Linux 4.9.243
[linux/fpc-iii.git] / drivers / mtd / nand / lpc32xx_slc.c
blob0b5fa254ea60a1ec1fdc77d9f917e2ff57e6e2cc
1 /*
2 * NXP LPC32XX NAND SLC driver
4 * Authors:
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 #include <linux/mm.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mtd/lpc32xx_slc.h>
41 #define LPC32XX_MODNAME "lpc32xx-nand"
43 /**********************************************************************
44 * SLC NAND controller register offsets
45 **********************************************************************/
47 #define SLC_DATA(x) (x + 0x000)
48 #define SLC_ADDR(x) (x + 0x004)
49 #define SLC_CMD(x) (x + 0x008)
50 #define SLC_STOP(x) (x + 0x00C)
51 #define SLC_CTRL(x) (x + 0x010)
52 #define SLC_CFG(x) (x + 0x014)
53 #define SLC_STAT(x) (x + 0x018)
54 #define SLC_INT_STAT(x) (x + 0x01C)
55 #define SLC_IEN(x) (x + 0x020)
56 #define SLC_ISR(x) (x + 0x024)
57 #define SLC_ICR(x) (x + 0x028)
58 #define SLC_TAC(x) (x + 0x02C)
59 #define SLC_TC(x) (x + 0x030)
60 #define SLC_ECC(x) (x + 0x034)
61 #define SLC_DMA_DATA(x) (x + 0x038)
63 /**********************************************************************
64 * slc_ctrl register definitions
65 **********************************************************************/
66 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
67 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
68 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
70 /**********************************************************************
71 * slc_cfg register definitions
72 **********************************************************************/
73 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
74 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
75 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
76 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
77 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
78 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
80 /**********************************************************************
81 * slc_stat register definitions
82 **********************************************************************/
83 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
84 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
85 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
87 /**********************************************************************
88 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
89 **********************************************************************/
90 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
91 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
93 /**********************************************************************
94 * slc_tac register definitions
95 **********************************************************************/
96 /* Computation of clock cycles on basis of controller and device clock rates */
97 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99 /* Clock setting for RDY write sample wait time in 2*n clocks */
100 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
101 /* Write pulse width in clock cycles, 1 to 16 clocks */
102 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
103 /* Write hold time of control and data signals, 1 to 16 clocks */
104 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
105 /* Write setup time of control and data signals, 1 to 16 clocks */
106 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
107 /* Clock setting for RDY read sample wait time in 2*n clocks */
108 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
109 /* Read pulse width in clock cycles, 1 to 16 clocks */
110 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
111 /* Read hold time of control and data signals, 1 to 16 clocks */
112 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
113 /* Read setup time of control and data signals, 1 to 16 clocks */
114 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
116 /**********************************************************************
117 * slc_ecc register definitions
118 **********************************************************************/
119 /* ECC line party fetch macro */
120 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
121 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
124 * DMA requires storage space for the DMA local buffer and the hardware ECC
125 * storage area. The DMA local buffer is only used if DMA mapping fails
126 * during runtime.
128 #define LPC32XX_DMA_DATA_SIZE 4096
129 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
131 /* Number of bytes used for ECC stored in NAND per 256 bytes */
132 #define LPC32XX_SLC_DEV_ECC_BYTES 3
135 * If the NAND base clock frequency can't be fetched, this frequency will be
136 * used instead as the base. This rate is used to setup the timing registers
137 * used for NAND accesses.
