Linux 4.9.243
[linux/fpc-iii.git] / drivers / mtd / nand / nand_base.c
blobbdf40c090acdc93a8c57a406ed077d3d8c4dfcb0
1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
12 * Credits:
13 * David Woodhouse for adding multichip support
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/mtd/partitions.h>
48 #include <linux/of.h>
50 static int nand_get_device(struct mtd_info *mtd, int new_state);
52 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
53 struct mtd_oob_ops *ops);
55 /* Define default oob placement schemes for large and small page devices */
56 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
57 struct mtd_oob_region *oobregion)
59 struct nand_chip *chip = mtd_to_nand(mtd);
60 struct nand_ecc_ctrl *ecc = &chip->ecc;
62 if (section > 1)
63 return -ERANGE;
65 if (!section) {
66 oobregion->offset = 0;
67 if (mtd->oobsize == 16)
68 oobregion->length = 4;
69 else
70 oobregion->length = 3;
71 } else {
72 if (mtd->oobsize == 8)
73 return -ERANGE;
75 oobregion->offset = 6;
76 oobregion->length = ecc->total - 4;
79 return 0;
82 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
83 struct mtd_oob_region *oobregion)
85 if (section > 1)
86 return -ERANGE;
88 if (mtd->oobsize == 16) {
89 if (section)
90 return -ERANGE;
92 oobregion->length = 8;
93 oobregion->offset = 8;
94 } else {
95 oobregion->length = 2;
96 if (!section)
97 oobregion->offset = 3;
98 else
99 oobregion->offset = 6;
102 return 0;
105 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
106 .ecc = nand_ooblayout_ecc_sp,
107 .free = nand_ooblayout_free_sp,
109 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
111 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
112 struct mtd_oob_region *oobregion)
114 struct nand_chip *chip = mtd_to_nand(mtd);
115 struct nand_ecc_ctrl *ecc = &chip->ecc;
117 if (section)
118 return -ERANGE;
120 oobregion->length = ecc->total;
121 oobregion->offset = mtd->oobsize - oobregion->length;
123 return 0;
126 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
127 struct mtd_oob_region *oobregion)
129 struct nand_chip *chip = mtd_to_nand(mtd);
130 struct nand_ecc_ctrl *ecc = &chip->ecc;
132 if (section)
133 return -ERANGE;
135 oobregion->length = mtd->oobsize - ecc->total - 2;
136 oobregion->offset = 2;
138 return 0;
141 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
142 .ecc = nand_ooblayout_ecc_lp,
143 .free = nand_ooblayout_free_lp,
145 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
148 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
149 * are placed at a fixed offset.
151 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
152 struct mtd_oob_region *oobregion)
154 struct nand_chip *chip = mtd_to_nand(mtd);
155 struct nand_ecc_ctrl *ecc = &chip->ecc;
157 if (section)
158 return -ERANGE;
160 switch (mtd->oobsize) {
161 case 64:
162 oobregion->offset = 40;
163 break;
164 case 128:
165 oobregion->offset = 80;
166 break;
167 default:
168 return -EINVAL;
171 oobregion->length = ecc->total;
172 if (oobregion->offset + oobregion->length > mtd->oobsize)
173 return -ERANGE;
175 return 0;
178 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
179 struct mtd_oob_region *oobregion)
181 struct nand_chip *chip = mtd_to_nand(mtd);
182 struct nand_ecc_ctrl *ecc = &chip->ecc;
183 int ecc_offset = 0;
185 if (section < 0 || section > 1)
186 return -ERANGE;
188 switch (mtd->oobsize) {
189 case 64:
190 ecc_offset = 40;
191 break;
192 case 128:
193 ecc_offset = 80;
194 break;
195 default:
196 return -EINVAL;
199 if (section == 0) {
200 oobregion->offset = 2;
201 oobregion->length = ecc_offset - 2;
202 } else {
203 oobregion->offset = ecc_offset + ecc->total;
204 oobregion->length = mtd->oobsize - oobregion->offset;
207 return 0;
210 const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
211 .ecc = nand_ooblayout_ecc_lp_hamming,
212 .free = nand_ooblayout_free_lp_hamming,
215 static int check_offs_len(struct mtd_info *mtd,
216 loff_t ofs, uint64_t len)
218 struct nand_chip *chip = mtd_to_nand(mtd);
219 int ret = 0;
221 /* Start address must align on block boundary */
222 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
223 pr_debug("%s: unaligned address\n", __func__);
224 ret = -EINVAL;
227 /* Length must align on block boundary */
228 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
229 pr_debug("%s: length not block aligned\n", __func__);
230 ret = -EINVAL;
233 return ret;
237 * nand_release_device - [GENERIC] release chip
238 * @mtd: MTD device structure
240 * Release chip lock and wake up anyone waiting on the device.
242 static void nand_release_device(struct mtd_info *mtd)
244 struct nand_chip *chip = mtd_to_nand(mtd);
246 /* Release the controller and the chip */
247 spin_lock(&chip->controller->lock);
248 chip->controller->active = NULL;
249 chip->state = FL_READY;
250 wake_up(&chip->controller->wq);
251 spin_unlock(&chip->controller->lock);
255 * nand_read_byte - [DEFAULT] read one byte from the chip
256 * @mtd: MTD device structure
258 * Default read function for 8bit buswidth
260 static uint8_t nand_read_byte(struct mtd_info *mtd)
262 struct nand_chip *chip = mtd_to_nand(mtd);
263 return readb(chip->IO_ADDR_R);
267 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
268 * @mtd: MTD device structure
270 * Default read function for 16bit buswidth with endianness conversion.
273 static uint8_t nand_read_byte16(struct mtd_info *mtd)
275 struct nand_chip *chip = mtd_to_nand(mtd);
276 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
280 * nand_read_word - [DEFAULT] read one word from the chip
281 * @mtd: MTD device structure
283 * Default read function for 16bit buswidth without endianness conversion.
285 static u16 nand_read_word(struct mtd_info *mtd)
287 struct nand_chip *chip = mtd_to_nand(mtd);
288 return readw(chip->IO_ADDR_R);
292 * nand_select_chip - [DEFAULT] control CE line
293 * @mtd: MTD device structure
294 * @chipnr: chipnumber to select, -1 for deselect
296 * Default select function for 1 chip devices.
298 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
300 struct nand_chip *chip = mtd_to_nand(mtd);
302 switch (chipnr) {
303 case -1:
304 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
305 break;
306 case 0:
307 break;
309 default:
310 BUG();
315 * nand_write_byte - [DEFAULT] write single byte to chip
316 * @mtd: MTD device structure
317 * @byte: value to write
319 * Default function to write a byte to I/O[7:0]
321 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
323 struct nand_chip *chip = mtd_to_nand(mtd);
325 chip->write_buf(mtd, &byte, 1);
329 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
330 * @mtd: MTD device structure
331 * @byte: value to write
333 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
335 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
337 struct nand_chip *chip = mtd_to_nand(mtd);
338 uint16_t word = byte;
341 * It's not entirely clear what should happen to I/O[15:8] when writing
342 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
344 * When the host supports a 16-bit bus width, only data is
345 * transferred at the 16-bit width. All address and command line
346 * transfers shall use only the lower 8-bits of the data bus. During
347 * command transfers, the host may place any value on the upper
348 * 8-bits of the data bus. During address transfers, the host shall
349 * set the upper 8-bits of the data bus to 00h.
351 * One user of the write_byte callback is nand_onfi_set_features. The
352 * four parameters are specified to be written to I/O[7:0], but this is
353 * neither an address nor a command transfer. Let's assume a 0 on the
354 * upper I/O lines is OK.
356 chip->write_buf(mtd, (uint8_t *)&word, 2);
360 * nand_write_buf - [DEFAULT] write buffer to chip
361 * @mtd: MTD device structure
362 * @buf: data buffer
363 * @len: number of bytes to write
365 * Default write function for 8bit buswidth.
367 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
369 struct nand_chip *chip = mtd_to_nand(mtd);
371 iowrite8_rep(chip->IO_ADDR_W, buf, len);
375 * nand_read_buf - [DEFAULT] read chip data into buffer
376 * @mtd: MTD device structure
377 * @buf: buffer to store date
378 * @len: number of bytes to read
380 * Default read function for 8bit buswidth.
382 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
384 struct nand_chip *chip = mtd_to_nand(mtd);
386 ioread8_rep(chip->IO_ADDR_R, buf, len);
390 * nand_write_buf16 - [DEFAULT] write buffer to chip
391 * @mtd: MTD device structure
392 * @buf: data buffer
393 * @len: number of bytes to write
395 * Default write function for 16bit buswidth.
397 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
399 struct nand_chip *chip = mtd_to_nand(mtd);
400 u16 *p = (u16 *) buf;
402 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
406 * nand_read_buf16 - [DEFAULT] read chip data into buffer
407 * @mtd: MTD device structure
408 * @buf: buffer to store date
409 * @len: number of bytes to read
411 * Default read function for 16bit buswidth.
413 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
415 struct nand_chip *chip = mtd_to_nand(mtd);
416 u16 *p = (u16 *) buf;
418 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
422 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
423 * @mtd: MTD device structure
424 * @ofs: offset from device start
426 * Check, if the block is bad.
428 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
430 int page, res = 0, i = 0;
431 struct nand_chip *chip = mtd_to_nand(mtd);
432 u16 bad;
434 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
435 ofs += mtd->erasesize - mtd->writesize;
437 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
439 do {
440 if (chip->options & NAND_BUSWIDTH_16) {
441 chip->cmdfunc(mtd, NAND_CMD_READOOB,
442 chip->badblockpos & 0xFE, page);
443 bad = cpu_to_le16(chip->read_word(mtd));
444 if (chip->badblockpos & 0x1)
445 bad >>= 8;
446 else
447 bad &= 0xFF;
448 } else {
449 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
450 page);
451 bad = chip->read_byte(mtd);
454 if (likely(chip->badblockbits == 8))
455 res = bad != 0xFF;
456 else
457 res = hweight8(bad) < chip->badblockbits;
458 ofs += mtd->writesize;
459 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
460 i++;
461 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
463 return res;
467 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
468 * @mtd: MTD device structure
469 * @ofs: offset from device start
471 * This is the default implementation, which can be overridden by a hardware
472 * specific driver. It provides the details for writing a bad block marker to a
473 * block.
475 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
477 struct nand_chip *chip = mtd_to_nand(mtd);
478 struct mtd_oob_ops ops;
479 uint8_t buf[2] = { 0, 0 };
480 int ret = 0, res, i = 0;
482 memset(&ops, 0, sizeof(ops));
483 ops.oobbuf = buf;
484 ops.ooboffs = chip->badblockpos;
485 if (chip->options & NAND_BUSWIDTH_16) {
486 ops.ooboffs &= ~0x01;
487 ops.len = ops.ooblen = 2;
488 } else {
489 ops.len = ops.ooblen = 1;
491 ops.mode = MTD_OPS_PLACE_OOB;
493 /* Write to first/last page(s) if necessary */
494 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
495 ofs += mtd->erasesize - mtd->writesize;
496 do {
497 res = nand_do_write_oob(mtd, ofs, &ops);
498 if (!ret)
499 ret = res;
501 i++;
502 ofs += mtd->writesize;
503 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
505 return ret;
509 * nand_block_markbad_lowlevel - mark a block bad
510 * @mtd: MTD device structure
511 * @ofs: offset from device start
513 * This function performs the generic NAND bad block marking steps (i.e., bad
514 * block table(s) and/or marker(s)). We only allow the hardware driver to
515 * specify how to write bad block markers to OOB (chip->block_markbad).
517 * We try operations in the following order:
518 * (1) erase the affected block, to allow OOB marker to be written cleanly
519 * (2) write bad block marker to OOB area of affected block (unless flag
520 * NAND_BBT_NO_OOB_BBM is present)
521 * (3) update the BBT
522 * Note that we retain the first error encountered in (2) or (3), finish the
523 * procedures, and dump the error in the end.
525 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
527 struct nand_chip *chip = mtd_to_nand(mtd);
528 int res, ret = 0;
530 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
531 struct erase_info einfo;
533 /* Attempt erase before marking OOB */
534 memset(&einfo, 0, sizeof(einfo));
535 einfo.mtd = mtd;
536 einfo.addr = ofs;
537 einfo.len = 1ULL << chip->phys_erase_shift;
538 nand_erase_nand(mtd, &einfo, 0);
540 /* Write bad block marker to OOB */
541 nand_get_device(mtd, FL_WRITING);
542 ret = chip->block_markbad(mtd, ofs);
543 nand_release_device(mtd);
546 /* Mark block bad in BBT */
547 if (chip->bbt) {
548 res = nand_markbad_bbt(mtd, ofs);
549 if (!ret)
550 ret = res;
553 if (!ret)
554 mtd->ecc_stats.badblocks++;
556 return ret;
560 * nand_check_wp - [GENERIC] check if the chip is write protected
561 * @mtd: MTD device structure
563 * Check, if the device is write protected. The function expects, that the
564 * device is already selected.
566 static int nand_check_wp(struct mtd_info *mtd)
568 struct nand_chip *chip = mtd_to_nand(mtd);
570 /* Broken xD cards report WP despite being writable */
571 if (chip->options & NAND_BROKEN_XD)
572 return 0;
574 /* Check the WP bit */
575 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
576 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
580 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
581 * @mtd: MTD device structure
582 * @ofs: offset from device start
584 * Check if the block is marked as reserved.
586 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
588 struct nand_chip *chip = mtd_to_nand(mtd);
590 if (!chip->bbt)
591 return 0;
592 /* Return info from the table */
593 return nand_isreserved_bbt(mtd, ofs);
597 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
598 * @mtd: MTD device structure
599 * @ofs: offset from device start
600 * @allowbbt: 1, if its allowed to access the bbt area
602 * Check, if the block is bad. Either by reading the bad block table or
603 * calling of the scan function.
605 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
607 struct nand_chip *chip = mtd_to_nand(mtd);
609 if (!chip->bbt)
610 return chip->block_bad(mtd, ofs);
612 /* Return info from the table */
613 return nand_isbad_bbt(mtd, ofs, allowbbt);
617 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
618 * @mtd: MTD device structure
619 * @timeo: Timeout
621 * Helper function for nand_wait_ready used when needing to wait in interrupt
622 * context.
