2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
28 #define BLOCK_SECTORS (8)
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
38 * We only need 2 bios per I/O unit to make progress, but ensure we
39 * have a few more available to not get too tight.
41 #define R5L_POOL_SIZE 4
48 sector_t device_size
; /* log device size, round to
50 sector_t max_free_space
; /* reclaim run if free space is at
53 sector_t last_checkpoint
; /* log tail. where recovery scan
55 u64 last_cp_seq
; /* log tail sequence */
57 sector_t log_start
; /* log head. where new data appends */
58 u64 seq
; /* log head sequence */
60 sector_t next_checkpoint
;
63 struct mutex io_mutex
;
64 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
66 spinlock_t io_list_lock
;
67 struct list_head running_ios
; /* io_units which are still running,
68 * and have not yet been completely
69 * written to the log */
70 struct list_head io_end_ios
; /* io_units which have been completely
71 * written to the log but not yet written
73 struct list_head flushing_ios
; /* io_units which are waiting for log
75 struct list_head finished_ios
; /* io_units which settle down in log disk */
78 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
80 struct kmem_cache
*io_kc
;
85 struct md_thread
*reclaim_thread
;
86 unsigned long reclaim_target
; /* number of space that need to be
87 * reclaimed. if it's 0, reclaim spaces
88 * used by io_units which are in
89 * IO_UNIT_STRIPE_END state (eg, reclaim
90 * dones't wait for specific io_unit
91 * switching to IO_UNIT_STRIPE_END
93 wait_queue_head_t iounit_wait
;
95 struct list_head no_space_stripes
; /* pending stripes, log has no space */
96 spinlock_t no_space_stripes_lock
;
98 bool need_cache_flush
;
102 * an IO range starts from a meta data block and end at the next meta data
103 * block. The io unit's the meta data block tracks data/parity followed it. io
104 * unit is written to log disk with normal write, as we always flush log disk
105 * first and then start move data to raid disks, there is no requirement to
106 * write io unit with FLUSH/FUA
111 struct page
*meta_page
; /* store meta block */
112 int meta_offset
; /* current offset in meta_page */
114 struct bio
*current_bio
;/* current_bio accepting new data */
116 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
117 u64 seq
; /* seq number of the metablock */
118 sector_t log_start
; /* where the io_unit starts */
119 sector_t log_end
; /* where the io_unit ends */
120 struct list_head log_sibling
; /* log->running_ios */
121 struct list_head stripe_list
; /* stripes added to the io_unit */
127 /* r5l_io_unit state */
128 enum r5l_io_unit_state
{
129 IO_UNIT_RUNNING
= 0, /* accepting new IO */
130 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
131 * don't accepting new bio */
132 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
133 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
136 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
139 if (start
>= log
->device_size
)
140 start
= start
- log
->device_size
;
144 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
150 return end
+ log
->device_size
- start
;
153 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
157 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
160 return log
->device_size
> used_size
+ size
;
163 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
164 enum r5l_io_unit_state state
)
166 if (WARN_ON(io
->state
>= state
))
171 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
173 struct stripe_head
*sh
, *next
;
175 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
176 list_del_init(&sh
->log_list
);
177 set_bit(STRIPE_HANDLE
, &sh
->state
);
178 raid5_release_stripe(sh
);
182 static void r5l_log_run_stripes(struct r5l_log
*log
)
184 struct r5l_io_unit
*io
, *next
;
186 assert_spin_locked(&log
->io_list_lock
);
188 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
189 /* don't change list order */
190 if (io
->state
< IO_UNIT_IO_END
)
193 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
194 r5l_io_run_stripes(io
);
198 static void r5l_move_to_end_ios(struct r5l_log
*log
)
200 struct r5l_io_unit
*io
, *next
;
202 assert_spin_locked(&log
->io_list_lock
);
204 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
205 /* don't change list order */
206 if (io
->state
< IO_UNIT_IO_END
)
208 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
212 static void r5l_log_endio(struct bio
*bio
)
214 struct r5l_io_unit
*io
= bio
->bi_private
;
215 struct r5l_log
*log
= io
->log
;
219 md_error(log
->rdev
->mddev
, log
->rdev
);
222 mempool_free(io
->meta_page
, log
->meta_pool
);
224 spin_lock_irqsave(&log
->io_list_lock
, flags
);
225 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
226 if (log
->need_cache_flush
)
227 r5l_move_to_end_ios(log
);
229 r5l_log_run_stripes(log
);
230 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
232 if (log
->need_cache_flush
)
233 md_wakeup_thread(log
->rdev
->mddev
->thread
);
236 static void r5l_submit_current_io(struct r5l_log
*log
)
238 struct r5l_io_unit
*io
= log
->current_io
;
239 struct r5l_meta_block
*block
;
246 block
= page_address(io
->meta_page
);
247 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
248 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
249 block
->checksum
= cpu_to_le32(crc
);
251 log
->current_io
= NULL
;
252 spin_lock_irqsave(&log
->io_list_lock
, flags
);
253 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
254 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
256 submit_bio(io
->current_bio
);
259 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
261 struct bio
*bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
, log
->bs
);
263 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
264 bio
->bi_bdev
= log
->rdev
->bdev
;
265 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
270 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
272 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
275 * If we filled up the log device start from the beginning again,
276 * which will require a new bio.