139 #define LPC32XX_DEF_BUS_RATE 133250000
141 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
142 #define LPC32XX_DMA_TIMEOUT 100
145 * NAND ECC Layout for small page NAND devices
146 * Note: For large and huge page devices, the default layouts are used
148 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
149 struct mtd_oob_region *oobregion)
151 if (section)
152 return -ERANGE;
154 oobregion->length = 6;
155 oobregion->offset = 10;
157 return 0;
160 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
161 struct mtd_oob_region *oobregion)
163 if (section > 1)
164 return -ERANGE;
166 if (!section) {
167 oobregion->offset = 0;
168 oobregion->length = 4;
169 } else {
170 oobregion->offset = 6;
171 oobregion->length = 4;
174 return 0;
177 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
178 .ecc = lpc32xx_ooblayout_ecc,
179 .free = lpc32xx_ooblayout_free,
182 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
183 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
186 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
187 * Note: Large page devices used the default layout
189 static struct nand_bbt_descr bbt_smallpage_main_descr = {
190 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
191 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
192 .offs = 0,
193 .len = 4,
194 .veroffs = 6,
195 .maxblocks = 4,
196 .pattern = bbt_pattern
199 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
200 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
201 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
202 .offs = 0,
203 .len = 4,
204 .veroffs = 6,
205 .maxblocks = 4,
206 .pattern = mirror_pattern
210 * NAND platform configuration structure
212 struct lpc32xx_nand_cfg_slc {
213 uint32_t wdr_clks;
214 uint32_t wwidth;
215 uint32_t whold;
216 uint32_t wsetup;
217 uint32_t rdr_clks;
218 uint32_t rwidth;
219 uint32_t rhold;
220 uint32_t rsetup;
221 int wp_gpio;
222 struct mtd_partition *parts;
223 unsigned num_parts;
226 struct lpc32xx_nand_host {
227 struct nand_chip nand_chip;
228 struct lpc32xx_slc_platform_data *pdata;
229 struct clk *clk;
230 void __iomem *io_base;
231 struct lpc32xx_nand_cfg_slc *ncfg;
233 struct completion comp;
234 struct dma_chan *dma_chan;
235 uint32_t dma_buf_len;
236 struct dma_slave_config dma_slave_config;
237 struct scatterlist sgl;
240 * DMA and CPU addresses of ECC work area and data buffer
242 uint32_t *ecc_buf;
243 uint8_t *data_buf;
244 dma_addr_t io_base_dma;
247 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
249 uint32_t clkrate, tmp;
251 /* Reset SLC controller */
252 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
253 udelay(1000);
255 /* Basic setup */
256 writel(0, SLC_CFG(host->io_base));
257 writel(0, SLC_IEN(host->io_base));
258 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
259 SLC_ICR(host->io_base));
261 /* Get base clock for SLC block */
262 clkrate = clk_get_rate(host->clk);
263 if (clkrate == 0)
264 clkrate = LPC32XX_DEF_BUS_RATE;
266 /* Compute clock setup values */
267 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
268 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
269 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
270 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
271 SLCTAC_RDR(host->ncfg->rdr_clks) |
272 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
273 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
274 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
275 writel(tmp, SLC_TAC(host->io_base));
279 * Hardware specific access to control lines
281 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
282 unsigned int ctrl)
284 uint32_t tmp;
285 struct nand_chip *chip = mtd_to_nand(mtd);
286 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
288 /* Does CE state need to be changed? */
289 tmp = readl(SLC_CFG(host->io_base));
290 if (ctrl & NAND_NCE)
291 tmp |= SLCCFG_CE_LOW;
292 else
293 tmp &= ~SLCCFG_CE_LOW;
294 writel(tmp, SLC_CFG(host->io_base));
296 if (cmd != NAND_CMD_NONE) {
297 if (ctrl & NAND_CLE)
298 writel(cmd, SLC_CMD(host->io_base));
299 else
300 writel(cmd, SLC_ADDR(host->io_base));
305 * Read the Device Ready pin
307 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
309 struct nand_chip *chip = mtd_to_nand(mtd);
310 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
311 int rdy = 0;
313 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
314 rdy = 1;
316 return rdy;
320 * Enable NAND write protect
322 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
324 if (gpio_is_valid(host->ncfg->wp_gpio))
325 gpio_set_value(host->ncfg->wp_gpio, 0);
329 * Disable NAND write protect
331 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
333 if (gpio_is_valid(host->ncfg->wp_gpio))
334 gpio_set_value(host->ncfg->wp_gpio, 1);
338 * Prepares SLC for transfers with H/W ECC enabled
340 static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
342 /* Hardware ECC is enabled automatically in hardware as needed */
346 * Calculates the ECC for the data
348 static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
349 const unsigned char *buf,
350 unsigned char *code)
353 * ECC is calculated automatically in hardware during syndrome read
354 * and write operations, so it doesn't need to be calculated here.