624 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
626 struct nand_chip *chip = mtd_to_nand(mtd);
627 int i;
629 /* Wait for the device to get ready */
630 for (i = 0; i < timeo; i++) {
631 if (chip->dev_ready(mtd))
632 break;
633 touch_softlockup_watchdog();
634 mdelay(1);
639 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
640 * @mtd: MTD device structure
642 * Wait for the ready pin after a command, and warn if a timeout occurs.
644 void nand_wait_ready(struct mtd_info *mtd)
646 struct nand_chip *chip = mtd_to_nand(mtd);
647 unsigned long timeo = 400;
649 if (in_interrupt() || oops_in_progress)
650 return panic_nand_wait_ready(mtd, timeo);
652 /* Wait until command is processed or timeout occurs */
653 timeo = jiffies + msecs_to_jiffies(timeo);
654 do {
655 if (chip->dev_ready(mtd))
656 return;
657 cond_resched();
658 } while (time_before(jiffies, timeo));
660 if (!chip->dev_ready(mtd))
661 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
663 EXPORT_SYMBOL_GPL(nand_wait_ready);
666 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
667 * @mtd: MTD device structure
668 * @timeo: Timeout in ms
670 * Wait for status ready (i.e. command done) or timeout.
672 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
674 register struct nand_chip *chip = mtd_to_nand(mtd);
676 timeo = jiffies + msecs_to_jiffies(timeo);
677 do {
678 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
679 break;
680 touch_softlockup_watchdog();
681 } while (time_before(jiffies, timeo));
685 * nand_command - [DEFAULT] Send command to NAND device
686 * @mtd: MTD device structure
687 * @command: the command to be sent
688 * @column: the column address for this command, -1 if none
689 * @page_addr: the page address for this command, -1 if none
691 * Send command to NAND device. This function is used for small page devices
692 * (512 Bytes per page).
694 static void nand_command(struct mtd_info *mtd, unsigned int command,
695 int column, int page_addr)
697 register struct nand_chip *chip = mtd_to_nand(mtd);
698 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
700 /* Write out the command to the device */
701 if (command == NAND_CMD_SEQIN) {
702 int readcmd;
704 if (column >= mtd->writesize) {
705 /* OOB area */
706 column -= mtd->writesize;
707 readcmd = NAND_CMD_READOOB;
708 } else if (column < 256) {
709 /* First 256 bytes --> READ0 */
710 readcmd = NAND_CMD_READ0;
711 } else {
712 column -= 256;
713 readcmd = NAND_CMD_READ1;
715 chip->cmd_ctrl(mtd, readcmd, ctrl);
716 ctrl &= ~NAND_CTRL_CHANGE;
718 if (command != NAND_CMD_NONE)
719 chip->cmd_ctrl(mtd, command, ctrl);
721 /* Address cycle, when necessary */
722 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
723 /* Serially input address */
724 if (column != -1) {
725 /* Adjust columns for 16 bit buswidth */
726 if (chip->options & NAND_BUSWIDTH_16 &&
727 !nand_opcode_8bits(command))
728 column >>= 1;
729 chip->cmd_ctrl(mtd, column, ctrl);
730 ctrl &= ~NAND_CTRL_CHANGE;
732 if (page_addr != -1) {
733 chip->cmd_ctrl(mtd, page_addr, ctrl);
734 ctrl &= ~NAND_CTRL_CHANGE;
735 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
736 /* One more address cycle for devices > 32MiB */
737 if (chip->chipsize > (32 << 20))
738 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
740 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
743 * Program and erase have their own busy handlers status and sequential
744 * in needs no delay
746 switch (command) {
748 case NAND_CMD_NONE:
749 case NAND_CMD_PAGEPROG:
750 case NAND_CMD_ERASE1:
751 case NAND_CMD_ERASE2:
752 case NAND_CMD_SEQIN:
753 case NAND_CMD_STATUS:
754 return;
756 case NAND_CMD_RESET:
757 if (chip->dev_ready)
758 break;
759 udelay(chip->chip_delay);
760 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
761 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
762 chip->cmd_ctrl(mtd,
763 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
764 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
765 nand_wait_status_ready(mtd, 250);
766 return;
768 /* This applies to read commands */
769 default:
771 * If we don't have access to the busy pin, we apply the given
772 * command delay
774 if (!chip->dev_ready) {
775 udelay(chip->chip_delay);
776 return;
780 * Apply this short delay always to ensure that we do wait tWB in
781 * any case on any machine.
783 ndelay(100);
785 nand_wait_ready(mtd);
789 * nand_command_lp - [DEFAULT] Send command to NAND large page device
790 * @mtd: MTD device structure
791 * @command: the command to be sent
792 * @column: the column address for this command, -1 if none
793 * @page_addr: the page address for this command, -1 if none
795 * Send command to NAND device. This is the version for the new large page
796 * devices. We don't have the separate regions as we have in the small page
797 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
799 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
800 int column, int page_addr)
802 register struct nand_chip *chip = mtd_to_nand(mtd);
804 /* Emulate NAND_CMD_READOOB */
805 if (command == NAND_CMD_READOOB) {
806 column += mtd->writesize;
807 command = NAND_CMD_READ0;
810 /* Command latch cycle */
811 if (command != NAND_CMD_NONE)
812 chip->cmd_ctrl(mtd, command,
813 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
815 if (column != -1 || page_addr != -1) {
816 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
818 /* Serially input address */
819 if (column != -1) {
820 /* Adjust columns for 16 bit buswidth */
821 if (chip->options & NAND_BUSWIDTH_16 &&
822 !nand_opcode_8bits(command))
823 column >>= 1;
824 chip->cmd_ctrl(mtd, column, ctrl);
825 ctrl &= ~NAND_CTRL_CHANGE;
827 /* Only output a single addr cycle for 8bits opcodes. */
828 if (!nand_opcode_8bits(command))
829 chip->cmd_ctrl(mtd, column >> 8, ctrl);
831 if (page_addr != -1) {
832 chip->cmd_ctrl(mtd, page_addr, ctrl);
833 chip->cmd_ctrl(mtd, page_addr >> 8,
834 NAND_NCE | NAND_ALE);
835 /* One more address cycle for devices > 128MiB */
836 if (chip->chipsize > (128 << 20))
837 chip->cmd_ctrl(mtd, page_addr >> 16,
838 NAND_NCE | NAND_ALE);
841 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
844 * Program and erase have their own busy handlers status, sequential
845 * in and status need no delay.
847 switch (command) {
849 case NAND_CMD_NONE:
850 case NAND_CMD_CACHEDPROG:
851 case NAND_CMD_PAGEPROG:
852 case NAND_CMD_ERASE1:
853 case NAND_CMD_ERASE2:
854 case NAND_CMD_SEQIN:
855 case NAND_CMD_RNDIN:
856 case NAND_CMD_STATUS:
857 return;
859 case NAND_CMD_RESET:
860 if (chip->dev_ready)
861 break;
862 udelay(chip->chip_delay);
863 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
864 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
865 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
866 NAND_NCE | NAND_CTRL_CHANGE);
867 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
868 nand_wait_status_ready(mtd, 250);
869 return;
871 case NAND_CMD_RNDOUT:
872 /* No ready / busy check necessary */
873 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
874 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
875 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
876 NAND_NCE | NAND_CTRL_CHANGE);
877 return;
879 case NAND_CMD_READ0:
880 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
881 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
882 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
883 NAND_NCE | NAND_CTRL_CHANGE);
885 /* This applies to read commands */
886 default:
888 * If we don't have access to the busy pin, we apply the given
889 * command delay.
891 if (!chip->dev_ready) {
892 udelay(chip->chip_delay);
893 return;
898 * Apply this short delay always to ensure that we do wait tWB in
899 * any case on any machine.
901 ndelay(100);
903 nand_wait_ready(mtd);
907 * panic_nand_get_device - [GENERIC] Get chip for selected access
908 * @chip: the nand chip descriptor
909 * @mtd: MTD device structure
910 * @new_state: the state which is requested
912 * Used when in panic, no locks are taken.
914 static void panic_nand_get_device(struct nand_chip *chip,
915 struct mtd_info *mtd, int new_state)
917 /* Hardware controller shared among independent devices */
918 chip->controller->active = chip;
919 chip->state = new_state;
923 * nand_get_device - [GENERIC] Get chip for selected access
924 * @mtd: MTD device structure
925 * @new_state: the state which is requested
927 * Get the device and lock it for exclusive access
929 static int
930 nand_get_device(struct mtd_info *mtd, int new_state)
932 struct nand_chip *chip = mtd_to_nand(mtd);
933 spinlock_t *lock = &chip->controller->lock;
934 wait_queue_head_t *wq = &chip->controller->wq;
935 DECLARE_WAITQUEUE(wait, current);
936 retry:
937 spin_lock(lock);
939 /* Hardware controller shared among independent devices */
940 if (!chip->controller->active)
941 chip->controller->active = chip;
943 if (chip->controller->active == chip && chip->state == FL_READY) {
944 chip->state = new_state;
945 spin_unlock(lock);
946 return 0;
948 if (new_state == FL_PM_SUSPENDED) {
949 if (chip->controller->active->state == FL_PM_SUSPENDED) {
950 chip->state = FL_PM_SUSPENDED;
951 spin_unlock(lock);
952 return 0;
955 set_current_state(TASK_UNINTERRUPTIBLE);
956 add_wait_queue(wq, &wait);
957 spin_unlock(lock);
958 schedule();
959 remove_wait_queue(wq, &wait);
960 goto retry;
964 * panic_nand_wait - [GENERIC] wait until the command is done
965 * @mtd: MTD device structure
966 * @chip: NAND chip structure
967 * @timeo: timeout
969 * Wait for command done. This is a helper function for nand_wait used when
970 * we are in interrupt context. May happen when in panic and trying to write
971 * an oops through mtdoops.
973 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
974 unsigned long timeo)
976 int i;
977 for (i = 0; i < timeo; i++) {
978 if (chip->dev_ready) {
979 if (chip->dev_ready(mtd))
980 break;
981 } else {
982 if (chip->read_byte(mtd) & NAND_STATUS_READY)
983 break;
985 mdelay(1);
990 * nand_wait - [DEFAULT] wait until the command is done
991 * @mtd: MTD device structure
992 * @chip: NAND chip structure
994 * Wait for command done. This applies to erase and program only.
996 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
999 int status;
1000 unsigned long timeo = 400;
1003 * Apply this short delay always to ensure that we do wait tWB in any
1004 * case on any machine.
1006 ndelay(100);
1008 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1010 if (in_interrupt() || oops_in_progress)
1011 panic_nand_wait(mtd, chip, timeo);
1012 else {
1013 timeo = jiffies + msecs_to_jiffies(timeo);
1014 do {
1015 if (chip->dev_ready) {
1016 if (chip->dev_ready(mtd))
1017 break;
1018 } else {
1019 if (chip->read_byte(mtd) & NAND_STATUS_READY)
1020 break;
1022 cond_resched();
1023 } while (time_before(jiffies, timeo));
1026 status = (int)chip->read_byte(mtd);
1027 /* This can happen if in case of timeout or buggy dev_ready */
1028 WARN_ON(!(status & NAND_STATUS_READY));
1029 return status;
1033 * nand_reset_data_interface - Reset data interface and timings
1034 * @chip: The NAND chip
1036 * Reset the Data interface and timings to ONFI mode 0.
1038 * Returns 0 for success or negative error code otherwise.
1040 static int nand_reset_data_interface(struct nand_chip *chip)
1042 struct mtd_info *mtd = nand_to_mtd(chip);
1043 const struct nand_data_interface *conf;
1044 int ret;
1046 if (!chip->setup_data_interface)
1047 return 0;
1050 * The ONFI specification says:
1052 * To transition from NV-DDR or NV-DDR2 to the SDR data
1053 * interface, the host shall use the Reset (FFh) command
1054 * using SDR timing mode 0. A device in any timing mode is
1055 * required to recognize Reset (FFh) command issued in SDR
1056 * timing mode 0.
1059 * Configure the data interface in SDR mode and set the
1060 * timings to timing mode 0.
1063 conf = nand_get_default_data_interface();
1064 ret = chip->setup_data_interface(mtd, conf, false);
1065 if (ret)
1066 pr_err("Failed to configure data interface to SDR timing mode 0\n");
1068 return ret;
1072 * nand_setup_data_interface - Setup the best data interface and timings
1073 * @chip: The NAND chip
1075 * Find and configure the best data interface and NAND timings supported by
1076 * the chip and the driver.
1077 * First tries to retrieve supported timing modes from ONFI information,
1078 * and if the NAND chip does not support ONFI, relies on the
1079 * ->onfi_timing_mode_default specified in the nand_ids table.
1081 * Returns 0 for success or negative error code otherwise.
1083 static int nand_setup_data_interface(struct nand_chip *chip)
1085 struct mtd_info *mtd = nand_to_mtd(chip);
1086 int ret;
1088 if (!chip->setup_data_interface || !chip->data_interface)
1089 return 0;
1092 * Ensure the timing mode has been changed on the chip side
1093 * before changing timings on the controller side.
1095 if (chip->onfi_version &&
1096 (le16_to_cpu(chip->onfi_params.opt_cmd) &
1097 ONFI_OPT_CMD_SET_GET_FEATURES)) {
1098 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1099 chip->onfi_timing_mode_default,
1102 ret = chip->onfi_set_features(mtd, chip,
1103 ONFI_FEATURE_ADDR_TIMING_MODE,
1104 tmode_param);
1105 if (ret)
1106 goto err;
1109 ret = chip->setup_data_interface(mtd, chip->data_interface, false);
1110 err:
1111 return ret;
1115 * nand_init_data_interface - find the best data interface and timings
1116 * @chip: The NAND chip
1118 * Find the best data interface and NAND timings supported by the chip
1119 * and the driver.
1120 * First tries to retrieve supported timing modes from ONFI information,
1121 * and if the NAND chip does not support ONFI, relies on the
1122 * ->onfi_timing_mode_default specified in the nand_ids table. After this
1123 * function nand_chip->data_interface is initialized with the best timing mode
1124 * available.
1126 * Returns 0 for success or negative error code otherwise.