278 * Note: for this to work properly the log size needs to me a multiple
281 if (log
->log_start
== 0)
282 io
->need_split_bio
= true;
284 io
->log_end
= log
->log_start
;
287 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
289 struct r5l_io_unit
*io
;
290 struct r5l_meta_block
*block
;
292 io
= mempool_alloc(log
->io_pool
, GFP_ATOMIC
);
295 memset(io
, 0, sizeof(*io
));
298 INIT_LIST_HEAD(&io
->log_sibling
);
299 INIT_LIST_HEAD(&io
->stripe_list
);
300 io
->state
= IO_UNIT_RUNNING
;
302 io
->meta_page
= mempool_alloc(log
->meta_pool
, GFP_NOIO
);
303 block
= page_address(io
->meta_page
);
305 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
306 block
->version
= R5LOG_VERSION
;
307 block
->seq
= cpu_to_le64(log
->seq
);
308 block
->position
= cpu_to_le64(log
->log_start
);
310 io
->log_start
= log
->log_start
;
311 io
->meta_offset
= sizeof(struct r5l_meta_block
);
312 io
->seq
= log
->seq
++;
314 io
->current_bio
= r5l_bio_alloc(log
);
315 io
->current_bio
->bi_end_io
= r5l_log_endio
;
316 io
->current_bio
->bi_private
= io
;
317 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
319 r5_reserve_log_entry(log
, io
);
321 spin_lock_irq(&log
->io_list_lock
);
322 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
323 spin_unlock_irq(&log
->io_list_lock
);
328 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
330 if (log
->current_io
&&
331 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
332 r5l_submit_current_io(log
);
334 if (!log
->current_io
) {
335 log
->current_io
= r5l_new_meta(log
);
336 if (!log
->current_io
)
343 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
345 u32 checksum1
, u32 checksum2
,
346 bool checksum2_valid
)
348 struct r5l_io_unit
*io
= log
->current_io
;
349 struct r5l_payload_data_parity
*payload
;
351 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
352 payload
->header
.type
= cpu_to_le16(type
);
353 payload
->header
.flags
= cpu_to_le16(0);
354 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
356 payload
->location
= cpu_to_le64(location
);
357 payload
->checksum
[0] = cpu_to_le32(checksum1
);
359 payload
->checksum
[1] = cpu_to_le32(checksum2
);
361 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
362 sizeof(__le32
) * (1 + !!checksum2_valid
);
365 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
367 struct r5l_io_unit
*io
= log
->current_io
;
369 if (io
->need_split_bio
) {
370 struct bio
*prev
= io
->current_bio
;
372 io
->current_bio
= r5l_bio_alloc(log
);
373 bio_chain(io
->current_bio
, prev
);
378 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
381 r5_reserve_log_entry(log
, io
);
384 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
385 int data_pages
, int parity_pages
)
390 struct r5l_io_unit
*io
;
393 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
395 sizeof(struct r5l_payload_data_parity
) +
396 sizeof(__le32
) * parity_pages
;
398 ret
= r5l_get_meta(log
, meta_size
);
402 io
= log
->current_io
;
404 for (i
= 0; i
< sh
->disks
; i
++) {
405 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
407 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
409 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
410 raid5_compute_blocknr(sh
, i
, 0),
411 sh
->dev
[i
].log_checksum
, 0, false);
412 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
415 if (sh
->qd_idx
>= 0) {
416 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
417 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
418 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
419 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
420 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
422 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
423 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
425 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
428 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
429 atomic_inc(&io
->pending_stripe
);
435 static void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
);
437 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
438 * data from log to raid disks), so we shouldn't wait for reclaim here
440 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
443 int data_pages
, parity_pages
;
451 /* Don't support stripe batch */
452 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
453 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
454 /* the stripe is written to log, we start writing it to raid */
455 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
459 for (i
= 0; i
< sh
->disks
; i
++) {