356 return 0;
360 * Read a single byte from NAND device
362 static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
364 struct nand_chip *chip = mtd_to_nand(mtd);
365 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
367 return (uint8_t)readl(SLC_DATA(host->io_base));
371 * Simple device read without ECC
373 static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
375 struct nand_chip *chip = mtd_to_nand(mtd);
376 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
378 /* Direct device read with no ECC */
379 while (len-- > 0)
380 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
384 * Simple device write without ECC
386 static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
388 struct nand_chip *chip = mtd_to_nand(mtd);
389 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
391 /* Direct device write with no ECC */
392 while (len-- > 0)
393 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
397 * Read the OOB data from the device without ECC using FIFO method
399 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
400 struct nand_chip *chip, int page)
402 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
403 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
405 return 0;
409 * Write the OOB data to the device without ECC using FIFO method
411 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
412 struct nand_chip *chip, int page)
414 int status;
416 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
417 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
419 /* Send command to program the OOB data */
420 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
422 status = chip->waitfunc(mtd, chip);
424 return status & NAND_STATUS_FAIL ? -EIO : 0;
428 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
430 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
432 int i;
434 for (i = 0; i < (count * 3); i += 3) {
435 uint32_t ce = ecc[i / 3];
436 ce = ~(ce << 2) & 0xFFFFFF;
437 spare[i + 2] = (uint8_t)(ce & 0xFF);
438 ce >>= 8;
439 spare[i + 1] = (uint8_t)(ce & 0xFF);
440 ce >>= 8;
441 spare[i] = (uint8_t)(ce & 0xFF);
445 static void lpc32xx_dma_complete_func(void *completion)
447 complete(completion);
450 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
451 void *mem, int len, enum dma_transfer_direction dir)
453 struct nand_chip *chip = mtd_to_nand(mtd);
454 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
455 struct dma_async_tx_descriptor *desc;
456 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
457 int res;
459 host->dma_slave_config.direction = dir;
460 host->dma_slave_config.src_addr = dma;
461 host->dma_slave_config.dst_addr = dma;
462 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
463 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
464 host->dma_slave_config.src_maxburst = 4;
465 host->dma_slave_config.dst_maxburst = 4;
466 /* DMA controller does flow control: */
467 host->dma_slave_config.device_fc = false;
468 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
469 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
470 return -ENXIO;
473 sg_init_one(&host->sgl, mem, len);
475 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
476 DMA_BIDIRECTIONAL);
477 if (res != 1) {
478 dev_err(mtd->dev.parent, "Failed to map sg list\n");
479 return -ENXIO;
481 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
482 flags);
483 if (!desc) {
484 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
485 goto out1;
488 init_completion(&host->comp);
489 desc->callback = lpc32xx_dma_complete_func;
490 desc->callback_param = &host->comp;
492 dmaengine_submit(desc);
493 dma_async_issue_pending(host->dma_chan);
495 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
497 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
498 DMA_BIDIRECTIONAL);
500 return 0;
501 out1:
502 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
503 DMA_BIDIRECTIONAL);
504 return -ENXIO;
508 * DMA read/write transfers with ECC support
510 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
511 int read)
513 struct nand_chip *chip = mtd_to_nand(mtd);
514 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
515 int i, status = 0;
516 unsigned long timeout;
517 int res;
518 enum dma_transfer_direction dir =
519 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
520 uint8_t *dma_buf;
521 bool dma_mapped;
523 if ((void *)buf <= high_memory) {
524 dma_buf = buf;
525 dma_mapped = true;
526 } else {
527 dma_buf = host->data_buf;
528 dma_mapped = false;
529 if (!read)
530 memcpy(host->data_buf, buf, mtd->writesize);
533 if (read) {
534 writel(readl(SLC_CFG(host->io_base)) |
535 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
536 SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
537 } else {
538 writel((readl(SLC_CFG(host->io_base)) |
539 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
540 ~SLCCFG_DMA_DIR,
541 SLC_CFG(host->io_base));
544 /* Clear initial ECC */
545 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
547 /* Transfer size is data area only */
548 writel(mtd->writesize, SLC_TC(host->io_base));
550 /* Start transfer in the NAND controller */
551 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
552 SLC_CTRL(host->io_base));
554 for (i = 0; i < chip->ecc.steps; i++) {
555 /* Data */
556 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
557 dma_buf + i * chip->ecc.size,
558 mtd->writesize / chip->ecc.steps, dir);
559 if (res)
560 return res;
562 /* Always _read_ ECC */
563 if (i == chip->ecc.steps - 1)
564 break;
565 if (!read) /* ECC availability delayed on write */
566 udelay(10);
567 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
568 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
569 if (res)
570 return res;
574 * According to NXP, the DMA can be finished here, but the NAND
575 * controller may still have buffered data. After porting to using the
576 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
577 * appears to be always true, according to tests. Keeping the check for
578 * safety reasons for now.