1128 static int nand_init_data_interface(struct nand_chip *chip)
1130 struct mtd_info *mtd = nand_to_mtd(chip);
1131 int modes, mode, ret;
1133 if (!chip->setup_data_interface)
1134 return 0;
1137 * First try to identify the best timings from ONFI parameters and
1138 * if the NAND does not support ONFI, fallback to the default ONFI
1139 * timing mode.
1141 modes = onfi_get_async_timing_mode(chip);
1142 if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1143 if (!chip->onfi_timing_mode_default)
1144 return 0;
1146 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1149 chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1150 GFP_KERNEL);
1151 if (!chip->data_interface)
1152 return -ENOMEM;
1154 for (mode = fls(modes) - 1; mode >= 0; mode--) {
1155 ret = onfi_init_data_interface(chip, chip->data_interface,
1156 NAND_SDR_IFACE, mode);
1157 if (ret)
1158 continue;
1160 ret = chip->setup_data_interface(mtd, chip->data_interface,
1161 true);
1162 if (!ret) {
1163 chip->onfi_timing_mode_default = mode;
1164 break;
1168 return 0;
1171 static void nand_release_data_interface(struct nand_chip *chip)
1173 kfree(chip->data_interface);
1177 * nand_reset - Reset and initialize a NAND device
1178 * @chip: The NAND chip
1179 * @chipnr: Internal die id
1181 * Returns 0 for success or negative error code otherwise
1183 int nand_reset(struct nand_chip *chip, int chipnr)
1185 struct mtd_info *mtd = nand_to_mtd(chip);
1186 int ret;
1188 ret = nand_reset_data_interface(chip);
1189 if (ret)
1190 return ret;
1193 * The CS line has to be released before we can apply the new NAND
1194 * interface settings, hence this weird ->select_chip() dance.
1196 chip->select_chip(mtd, chipnr);
1197 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1198 chip->select_chip(mtd, -1);
1200 chip->select_chip(mtd, chipnr);
1201 ret = nand_setup_data_interface(chip);
1202 chip->select_chip(mtd, -1);
1203 if (ret)
1204 return ret;
1206 return 0;
1210 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1211 * @mtd: mtd info
1212 * @ofs: offset to start unlock from
1213 * @len: length to unlock
1214 * @invert: when = 0, unlock the range of blocks within the lower and
1215 * upper boundary address
1216 * when = 1, unlock the range of blocks outside the boundaries
1217 * of the lower and upper boundary address
1219 * Returs unlock status.
1221 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
1222 uint64_t len, int invert)
1224 int ret = 0;
1225 int status, page;
1226 struct nand_chip *chip = mtd_to_nand(mtd);
1228 /* Submit address of first page to unlock */
1229 page = ofs >> chip->page_shift;
1230 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
1232 /* Submit address of last page to unlock */
1233 page = (ofs + len) >> chip->page_shift;
1234 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
1235 (page | invert) & chip->pagemask);
1237 /* Call wait ready function */
1238 status = chip->waitfunc(mtd, chip);
1239 /* See if device thinks it succeeded */
1240 if (status & NAND_STATUS_FAIL) {
1241 pr_debug("%s: error status = 0x%08x\n",
1242 __func__, status);
1243 ret = -EIO;
1246 return ret;
1250 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
1251 * @mtd: mtd info
1252 * @ofs: offset to start unlock from
1253 * @len: length to unlock
1255 * Returns unlock status.
1257 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1259 int ret = 0;
1260 int chipnr;
1261 struct nand_chip *chip = mtd_to_nand(mtd);
1263 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1264 __func__, (unsigned long long)ofs, len);
1266 if (check_offs_len(mtd, ofs, len))
1267 return -EINVAL;
1269 /* Align to last block address if size addresses end of the device */
1270 if (ofs + len == mtd->size)
1271 len -= mtd->erasesize;
1273 nand_get_device(mtd, FL_UNLOCKING);
1275 /* Shift to get chip number */
1276 chipnr = ofs >> chip->chip_shift;
1279 * Reset the chip.
1280 * If we want to check the WP through READ STATUS and check the bit 7
1281 * we must reset the chip
1282 * some operation can also clear the bit 7 of status register
1283 * eg. erase/program a locked block
1285 nand_reset(chip, chipnr);
1287 chip->select_chip(mtd, chipnr);
1289 /* Check, if it is write protected */
1290 if (nand_check_wp(mtd)) {
1291 pr_debug("%s: device is write protected!\n",
1292 __func__);
1293 ret = -EIO;
1294 goto out;
1297 ret = __nand_unlock(mtd, ofs, len, 0);
1299 out:
1300 chip->select_chip(mtd, -1);
1301 nand_release_device(mtd);
1303 return ret;
1305 EXPORT_SYMBOL(nand_unlock);
1308 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1309 * @mtd: mtd info
1310 * @ofs: offset to start unlock from
1311 * @len: length to unlock
1313 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1314 * have this feature, but it allows only to lock all blocks, not for specified
1315 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1316 * now.
1318 * Returns lock status.
1320 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1322 int ret = 0;
1323 int chipnr, status, page;
1324 struct nand_chip *chip = mtd_to_nand(mtd);
1326 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1327 __func__, (unsigned long long)ofs, len);
1329 if (check_offs_len(mtd, ofs, len))
1330 return -EINVAL;
1332 nand_get_device(mtd, FL_LOCKING);
1334 /* Shift to get chip number */
1335 chipnr = ofs >> chip->chip_shift;
1338 * Reset the chip.
1339 * If we want to check the WP through READ STATUS and check the bit 7
1340 * we must reset the chip
1341 * some operation can also clear the bit 7 of status register
1342 * eg. erase/program a locked block
1344 nand_reset(chip, chipnr);
1346 chip->select_chip(mtd, chipnr);
1348 /* Check, if it is write protected */
1349 if (nand_check_wp(mtd)) {
1350 pr_debug("%s: device is write protected!\n",
1351 __func__);
1352 status = MTD_ERASE_FAILED;
1353 ret = -EIO;
1354 goto out;
1357 /* Submit address of first page to lock */
1358 page = ofs >> chip->page_shift;
1359 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1361 /* Call wait ready function */
1362 status = chip->waitfunc(mtd, chip);
1363 /* See if device thinks it succeeded */
1364 if (status & NAND_STATUS_FAIL) {
1365 pr_debug("%s: error status = 0x%08x\n",
1366 __func__, status);
1367 ret = -EIO;
1368 goto out;
1371 ret = __nand_unlock(mtd, ofs, len, 0x1);
1373 out:
1374 chip->select_chip(mtd, -1);
1375 nand_release_device(mtd);
1377 return ret;
1379 EXPORT_SYMBOL(nand_lock);
1382 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1383 * @buf: buffer to test
1384 * @len: buffer length
1385 * @bitflips_threshold: maximum number of bitflips
1387 * Check if a buffer contains only 0xff, which means the underlying region
1388 * has been erased and is ready to be programmed.
1389 * The bitflips_threshold specify the maximum number of bitflips before
1390 * considering the region is not erased.
1391 * Note: The logic of this function has been extracted from the memweight
1392 * implementation, except that nand_check_erased_buf function exit before
1393 * testing the whole buffer if the number of bitflips exceed the
1394 * bitflips_threshold value.
1396 * Returns a positive number of bitflips less than or equal to
1397 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1398 * threshold.
1400 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1402 const unsigned char *bitmap = buf;
1403 int bitflips = 0;
1404 int weight;
1406 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1407 len--, bitmap++) {
1408 weight = hweight8(*bitmap);
1409 bitflips += BITS_PER_BYTE - weight;
1410 if (unlikely(bitflips > bitflips_threshold))
1411 return -EBADMSG;
1414 for (; len >= sizeof(long);
1415 len -= sizeof(long), bitmap += sizeof(long)) {
1416 weight = hweight_long(*((unsigned long *)bitmap));
1417 bitflips += BITS_PER_LONG - weight;
1418 if (unlikely(bitflips > bitflips_threshold))
1419 return -EBADMSG;
1422 for (; len > 0; len--, bitmap++) {
1423 weight = hweight8(*bitmap);
1424 bitflips += BITS_PER_BYTE - weight;
1425 if (unlikely(bitflips > bitflips_threshold))
1426 return -EBADMSG;
1429 return bitflips;
1433 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1434 * 0xff data
1435 * @data: data buffer to test
1436 * @datalen: data length
1437 * @ecc: ECC buffer
1438 * @ecclen: ECC length
1439 * @extraoob: extra OOB buffer
1440 * @extraooblen: extra OOB length
1441 * @bitflips_threshold: maximum number of bitflips
1443 * Check if a data buffer and its associated ECC and OOB data contains only
1444 * 0xff pattern, which means the underlying region has been erased and is
1445 * ready to be programmed.
1446 * The bitflips_threshold specify the maximum number of bitflips before
1447 * considering the region as not erased.
1449 * Note:
1450 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1451 * different from the NAND page size. When fixing bitflips, ECC engines will
1452 * report the number of errors per chunk, and the NAND core infrastructure
1453 * expect you to return the maximum number of bitflips for the whole page.
1454 * This is why you should always use this function on a single chunk and
1455 * not on the whole page. After checking each chunk you should update your
1456 * max_bitflips value accordingly.
1457 * 2/ When checking for bitflips in erased pages you should not only check
1458 * the payload data but also their associated ECC data, because a user might
1459 * have programmed almost all bits to 1 but a few. In this case, we
1460 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1461 * this case.
1462 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1463 * data are protected by the ECC engine.
1464 * It could also be used if you support subpages and want to attach some
1465 * extra OOB data to an ECC chunk.
1467 * Returns a positive number of bitflips less than or equal to
1468 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1469 * threshold. In case of success, the passed buffers are filled with 0xff.
1471 int nand_check_erased_ecc_chunk(void *data, int datalen,
1472 void *ecc, int ecclen,
1473 void *extraoob, int extraooblen,
1474 int bitflips_threshold)
1476 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1478 data_bitflips = nand_check_erased_buf(data, datalen,
1479 bitflips_threshold);
1480 if (data_bitflips < 0)
1481 return data_bitflips;
1483 bitflips_threshold -= data_bitflips;
1485 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1486 if (ecc_bitflips < 0)
1487 return ecc_bitflips;
1489 bitflips_threshold -= ecc_bitflips;
1491 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1492 bitflips_threshold);
1493 if (extraoob_bitflips < 0)
1494 return extraoob_bitflips;
1496 if (data_bitflips)
1497 memset(data, 0xff, datalen);
1499 if (ecc_bitflips)
1500 memset(ecc, 0xff, ecclen);
1502 if (extraoob_bitflips)
1503 memset(extraoob, 0xff, extraooblen);
1505 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1507 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1510 * nand_read_page_raw - [INTERN] read raw page data without ecc
1511 * @mtd: mtd info structure
1512 * @chip: nand chip info structure
1513 * @buf: buffer to store read data
1514 * @oob_required: caller requires OOB data read to chip->oob_poi
1515 * @page: page number to read
1517 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1519 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1520 uint8_t *buf, int oob_required, int page)
1522 chip->read_buf(mtd, buf, mtd->writesize);
1523 if (oob_required)
1524 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1525 return 0;
1529 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1530 * @mtd: mtd info structure
1531 * @chip: nand chip info structure
1532 * @buf: buffer to store read data
1533 * @oob_required: caller requires OOB data read to chip->oob_poi
1534 * @page: page number to read
1536 * We need a special oob layout and handling even when OOB isn't used.
1538 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1539 struct nand_chip *chip, uint8_t *buf,
1540 int oob_required, int page)
1542 int eccsize = chip->ecc.size;
1543 int eccbytes = chip->ecc.bytes;
1544 uint8_t *oob = chip->oob_poi;
1545 int steps, size;
1547 for (steps = chip->ecc.steps; steps > 0; steps--) {
1548 chip->read_buf(mtd, buf, eccsize);
1549 buf += eccsize;
1551 if (chip->ecc.prepad) {
1552 chip->read_buf(mtd, oob, chip->ecc.prepad);
1553 oob += chip->ecc.prepad;
1556 chip->read_buf(mtd, oob, eccbytes);
1557 oob += eccbytes;
1559 if (chip->ecc.postpad) {
1560 chip->read_buf(mtd, oob, chip->ecc.postpad);
1561 oob += chip->ecc.postpad;
1565 size = mtd->oobsize - (oob - chip->oob_poi);
1566 if (size)
1567 chip->read_buf(mtd, oob, size);
1569 return 0;
1573 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1574 * @mtd: mtd info structure
1575 * @chip: nand chip info structure
1576 * @buf: buffer to store read data
1577 * @oob_required: caller requires OOB data read to chip->oob_poi
1578 * @page: page number to read
1580 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1581 uint8_t *buf, int oob_required, int page)
1583 int i, eccsize = chip->ecc.size, ret;
1584 int eccbytes = chip->ecc.bytes;
1585 int eccsteps = chip->ecc.steps;
1586 uint8_t *p = buf;
1587 uint8_t *ecc_calc = chip->buffers->ecccalc;
1588 uint8_t *ecc_code = chip->buffers->ecccode;
1589 unsigned int max_bitflips = 0;
1591 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1593 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1594 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1596 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1597 chip->ecc.total);
1598 if (ret)
1599 return ret;
1601 eccsteps = chip->ecc.steps;
1602 p = buf;
1604 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1605 int stat;
1607 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1608 if (stat < 0) {
1609 mtd->ecc_stats.failed++;
1610 } else {
1611 mtd->ecc_stats.corrected += stat;
1612 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1615 return max_bitflips;
1619 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1620 * @mtd: mtd info structure
1621 * @chip: nand chip info structure
1622 * @data_offs: offset of requested data within the page
1623 * @readlen: data length
1624 * @bufpoi: buffer to store read data
1625 * @page: page number to read
1627 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1628 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1629 int page)
1631 int start_step, end_step, num_steps, ret;
1632 uint8_t *p;
1633 int data_col_addr, i, gaps = 0;
1634 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1635 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1636 int index, section = 0;
1637 unsigned int max_bitflips = 0;
1638 struct mtd_oob_region oobregion = { };
1640 /* Column address within the page aligned to ECC size (256bytes) */
1641 start_step = data_offs / chip->ecc.size;
1642 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1643 num_steps = end_step - start_step + 1;
1644 index = start_step * chip->ecc.bytes;
1646 /* Data size aligned to ECC ecc.size */
1647 datafrag_len = num_steps * chip->ecc.size;
1648 eccfrag_len = num_steps * chip->ecc.bytes;
1650 data_col_addr = start_step * chip->ecc.size;
1651 /* If we read not a page aligned data */
1652 if (data_col_addr != 0)
1653 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1655 p = bufpoi + data_col_addr;
1656 chip->read_buf(mtd, p, datafrag_len);
1658 /* Calculate ECC */
1659 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1660 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1663 * The performance is faster if we position offsets according to
1664 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1666 ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
1667 if (ret)
1668 return ret;
1670 if (oobregion.length < eccfrag_len)
1671 gaps = 1;
1673 if (gaps) {
1674 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1675 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1676 } else {
1678 * Send the command to read the particular ECC bytes take care
1679 * about buswidth alignment in read_buf.
