next_free_minor(&minor);
1528 else
1529 r = specific_minor(minor);
1530 if (r < 0)
1531 goto bad_minor;
1533 r = init_srcu_struct(&md->io_barrier);
1534 if (r < 0)
1535 goto bad_io_barrier;
1537 md->numa_node_id = numa_node_id;
1538 md->use_blk_mq = dm_use_blk_mq_default();
1539 md->init_tio_pdu = false;
1540 md->type = DM_TYPE_NONE;
1541 mutex_init(&md->suspend_lock);
1542 mutex_init(&md->type_lock);
1543 mutex_init(&md->table_devices_lock);
1544 spin_lock_init(&md->deferred_lock);
1545 atomic_set(&md->holders, 1);
1546 atomic_set(&md->open_count, 0);
1547 atomic_set(&md->event_nr, 0);
1548 atomic_set(&md->uevent_seq, 0);
1549 INIT_LIST_HEAD(&md->uevent_list);
1550 INIT_LIST_HEAD(&md->table_devices);
1551 spin_lock_init(&md->uevent_lock);
1553 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1554 if (!md->queue)
1555 goto bad;
1557 dm_init_md_queue(md);
1559 * default to bio-based required ->make_request_fn until DM
1560 * table is loaded and md->type established. If request-based
1561 * table is loaded: blk-mq will override accordingly.
1563 blk_queue_make_request(md->queue, dm_make_request);
1565 md->disk = alloc_disk_node(1, numa_node_id);
1566 if (!md->disk)
1567 goto bad;
1569 atomic_set(&md->pending[0], 0);
1570 atomic_set(&md->pending[1], 0);
1571 init_waitqueue_head(&md->wait);
1572 INIT_WORK(&md->work, dm_wq_work);
1573 init_waitqueue_head(&md->eventq);
1574 init_completion(&md->kobj_holder.completion);
1575 md->kworker_task = NULL;
1577 md->disk->major = _major;
1578 md->disk->first_minor = minor;
1579 md->disk->fops = &dm_blk_dops;
1580 md->disk->queue = md->queue;
1581 md->disk->private_data = md;
1582 sprintf(md->disk->disk_name, "dm-%d", minor);
1583 add_disk(md->disk);
1584 format_dev_t(md->name, MKDEV(_major, minor));
1586 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1587 if (!md->wq)
1588 goto bad;
1590 md->bdev = bdget_disk(md->disk, 0);
1591 if (!md->bdev)
1592 goto bad;
1594 bio_init(&md->flush_bio);
1595 md->flush_bio.bi_bdev = md->bdev;
1596 bio_set_op_attrs(&md->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
1598 dm_stats_init(&md->stats);
1600 /* Populate the mapping, nobody knows we exist yet */
1601 spin_lock(&_minor_lock);
1602 old_md = idr_replace(&_minor_idr, md, minor);
1603 spin_unlock(&_minor_lock);
1605 BUG_ON(old_md != MINOR_ALLOCED);
1607 return md;
1609 bad:
1610 cleanup_mapped_device(md);
1611 bad_io_barrier:
1612 free_minor(minor);
1613 bad_minor:
1614 module_put(THIS_MODULE);
1615 bad_module_get:
1616 kvfree(md);
1617 return NULL;
1620 static void unlock_fs(struct mapped_device *md);
1622 static void free_dev(struct mapped_device *md)
1624 int minor = MINOR(disk_devt(md->disk));
1626 unlock_fs(md);
1628 cleanup_mapped_device(md);
1630 free_table_devices(&md->table_devices);
1631 dm_stats_cleanup(&md->stats);
1632 free_minor(minor);
1634 module_put(THIS_MODULE);
1635 kvfree(md);
1638 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1640 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1642 if (md->bs) {
1643 /* The md already has necessary mempools. */
1644 if (dm_table_bio_based(t)) {
1646 * Reload bioset because front_pad may have changed
1647 * because a different table was loaded.
1649 bioset_free(md->bs);
1650 md->bs = p->bs;
1651 p->bs = NULL;
1654 * There's no need to reload with request-based dm
1655 * because the size of front_pad doesn't change.