580 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
581 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
582 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
583 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
584 time_before(jiffies, timeout))
585 cpu_relax();
586 if (!time_before(jiffies, timeout)) {
587 dev_err(mtd->dev.parent, "FIFO held data too long\n");
588 status = -EIO;
592 /* Read last calculated ECC value */
593 if (!read)
594 udelay(10);
595 host->ecc_buf[chip->ecc.steps - 1] =
596 readl(SLC_ECC(host->io_base));
598 /* Flush DMA */
599 dmaengine_terminate_all(host->dma_chan);
601 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
602 readl(SLC_TC(host->io_base))) {
603 /* Something is left in the FIFO, something is wrong */
604 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
605 status = -EIO;
608 /* Stop DMA & HW ECC */
609 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
610 SLC_CTRL(host->io_base));
611 writel(readl(SLC_CFG(host->io_base)) &
612 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
613 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
615 if (!dma_mapped && read)
616 memcpy(buf, host->data_buf, mtd->writesize);
618 return status;
622 * Read the data and OOB data from the device, use ECC correction with the
623 * data, disable ECC for the OOB data
625 static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
626 struct nand_chip *chip, uint8_t *buf,
627 int oob_required, int page)
629 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
630 struct mtd_oob_region oobregion = { };
631 int stat, i, status, error;
632 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
634 /* Issue read command */
635 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
637 /* Read data and oob, calculate ECC */
638 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
640 /* Get OOB data */
641 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
643 /* Convert to stored ECC format */
644 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
646 /* Pointer to ECC data retrieved from NAND spare area */
647 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
648 if (error)
649 return error;
651 oobecc = chip->oob_poi + oobregion.offset;
653 for (i = 0; i < chip->ecc.steps; i++) {
654 stat = chip->ecc.correct(mtd, buf, oobecc,
655 &tmpecc[i * chip->ecc.bytes]);
656 if (stat < 0)
657 mtd->ecc_stats.failed++;
658 else
659 mtd->ecc_stats.corrected += stat;
661 buf += chip->ecc.size;
662 oobecc += chip->ecc.bytes;
665 return status;
669 * Read the data and OOB data from the device, no ECC correction with the
670 * data or OOB data
672 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
673 struct nand_chip *chip,
674 uint8_t *buf, int oob_required,
675 int page)
677 /* Issue read command */
678 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
680 /* Raw reads can just use the FIFO interface */
681 chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
682 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
684 return 0;
688 * Write the data and OOB data to the device, use ECC with the data,
689 * disable ECC for the OOB data
691 static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
692 struct nand_chip *chip,
693 const uint8_t *buf,
694 int oob_required, int page)
696 struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
697 struct mtd_oob_region oobregion = { };
698 uint8_t *pb;
699 int error;
701 /* Write data, calculate ECC on outbound data */
702 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
703 if (error)
704 return error;
707 * The calculated ECC needs some manual work done to it before
708 * committing it to NAND. Process the calculated ECC and place
709 * the resultant values directly into the OOB buffer. */
710 error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
711 if (error)
712 return error;
714 pb = chip->oob_poi + oobregion.offset;
715 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
717 /* Write ECC data to device */
718 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
719 return 0;
723 * Write the data and OOB data to the device, no ECC correction with the
724 * data or OOB data
726 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
727 struct nand_chip *chip,
728 const uint8_t *buf,
729 int oob_required, int page)
731 /* Raw writes can just use the FIFO interface */
732 chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
733 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
734 return 0;
737 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
739 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
740 dma_cap_mask_t mask;
742 if (!host->pdata || !host->pdata->dma_filter) {
743 dev_err(mtd->dev.parent, "no DMA platform data\n");
744 return -ENOENT;
747 dma_cap_zero(mask);
748 dma_cap_set(DMA_SLAVE, mask);
749 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