1681 aligned_pos = oobregion.offset & ~(busw - 1);
1682 aligned_len = eccfrag_len;
1683 if (oobregion.offset & (busw - 1))
1684 aligned_len++;
1685 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
1686 (busw - 1))
1687 aligned_len++;
1689 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1690 mtd->writesize + aligned_pos, -1);
1691 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1694 ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
1695 chip->oob_poi, index, eccfrag_len);
1696 if (ret)
1697 return ret;
1699 p = bufpoi + data_col_addr;
1700 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1701 int stat;
1703 stat = chip->ecc.correct(mtd, p,
1704 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1705 if (stat == -EBADMSG &&
1706 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1707 /* check for empty pages with bitflips */
1708 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1709 &chip->buffers->ecccode[i],
1710 chip->ecc.bytes,
1711 NULL, 0,
1712 chip->ecc.strength);
1715 if (stat < 0) {
1716 mtd->ecc_stats.failed++;
1717 } else {
1718 mtd->ecc_stats.corrected += stat;
1719 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1722 return max_bitflips;
1726 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1727 * @mtd: mtd info structure
1728 * @chip: nand chip info structure
1729 * @buf: buffer to store read data
1730 * @oob_required: caller requires OOB data read to chip->oob_poi
1731 * @page: page number to read
1733 * Not for syndrome calculating ECC controllers which need a special oob layout.
1735 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1736 uint8_t *buf, int oob_required, int page)
1738 int i, eccsize = chip->ecc.size, ret;
1739 int eccbytes = chip->ecc.bytes;
1740 int eccsteps = chip->ecc.steps;
1741 uint8_t *p = buf;
1742 uint8_t *ecc_calc = chip->buffers->ecccalc;
1743 uint8_t *ecc_code = chip->buffers->ecccode;
1744 unsigned int max_bitflips = 0;
1746 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1747 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1748 chip->read_buf(mtd, p, eccsize);
1749 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1751 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1753 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1754 chip->ecc.total);
1755 if (ret)
1756 return ret;
1758 eccsteps = chip->ecc.steps;
1759 p = buf;
1761 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1762 int stat;
1764 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1765 if (stat == -EBADMSG &&
1766 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1767 /* check for empty pages with bitflips */
1768 stat = nand_check_erased_ecc_chunk(p, eccsize,
1769 &ecc_code[i], eccbytes,
1770 NULL, 0,
1771 chip->ecc.strength);
1774 if (stat < 0) {
1775 mtd->ecc_stats.failed++;
1776 } else {
1777 mtd->ecc_stats.corrected += stat;
1778 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1781 return max_bitflips;
1785 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1786 * @mtd: mtd info structure
1787 * @chip: nand chip info structure
1788 * @buf: buffer to store read data
1789 * @oob_required: caller requires OOB data read to chip->oob_poi
1790 * @page: page number to read
1792 * Hardware ECC for large page chips, require OOB to be read first. For this
1793 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1794 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1795 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1796 * the data area, by overwriting the NAND manufacturer bad block markings.
1798 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1799 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1801 int i, eccsize = chip->ecc.size, ret;
1802 int eccbytes = chip->ecc.bytes;
1803 int eccsteps = chip->ecc.steps;
1804 uint8_t *p = buf;
1805 uint8_t *ecc_code = chip->buffers->ecccode;
1806 uint8_t *ecc_calc = chip->buffers->ecccalc;
1807 unsigned int max_bitflips = 0;
1809 /* Read the OOB area first */
1810 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1811 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1812 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1814 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1815 chip->ecc.total);
1816 if (ret)
1817 return ret;
1819 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1820 int stat;
1822 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1823 chip->read_buf(mtd, p, eccsize);
1824 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1826 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1827 if (stat == -EBADMSG &&
1828 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1829 /* check for empty pages with bitflips */
1830 stat = nand_check_erased_ecc_chunk(p, eccsize,
1831 &ecc_code[i], eccbytes,
1832 NULL, 0,
1833 chip->ecc.strength);
1836 if (stat < 0) {
1837 mtd->ecc_stats.failed++;
1838 } else {
1839 mtd->ecc_stats.corrected += stat;
1840 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1843 return max_bitflips;
1847 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1848 * @mtd: mtd info structure
1849 * @chip: nand chip info structure
1850 * @buf: buffer to store read data
1851 * @oob_required: caller requires OOB data read to chip->oob_poi
1852 * @page: page number to read
1854 * The hw generator calculates the error syndrome automatically. Therefore we
1855 * need a special oob layout and handling.
1857 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1858 uint8_t *buf, int oob_required, int page)
1860 int i, eccsize = chip->ecc.size;
1861 int eccbytes = chip->ecc.bytes;
1862 int eccsteps = chip->ecc.steps;
1863 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1864 uint8_t *p = buf;
1865 uint8_t *oob = chip->oob_poi;
1866 unsigned int max_bitflips = 0;
1868 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1869 int stat;
1871 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1872 chip->read_buf(mtd, p, eccsize);
1874 if (chip->ecc.prepad) {
1875 chip->read_buf(mtd, oob, chip->ecc.prepad);
1876 oob += chip->ecc.prepad;
1879 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1880 chip->read_buf(mtd, oob, eccbytes);
1881 stat = chip->ecc.correct(mtd, p, oob, NULL);
1883 oob += eccbytes;
1885 if (chip->ecc.postpad) {
1886 chip->read_buf(mtd, oob, chip->ecc.postpad);
1887 oob += chip->ecc.postpad;
1890 if (stat == -EBADMSG &&
1891 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1892 /* check for empty pages with bitflips */
1893 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1894 oob - eccpadbytes,
1895 eccpadbytes,
1896 NULL, 0,
1897 chip->ecc.strength);
1900 if (stat < 0) {
1901 mtd->ecc_stats.failed++;
1902 } else {
1903 mtd->ecc_stats.corrected += stat;
1904 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1908 /* Calculate remaining oob bytes */
1909 i = mtd->oobsize - (oob - chip->oob_poi);
1910 if (i)
1911 chip->read_buf(mtd, oob, i);
1913 return max_bitflips;
1917 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1918 * @mtd: mtd info structure
1919 * @oob: oob destination address
1920 * @ops: oob ops structure
1921 * @len: size of oob to transfer
1923 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1924 struct mtd_oob_ops *ops, size_t len)
1926 struct nand_chip *chip = mtd_to_nand(mtd);
1927 int ret;
1929 switch (ops->mode) {
1931 case MTD_OPS_PLACE_OOB:
1932 case MTD_OPS_RAW:
1933 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1934 return oob + len;
1936 case MTD_OPS_AUTO_OOB:
1937 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
1938 ops->ooboffs, len);
1939 BUG_ON(ret);
1940 return oob + len;
1942 default:
1943 BUG();
1945 return NULL;
1949 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1950 * @mtd: MTD device structure
1951 * @retry_mode: the retry mode to use
1953 * Some vendors supply a special command to shift the Vt threshold, to be used
1954 * when there are too many bitflips in a page (i.e., ECC error). After setting
1955 * a new threshold, the host should retry reading the page.
1957 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1959 struct nand_chip *chip = mtd_to_nand(mtd);
1961 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1963 if (retry_mode >= chip->read_retries)
1964 return -EINVAL;
1966 if (!chip->setup_read_retry)
1967 return -EOPNOTSUPP;
1969 return chip->setup_read_retry(mtd, retry_mode);
1973 * nand_do_read_ops - [INTERN] Read data with ECC
1974 * @mtd: MTD device structure
1975 * @from: offset to read from
1976 * @ops: oob ops structure
1978 * Internal function. Called with chip held.
1980 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1981 struct mtd_oob_ops *ops)
1983 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1984 struct nand_chip *chip = mtd_to_nand(mtd);
1985 int ret = 0;
1986 uint32_t readlen = ops->len;
1987 uint32_t oobreadlen = ops->ooblen;
1988 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1990 uint8_t *bufpoi, *oob, *buf;
1991 int use_bufpoi;
1992 unsigned int max_bitflips = 0;
1993 int retry_mode = 0;
1994 bool ecc_fail = false;
1996 chipnr = (int)(from >> chip->chip_shift);
1997 chip->select_chip(mtd, chipnr);
1999 realpage = (int)(from >> chip->page_shift);
2000 page = realpage & chip->pagemask;
2002 col = (int)(from & (mtd->writesize - 1));
2004 buf = ops->datbuf;
2005 oob = ops->oobbuf;
2006 oob_required = oob ? 1 : 0;
2008 while (1) {
2009 unsigned int ecc_failures = mtd->ecc_stats.failed;
2011 bytes = min(mtd->writesize - col, readlen);
2012 aligned = (bytes == mtd->writesize);
2014 if (!aligned)
2015 use_bufpoi = 1;
2016 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2017 use_bufpoi = !virt_addr_valid(buf);
2018 else
2019 use_bufpoi = 0;
2021 /* Is the current page in the buffer? */
2022 if (realpage != chip->pagebuf || oob) {
2023 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
2025 if (use_bufpoi && aligned)
2026 pr_debug("%s: using read bounce buffer for buf@%p\n",
2027 __func__, buf);
2029 read_retry:
2030 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
2033 * Now read the page into the buffer. Absent an error,
2034 * the read methods return max bitflips per ecc step.
2036 if (unlikely(ops->mode == MTD_OPS_RAW))
2037 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
2038 oob_required,
2039 page);
2040 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
2041 !oob)
2042 ret = chip->ecc.read_subpage(mtd, chip,
2043 col, bytes, bufpoi,
2044 page);
2045 else
2046 ret = chip->ecc.read_page(mtd, chip, bufpoi,
2047 oob_required, page);
2048 if (ret < 0) {
2049 if (use_bufpoi)
2050 /* Invalidate page cache */
2051 chip->pagebuf = -1;
2052 break;
2055 max_bitflips = max_t(unsigned int, max_bitflips, ret);
2057 /* Transfer not aligned data */
2058 if (use_bufpoi) {
2059 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
2060 !(mtd->ecc_stats.failed - ecc_failures) &&
2061 (ops->mode != MTD_OPS_RAW)) {
2062 chip->pagebuf = realpage;
2063 chip->pagebuf_bitflips = ret;
2064 } else {
2065 /* Invalidate page cache */
2066 chip->pagebuf = -1;
2068 memcpy(buf, chip->buffers->databuf + col, bytes);
2071 if (unlikely(oob)) {
2072 int toread = min(oobreadlen, max_oobsize);
2074 if (toread) {
2075 oob = nand_transfer_oob(mtd,
2076 oob, ops, toread);
2077 oobreadlen -= toread;
2081 if (chip->options & NAND_NEED_READRDY) {
2082 /* Apply delay or wait for ready/busy pin */
2083 if (!chip->dev_ready)
2084 udelay(chip->chip_delay);
2085 else
2086 nand_wait_ready(mtd);
2089 if (mtd->ecc_stats.failed - ecc_failures) {
2090 if (retry_mode + 1 < chip->read_retries) {
2091 retry_mode++;
2092 ret = nand_setup_read_retry(mtd,
2093 retry_mode);
2094 if (ret < 0)
2095 break;
2097 /* Reset failures; retry */
2098 mtd->ecc_stats.failed = ecc_failures;
2099 goto read_retry;
2100 } else {
2101 /* No more retry modes; real failure */
2102 ecc_fail = true;
2106 buf += bytes;
2107 } else {
2108 memcpy(buf, chip->buffers->databuf + col, bytes);
2109 buf += bytes;
2110 max_bitflips = max_t(unsigned int, max_bitflips,
2111 chip->pagebuf_bitflips);
2114 readlen -= bytes;
2116 /* Reset to retry mode 0 */
2117 if (retry_mode) {
2118 ret = nand_setup_read_retry(mtd, 0);
2119 if (ret < 0)
2120 break;
2121 retry_mode = 0;
2124 if (!readlen)
2125 break;
2127 /* For subsequent reads align to page boundary */
2128 col = 0;
2129 /* Increment page address */
2130 realpage++;
2132 page = realpage & chip->pagemask;
2133 /* Check, if we cross a chip boundary */
2134 if (!page) {
2135 chipnr++;
2136 chip->select_chip(mtd, -1);
2137 chip->select_chip(mtd, chipnr);
2140 chip->select_chip(mtd, -1);
2142 ops->retlen = ops->len - (size_t) readlen;
2143 if (oob)
2144 ops->oobretlen = ops->ooblen - oobreadlen;
2146 if (ret < 0)
2147 return ret;
2149 if (ecc_fail)
2150 return -EBADMSG;
2152 return max_bitflips;
2156 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2157 * @mtd: MTD device structure
2158 * @from: offset to read from
2159 * @len: number of bytes to read
2160 * @retlen: pointer to variable to store the number of read bytes
2161 * @buf: the databuffer to put data
2163 * Get hold of the chip and call nand_do_read.