1656 * Note for future: If you are to reload bioset,
1657 * prep-ed requests in the queue may refer
1658 * to bio from the old bioset, so you must walk
1659 * through the queue to unprep.
1661 goto out;
1664 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1666 md->io_pool = p->io_pool;
1667 p->io_pool = NULL;
1668 md->rq_pool = p->rq_pool;
1669 p->rq_pool = NULL;
1670 md->bs = p->bs;
1671 p->bs = NULL;
1673 out:
1674 /* mempool bind completed, no longer need any mempools in the table */
1675 dm_table_free_md_mempools(t);
1679 * Bind a table to the device.
1681 static void event_callback(void *context)
1683 unsigned long flags;
1684 LIST_HEAD(uevents);
1685 struct mapped_device *md = (struct mapped_device *) context;
1687 spin_lock_irqsave(&md->uevent_lock, flags);
1688 list_splice_init(&md->uevent_list, &uevents);
1689 spin_unlock_irqrestore(&md->uevent_lock, flags);
1691 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1693 atomic_inc(&md->event_nr);
1694 wake_up(&md->eventq);
1698 * Protected by md->suspend_lock obtained by dm_swap_table().
1700 static void __set_size(struct mapped_device *md, sector_t size)
1702 set_capacity(md->disk, size);
1704 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1708 * Returns old map, which caller must destroy.
1710 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1711 struct queue_limits *limits)
1713 struct dm_table *old_map;
1714 struct request_queue *q = md->queue;
1715 sector_t size;
1717 lockdep_assert_held(&md->suspend_lock);
1719 size = dm_table_get_size(t);
1722 * Wipe any geometry if the size of the table changed.
1724 if (size != dm_get_size(md))
1725 memset(&md->geometry, 0, sizeof(md->geometry));
1727 __set_size(md, size);
1729 dm_table_event_callback(t, event_callback, md);
1732 * The queue hasn't been stopped yet, if the old table type wasn't
1733 * for request-based during suspension. So stop it to prevent
1734 * I/O mapping before resume.
1735 * This must be done before setting the queue restrictions,
1736 * because request-based dm may be run just after the setting.
1738 if (dm_table_request_based(t)) {
1739 dm_stop_queue(q);
1741 * Leverage the fact that request-based DM targets are
1742 * immutable singletons and establish md->immutable_target
1743 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1745 md->immutable_target = dm_table_get_immutable_target(t);
1748 __bind_mempools(md, t);
1750 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1751 rcu_assign_pointer(md->map, (void *)t);
1752 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1754 dm_table_set_restrictions(t, q, limits);
1755 if (old_map)
1756 dm_sync_table(md);
1758 return old_map;
1762 * Returns unbound table for the caller to free.
1764 static struct dm_table *__unbind(struct mapped_device *md)
1766 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1768 if (!map)
1769 return NULL;
1771 dm_table_event_callback(map, NULL, NULL);
1772 RCU_INIT_POINTER(md->map, NULL);
1773 dm_sync_table(md);
1775 return map;
1779 * Constructor for a new device.
1781 int dm_create(int minor, struct mapped_device **result)
1783 struct mapped_device *md;
1785 md = alloc_dev(minor);
1786 if (!md)
1787 return -ENXIO;
1789 dm_sysfs_init(md);
1791 *result = md;
1792 return 0;
1796 * Functions to manage md->type.
1797 * All are required to hold md->type_lock.
1799 void dm_lock_md_type(struct mapped_device *md)
1801 mutex_lock(&md->type_lock);
1804 void dm_unlock_md_type(struct mapped_device *md)
1806 mutex_unlock(&md->type_lock);
1809 void dm_set_md_type(struct mapped_device *md, unsigned type)
1811 BUG_ON(!mutex_is_locked(&md->type_lock));
1812 md->type = type;
1815 unsigned dm_get_md_type(struct mapped_device *md)
1817 return md->type;
1820 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1822 return md->immutable_target_type;
1826 * The queue_limits are only valid as long as you have a reference
1827 * count on 'md'.