462 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
465 /* checksum is already calculated in last run */
466 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
468 addr
= kmap_atomic(sh
->dev
[i
].page
);
469 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
473 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
474 data_pages
= write_disks
- parity_pages
;
477 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
479 sizeof(struct r5l_payload_data_parity
) +
480 sizeof(__le32
) * parity_pages
;
481 /* Doesn't work with very big raid array */
482 if (meta_size
+ sizeof(struct r5l_meta_block
) > PAGE_SIZE
)
485 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
487 * The stripe must enter state machine again to finish the write, so
490 clear_bit(STRIPE_DELAYED
, &sh
->state
);
491 atomic_inc(&sh
->count
);
493 mutex_lock(&log
->io_mutex
);
495 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
496 if (!r5l_has_free_space(log
, reserve
)) {
497 spin_lock(&log
->no_space_stripes_lock
);
498 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
499 spin_unlock(&log
->no_space_stripes_lock
);
501 r5l_wake_reclaim(log
, reserve
);
503 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
505 spin_lock_irq(&log
->io_list_lock
);
506 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
507 spin_unlock_irq(&log
->io_list_lock
);
511 mutex_unlock(&log
->io_mutex
);
515 void r5l_write_stripe_run(struct r5l_log
*log
)
519 mutex_lock(&log
->io_mutex
);
520 r5l_submit_current_io(log
);
521 mutex_unlock(&log
->io_mutex
);
524 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
529 * we flush log disk cache first, then write stripe data to raid disks.
530 * So if bio is finished, the log disk cache is flushed already. The
531 * recovery guarantees we can recovery the bio from log disk, so we
532 * don't need to flush again
534 if (bio
->bi_iter
.bi_size
== 0) {
538 bio
->bi_opf
&= ~REQ_PREFLUSH
;
542 /* This will run after log space is reclaimed */
543 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
545 struct stripe_head
*sh
;
547 spin_lock(&log
->no_space_stripes_lock
);
548 while (!list_empty(&log
->no_space_stripes
)) {
549 sh
= list_first_entry(&log
->no_space_stripes
,
550 struct stripe_head
, log_list
);
551 list_del_init(&sh
->log_list
);
552 set_bit(STRIPE_HANDLE
, &sh
->state
);
553 raid5_release_stripe(sh
);
555 spin_unlock(&log
->no_space_stripes_lock
);
558 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
560 return r5l_ring_distance(log
, log
->last_checkpoint
,
561 log
->next_checkpoint
);
564 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
566 struct stripe_head
*sh
;
568 assert_spin_locked(&log
->io_list_lock
);
570 if (!list_empty(&log
->no_mem_stripes
)) {
571 sh
= list_first_entry(&log
->no_mem_stripes
,
572 struct stripe_head
, log_list
);
573 list_del_init(&sh
->log_list
);
574 set_bit(STRIPE_HANDLE
, &sh
->state
);
575 raid5_release_stripe(sh
);
579 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
581 struct r5l_io_unit
*io
, *next
;
584 assert_spin_locked(&log
->io_list_lock
);
586 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
587 /* don't change list order */
588 if (io
->state
< IO_UNIT_STRIPE_END
)
591 log
->next_checkpoint
= io
->log_start
;
592 log
->next_cp_seq
= io
->seq
;
594 list_del(&io
->log_sibling
);
595 mempool_free(io
, log
->io_pool
);
596 r5l_run_no_mem_stripe(log
);
604 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
606 struct r5l_log
*log
= io
->log
;
609 spin_lock_irqsave(&log
->io_list_lock
, flags
);
610 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
612 if (!r5l_complete_finished_ios(log
)) {
613 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
617 if (r5l_reclaimable_space(log
) > log
->max_free_space
)
618 r5l_wake_reclaim(log
, 0);
620 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
621 wake_up(&log
->iounit_wait
);
624 void r5l_stripe_write_finished(struct stripe_head
*sh
)
626 struct r5l_io_unit
*io
;
631 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
632 __r5l_stripe_write_finished(io
);
635 static void r5l_log_flush_endio(struct bio
*bio
)
637 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
640 struct r5l_io_unit
*io
;
643 md_error(log
->rdev
->mddev
, log
->rdev
);
645 spin_lock_irqsave(&log
->io_list_lock
, flags
);
646 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
647 r5l_io_run_stripes(io
);
648 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
649 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
653 * Starting dispatch IO to raid.