2165 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
2166 size_t *retlen, uint8_t *buf)
2168 struct mtd_oob_ops ops;
2169 int ret;
2171 nand_get_device(mtd, FL_READING);
2172 memset(&ops, 0, sizeof(ops));
2173 ops.len = len;
2174 ops.datbuf = buf;
2175 ops.mode = MTD_OPS_PLACE_OOB;
2176 ret = nand_do_read_ops(mtd, from, &ops);
2177 *retlen = ops.retlen;
2178 nand_release_device(mtd);
2179 return ret;
2183 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2184 * @mtd: mtd info structure
2185 * @chip: nand chip info structure
2186 * @page: page number to read
2188 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2190 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2191 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2192 return 0;
2194 EXPORT_SYMBOL(nand_read_oob_std);
2197 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2198 * with syndromes
2199 * @mtd: mtd info structure
2200 * @chip: nand chip info structure
2201 * @page: page number to read
2203 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2204 int page)
2206 int length = mtd->oobsize;
2207 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2208 int eccsize = chip->ecc.size;
2209 uint8_t *bufpoi = chip->oob_poi;
2210 int i, toread, sndrnd = 0, pos;
2212 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
2213 for (i = 0; i < chip->ecc.steps; i++) {
2214 if (sndrnd) {
2215 pos = eccsize + i * (eccsize + chunk);
2216 if (mtd->writesize > 512)
2217 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
2218 else
2219 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
2220 } else
2221 sndrnd = 1;
2222 toread = min_t(int, length, chunk);
2223 chip->read_buf(mtd, bufpoi, toread);
2224 bufpoi += toread;
2225 length -= toread;
2227 if (length > 0)
2228 chip->read_buf(mtd, bufpoi, length);
2230 return 0;
2232 EXPORT_SYMBOL(nand_read_oob_syndrome);
2235 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2236 * @mtd: mtd info structure
2237 * @chip: nand chip info structure
2238 * @page: page number to write
2240 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2242 int status = 0;
2243 const uint8_t *buf = chip->oob_poi;
2244 int length = mtd->oobsize;
2246 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
2247 chip->write_buf(mtd, buf, length);
2248 /* Send command to program the OOB data */
2249 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2251 status = chip->waitfunc(mtd, chip);
2253 return status & NAND_STATUS_FAIL ? -EIO : 0;
2255 EXPORT_SYMBOL(nand_write_oob_std);
2258 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2259 * with syndrome - only for large page flash
2260 * @mtd: mtd info structure
2261 * @chip: nand chip info structure
2262 * @page: page number to write
2264 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2265 int page)
2267 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2268 int eccsize = chip->ecc.size, length = mtd->oobsize;
2269 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2270 const uint8_t *bufpoi = chip->oob_poi;
2273 * data-ecc-data-ecc ... ecc-oob
2274 * or
2275 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2277 if (!chip->ecc.prepad && !chip->ecc.postpad) {
2278 pos = steps * (eccsize + chunk);
2279 steps = 0;
2280 } else
2281 pos = eccsize;
2283 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2284 for (i = 0; i < steps; i++) {
2285 if (sndcmd) {
2286 if (mtd->writesize <= 512) {
2287 uint32_t fill = 0xFFFFFFFF;
2289 len = eccsize;
2290 while (len > 0) {
2291 int num = min_t(int, len, 4);
2292 chip->write_buf(mtd, (uint8_t *)&fill,
2293 num);
2294 len -= num;
2296 } else {
2297 pos = eccsize + i * (eccsize + chunk);
2298 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2300 } else
2301 sndcmd = 1;
2302 len = min_t(int, length, chunk);
2303 chip->write_buf(mtd, bufpoi, len);
2304 bufpoi += len;
2305 length -= len;
2307 if (length > 0)
2308 chip->write_buf(mtd, bufpoi, length);
2310 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2311 status = chip->waitfunc(mtd, chip);
2313 return status & NAND_STATUS_FAIL ? -EIO : 0;
2315 EXPORT_SYMBOL(nand_write_oob_syndrome);
2318 * nand_do_read_oob - [INTERN] NAND read out-of-band
2319 * @mtd: MTD device structure
2320 * @from: offset to read from
2321 * @ops: oob operations description structure
2323 * NAND read out-of-band data from the spare area.
2325 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2326 struct mtd_oob_ops *ops)
2328 unsigned int max_bitflips = 0;
2329 int page, realpage, chipnr;
2330 struct nand_chip *chip = mtd_to_nand(mtd);
2331 struct mtd_ecc_stats stats;
2332 int readlen = ops->ooblen;
2333 int len;
2334 uint8_t *buf = ops->oobbuf;
2335 int ret = 0;
2337 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2338 __func__, (unsigned long long)from, readlen);
2340 stats = mtd->ecc_stats;
2342 len = mtd_oobavail(mtd, ops);
2344 if (unlikely(ops->ooboffs >= len)) {
2345 pr_debug("%s: attempt to start read outside oob\n",
2346 __func__);
2347 return -EINVAL;
2350 /* Do not allow reads past end of device */
2351 if (unlikely(from >= mtd->size ||
2352 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2353 (from >> chip->page_shift)) * len)) {
2354 pr_debug("%s: attempt to read beyond end of device\n",
2355 __func__);
2356 return -EINVAL;
2359 chipnr = (int)(from >> chip->chip_shift);
2360 chip->select_chip(mtd, chipnr);
2362 /* Shift to get page */
2363 realpage = (int)(from >> chip->page_shift);
2364 page = realpage & chip->pagemask;
2366 while (1) {
2367 if (ops->mode == MTD_OPS_RAW)
2368 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2369 else
2370 ret = chip->ecc.read_oob(mtd, chip, page);
2372 if (ret < 0)
2373 break;
2375 len = min(len, readlen);
2376 buf = nand_transfer_oob(mtd, buf, ops, len);
2378 if (chip->options & NAND_NEED_READRDY) {
2379 /* Apply delay or wait for ready/busy pin */
2380 if (!chip->dev_ready)
2381 udelay(chip->chip_delay);
2382 else
2383 nand_wait_ready(mtd);
2386 max_bitflips = max_t(unsigned int, max_bitflips, ret);
2388 readlen -= len;
2389 if (!readlen)
2390 break;
2392 /* Increment page address */
2393 realpage++;
2395 page = realpage & chip->pagemask;
2396 /* Check, if we cross a chip boundary */
2397 if (!page) {
2398 chipnr++;
2399 chip->select_chip(mtd, -1);
2400 chip->select_chip(mtd, chipnr);
2403 chip->select_chip(mtd, -1);
2405 ops->oobretlen = ops->ooblen - readlen;
2407 if (ret < 0)
2408 return ret;
2410 if (mtd->ecc_stats.failed - stats.failed)
2411 return -EBADMSG;
2413 return max_bitflips;
2417 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2418 * @mtd: MTD device structure
2419 * @from: offset to read from
2420 * @ops: oob operation description structure
2422 * NAND read data and/or out-of-band data.
2424 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2425 struct mtd_oob_ops *ops)
2427 int ret;
2429 ops->retlen = 0;
2431 /* Do not allow reads past end of device */
2432 if (ops->datbuf && (from + ops->len) > mtd->size) {
2433 pr_debug("%s: attempt to read beyond end of device\n",
2434 __func__);
2435 return -EINVAL;
2438 if (ops->mode != MTD_OPS_PLACE_OOB &&
2439 ops->mode != MTD_OPS_AUTO_OOB &&
2440 ops->mode != MTD_OPS_RAW)
2441 return -ENOTSUPP;
2443 nand_get_device(mtd, FL_READING);
2445 if (!ops->datbuf)
2446 ret = nand_do_read_oob(mtd, from, ops);
2447 else
2448 ret = nand_do_read_ops(mtd, from, ops);
2450 nand_release_device(mtd);
2451 return ret;
2456 * nand_write_page_raw - [INTERN] raw page write function
2457 * @mtd: mtd info structure
2458 * @chip: nand chip info structure
2459 * @buf: data buffer
2460 * @oob_required: must write chip->oob_poi to OOB
2461 * @page: page number to write
2463 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2465 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2466 const uint8_t *buf, int oob_required, int page)
2468 chip->write_buf(mtd, buf, mtd->writesize);
2469 if (oob_required)
2470 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2472 return 0;
2476 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2477 * @mtd: mtd info structure
2478 * @chip: nand chip info structure
2479 * @buf: data buffer
2480 * @oob_required: must write chip->oob_poi to OOB
2481 * @page: page number to write
2483 * We need a special oob layout and handling even when ECC isn't checked.
2485 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2486 struct nand_chip *chip,
2487 const uint8_t *buf, int oob_required,
2488 int page)
2490 int eccsize = chip->ecc.size;
2491 int eccbytes = chip->ecc.bytes;
2492 uint8_t *oob = chip->oob_poi;
2493 int steps, size;
2495 for (steps = chip->ecc.steps; steps > 0; steps--) {
2496 chip->write_buf(mtd, buf, eccsize);
2497 buf += eccsize;
2499 if (chip->ecc.prepad) {
2500 chip->write_buf(mtd, oob, chip->ecc.prepad);
2501 oob += chip->ecc.prepad;
2504 chip->write_buf(mtd, oob, eccbytes);
2505 oob += eccbytes;
2507 if (chip->ecc.postpad) {
2508 chip->write_buf(mtd, oob, chip->ecc.postpad);
2509 oob += chip->ecc.postpad;
2513 size = mtd->oobsize - (oob - chip->oob_poi);
2514 if (size)
2515 chip->write_buf(mtd, oob, size);
2517 return 0;
2520 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2521 * @mtd: mtd info structure
2522 * @chip: nand chip info structure
2523 * @buf: data buffer
2524 * @oob_required: must write chip->oob_poi to OOB
2525 * @page: page number to write
2527 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2528 const uint8_t *buf, int oob_required,
2529 int page)
2531 int i, eccsize = chip->ecc.size, ret;
2532 int eccbytes = chip->ecc.bytes;
2533 int eccsteps = chip->ecc.steps;
2534 uint8_t *ecc_calc = chip->buffers->ecccalc;
2535 const uint8_t *p = buf;
2537 /* Software ECC calculation */
2538 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2539 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2541 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2542 chip->ecc.total);
2543 if (ret)
2544 return ret;
2546 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2550 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2551 * @mtd: mtd info structure
2552 * @chip: nand chip info structure
2553 * @buf: data buffer
2554 * @oob_required: must write chip->oob_poi to OOB
2555 * @page: page number to write
2557 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2558 const uint8_t *buf, int oob_required,
2559 int page)
2561 int i, eccsize = chip->ecc.size, ret;
2562 int eccbytes = chip->ecc.bytes;
2563 int eccsteps = chip->ecc.steps;
2564 uint8_t *ecc_calc = chip->buffers->ecccalc;
2565 const uint8_t *p = buf;
2567 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2568 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2569 chip->write_buf(mtd, p, eccsize);
2570 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2573 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2574 chip->ecc.total);
2575 if (ret)
2576 return ret;
2578 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2580 return 0;
2585 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2586 * @mtd: mtd info structure
2587 * @chip: nand chip info structure
2588 * @offset: column address of subpage within the page
2589 * @data_len: data length
2590 * @buf: data buffer
2591 * @oob_required: must write chip->oob_poi to OOB
2592 * @page: page number to write
2594 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2595 struct nand_chip *chip, uint32_t offset,
2596 uint32_t data_len, const uint8_t *buf,
2597 int oob_required, int page)
2599 uint8_t *oob_buf = chip->oob_poi;
2600 uint8_t *ecc_calc = chip->buffers->ecccalc;
2601 int ecc_size = chip->ecc.size;
2602 int ecc_bytes = chip->ecc.bytes;
2603 int ecc_steps = chip->ecc.steps;
2604 uint32_t start_step = offset / ecc_size;
2605 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2606 int oob_bytes = mtd->oobsize / ecc_steps;
2607 int step, ret;
2609 for (step = 0; step < ecc_steps; step++) {
2610 /* configure controller for WRITE access */
2611 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2613 /* write data (untouched subpages already masked by 0xFF) */
2614 chip->write_buf(mtd, buf, ecc_size);
2616 /* mask ECC of un-touched subpages by padding 0xFF */
2617 if ((step < start_step) || (step > end_step))
2618 memset(ecc_calc, 0xff, ecc_bytes);
2619 else
2620 chip->ecc.calculate(mtd, buf, ecc_calc);
2622 /* mask OOB of un-touched subpages by padding 0xFF */
2623 /* if oob_required, preserve OOB metadata of written subpage */
2624 if (!oob_required || (step < start_step) || (step > end_step))
2625 memset(oob_buf, 0xff, oob_bytes);
2627 buf += ecc_size;
2628 ecc_calc += ecc_bytes;
2629 oob_buf += oob_bytes;
2632 /* copy calculated ECC for whole page to chip->buffer->oob */
2633 /* this include masked-value(0xFF) for unwritten subpages */
2634 ecc_calc = chip->buffers->ecccalc;
2635 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2636 chip->ecc.total);
2637 if (ret)
2638 return ret;
2640 /* write OOB buffer to NAND device */
2641 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2643 return 0;
2648 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2649 * @mtd: mtd info structure
2650 * @chip: nand chip info structure
2651 * @buf: data buffer
2652 * @oob_required: must write chip->oob_poi to OOB
2653 * @page: page number to write
2655 * The hw generator calculates the error syndrome automatically. Therefore we
2656 * need a special oob layout and handling.
2658 static int nand_write_page_syndrome(struct mtd_info *mtd,
2659 struct nand_chip *chip,
2660 const uint8_t *buf, int oob_required,
2661 int page)
2663 int i, eccsize = chip->ecc.size;
2664 int eccbytes = chip->ecc.bytes;
2665 int eccsteps = chip->ecc.steps;
2666 const uint8_t *p = buf;
2667 uint8_t *oob = chip->oob_poi;
2669 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2671 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2672 chip->write_buf(mtd, p, eccsize);
2674 if (chip->ecc.prepad) {
2675 chip->write_buf(mtd, oob, chip->ecc.prepad);
2676 oob += chip->ecc.prepad;
2679 chip->ecc.calculate(mtd, p, oob);
2680 chip->write_buf(mtd, oob, eccbytes);
2681 oob += eccbytes;
2683 if (chip->ecc.postpad) {
2684 chip->write_buf(mtd, oob, chip->ecc.postpad);
2685 oob += chip->ecc.postpad;
2689 /* Calculate remaining oob bytes */
2690 i = mtd->oobsize - (oob - chip->oob_poi);
2691 if (i)
2692 chip->write_buf(mtd, oob, i);
2694 return 0;
2698 * nand_write_page - [REPLACEABLE] write one page
2699 * @mtd: MTD device structure
2700 * @chip: NAND chip descriptor
2701 * @offset: address offset within the page
2702 * @data_len: length of actual data to be written
2703 * @buf: the data to write
2704 * @oob_required: must write chip->oob_poi to OOB
2705 * @page: page number to write
2706 * @cached: cached programming
2707 * @raw: use _raw version of write_page
2709 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2710 uint32_t offset, int data_len, const uint8_t *buf,
2711 int oob_required, int page, int cached, int raw)
2713 int status, subpage;
2715 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2716 chip->ecc.write_subpage)
2717 subpage = offset || (data_len < mtd->writesize);
2718 else
2719 subpage = 0;
2721 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2723 if (unlikely(raw))
2724 status = chip->ecc.write_page_raw(mtd, chip, buf,
2725 oob_required, page);
2726 else if (subpage)
2727 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2728 buf, oob_required, page);
2729 else
2730 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2731 page);
2733 if (status < 0)
2734 return status;
2737 * Cached progamming disabled for now. Not sure if it's worth the
2738 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2740 cached = 0;
2742 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2744 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2745 status = chip->waitfunc(mtd, chip);
2747 * See if operation failed and additional status checks are
2748 * available.