1829 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1831 BUG_ON(!atomic_read(&md->holders));
1832 return &md->queue->limits;
1834 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1837 * Setup the DM device's queue based on md's type
1839 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1841 int r;
1842 unsigned type = dm_get_md_type(md);
1844 switch (type) {
1845 case DM_TYPE_REQUEST_BASED:
1846 r = dm_old_init_request_queue(md);
1847 if (r) {
1848 DMERR("Cannot initialize queue for request-based mapped device");
1849 return r;
1851 break;
1852 case DM_TYPE_MQ_REQUEST_BASED:
1853 r = dm_mq_init_request_queue(md, t);
1854 if (r) {
1855 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1856 return r;
1858 break;
1859 case DM_TYPE_BIO_BASED:
1860 case DM_TYPE_DAX_BIO_BASED:
1861 dm_init_normal_md_queue(md);
1863 * DM handles splitting bios as needed. Free the bio_split bioset
1864 * since it won't be used (saves 1 process per bio-based DM device).
1866 bioset_free(md->queue->bio_split);
1867 md->queue->bio_split = NULL;
1869 if (type == DM_TYPE_DAX_BIO_BASED)
1870 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1871 break;
1874 return 0;
1877 struct mapped_device *dm_get_md(dev_t dev)
1879 struct mapped_device *md;
1880 unsigned minor = MINOR(dev);
1882 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1883 return NULL;
1885 spin_lock(&_minor_lock);
1887 md = idr_find(&_minor_idr, minor);
1888 if (md) {
1889 if ((md == MINOR_ALLOCED ||
1890 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1891 dm_deleting_md(md) ||
1892 test_bit(DMF_FREEING, &md->flags))) {
1893 md = NULL;
1894 goto out;
1896 dm_get(md);
1899 out:
1900 spin_unlock(&_minor_lock);
1902 return md;
1904 EXPORT_SYMBOL_GPL(dm_get_md);
1906 void *dm_get_mdptr(struct mapped_device *md)
1908 return md->interface_ptr;
1911 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1913 md->interface_ptr = ptr;
1916 void dm_get(struct mapped_device *md)
1918 atomic_inc(&md->holders);
1919 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1922 int dm_hold(struct mapped_device *md)
1924 spin_lock(&_minor_lock);
1925 if (test_bit(DMF_FREEING, &md->flags)) {
1926 spin_unlock(&_minor_lock);
1927 return -EBUSY;
1929 dm_get(md);
1930 spin_unlock(&_minor_lock);
1931 return 0;
1933 EXPORT_SYMBOL_GPL(dm_hold);
1935 const char *dm_device_name(struct mapped_device *md)
1937 return md->name;
1939 EXPORT_SYMBOL_GPL(dm_device_name);
1941 static void __dm_destroy(struct mapped_device *md, bool wait)
1943 struct request_queue *q = dm_get_md_queue(md);
1944 struct dm_table *map;
1945 int srcu_idx;
1947 might_sleep();
1949 spin_lock(&_minor_lock);
1950 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1951 set_bit(DMF_FREEING, &md->flags);
1952 spin_unlock(&_minor_lock);
1954 blk_set_queue_dying(q);
1956 if (dm_request_based(md) && md->kworker_task)
1957 kthread_flush_worker(&md->kworker);
1960 * Take suspend_lock so that presuspend and postsuspend methods
1961 * do not race with internal suspend.
1963 mutex_lock(&md->suspend_lock);
1964 map = dm_get_live_table(md, &srcu_idx);
1965 if (!dm_suspended_md(md)) {
1966 dm_table_presuspend_targets(map);
1967 dm_table_postsuspend_targets(map);
1969 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1970 dm_put_live_table(md, srcu_idx);
1971 mutex_unlock(&md->suspend_lock);
1974 * Rare, but there may be I/O requests still going to complete,
1975 * for example. Wait for all references to disappear.
1976 * No one should increment the reference count of the mapped_device,
1977 * after the mapped_device state becomes DMF_FREEING.