654 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
655 * broken meta in the middle of a log causes recovery can't find meta at the
656 * head of log. If operations require meta at the head persistent in log, we
657 * must make sure meta before it persistent in log too. A case is:
659 * stripe data/parity is in log, we start write stripe to raid disks. stripe
660 * data/parity must be persistent in log before we do the write to raid disks.
662 * The solution is we restrictly maintain io_unit list order. In this case, we
663 * only write stripes of an io_unit to raid disks till the io_unit is the first
664 * one whose data/parity is in log.
666 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
670 if (!log
|| !log
->need_cache_flush
)
673 spin_lock_irq(&log
->io_list_lock
);
674 /* flush bio is running */
675 if (!list_empty(&log
->flushing_ios
)) {
676 spin_unlock_irq(&log
->io_list_lock
);
679 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
680 do_flush
= !list_empty(&log
->flushing_ios
);
681 spin_unlock_irq(&log
->io_list_lock
);
685 bio_reset(&log
->flush_bio
);
686 log
->flush_bio
.bi_bdev
= log
->rdev
->bdev
;
687 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
688 bio_set_op_attrs(&log
->flush_bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
689 submit_bio(&log
->flush_bio
);
692 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
693 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
696 struct block_device
*bdev
= log
->rdev
->bdev
;
699 r5l_write_super(log
, end
);
701 if (!blk_queue_discard(bdev_get_queue(bdev
)))
704 mddev
= log
->rdev
->mddev
;
706 * Discard could zero data, so before discard we must make sure
707 * superblock is updated to new log tail. Updating superblock (either
708 * directly call md_update_sb() or depend on md thread) must hold
709 * reconfig mutex. On the other hand, raid5_quiesce is called with
710 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
711 * for all IO finish, hence waitting for reclaim thread, while reclaim
712 * thread is calling this function and waitting for reconfig mutex. So
713 * there is a deadlock. We workaround this issue with a trylock.
714 * FIXME: we could miss discard if we can't take reconfig mutex
716 set_mask_bits(&mddev
->flags
, 0,
717 BIT(MD_CHANGE_DEVS
) | BIT(MD_CHANGE_PENDING
));
718 if (!mddev_trylock(mddev
))
720 md_update_sb(mddev
, 1);
723 /* discard IO error really doesn't matter, ignore it */
724 if (log
->last_checkpoint
< end
) {
725 blkdev_issue_discard(bdev
,
726 log
->last_checkpoint
+ log
->rdev
->data_offset
,
727 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
729 blkdev_issue_discard(bdev
,
730 log
->last_checkpoint
+ log
->rdev
->data_offset
,
731 log
->device_size
- log
->last_checkpoint
,
733 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
739 static void r5l_do_reclaim(struct r5l_log
*log
)
741 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
742 sector_t reclaimable
;
743 sector_t next_checkpoint
;
746 spin_lock_irq(&log
->io_list_lock
);
748 * move proper io_unit to reclaim list. We should not change the order.