2750 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2751 status = chip->errstat(mtd, chip, FL_WRITING, status,
2752 page);
2754 if (status & NAND_STATUS_FAIL)
2755 return -EIO;
2756 } else {
2757 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2758 status = chip->waitfunc(mtd, chip);
2761 return 0;
2765 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2766 * @mtd: MTD device structure
2767 * @oob: oob data buffer
2768 * @len: oob data write length
2769 * @ops: oob ops structure
2771 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2772 struct mtd_oob_ops *ops)
2774 struct nand_chip *chip = mtd_to_nand(mtd);
2775 int ret;
2778 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2779 * data from a previous OOB read.
2781 memset(chip->oob_poi, 0xff, mtd->oobsize);
2783 switch (ops->mode) {
2785 case MTD_OPS_PLACE_OOB:
2786 case MTD_OPS_RAW:
2787 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2788 return oob + len;
2790 case MTD_OPS_AUTO_OOB:
2791 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
2792 ops->ooboffs, len);
2793 BUG_ON(ret);
2794 return oob + len;
2796 default:
2797 BUG();
2799 return NULL;
2802 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2805 * nand_do_write_ops - [INTERN] NAND write with ECC
2806 * @mtd: MTD device structure
2807 * @to: offset to write to
2808 * @ops: oob operations description structure
2810 * NAND write with ECC.
2812 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2813 struct mtd_oob_ops *ops)
2815 int chipnr, realpage, page, blockmask, column;
2816 struct nand_chip *chip = mtd_to_nand(mtd);
2817 uint32_t writelen = ops->len;
2819 uint32_t oobwritelen = ops->ooblen;
2820 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2822 uint8_t *oob = ops->oobbuf;
2823 uint8_t *buf = ops->datbuf;
2824 int ret;
2825 int oob_required = oob ? 1 : 0;
2827 ops->retlen = 0;
2828 if (!writelen)
2829 return 0;
2831 /* Reject writes, which are not page aligned */
2832 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2833 pr_notice("%s: attempt to write non page aligned data\n",
2834 __func__);
2835 return -EINVAL;
2838 column = to & (mtd->writesize - 1);
2840 chipnr = (int)(to >> chip->chip_shift);
2841 chip->select_chip(mtd, chipnr);
2843 /* Check, if it is write protected */
2844 if (nand_check_wp(mtd)) {
2845 ret = -EIO;
2846 goto err_out;
2849 realpage = (int)(to >> chip->page_shift);
2850 page = realpage & chip->pagemask;
2851 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2853 /* Invalidate the page cache, when we write to the cached page */
2854 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2855 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2856 chip->pagebuf = -1;
2858 /* Don't allow multipage oob writes with offset */
2859 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2860 ret = -EINVAL;
2861 goto err_out;
2864 while (1) {
2865 int bytes = mtd->writesize;
2866 int cached = writelen > bytes && page != blockmask;
2867 uint8_t *wbuf = buf;
2868 int use_bufpoi;
2869 int part_pagewr = (column || writelen < mtd->writesize);
2871 if (part_pagewr)
2872 use_bufpoi = 1;
2873 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2874 use_bufpoi = !virt_addr_valid(buf);
2875 else
2876 use_bufpoi = 0;
2878 /* Partial page write?, or need to use bounce buffer */
2879 if (use_bufpoi) {
2880 pr_debug("%s: using write bounce buffer for buf@%p\n",
2881 __func__, buf);
2882 cached = 0;
2883 if (part_pagewr)
2884 bytes = min_t(int, bytes - column, writelen);
2885 chip->pagebuf = -1;
2886 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2887 memcpy(&chip->buffers->databuf[column], buf, bytes);
2888 wbuf = chip->buffers->databuf;
2891 if (unlikely(oob)) {
2892 size_t len = min(oobwritelen, oobmaxlen);
2893 oob = nand_fill_oob(mtd, oob, len, ops);
2894 oobwritelen -= len;
2895 } else {
2896 /* We still need to erase leftover OOB data */
2897 memset(chip->oob_poi, 0xff, mtd->oobsize);
2899 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2900 oob_required, page, cached,
2901 (ops->mode == MTD_OPS_RAW));
2902 if (ret)
2903 break;
2905 writelen -= bytes;
2906 if (!writelen)
2907 break;
2909 column = 0;
2910 buf += bytes;
2911 realpage++;
2913 page = realpage & chip->pagemask;
2914 /* Check, if we cross a chip boundary */
2915 if (!page) {
2916 chipnr++;
2917 chip->select_chip(mtd, -1);
2918 chip->select_chip(mtd, chipnr);
2922 ops->retlen = ops->len - writelen;
2923 if (unlikely(oob))
2924 ops->oobretlen = ops->ooblen;
2926 err_out:
2927 chip->select_chip(mtd, -1);
2928 return ret;
2932 * panic_nand_write - [MTD Interface] NAND write with ECC
2933 * @mtd: MTD device structure
2934 * @to: offset to write to
2935 * @len: number of bytes to write
2936 * @retlen: pointer to variable to store the number of written bytes
2937 * @buf: the data to write
2939 * NAND write with ECC. Used when performing writes in interrupt context, this
2940 * may for example be called by mtdoops when writing an oops while in panic.
2942 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2943 size_t *retlen, const uint8_t *buf)
2945 struct nand_chip *chip = mtd_to_nand(mtd);
2946 int chipnr = (int)(to >> chip->chip_shift);
2947 struct mtd_oob_ops ops;
2948 int ret;
2950 /* Grab the device */
2951 panic_nand_get_device(chip, mtd, FL_WRITING);
2953 chip->select_chip(mtd, chipnr);
2955 /* Wait for the device to get ready */
2956 panic_nand_wait(mtd, chip, 400);
2958 memset(&ops, 0, sizeof(ops));
2959 ops.len = len;
2960 ops.datbuf = (uint8_t *)buf;
2961 ops.mode = MTD_OPS_PLACE_OOB;
2963 ret = nand_do_write_ops(mtd, to, &ops);
2965 *retlen = ops.retlen;
2966 return ret;
2970 * nand_write - [MTD Interface] NAND write with ECC
2971 * @mtd: MTD device structure
2972 * @to: offset to write to
2973 * @len: number of bytes to write
2974 * @retlen: pointer to variable to store the number of written bytes
2975 * @buf: the data to write
2977 * NAND write with ECC.
2979 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2980 size_t *retlen, const uint8_t *buf)
2982 struct mtd_oob_ops ops;
2983 int ret;
2985 nand_get_device(mtd, FL_WRITING);
2986 memset(&ops, 0, sizeof(ops));
2987 ops.len = len;
2988 ops.datbuf = (uint8_t *)buf;
2989 ops.mode = MTD_OPS_PLACE_OOB;
2990 ret = nand_do_write_ops(mtd, to, &ops);
2991 *retlen = ops.retlen;
2992 nand_release_device(mtd);
2993 return ret;
2997 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2998 * @mtd: MTD device structure
2999 * @to: offset to write to
3000 * @ops: oob operation description structure
3002 * NAND write out-of-band.
3004 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
3005 struct mtd_oob_ops *ops)
3007 int chipnr, page, status, len;
3008 struct nand_chip *chip = mtd_to_nand(mtd);
3010 pr_debug("%s: to = 0x%08x, len = %i\n",
3011 __func__, (unsigned int)to, (int)ops->ooblen);
3013 len = mtd_oobavail(mtd, ops);
3015 /* Do not allow write past end of page */
3016 if ((ops->ooboffs + ops->ooblen) > len) {
3017 pr_debug("%s: attempt to write past end of page\n",
3018 __func__);
3019 return -EINVAL;
3022 if (unlikely(ops->ooboffs >= len)) {
3023 pr_debug("%s: attempt to start write outside oob\n",
3024 __func__);
3025 return -EINVAL;
3028 /* Do not allow write past end of device */
3029 if (unlikely(to >= mtd->size ||
3030 ops->ooboffs + ops->ooblen >
3031 ((mtd->size >> chip->page_shift) -
3032 (to >> chip->page_shift)) * len)) {
3033 pr_debug("%s: attempt to write beyond end of device\n",
3034 __func__);
3035 return -EINVAL;
3038 chipnr = (int)(to >> chip->chip_shift);
3041 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
3042 * of my DiskOnChip 2000 test units) will clear the whole data page too
3043 * if we don't do this. I have no clue why, but I seem to have 'fixed'
3044 * it in the doc2000 driver in August 1999. dwmw2.
3046 nand_reset(chip, chipnr);
3048 chip->select_chip(mtd, chipnr);
3050 /* Shift to get page */
3051 page = (int)(to >> chip->page_shift);
3053 /* Check, if it is write protected */
3054 if (nand_check_wp(mtd)) {
3055 chip->select_chip(mtd, -1);
3056 return -EROFS;
3059 /* Invalidate the page cache, if we write to the cached page */
3060 if (page == chip->pagebuf)
3061 chip->pagebuf = -1;
3063 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
3065 if (ops->mode == MTD_OPS_RAW)
3066 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
3067 else
3068 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
3070 chip->select_chip(mtd, -1);
3072 if (status)
3073 return status;
3075 ops->oobretlen = ops->ooblen;
3077 return 0;
3081 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3082 * @mtd: MTD device structure
3083 * @to: offset to write to
3084 * @ops: oob operation description structure
3086 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
3087 struct mtd_oob_ops *ops)
3089 int ret = -ENOTSUPP;
3091 ops->retlen = 0;
3093 /* Do not allow writes past end of device */
3094 if (ops->datbuf && (to + ops->len) > mtd->size) {
3095 pr_debug("%s: attempt to write beyond end of device\n",
3096 __func__);
3097 return -EINVAL;
3100 nand_get_device(mtd, FL_WRITING);
3102 switch (ops->mode) {
3103 case MTD_OPS_PLACE_OOB:
3104 case MTD_OPS_AUTO_OOB:
3105 case MTD_OPS_RAW:
3106 break;
3108 default:
3109 goto out;
3112 if (!ops->datbuf)
3113 ret = nand_do_write_oob(mtd, to, ops);
3114 else
3115 ret = nand_do_write_ops(mtd, to, ops);
3117 out:
3118 nand_release_device(mtd);
3119 return ret;
3123 * single_erase - [GENERIC] NAND standard block erase command function
3124 * @mtd: MTD device structure
3125 * @page: the page address of the block which will be erased
3127 * Standard erase command for NAND chips. Returns NAND status.
3129 static int single_erase(struct mtd_info *mtd, int page)
3131 struct nand_chip *chip = mtd_to_nand(mtd);
3132 /* Send commands to erase a block */
3133 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
3134 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
3136 return chip->waitfunc(mtd, chip);
3140 * nand_erase - [MTD Interface] erase block(s)
3141 * @mtd: MTD device structure
3142 * @instr: erase instruction
3144 * Erase one ore more blocks.
3146 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
3148 return nand_erase_nand(mtd, instr, 0);
3152 * nand_erase_nand - [INTERN] erase block(s)
3153 * @mtd: MTD device structure
3154 * @instr: erase instruction
3155 * @allowbbt: allow erasing the bbt area
3157 * Erase one ore more blocks.
3159 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3160 int allowbbt)
3162 int page, status, pages_per_block, ret, chipnr;
3163 struct nand_chip *chip = mtd_to_nand(mtd);
3164 loff_t len;
3166 pr_debug("%s: start = 0x%012llx, len = %llu\n",
3167 __func__, (unsigned long long)instr->addr,
3168 (unsigned long long)instr->len);
3170 if (check_offs_len(mtd, instr->addr, instr->len))
3171 return -EINVAL;
3173 /* Grab the lock and see if the device is available */
3174 nand_get_device(mtd, FL_ERASING);
3176 /* Shift to get first page */
3177 page = (int)(instr->addr >> chip->page_shift);
3178 chipnr = (int)(instr->addr >> chip->chip_shift);
3180 /* Calculate pages in each block */
3181 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
3183 /* Select the NAND device */
3184 chip->select_chip(mtd, chipnr);
3186 /* Check, if it is write protected */
3187 if (nand_check_wp(mtd)) {
3188 pr_debug("%s: device is write protected!\n",
3189 __func__);
3190 instr->state = MTD_ERASE_FAILED;
3191 goto erase_exit;
3194 /* Loop through the pages */
3195 len = instr->len;
3197 instr->state = MTD_ERASING;
3199 while (len) {
3200 /* Check if we have a bad block, we do not erase bad blocks! */
3201 if (nand_block_checkbad(mtd, ((loff_t) page) <<
3202 chip->page_shift, allowbbt)) {
3203 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3204 __func__, page);
3205 instr->state = MTD_ERASE_FAILED;
3206 goto erase_exit;
3210 * Invalidate the page cache, if we erase the block which
3211 * contains the current cached page.