1979 if (wait)
1980 while (atomic_read(&md->holders))
1981 msleep(1);
1982 else if (atomic_read(&md->holders))
1983 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1984 dm_device_name(md), atomic_read(&md->holders));
1986 dm_sysfs_exit(md);
1987 dm_table_destroy(__unbind(md));
1988 free_dev(md);
1991 void dm_destroy(struct mapped_device *md)
1993 __dm_destroy(md, true);
1996 void dm_destroy_immediate(struct mapped_device *md)
1998 __dm_destroy(md, false);
2001 void dm_put(struct mapped_device *md)
2003 atomic_dec(&md->holders);
2005 EXPORT_SYMBOL_GPL(dm_put);
2007 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2009 int r = 0;
2010 DEFINE_WAIT(wait);
2012 while (1) {
2013 prepare_to_wait(&md->wait, &wait, task_state);
2015 if (!md_in_flight(md))
2016 break;
2018 if (signal_pending_state(task_state, current)) {
2019 r = -EINTR;
2020 break;
2023 io_schedule();
2025 finish_wait(&md->wait, &wait);
2027 return r;
2031 * Process the deferred bios
2033 static void dm_wq_work(struct work_struct *work)
2035 struct mapped_device *md = container_of(work, struct mapped_device,
2036 work);
2037 struct bio *c;
2038 int srcu_idx;
2039 struct dm_table *map;
2041 map = dm_get_live_table(md, &srcu_idx);
2043 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2044 spin_lock_irq(&md->deferred_lock);
2045 c = bio_list_pop(&md->deferred);
2046 spin_unlock_irq(&md->deferred_lock);
2048 if (!c)
2049 break;
2051 if (dm_request_based(md))
2052 generic_make_request(c);
2053 else
2054 __split_and_process_bio(md, map, c);
2057 dm_put_live_table(md, srcu_idx);
2060 static void dm_queue_flush(struct mapped_device *md)
2062 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2063 smp_mb__after_atomic();
2064 queue_work(md->wq, &md->work);
2068 * Swap in a new table, returning the old one for the caller to destroy.
2070 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2072 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2073 struct queue_limits limits;
2074 int r;
2076 mutex_lock(&md->suspend_lock);
2078 /* device must be suspended */
2079 if (!dm_suspended_md(md))
2080 goto out;
2083 * If the new table has no data devices, retain the existing limits.
2084 * This helps multipath with queue_if_no_path if all paths disappear,
2085 * then new I/O is queued based on these limits, and then some paths
2086 * reappear.
2088 if (dm_table_has_no_data_devices(table)) {
2089 live_map = dm_get_live_table_fast(md);
2090 if (live_map)
2091 limits = md->queue->limits;
2092 dm_put_live_table_fast(md);
2095 if (!live_map) {
2096 r = dm_calculate_queue_limits(table, &limits);
2097 if (r) {
2098 map = ERR_PTR(r);
2099 goto out;
2103 map = __bind(md, table, &limits);
2105 out:
2106 mutex_unlock(&md->suspend_lock);
2107 return map;
2111 * Functions to lock and unlock any filesystem running on the
2112 * device.
2114 static int lock_fs(struct mapped_device *md)
2116 int r;
2118 WARN_ON(md->frozen_sb);
2120 md->frozen_sb = freeze_bdev(md->bdev);
2121 if (IS_ERR(md->frozen_sb)) {
2122 r = PTR_ERR(md->frozen_sb);
2123 md->frozen_sb = NULL;
2124 return r;
2127 set_bit(DMF_FROZEN, &md->flags);
2129 return 0;
2132 static void unlock_fs(struct mapped_device *md)
2134 if (!test_bit(DMF_FROZEN, &md->flags))
2135 return;
2137 thaw_bdev(md->bdev, md->frozen_sb);
2138 md->frozen_sb = NULL;
2139 clear_bit(DMF_FROZEN, &md->flags);
2143 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2144 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2145 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2147 * If __dm_suspend returns 0, the device is completely quiescent
2148 * now. There is no request-processing activity. All new requests
2149 * are being added to md->deferred list.