750 "nand-slc");
751 if (!host->dma_chan) {
752 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
753 return -EBUSY;
756 return 0;
759 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
761 struct lpc32xx_nand_cfg_slc *ncfg;
762 struct device_node *np = dev->of_node;
764 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
765 if (!ncfg)
766 return NULL;
768 of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
769 of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
770 of_property_read_u32(np, "nxp,whold", &ncfg->whold);
771 of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
772 of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
773 of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
774 of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
775 of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
777 if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
778 !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
779 !ncfg->rhold || !ncfg->rsetup) {
780 dev_err(dev, "chip parameters not specified correctly\n");
781 return NULL;
784 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
786 return ncfg;
790 * Probe for NAND controller
792 static int lpc32xx_nand_probe(struct platform_device *pdev)
794 struct lpc32xx_nand_host *host;
795 struct mtd_info *mtd;
796 struct nand_chip *chip;
797 struct resource *rc;
798 int res;
800 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
801 if (rc == NULL) {
802 dev_err(&pdev->dev, "No memory resource found for device\n");
803 return -EBUSY;
806 /* Allocate memory for the device structure (and zero it) */
807 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
808 if (!host)
809 return -ENOMEM;
810 host->io_base_dma = rc->start;
812 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
813 if (IS_ERR(host->io_base))
814 return PTR_ERR(host->io_base);
816 if (pdev->dev.of_node)
817 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
818 if (!host->ncfg) {
819 dev_err(&pdev->dev,
820 "Missing or bad NAND config from device tree\n");
821 return -ENOENT;
823 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
824 return -EPROBE_DEFER;
825 if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
826 host->ncfg->wp_gpio, "NAND WP")) {
827 dev_err(&pdev->dev, "GPIO not available\n");
828 return -EBUSY;
830 lpc32xx_wp_disable(host);
832 host->pdata = dev_get_platdata(&pdev->dev);
834 chip = &host->nand_chip;
835 mtd = nand_to_mtd(chip);
836 nand_set_controller_data(chip, host);
837 nand_set_flash_node(chip, pdev->dev.of_node);
838 mtd->owner = THIS_MODULE;
839 mtd->dev.parent = &pdev->dev;
841 /* Get NAND clock */
842 host->clk = devm_clk_get(&pdev->dev, NULL);
843 if (IS_ERR(host->clk)) {
844 dev_err(&pdev->dev, "Clock failure\n");
845 res = -ENOENT;
846 goto err_exit1;
848 clk_prepare_enable(host->clk);
850 /* Set NAND IO addresses and command/ready functions */
851 chip->IO_ADDR_R = SLC_DATA(host->io_base);
852 chip->IO_ADDR_W = SLC_DATA(host->io_base);
853 chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
854 chip->dev_ready = lpc32xx_nand_device_ready;
855 chip->chip_delay = 20; /* 20us command delay time */
857 /* Init NAND controller */
858 lpc32xx_nand_setup(host);
860 platform_set_drvdata(pdev, host);
862 /* NAND callbacks for LPC32xx SLC hardware */
863 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
864 chip->read_byte = lpc32xx_nand_read_byte;
865 chip->read_buf = lpc32xx_nand_read_buf;
866 chip->write_buf = lpc32xx_nand_write_buf;
867 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
868 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
869 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
870 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
871 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
872 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
873 chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
874 chip->ecc.correct = nand_correct_data;
875 chip->ecc.strength = 1;
876 chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
879 * Allocate a large enough buffer for a single huge page plus
880 * extra space for the spare area and ECC storage area
882 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
883 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
884 GFP_KERNEL);
885 if (host->data_buf == NULL) {
886 res = -ENOMEM;
887 goto err_exit2;
890 res = lpc32xx_nand_dma_setup(host);
891 if (res) {
892 res = -EIO;
893 goto err_exit2;
896 /* Find NAND device */
897 if (nand_scan_ident(mtd, 1, NULL)) {
898 res = -ENXIO;
899 goto err_exit3;
902 /* OOB and ECC CPU and DMA work areas */
903 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
906 * Small page FLASH has a unique OOB layout, but large and huge
907 * page FLASH use the standard layout. Small page FLASH uses a
908 * custom BBT marker layout.