3213 if (page <= chip->pagebuf && chip->pagebuf <
3214 (page + pages_per_block))
3215 chip->pagebuf = -1;
3217 status = chip->erase(mtd, page & chip->pagemask);
3220 * See if operation failed and additional status checks are
3221 * available
3223 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
3224 status = chip->errstat(mtd, chip, FL_ERASING,
3225 status, page);
3227 /* See if block erase succeeded */
3228 if (status & NAND_STATUS_FAIL) {
3229 pr_debug("%s: failed erase, page 0x%08x\n",
3230 __func__, page);
3231 instr->state = MTD_ERASE_FAILED;
3232 instr->fail_addr =
3233 ((loff_t)page << chip->page_shift);
3234 goto erase_exit;
3237 /* Increment page address and decrement length */
3238 len -= (1ULL << chip->phys_erase_shift);
3239 page += pages_per_block;
3241 /* Check, if we cross a chip boundary */
3242 if (len && !(page & chip->pagemask)) {
3243 chipnr++;
3244 chip->select_chip(mtd, -1);
3245 chip->select_chip(mtd, chipnr);
3248 instr->state = MTD_ERASE_DONE;
3250 erase_exit:
3252 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
3254 /* Deselect and wake up anyone waiting on the device */
3255 chip->select_chip(mtd, -1);
3256 nand_release_device(mtd);
3258 /* Do call back function */
3259 if (!ret)
3260 mtd_erase_callback(instr);
3262 /* Return more or less happy */
3263 return ret;
3267 * nand_sync - [MTD Interface] sync
3268 * @mtd: MTD device structure
3270 * Sync is actually a wait for chip ready function.
3272 static void nand_sync(struct mtd_info *mtd)
3274 pr_debug("%s: called\n", __func__);
3276 /* Grab the lock and see if the device is available */
3277 nand_get_device(mtd, FL_SYNCING);
3278 /* Release it and go back */
3279 nand_release_device(mtd);
3283 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3284 * @mtd: MTD device structure
3285 * @offs: offset relative to mtd start
3287 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3289 struct nand_chip *chip = mtd_to_nand(mtd);
3290 int chipnr = (int)(offs >> chip->chip_shift);
3291 int ret;
3293 /* Select the NAND device */
3294 nand_get_device(mtd, FL_READING);
3295 chip->select_chip(mtd, chipnr);
3297 ret = nand_block_checkbad(mtd, offs, 0);
3299 chip->select_chip(mtd, -1);
3300 nand_release_device(mtd);
3302 return ret;
3306 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3307 * @mtd: MTD device structure
3308 * @ofs: offset relative to mtd start
3310 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3312 int ret;
3314 ret = nand_block_isbad(mtd, ofs);
3315 if (ret) {
3316 /* If it was bad already, return success and do nothing */
3317 if (ret > 0)
3318 return 0;
3319 return ret;
3322 return nand_block_markbad_lowlevel(mtd, ofs);
3326 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3327 * @mtd: MTD device structure
3328 * @chip: nand chip info structure
3329 * @addr: feature address.
3330 * @subfeature_param: the subfeature parameters, a four bytes array.
3332 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3333 int addr, uint8_t *subfeature_param)
3335 int status;
3336 int i;
3338 if (!chip->onfi_version ||
3339 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3340 & ONFI_OPT_CMD_SET_GET_FEATURES))
3341 return -EINVAL;
3343 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3344 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3345 chip->write_byte(mtd, subfeature_param[i]);
3347 status = chip->waitfunc(mtd, chip);
3348 if (status & NAND_STATUS_FAIL)
3349 return -EIO;
3350 return 0;
3354 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3355 * @mtd: MTD device structure
3356 * @chip: nand chip info structure
3357 * @addr: feature address.
3358 * @subfeature_param: the subfeature parameters, a four bytes array.
3360 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3361 int addr, uint8_t *subfeature_param)
3363 int i;
3365 if (!chip->onfi_version ||
3366 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3367 & ONFI_OPT_CMD_SET_GET_FEATURES))
3368 return -EINVAL;
3370 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3371 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3372 *subfeature_param++ = chip->read_byte(mtd);
3373 return 0;
3377 * nand_suspend - [MTD Interface] Suspend the NAND flash
3378 * @mtd: MTD device structure
3380 static int nand_suspend(struct mtd_info *mtd)
3382 return nand_get_device(mtd, FL_PM_SUSPENDED);
3386 * nand_resume - [MTD Interface] Resume the NAND flash
3387 * @mtd: MTD device structure
3389 static void nand_resume(struct mtd_info *mtd)
3391 struct nand_chip *chip = mtd_to_nand(mtd);
3393 if (chip->state == FL_PM_SUSPENDED)
3394 nand_release_device(mtd);
3395 else
3396 pr_err("%s called for a chip which is not in suspended state\n",
3397 __func__);
3401 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3402 * prevent further operations
3403 * @mtd: MTD device structure
3405 static void nand_shutdown(struct mtd_info *mtd)
3407 nand_get_device(mtd, FL_PM_SUSPENDED);
3410 /* Set default functions */
3411 static void nand_set_defaults(struct nand_chip *chip, int busw)
3413 /* check for proper chip_delay setup, set 20us if not */
3414 if (!chip->chip_delay)
3415 chip->chip_delay = 20;
3417 /* check, if a user supplied command function given */
3418 if (chip->cmdfunc == NULL)
3419 chip->cmdfunc = nand_command;
3421 /* check, if a user supplied wait function given */
3422 if (chip->waitfunc == NULL)
3423 chip->waitfunc = nand_wait;
3425 if (!chip->select_chip)
3426 chip->select_chip = nand_select_chip;
3428 /* set for ONFI nand */
3429 if (!chip->onfi_set_features)
3430 chip->onfi_set_features = nand_onfi_set_features;
3431 if (!chip->onfi_get_features)
3432 chip->onfi_get_features = nand_onfi_get_features;
3434 /* If called twice, pointers that depend on busw may need to be reset */
3435 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3436 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3437 if (!chip->read_word)
3438 chip->read_word = nand_read_word;
3439 if (!chip->block_bad)
3440 chip->block_bad = nand_block_bad;
3441 if (!chip->block_markbad)
3442 chip->block_markbad = nand_default_block_markbad;
3443 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3444 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3445 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3446 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3447 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3448 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3449 if (!chip->scan_bbt)
3450 chip->scan_bbt = nand_default_bbt;
3452 if (!chip->controller) {
3453 chip->controller = &chip->hwcontrol;
3454 nand_hw_control_init(chip->controller);
3459 /* Sanitize ONFI strings so we can safely print them */
3460 static void sanitize_string(uint8_t *s, size_t len)
3462 ssize_t i;
3464 /* Null terminate */
3465 s[len - 1] = 0;
3467 /* Remove non printable chars */
3468 for (i = 0; i < len - 1; i++) {
3469 if (s[i] < ' ' || s[i] > 127)
3470 s[i] = '?';
3473 /* Remove trailing spaces */
3474 strim(s);
3477 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3479 int i;
3480 while (len--) {
3481 crc ^= *p++ << 8;
3482 for (i = 0; i < 8; i++)
3483 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3486 return crc;
3489 /* Parse the Extended Parameter Page. */
3490 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3491 struct nand_chip *chip, struct nand_onfi_params *p)
3493 struct onfi_ext_param_page *ep;
3494 struct onfi_ext_section *s;
3495 struct onfi_ext_ecc_info *ecc;
3496 uint8_t *cursor;
3497 int ret = -EINVAL;
3498 int len;
3499 int i;
3501 len = le16_to_cpu(p->ext_param_page_length) * 16;
3502 ep = kmalloc(len, GFP_KERNEL);
3503 if (!ep)
3504 return -ENOMEM;
3506 /* Send our own NAND_CMD_PARAM. */
3507 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3509 /* Use the Change Read Column command to skip the ONFI param pages. */
3510 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3511 sizeof(*p) * p->num_of_param_pages , -1);
3513 /* Read out the Extended Parameter Page. */
3514 chip->read_buf(mtd, (uint8_t *)ep, len);
3515 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3516 != le16_to_cpu(ep->crc))) {
3517 pr_debug("fail in the CRC.\n");
3518 goto ext_out;
3522 * Check the signature.
3523 * Do not strictly follow the ONFI spec, maybe changed in future.
3525 if (strncmp(ep->sig, "EPPS", 4)) {
3526 pr_debug("The signature is invalid.\n");
3527 goto ext_out;
3530 /* find the ECC section. */
3531 cursor = (uint8_t *)(ep + 1);
3532 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3533 s = ep->sections + i;
3534 if (s->type == ONFI_SECTION_TYPE_2)
3535 break;
3536 cursor += s->length * 16;
3538 if (i == ONFI_EXT_SECTION_MAX) {
3539 pr_debug("We can not find the ECC section.\n");
3540 goto ext_out;
3543 /* get the info we want. */
3544 ecc = (struct onfi_ext_ecc_info *)cursor;
3546 if (!ecc->codeword_size) {
3547 pr_debug("Invalid codeword size\n");
3548 goto ext_out;
3551 chip->ecc_strength_ds = ecc->ecc_bits;
3552 chip->ecc_step_ds = 1 << ecc->codeword_size;
3553 ret = 0;
3555 ext_out:
3556 kfree(ep);
3557 return ret;
3560 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3562 struct nand_chip *chip = mtd_to_nand(mtd);
3563 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3565 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3566 feature);
3570 * Configure chip properties from Micron vendor-specific ONFI table
3572 static void nand_onfi_detect_micron(struct nand_chip *chip,
3573 struct nand_onfi_params *p)
3575 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3577 if (le16_to_cpu(p->vendor_revision) < 1)
3578 return;
3580 chip->read_retries = micron->read_retry_options;
3581 chip->setup_read_retry = nand_setup_read_retry_micron;
3585 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3587 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3588 int *busw)
3590 struct nand_onfi_params *p = &chip->onfi_params;
3591 int i, j;
3592 int val;
3594 /* Try ONFI for unknown chip or LP */
3595 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3596 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3597 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3598 return 0;
3600 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3601 for (i = 0; i < 3; i++) {
3602 for (j = 0; j < sizeof(*p); j++)
3603 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3604 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3605 le16_to_cpu(p->crc)) {
3606 break;
3610 if (i == 3) {
3611 pr_err("Could not find valid ONFI parameter page; aborting\n");
3612 return 0;
3615 /* Check version */
3616 val = le16_to_cpu(p->revision);
3617 if (val & (1 << 5))
3618 chip->onfi_version = 23;
3619 else if (val & (1 << 4))
3620 chip->onfi_version = 22;
3621 else if (val & (1 << 3))
3622 chip->onfi_version = 21;
3623 else if (val & (1 << 2))
3624 chip->onfi_version = 20;
3625 else if (val & (1 << 1))
3626 chip->onfi_version = 10;
3628 if (!chip->onfi_version) {
3629 pr_info("unsupported ONFI version: %d\n", val);
3630 return 0;
3633 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3634 sanitize_string(p->model, sizeof(p->model));
3635 if (!mtd->name)
3636 mtd->name = p->model;
3638 mtd->writesize = le32_to_cpu(p->byte_per_page);
3641 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3642 * (don't ask me who thought of this...). MTD assumes that these
3643 * dimensions will be power-of-2, so just truncate the remaining area.
3645 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3646 mtd->erasesize *= mtd->writesize;
3648 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3650 /* See erasesize comment */
3651 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3652 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3653 chip->bits_per_cell = p->bits_per_cell;
3655 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3656 *busw = NAND_BUSWIDTH_16;
3657 else
3658 *busw = 0;
3660 if (p->ecc_bits != 0xff) {
3661 chip->ecc_strength_ds = p->ecc_bits;
3662 chip->ecc_step_ds = 512;
3663 } else if (chip->onfi_version >= 21 &&
3664 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3667 * The nand_flash_detect_ext_param_page() uses the
3668 * Change Read Column command which maybe not supported
3669 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3670 * now. We do not replace user supplied command function.
3672 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3673 chip->cmdfunc = nand_command_lp;
3675 /* The Extended Parameter Page is supported since ONFI 2.1. */
3676 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3677 pr_warn("Failed to detect ONFI extended param page\n");
3678 } else {
3679 pr_warn("Could not retrieve ONFI ECC requirements\n");
3682 if (p->jedec_id == NAND_MFR_MICRON)
3683 nand_onfi_detect_micron(chip, p);
3685 return 1;
3689 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3691 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3692 int *busw)
3694 struct nand_jedec_params *p = &chip->jedec_params;
3695 struct jedec_ecc_info *ecc;
3696 int val;
3697 int i, j;
3699 /* Try JEDEC for unknown chip or LP */
3700 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3701 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3702 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3703 chip->read_byte(mtd) != 'C')
3704 return 0;
3706 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3707 for (i = 0; i < 3; i++) {
3708 for (j = 0; j < sizeof(*p); j++)
3709 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3711 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3712 le16_to_cpu(p->crc))
3713 break;
3716 if (i == 3) {
3717 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3718 return 0;
3721 /* Check version */
3722 val = le16_to_cpu(p->revision);
3723 if (val & (1 << 2))
3724 chip->jedec_version = 10;
3725 else if (val & (1 << 1))
3726 chip->jedec_version = 1; /* vendor specific version */
3728 if (!chip->jedec_version) {
3729 pr_info("unsupported JEDEC version: %d\n", val);
3730 return 0;
3733 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3734 sanitize_string(p->model, sizeof(p->model));
3735 if (!mtd->name)
3736 mtd->name = p->model;
3738 mtd->writesize = le32_to_cpu(p->byte_per_page);
3740 /* Please reference to the comment for nand_flash_detect_onfi. */
3741 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3742 mtd->erasesize *= mtd->writesize;
3744 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3746 /* Please reference to the comment for nand_flash_detect_onfi. */
3747 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3748 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3749 chip->bits_per_cell = p->bits_per_cell;
3751 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3752 *busw = NAND_BUSWIDTH_16;
3753 else
3754 *busw = 0;
3756 /* ECC info */
3757 ecc = &p->ecc_info[0];
3759 if (ecc->codeword_size >= 9) {
3760 chip->ecc_strength_ds = ecc->ecc_bits;
3761 chip->ecc_step_ds = 1 << ecc->codeword_size;
3762 } else {
3763 pr_warn("Invalid codeword size\n");
3766 return 1;
3770 * nand_id_has_period - Check if an ID string has a given wraparound period
3771 * @id_data: the ID string
3772 * @arrlen: the length of the @id_data array
3773 * @period: the period of repitition
3775 * Check if an ID string is repeated within a given sequence of bytes at
3776 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3777 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3778 * if the repetition has a period of @period; otherwise, returns zero.
3780 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3782 int i, j;
3783 for (i = 0; i < period; i++)
3784 for (j = i + period; j < arrlen; j += period)
3785 if (id_data[i] != id_data[j])
3786 return 0;
3787 return 1;
3791 * nand_id_len - Get the length of an ID string returned by CMD_READID
3792 * @id_data: the ID string
3793 * @arrlen: the length of the @id_data array
3795 * Returns the length of the ID string, according to known wraparound/trailing
3796 * zero patterns. If no pattern exists, returns the length of the array.