2151 * Caller must hold md->suspend_lock
2153 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2154 unsigned suspend_flags, long task_state,
2155 int dmf_suspended_flag)
2157 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2158 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2159 int r;
2161 lockdep_assert_held(&md->suspend_lock);
2164 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2165 * This flag is cleared before dm_suspend returns.
2167 if (noflush)
2168 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2171 * This gets reverted if there's an error later and the targets
2172 * provide the .presuspend_undo hook.
2174 dm_table_presuspend_targets(map);
2177 * Flush I/O to the device.
2178 * Any I/O submitted after lock_fs() may not be flushed.
2179 * noflush takes precedence over do_lockfs.
2180 * (lock_fs() flushes I/Os and waits for them to complete.)
2182 if (!noflush && do_lockfs) {
2183 r = lock_fs(md);
2184 if (r) {
2185 dm_table_presuspend_undo_targets(map);
2186 return r;
2191 * Here we must make sure that no processes are submitting requests
2192 * to target drivers i.e. no one may be executing
2193 * __split_and_process_bio. This is called from dm_request and
2194 * dm_wq_work.
2196 * To get all processes out of __split_and_process_bio in dm_request,
2197 * we take the write lock. To prevent any process from reentering
2198 * __split_and_process_bio from dm_request and quiesce the thread
2199 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2200 * flush_workqueue(md->wq).
2202 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2203 if (map)
2204 synchronize_srcu(&md->io_barrier);
2207 * Stop md->queue before flushing md->wq in case request-based
2208 * dm defers requests to md->wq from md->queue.
2210 if (dm_request_based(md)) {
2211 dm_stop_queue(md->queue);
2212 if (md->kworker_task)
2213 kthread_flush_worker(&md->kworker);
2216 flush_workqueue(md->wq);
2219 * At this point no more requests are entering target request routines.
2220 * We call dm_wait_for_completion to wait for all existing requests
2221 * to finish.
2223 r = dm_wait_for_completion(md, task_state);
2224 if (!r)
2225 set_bit(dmf_suspended_flag, &md->flags);
2227 if (noflush)
2228 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2229 if (map)
2230 synchronize_srcu(&md->io_barrier);
2232 /* were we interrupted ? */
2233 if (r < 0) {
2234 dm_queue_flush(md);
2236 if (dm_request_based(md))
2237 dm_start_queue(md->queue);
2239 unlock_fs(md);
2240 dm_table_presuspend_undo_targets(map);
2241 /* pushback list is already flushed, so skip flush */
2244 return r;
2248 * We need to be able to change a mapping table under a mounted
2249 * filesystem. For example we might want to move some data in
2250 * the background. Before the table can be swapped with
2251 * dm_bind_table, dm_suspend must be called to flush any in
2252 * flight bios and ensure that any further io gets deferred.
2255 * Suspend mechanism in request-based dm.
2257 * 1. Flush all I/Os by lock_fs() if needed.
2258 * 2. Stop dispatching any I/O by stopping the request_queue.
2259 * 3. Wait for all in-flight I/Os to be completed or requeued.
2261 * To abort suspend, start the request_queue.
2263 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2265 struct dm_table *map = NULL;
2266 int r = 0;
2268 retry:
2269 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2271 if (dm_suspended_md(md)) {
2272 r = -EINVAL;
2273 goto out_unlock;
2276 if (dm_suspended_internally_md(md)) {
2277 /* already internally suspended, wait for internal resume */
2278 mutex_unlock(&md->suspend_lock);
2279 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2280 if (r)
2281 return r;
2282 goto retry;
2285 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2287 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2288 if (r)
2289 goto out_unlock;
2291 dm_table_postsuspend_targets(map);
2293 out_unlock:
2294 mutex_unlock(&md->suspend_lock);
2295 return r;
2298 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2300 if (map) {
2301 int r = dm_table_resume_targets(map);
2302 if (r)
2303 return r;
2306 dm_queue_flush(md);
2309 * Flushing deferred I/Os must be done after targets are resumed
2310 * so that mapping of targets can work correctly.
2311 * Request-based dm is queueing the deferred I/Os in its request_queue.