749 * reclaimable/unreclaimable io_unit can be mixed in the list, we
750 * shouldn't reuse space of an unreclaimable io_unit
753 reclaimable
= r5l_reclaimable_space(log
);
754 if (reclaimable
>= reclaim_target
||
755 (list_empty(&log
->running_ios
) &&
756 list_empty(&log
->io_end_ios
) &&
757 list_empty(&log
->flushing_ios
) &&
758 list_empty(&log
->finished_ios
)))
761 md_wakeup_thread(log
->rdev
->mddev
->thread
);
762 wait_event_lock_irq(log
->iounit_wait
,
763 r5l_reclaimable_space(log
) > reclaimable
,
767 next_checkpoint
= log
->next_checkpoint
;
768 next_cp_seq
= log
->next_cp_seq
;
769 spin_unlock_irq(&log
->io_list_lock
);
771 BUG_ON(reclaimable
< 0);
772 if (reclaimable
== 0)
776 * write_super will flush cache of each raid disk. We must write super
777 * here, because the log area might be reused soon and we don't want to
780 r5l_write_super_and_discard_space(log
, next_checkpoint
);
782 mutex_lock(&log
->io_mutex
);
783 log
->last_checkpoint
= next_checkpoint
;
784 log
->last_cp_seq
= next_cp_seq
;
785 mutex_unlock(&log
->io_mutex
);
787 r5l_run_no_space_stripes(log
);
790 static void r5l_reclaim_thread(struct md_thread
*thread
)
792 struct mddev
*mddev
= thread
->mddev
;
793 struct r5conf
*conf
= mddev
->private;
794 struct r5l_log
*log
= conf
->log
;
801 static void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
803 unsigned long target
;
804 unsigned long new = (unsigned long)space
; /* overflow in theory */
807 target
= log
->reclaim_target
;
810 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
811 md_wakeup_thread(log
->reclaim_thread
);
814 void r5l_quiesce(struct r5l_log
*log
, int state
)
817 if (!log
|| state
== 2)
821 * This is a special case for hotadd. In suspend, the array has
822 * no journal. In resume, journal is initialized as well as the
825 if (log
->reclaim_thread
)
827 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
828 log
->rdev
->mddev
, "reclaim");
829 } else if (state
== 1) {
830 /* make sure r5l_write_super_and_discard_space exits */
831 mddev
= log
->rdev
->mddev
;
832 wake_up(&mddev
->sb_wait
);
833 r5l_wake_reclaim(log
, -1L);
834 md_unregister_thread(&log
->reclaim_thread
);
839 bool r5l_log_disk_error(struct r5conf
*conf
)
843 /* don't allow write if journal disk is missing */
845 log
= rcu_dereference(conf
->log
);
848 ret
= test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
850 ret
= test_bit(Faulty
, &log
->rdev
->flags
);
855 struct r5l_recovery_ctx
{
856 struct page
*meta_page
; /* current meta */
857 sector_t meta_total_blocks
; /* total size of current meta and data */
858 sector_t pos
; /* recovery position */
859 u64 seq
; /* recovery position seq */
862 static int r5l_read_meta_block(struct r5l_log
*log
,
863 struct r5l_recovery_ctx
*ctx
)
865 struct page
*page
= ctx
->meta_page
;
866 struct r5l_meta_block
*mb
;
869 if (!sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
, REQ_OP_READ
, 0,
873 mb
= page_address(page
);
874 stored_crc
= le32_to_cpu(mb
->checksum
);
877 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
878 le64_to_cpu(mb
->seq
) != ctx
->seq
||
879 mb
->version
!= R5LOG_VERSION
||
880 le64_to_cpu(mb
->position
) != ctx
->pos
)
883 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
884 if (stored_crc
!= crc
)
887 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
890 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
895 static int r5l_recovery_flush_one_stripe(struct r5l_log
*log
,
896 struct r5l_recovery_ctx
*ctx
,
897 sector_t stripe_sect
,
898 int *offset
, sector_t
*log_offset
)
900 struct r5conf
*conf
= log
->rdev
->mddev
->private;
901 struct stripe_head
*sh
;
902 struct r5l_payload_data_parity
*payload
;
905 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, 0, 0);
907 payload
= page_address(ctx
->meta_page
) + *offset
;
909 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
910 raid5_compute_sector(conf
,
911 le64_to_cpu(payload
->location
), 0,
914 sync_page_io(log
->rdev
, *log_offset
, PAGE_SIZE
,
915 sh
->dev
[disk_index
].page
, REQ_OP_READ
, 0,
917 sh
->dev
[disk_index
].log_checksum
=
918 le32_to_cpu(payload
->checksum
[0]);
919 set_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
);
920 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
922 disk_index
= sh
->pd_idx
;
923 sync_page_io(log
->rdev