910 if (mtd->writesize <= 512)
911 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
913 /* These sizes remain the same regardless of page size */
914 chip->ecc.size = 256;
915 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
916 chip->ecc.prepad = chip->ecc.postpad = 0;
919 * Use a custom BBT marker setup for small page FLASH that
920 * won't interfere with the ECC layout. Large and huge page
921 * FLASH use the standard layout.
923 if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
924 mtd->writesize <= 512) {
925 chip->bbt_td = &bbt_smallpage_main_descr;
926 chip->bbt_md = &bbt_smallpage_mirror_descr;
930 * Fills out all the uninitialized function pointers with the defaults
932 if (nand_scan_tail(mtd)) {
933 res = -ENXIO;
934 goto err_exit3;
937 mtd->name = "nxp_lpc3220_slc";
938 res = mtd_device_register(mtd, host->ncfg->parts,
939 host->ncfg->num_parts);
940 if (!res)
941 return res;
943 nand_release(chip);
945 err_exit3:
946 dma_release_channel(host->dma_chan);
947 err_exit2:
948 clk_disable_unprepare(host->clk);
949 err_exit1:
950 lpc32xx_wp_enable(host);
952 return res;
956 * Remove NAND device.
958 static int lpc32xx_nand_remove(struct platform_device *pdev)
960 uint32_t tmp;
961 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
963 nand_release(&host->nand_chip);
964 dma_release_channel(host->dma_chan);
966 /* Force CE high */
967 tmp = readl(SLC_CTRL(host->io_base));
968 tmp &= ~SLCCFG_CE_LOW;
969 writel(tmp, SLC_CTRL(host->io_base));
971 clk_disable_unprepare(host->clk);
972 lpc32xx_wp_enable(host);
974 return 0;
977 #ifdef CONFIG_PM
978 static int lpc32xx_nand_resume(struct platform_device *pdev)
980 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
982 /* Re-enable NAND clock */
983 clk_prepare_enable(host->clk);
985 /* Fresh init of NAND controller */
986 lpc32xx_nand_setup(host);
988 /* Disable write protect */
989 lpc32xx_wp_disable(host);
991 return 0;
994 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
996 uint32_t tmp;
997 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
999 /* Force CE high */
1000 tmp = readl(SLC_CTRL(host->io_base));
1001 tmp &= ~SLCCFG_CE_LOW;
1002 writel(tmp, SLC_CTRL(host->io_base));
1004 /* Enable write protect for safety */
1005 lpc32xx_wp_enable(host);
1007 /* Disable clock */
1008 clk_disable_unprepare(host->clk);
1010 return 0;
1013 #else
1014 #define lpc32xx_nand_resume NULL
1015 #define lpc32xx_nand_suspend NULL
1016 #endif
1018 static const struct of_device_id lpc32xx_nand_match[] = {
1019 { .compatible = "nxp,lpc3220-slc" },
1020 { /* sentinel */ },
1022 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1024 static struct platform_driver lpc32xx_nand_driver = {
1025 .probe = lpc32xx_nand_probe,
1026 .remove = lpc32xx_nand_remove,
1027 .resume = lpc32xx_nand_resume,
1028 .suspend = lpc32xx_nand_suspend,
1029 .driver = {
1030 .name = LPC32XX_MODNAME,
1031 .of_match_table = lpc32xx_nand_match,
1035 module_platform_driver(lpc32xx_nand_driver);
1037 MODULE_LICENSE("GPL");
1038 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1039 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1040 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");