2313 if (dm_request_based(md))
2314 dm_start_queue(md->queue);
2316 unlock_fs(md);
2318 return 0;
2321 int dm_resume(struct mapped_device *md)
2323 int r;
2324 struct dm_table *map = NULL;
2326 retry:
2327 r = -EINVAL;
2328 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2330 if (!dm_suspended_md(md))
2331 goto out;
2333 if (dm_suspended_internally_md(md)) {
2334 /* already internally suspended, wait for internal resume */
2335 mutex_unlock(&md->suspend_lock);
2336 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2337 if (r)
2338 return r;
2339 goto retry;
2342 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2343 if (!map || !dm_table_get_size(map))
2344 goto out;
2346 r = __dm_resume(md, map);
2347 if (r)
2348 goto out;
2350 clear_bit(DMF_SUSPENDED, &md->flags);
2351 out:
2352 mutex_unlock(&md->suspend_lock);
2354 return r;
2358 * Internal suspend/resume works like userspace-driven suspend. It waits
2359 * until all bios finish and prevents issuing new bios to the target drivers.
2360 * It may be used only from the kernel.
2363 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2365 struct dm_table *map = NULL;
2367 if (md->internal_suspend_count++)
2368 return; /* nested internal suspend */
2370 if (dm_suspended_md(md)) {
2371 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2372 return; /* nest suspend */
2375 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2378 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2379 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2380 * would require changing .presuspend to return an error -- avoid this
2381 * until there is a need for more elaborate variants of internal suspend.
2383 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2384 DMF_SUSPENDED_INTERNALLY);
2386 dm_table_postsuspend_targets(map);
2389 static void __dm_internal_resume(struct mapped_device *md)
2391 BUG_ON(!md->internal_suspend_count);
2393 if (--md->internal_suspend_count)
2394 return; /* resume from nested internal suspend */
2396 if (dm_suspended_md(md))
2397 goto done; /* resume from nested suspend */
2400 * NOTE: existing callers don't need to call dm_table_resume_targets
2401 * (which may fail -- so best to avoid it for now by passing NULL map)
2403 (void) __dm_resume(md, NULL);
2405 done:
2406 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2407 smp_mb__after_atomic();
2408 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2411 void dm_internal_suspend_noflush(struct mapped_device *md)
2413 mutex_lock(&md->suspend_lock);
2414 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2415 mutex_unlock(&md->suspend_lock);
2417 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2419 void dm_internal_resume(struct mapped_device *md)
2421 mutex_lock(&md->suspend_lock);
2422 __dm_internal_resume(md);
2423 mutex_unlock(&md->suspend_lock);
2425 EXPORT_SYMBOL_GPL(dm_internal_resume);
2428 * Fast variants of internal suspend/resume hold md->suspend_lock,
2429 * which prevents interaction with userspace-driven suspend.
2432 void dm_internal_suspend_fast(struct mapped_device *md)
2434 mutex_lock(&md->suspend_lock);
2435 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2436 return;
2438 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2439 synchronize_srcu(&md->io_barrier);
2440 flush_workqueue(md->wq);
2441 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2443 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2445 void dm_internal_resume_fast(struct mapped_device *md)
2447 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2448 goto done;
2450 dm_queue_flush(md);
2452 done:
2453 mutex_unlock(&md->suspend_lock);
2455 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2457 /*-----------------------------------------------------------------
2458 * Event notification.
2459 *---------------------------------------------------------------*/
2460 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2461 unsigned cookie)
2463 char udev_cookie[DM_COOKIE_LENGTH];
2464 char *envp[] = { udev_cookie, NULL };
2466 if (!cookie)
2467 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2468 else {
2469 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2470 DM_COOKIE_ENV_VAR_NAME, cookie);
2471 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2472 action, envp);
2476 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2478 return atomic_add_return(1, &md->uevent_seq);
2481 uint32_t dm_get_event_nr(struct mapped_device *md)
2483 return atomic_read(&md->event_nr);
2486 int dm_wait_event(struct mapped_device *md, int event_nr)
2488 return wait_event_interruptible(md->eventq,
2489 (event_nr != atomic_read(&md->event_nr)));
2492 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2494 unsigned long flags;
2496 spin_lock_irqsave(&md->uevent_lock, flags);
2497 list_add(elist, &md->uevent_list);
2498 spin_unlock_irqrestore(&md->uevent_lock, flags);
2502 * The gendisk is only valid as long as you have a reference
2503 * count on 'md'.