, *log_offset
, PAGE_SIZE
,
924 sh
->dev
[disk_index
].page
, REQ_OP_READ
, 0,
926 sh
->dev
[disk_index
].log_checksum
=
927 le32_to_cpu(payload
->checksum
[0]);
928 set_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
);
930 if (sh
->qd_idx
>= 0) {
931 disk_index
= sh
->qd_idx
;
932 sync_page_io(log
->rdev
,
933 r5l_ring_add(log
, *log_offset
, BLOCK_SECTORS
),
934 PAGE_SIZE
, sh
->dev
[disk_index
].page
,
935 REQ_OP_READ
, 0, false);
936 sh
->dev
[disk_index
].log_checksum
=
937 le32_to_cpu(payload
->checksum
[1]);
938 set_bit(R5_Wantwrite
,
939 &sh
->dev
[disk_index
].flags
);
941 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
944 *log_offset
= r5l_ring_add(log
, *log_offset
,
945 le32_to_cpu(payload
->size
));
946 *offset
+= sizeof(struct r5l_payload_data_parity
) +
948 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
949 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
)
953 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
957 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
959 addr
= kmap_atomic(sh
->dev
[disk_index
].page
);
960 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
962 if (checksum
!= sh
->dev
[disk_index
].log_checksum
)
966 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
967 struct md_rdev
*rdev
, *rrdev
;
969 if (!test_and_clear_bit(R5_Wantwrite
,
970 &sh
->dev
[disk_index
].flags
))
973 /* in case device is broken */
974 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
976 sync_page_io(rdev
, stripe_sect
, PAGE_SIZE
,
977 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
979 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
981 sync_page_io(rrdev
, stripe_sect
, PAGE_SIZE
,
982 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
985 raid5_release_stripe(sh
);
989 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++)
990 sh
->dev
[disk_index
].flags
= 0;
991 raid5_release_stripe(sh
);
995 static int r5l_recovery_flush_one_meta(struct r5l_log
*log
,
996 struct r5l_recovery_ctx
*ctx
)
998 struct r5conf
*conf
= log
->rdev
->mddev
->private;
999 struct r5l_payload_data_parity
*payload
;
1000 struct r5l_meta_block
*mb
;
1002 sector_t log_offset
;
1003 sector_t stripe_sector
;
1005 mb
= page_address(ctx
->meta_page
);
1006 offset
= sizeof(struct r5l_meta_block
);
1007 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
1009 while (offset
< le32_to_cpu(mb
->meta_size
)) {
1012 payload
= (void *)mb
+ offset
;
1013 stripe_sector
= raid5_compute_sector(conf
,
1014 le64_to_cpu(payload
->location
), 0, &dd
, NULL
);
1015 if (r5l_recovery_flush_one_stripe(log
, ctx
, stripe_sector
,
1016 &offset
, &log_offset
))
1022 /* copy data/parity from log to raid disks */
1023 static void r5l_recovery_flush_log(struct r5l_log
*log
,
1024 struct r5l_recovery_ctx
*ctx
)
1027 if (r5l_read_meta_block(log
, ctx
))
1029 if (r5l_recovery_flush_one_meta(log
, ctx
))
1032 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
1036 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1040 struct r5l_meta_block
*mb
;
1043 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
1046 mb
= page_address(page
);
1047 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1048 mb
->version
= R5LOG_VERSION
;
1049 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1050 mb
->seq
= cpu_to_le64(seq
);
1051 mb
->position
= cpu_to_le64(pos
);
1052 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1053 mb
->checksum
= cpu_to_le32(crc
);
1055 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
,
1056 WRITE_FUA
, false)) {
1064 static int r5l_recovery_log(struct r5l_log
*log
)
1066 struct r5l_recovery_ctx ctx
;
1068 ctx
.pos
= log
->last_checkpoint
;
1069 ctx
.seq
= log
->last_cp_seq
;
1070 ctx
.meta_page
= alloc_page(GFP_KERNEL
);
1074 r5l_recovery_flush_log(log
, &ctx
);
1075 __free_page(ctx
.meta_page
);
1078 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1079 * log will start here. but we can't let superblock point to last valid
1080 * meta block. The log might looks like:
1081 * | meta 1| meta 2| meta 3|
1082 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1083 * superblock points to meta 1, we write a new valid meta 2n. if crash
1084 * happens again, new recovery will start from meta 1. Since meta 2n is
1085 * valid now, recovery will think meta 3 is valid, which is wrong.