2505 struct gendisk *dm_disk(struct mapped_device *md)
2507 return md->disk;
2509 EXPORT_SYMBOL_GPL(dm_disk);
2511 struct kobject *dm_kobject(struct mapped_device *md)
2513 return &md->kobj_holder.kobj;
2516 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2518 struct mapped_device *md;
2520 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2522 spin_lock(&_minor_lock);
2523 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2524 md = NULL;
2525 goto out;
2527 dm_get(md);
2528 out:
2529 spin_unlock(&_minor_lock);
2531 return md;
2534 int dm_suspended_md(struct mapped_device *md)
2536 return test_bit(DMF_SUSPENDED, &md->flags);
2539 int dm_suspended_internally_md(struct mapped_device *md)
2541 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2544 int dm_test_deferred_remove_flag(struct mapped_device *md)
2546 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2549 int dm_suspended(struct dm_target *ti)
2551 return dm_suspended_md(dm_table_get_md(ti->table));
2553 EXPORT_SYMBOL_GPL(dm_suspended);
2555 int dm_noflush_suspending(struct dm_target *ti)
2557 return __noflush_suspending(dm_table_get_md(ti->table));
2559 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2561 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2562 unsigned integrity, unsigned per_io_data_size)
2564 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2565 struct kmem_cache *cachep = NULL;
2566 unsigned int pool_size = 0;
2567 unsigned int front_pad;
2569 if (!pools)
2570 return NULL;
2572 switch (type) {
2573 case DM_TYPE_BIO_BASED:
2574 case DM_TYPE_DAX_BIO_BASED:
2575 cachep = _io_cache;
2576 pool_size = dm_get_reserved_bio_based_ios();
2577 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2578 break;
2579 case DM_TYPE_REQUEST_BASED:
2580 cachep = _rq_tio_cache;
2581 pool_size = dm_get_reserved_rq_based_ios();
2582 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2583 if (!pools->rq_pool)
2584 goto out;
2585 /* fall through to setup remaining rq-based pools */
2586 case DM_TYPE_MQ_REQUEST_BASED:
2587 if (!pool_size)
2588 pool_size = dm_get_reserved_rq_based_ios();
2589 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2590 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2591 break;
2592 default:
2593 BUG();
2596 if (cachep) {
2597 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2598 if (!pools->io_pool)
2599 goto out;
2602 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2603 if (!pools->bs)
2604 goto out;
2606 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2607 goto out;
2609 return pools;
2611 out:
2612 dm_free_md_mempools(pools);
2614 return NULL;
2617 void dm_free_md_mempools(struct dm_md_mempools *pools)
2619 if (!pools)
2620 return;
2622 mempool_destroy(pools->io_pool);
2623 mempool_destroy(pools->rq_pool);
2625 if (pools->bs)
2626 bioset_free(pools->bs);
2628 kfree(pools);
2631 struct dm_pr {
2632 u64 old_key;
2633 u64 new_key;
2634 u32 flags;
2635 bool fail_early;
2638 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2639 void *data)
2641 struct mapped_device *md = bdev->bd_disk->private_data;
2642 struct dm_table *table;
2643 struct dm_target *ti;
2644 int ret = -ENOTTY, srcu_idx;
2646 table = dm_get_live_table(md, &srcu_idx);
2647 if (!table || !dm_table_get_size(table))
2648 goto out;
2650 /* We only support devices that have a single target */
2651 if (dm_table_get_num_targets(table) != 1)
2652 goto out;
2653 ti = dm_table_get_target(table, 0);
2655 ret = -EINVAL;
2656 if (!ti->type->iterate_devices)
2657 goto out;
2659 ret = ti->type->iterate_devices(ti, fn, data);
2660 out:
2661 dm_put_live_table(md, srcu_idx);
2662 return ret;
2666 * For register / unregister we need to manually call out to every path.