1086 * The solution is we create a new meta in meta2 with its seq == meta
1087 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1088 * not think meta 3 is a valid meta, because its seq doesn't match
1090 if (ctx
.seq
> log
->last_cp_seq
) {
1093 ret
= r5l_log_write_empty_meta_block(log
, ctx
.pos
, ctx
.seq
+ 10);
1096 log
->seq
= ctx
.seq
+ 11;
1097 log
->log_start
= r5l_ring_add(log
, ctx
.pos
, BLOCK_SECTORS
);
1098 r5l_write_super(log
, ctx
.pos
);
1099 log
->last_checkpoint
= ctx
.pos
;
1100 log
->next_checkpoint
= ctx
.pos
;
1102 log
->log_start
= ctx
.pos
;
1108 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
1110 struct mddev
*mddev
= log
->rdev
->mddev
;
1112 log
->rdev
->journal_tail
= cp
;
1113 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1116 static int r5l_load_log(struct r5l_log
*log
)
1118 struct md_rdev
*rdev
= log
->rdev
;
1120 struct r5l_meta_block
*mb
;
1121 sector_t cp
= log
->rdev
->journal_tail
;
1122 u32 stored_crc
, expected_crc
;
1123 bool create_super
= false;
1126 /* Make sure it's valid */
1127 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
1129 page
= alloc_page(GFP_KERNEL
);
1133 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, 0, false)) {
1137 mb
= page_address(page
);
1139 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1140 mb
->version
!= R5LOG_VERSION
) {
1141 create_super
= true;
1144 stored_crc
= le32_to_cpu(mb
->checksum
);
1146 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1147 if (stored_crc
!= expected_crc
) {
1148 create_super
= true;
1151 if (le64_to_cpu(mb
->position
) != cp
) {
1152 create_super
= true;
1157 log
->last_cp_seq
= prandom_u32();
1159 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
1161 * Make sure super points to correct address. Log might have
1162 * data very soon. If super hasn't correct log tail address,
1163 * recovery can't find the log
1165 r5l_write_super(log
, cp
);
1167 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
1169 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
1170 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
1171 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
1172 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
1173 log
->last_checkpoint
= cp
;
1174 log
->next_checkpoint
= cp
;
1178 return r5l_recovery_log(log
);
1184 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
1186 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1187 struct r5l_log
*log
;
1189 if (PAGE_SIZE
!= 4096)
1191 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
1196 log
->need_cache_flush
= test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
) != 0;
1198 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
1199 sizeof(rdev
->mddev
->uuid
));
1201 mutex_init(&log
->io_mutex
);
1203 spin_lock_init(&log
->io_list_lock
);
1204 INIT_LIST_HEAD(&log
->running_ios
);
1205 INIT_LIST_HEAD(&log
->io_end_ios
);
1206 INIT_LIST_HEAD(&log
->flushing_ios
);
1207 INIT_LIST_HEAD(&log
->finished_ios
);
1208 bio_init(&log
->flush_bio
);
1210 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
1214 log
->io_pool
= mempool_create_slab_pool(R5L_POOL_SIZE
, log
->io_kc
);
1218 log
->bs
= bioset_create(R5L_POOL_SIZE
, 0);
1222 log
->meta_pool
= mempool_create_page_pool(R5L_POOL_SIZE
, 0);
1223 if (!log
->meta_pool
)
1226 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
1227 log
->rdev
->mddev
, "reclaim");
1228 if (!log
->reclaim_thread
)
1229 goto reclaim_thread
;
1230 init_waitqueue_head(&log
->iounit_wait
);
1232 INIT_LIST_HEAD(&log
->no_mem_stripes
);
1234 INIT_LIST_HEAD(&log
->no_space_stripes
);
1235 spin_lock_init(&log
->no_space_stripes_lock
);
1237 if (r5l_load_log(log
))
1240 rcu_assign_pointer(conf
->log
, log
);
1241 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1245 md_unregister_thread(&log
->reclaim_thread
);
1247 mempool_destroy(log
->meta_pool
);
1249 bioset_free(log
->bs
);
1251 mempool_destroy(log
->io_pool
);
1253 kmem_cache_destroy(log
->io_kc
);
1259 void r5l_exit_log(struct r5l_log
*log
)
1261 md_unregister_thread(&log
->reclaim_thread
);
1262 mempool_destroy(log
->meta_pool
);
1263 bioset_free(log
->bs
);
1264 mempool_destroy(log
->io_pool
);
1265 kmem_cache_destroy(log
->io_kc
);