2668 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2669 sector_t start, sector_t len, void *data)
2671 struct dm_pr *pr = data;
2672 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2674 if (!ops || !ops->pr_register)
2675 return -EOPNOTSUPP;
2676 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2679 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2680 u32 flags)
2682 struct dm_pr pr = {
2683 .old_key = old_key,
2684 .new_key = new_key,
2685 .flags = flags,
2686 .fail_early = true,
2688 int ret;
2690 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2691 if (ret && new_key) {
2692 /* unregister all paths if we failed to register any path */
2693 pr.old_key = new_key;
2694 pr.new_key = 0;
2695 pr.flags = 0;
2696 pr.fail_early = false;
2697 dm_call_pr(bdev, __dm_pr_register, &pr);
2700 return ret;
2703 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2704 u32 flags)
2706 struct mapped_device *md = bdev->bd_disk->private_data;
2707 const struct pr_ops *ops;
2708 fmode_t mode;
2709 int r;
2711 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2712 if (r < 0)
2713 return r;
2715 ops = bdev->bd_disk->fops->pr_ops;
2716 if (ops && ops->pr_reserve)
2717 r = ops->pr_reserve(bdev, key, type, flags);
2718 else
2719 r = -EOPNOTSUPP;
2721 bdput(bdev);
2722 return r;
2725 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2727 struct mapped_device *md = bdev->bd_disk->private_data;
2728 const struct pr_ops *ops;
2729 fmode_t mode;
2730 int r;
2732 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2733 if (r < 0)
2734 return r;
2736 ops = bdev->bd_disk->fops->pr_ops;
2737 if (ops && ops->pr_release)
2738 r = ops->pr_release(bdev, key, type);
2739 else
2740 r = -EOPNOTSUPP;
2742 bdput(bdev);
2743 return r;
2746 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2747 enum pr_type type, bool abort)
2749 struct mapped_device *md = bdev->bd_disk->private_data;
2750 const struct pr_ops *ops;
2751 fmode_t mode;
2752 int r;
2754 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2755 if (r < 0)
2756 return r;
2758 ops = bdev->bd_disk->fops->pr_ops;
2759 if (ops && ops->pr_preempt)
2760 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2761 else
2762 r = -EOPNOTSUPP;
2764 bdput(bdev);
2765 return r;
2768 static int dm_pr_clear(struct block_device *bdev, u64 key)
2770 struct mapped_device *md = bdev->bd_disk->private_data;
2771 const struct pr_ops *ops;
2772 fmode_t mode;
2773 int r;
2775 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2776 if (r < 0)
2777 return r;
2779 ops = bdev->bd_disk->fops->pr_ops;
2780 if (ops && ops->pr_clear)
2781 r = ops->pr_clear(bdev, key);
2782 else
2783 r = -EOPNOTSUPP;
2785 bdput(bdev);
2786 return r;
2789 static const struct pr_ops dm_pr_ops = {
2790 .pr_register = dm_pr_register,
2791 .pr_reserve = dm_pr_reserve,
2792 .pr_release = dm_pr_release,
2793 .pr_preempt = dm_pr_preempt,
2794 .pr_clear = dm_pr_clear,
2797 static const struct block_device_operations dm_blk_dops = {
2798 .open = dm_blk_open,
2799 .release = dm_blk_close,
2800 .ioctl = dm_blk_ioctl,
2801 .direct_access = dm_blk_direct_access,
2802 .getgeo = dm_blk_getgeo,
2803 .pr_ops = &dm_pr_ops,
2804 .owner = THIS_MODULE
2808 * module hooks
2810 module_init(dm_init);
2811 module_exit(dm_exit);
2813 module_param(major, uint, 0);
2814 MODULE_PARM_DESC(major, "The major number of the device mapper");
2816 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2817 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2819 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2820 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2822 MODULE_DESCRIPTION(DM_NAME " driver");
2823 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2824 MODULE_LICENSE("GPL");