3798 static int nand_id_len(u8 *id_data, int arrlen)
3800 int last_nonzero, period;
3802 /* Find last non-zero byte */
3803 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3804 if (id_data[last_nonzero])
3805 break;
3807 /* All zeros */
3808 if (last_nonzero < 0)
3809 return 0;
3811 /* Calculate wraparound period */
3812 for (period = 1; period < arrlen; period++)
3813 if (nand_id_has_period(id_data, arrlen, period))
3814 break;
3816 /* There's a repeated pattern */
3817 if (period < arrlen)
3818 return period;
3820 /* There are trailing zeros */
3821 if (last_nonzero < arrlen - 1)
3822 return last_nonzero + 1;
3824 /* No pattern detected */
3825 return arrlen;
3828 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3829 static int nand_get_bits_per_cell(u8 cellinfo)
3831 int bits;
3833 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3834 bits >>= NAND_CI_CELLTYPE_SHIFT;
3835 return bits + 1;
3839 * Many new NAND share similar device ID codes, which represent the size of the
3840 * chip. The rest of the parameters must be decoded according to generic or
3841 * manufacturer-specific "extended ID" decoding patterns.
3843 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3844 u8 id_data[8], int *busw)
3846 int extid, id_len;
3847 /* The 3rd id byte holds MLC / multichip data */
3848 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3849 /* The 4th id byte is the important one */
3850 extid = id_data[3];
3852 id_len = nand_id_len(id_data, 8);
3855 * Field definitions are in the following datasheets:
3856 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3857 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3858 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3860 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3861 * ID to decide what to do.
3863 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3864 !nand_is_slc(chip) && id_data[5] != 0x00) {
3865 /* Calc pagesize */
3866 mtd->writesize = 2048 << (extid & 0x03);
3867 extid >>= 2;
3868 /* Calc oobsize */
3869 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3870 case 1:
3871 mtd->oobsize = 128;
3872 break;
3873 case 2:
3874 mtd->oobsize = 218;
3875 break;
3876 case 3:
3877 mtd->oobsize = 400;
3878 break;
3879 case 4:
3880 mtd->oobsize = 436;
3881 break;
3882 case 5:
3883 mtd->oobsize = 512;
3884 break;
3885 case 6:
3886 mtd->oobsize = 640;
3887 break;
3888 case 7:
3889 default: /* Other cases are "reserved" (unknown) */
3890 mtd->oobsize = 1024;
3891 break;
3893 extid >>= 2;
3894 /* Calc blocksize */
3895 mtd->erasesize = (128 * 1024) <<
3896 (((extid >> 1) & 0x04) | (extid & 0x03));
3897 *busw = 0;
3898 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3899 !nand_is_slc(chip)) {
3900 unsigned int tmp;
3902 /* Calc pagesize */
3903 mtd->writesize = 2048 << (extid & 0x03);
3904 extid >>= 2;
3905 /* Calc oobsize */
3906 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3907 case 0:
3908 mtd->oobsize = 128;
3909 break;
3910 case 1:
3911 mtd->oobsize = 224;
3912 break;
3913 case 2:
3914 mtd->oobsize = 448;
3915 break;
3916 case 3:
3917 mtd->oobsize = 64;
3918 break;
3919 case 4:
3920 mtd->oobsize = 32;
3921 break;
3922 case 5:
3923 mtd->oobsize = 16;
3924 break;
3925 default:
3926 mtd->oobsize = 640;
3927 break;
3929 extid >>= 2;
3930 /* Calc blocksize */
3931 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3932 if (tmp < 0x03)
3933 mtd->erasesize = (128 * 1024) << tmp;
3934 else if (tmp == 0x03)
3935 mtd->erasesize = 768 * 1024;
3936 else
3937 mtd->erasesize = (64 * 1024) << tmp;
3938 *busw = 0;
3939 } else {
3940 /* Calc pagesize */
3941 mtd->writesize = 1024 << (extid & 0x03);
3942 extid >>= 2;
3943 /* Calc oobsize */
3944 mtd->oobsize = (8 << (extid & 0x01)) *
3945 (mtd->writesize >> 9);
3946 extid >>= 2;
3947 /* Calc blocksize. Blocksize is multiples of 64KiB */
3948 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3949 extid >>= 2;
3950 /* Get buswidth information */
3951 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3954 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3955 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3956 * follows:
3957 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3958 * 110b -> 24nm
3959 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3961 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3962 nand_is_slc(chip) &&
3963 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3964 !(id_data[4] & 0x80) /* !BENAND */) {
3965 mtd->oobsize = 32 * mtd->writesize >> 9;
3972 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3973 * decodes a matching ID table entry and assigns the MTD size parameters for
3974 * the chip.
3976 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3977 struct nand_flash_dev *type, u8 id_data[8],
3978 int *busw)
3980 int maf_id = id_data[0];
3982 mtd->erasesize = type->erasesize;
3983 mtd->writesize = type->pagesize;
3984 mtd->oobsize = mtd->writesize / 32;
3985 *busw = type->options & NAND_BUSWIDTH_16;
3987 /* All legacy ID NAND are small-page, SLC */
3988 chip->bits_per_cell = 1;
3991 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3992 * some Spansion chips have erasesize that conflicts with size
3993 * listed in nand_ids table.
3994 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3996 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3997 && id_data[6] == 0x00 && id_data[7] == 0x00
3998 && mtd->writesize == 512) {
3999 mtd->erasesize = 128 * 1024;
4000 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
4005 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4006 * heuristic patterns using various detected parameters (e.g., manufacturer,
4007 * page size, cell-type information).
4009 static void nand_decode_bbm_options(struct mtd_info *mtd,
4010 struct nand_chip *chip, u8 id_data[8])
4012 int maf_id = id_data[0];
4014 /* Set the bad block position */
4015 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4016 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
4017 else
4018 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
4021 * Bad block marker is stored in the last page of each block on Samsung
4022 * and Hynix MLC devices; stored in first two pages of each block on
4023 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
4024 * AMD/Spansion, and Macronix. All others scan only the first page.
4026 if (!nand_is_slc(chip) &&
4027 (maf_id == NAND_MFR_SAMSUNG ||
4028 maf_id == NAND_MFR_HYNIX))
4029 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
4030 else if ((nand_is_slc(chip) &&
4031 (maf_id == NAND_MFR_SAMSUNG ||
4032 maf_id == NAND_MFR_HYNIX ||
4033 maf_id == NAND_MFR_TOSHIBA ||
4034 maf_id == NAND_MFR_AMD ||
4035 maf_id == NAND_MFR_MACRONIX)) ||
4036 (mtd->writesize == 2048 &&
4037 maf_id == NAND_MFR_MICRON))
4038 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
4041 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4043 return type->id_len;
4046 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
4047 struct nand_flash_dev *type, u8 *id_data, int *busw)
4049 if (!strncmp(type->id, id_data, type->id_len)) {
4050 mtd->writesize = type->pagesize;
4051 mtd->erasesize = type->erasesize;
4052 mtd->oobsize = type->oobsize;
4054 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4055 chip->chipsize = (uint64_t)type->chipsize << 20;
4056 chip->options |= type->options;
4057 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
4058 chip->ecc_step_ds = NAND_ECC_STEP(type);
4059 chip->onfi_timing_mode_default =
4060 type->onfi_timing_mode_default;
4062 *busw = type->options & NAND_BUSWIDTH_16;
4064 if (!mtd->name)
4065 mtd->name = type->name;
4067 return true;
4069 return false;
4073 * Get the flash and manufacturer id and lookup if the type is supported.
4075 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
4076 struct nand_chip *chip,
4077 int *maf_id, int *dev_id,
4078 struct nand_flash_dev *type)
4080 int busw;
4081 int i, maf_idx;
4082 u8 id_data[8];
4085 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4086 * after power-up.
4088 nand_reset(chip, 0);
4090 /* Select the device */
4091 chip->select_chip(mtd, 0);
4093 /* Send the command for reading device ID */
4094 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4096 /* Read manufacturer and device IDs */
4097 *maf_id = chip->read_byte(mtd);
4098 *dev_id = chip->read_byte(mtd);
4101 * Try again to make sure, as some systems the bus-hold or other
4102 * interface concerns can cause random data which looks like a
4103 * possibly credible NAND flash to appear. If the two results do
4104 * not match, ignore the device completely.
4107 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4109 /* Read entire ID string */
4110 for (i = 0; i < 8; i++)
4111 id_data[i] = chip->read_byte(mtd);
4113 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
4114 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4115 *maf_id, *dev_id, id_data[0], id_data[1]);
4116 return ERR_PTR(-ENODEV);
4119 if (!type)
4120 type = nand_flash_ids;
4122 for (; type->name != NULL; type++) {
4123 if (is_full_id_nand(type)) {
4124 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
4125 goto ident_done;
4126 } else if (*dev_id == type->dev_id) {
4127 break;
4131 chip->onfi_version = 0;
4132 if (!type->name || !type->pagesize) {
4133 /* Check if the chip is ONFI compliant */
4134 if (nand_flash_detect_onfi(mtd, chip, &busw))
4135 goto ident_done;
4137 /* Check if the chip is JEDEC compliant */
4138 if (nand_flash_detect_jedec(mtd, chip, &busw))
4139 goto ident_done;
4142 if (!type->name)
4143 return ERR_PTR(-ENODEV);
4145 if (!mtd->name)
4146 mtd->name = type->name;
4148 chip->chipsize = (uint64_t)type->chipsize << 20;
4150 if (!type->pagesize) {
4151 /* Decode parameters from extended ID */
4152 nand_decode_ext_id(mtd, chip, id_data, &busw);
4153 } else {
4154 nand_decode_id(mtd, chip, type, id_data, &busw);
4156 /* Get chip options */
4157 chip->options |= type->options;
4160 * Check if chip is not a Samsung device. Do not clear the
4161 * options for chips which do not have an extended id.
4163 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
4164 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
4165 ident_done:
4167 /* Try to identify manufacturer */
4168 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
4169 if (nand_manuf_ids[maf_idx].id == *maf_id)
4170 break;
4173 if (chip->options & NAND_BUSWIDTH_AUTO) {
4174 WARN_ON(chip->options & NAND_BUSWIDTH_16);
4175 chip->options |= busw;
4176 nand_set_defaults(chip, busw);
4177 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4179 * Check, if buswidth is correct. Hardware drivers should set
4180 * chip correct!
4182 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4183 *maf_id, *dev_id);
4184 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
4185 pr_warn("bus width %d instead %d bit\n",
4186 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
4187 busw ? 16 : 8);
4188 return ERR_PTR(-EINVAL);
4191 nand_decode_bbm_options(mtd, chip, id_data);
4193 /* Calculate the address shift from the page size */
4194 chip->page_shift = ffs(mtd->writesize) - 1;
4195 /* Convert chipsize to number of pages per chip -1 */
4196 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4198 chip->bbt_erase_shift = chip->phys_erase_shift =
4199 ffs(mtd->erasesize) - 1;
4200 if (chip->chipsize & 0xffffffff)
4201 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4202 else {
4203 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4204 chip->chip_shift += 32 - 1;
4207 chip->badblockbits = 8;
4208 chip->erase = single_erase;
4210 /* Do not replace user supplied command function! */
4211 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4212 chip->cmdfunc = nand_command_lp;
4214 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4215 *maf_id, *dev_id);
4217 if (chip->onfi_version)
4218 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4219 chip->onfi_params.model);
4220 else if (chip->jedec_version)
4221 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4222 chip->jedec_params.model);
4223 else
4224 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4225 type->name);
4227 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4228 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4229 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4230 return type;
4233 static const char * const nand_ecc_modes[] = {
4234 [NAND_ECC_NONE] = "none",
4235 [NAND_ECC_SOFT] = "soft",
4236 [NAND_ECC_HW] = "hw",
4237 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
4238 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
4241 static int of_get_nand_ecc_mode(struct device_node *np)
4243 const char *pm;
4244 int err, i;
4246 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4247 if (err < 0)
4248 return err;
4250 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4251 if (!strcasecmp(pm, nand_ecc_modes[i]))
4252 return i;
4255 * For backward compatibility we support few obsoleted values that don't
4256 * have their mappings into nand_ecc_modes_t anymore (they were merged
4257 * with other enums).
4259 if (!strcasecmp(pm, "soft_bch"))
4260 return NAND_ECC_SOFT;
4262 return -ENODEV;
4265 static const char * const nand_ecc_algos[] = {
4266 [NAND_ECC_HAMMING] = "hamming",
4267 [NAND_ECC_BCH] = "bch",
4270 static int of_get_nand_ecc_algo(struct device_node *np)
4272 const char *pm;
4273 int err, i;
4275 err = of_property_read_string(np, "nand-ecc-algo", &pm);
4276 if (!err) {
4277 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4278 if (!strcasecmp(pm, nand_ecc_algos[i]))
4279 return i;
4280 return -ENODEV;
4284 * For backward compatibility we also read "nand-ecc-mode" checking
4285 * for some obsoleted values that were specifying ECC algorithm.
4287 err = of_property_read_string(np, "nand-ecc-mode", &pm);
4288 if (err < 0)
4289 return err;
4291 if (!strcasecmp(pm, "soft"))
4292 return NAND_ECC_HAMMING;
4293 else if (!strcasecmp(pm, "soft_bch"))
4294 return NAND_ECC_BCH;
4296 return -ENODEV;
4299 static int of_get_nand_ecc_step_size(struct device_node *np)
4301 int ret;
4302 u32 val;
4304 ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4305 return ret ? ret : val;
4308 static int of_get_nand_ecc_strength(struct device_node *np)
4310 int ret;
4311 u32 val;
4313 ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4314 return ret ? ret : val;
4317 static int of_get_nand_bus_width(struct device_node *np)
4319 u32 val;
4321 if (of_property_read_u32(np, "nand-bus-width", &val))
4322 return 8;
4324 switch (val) {
4325 case 8:
4326 case 16:
4327 return val;
4328 default:
4329 return -EIO;
4333 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4335 return of_property_read_bool(np, "nand-on-flash-bbt");
4338 static int nand_dt_init(struct nand_chip *chip)
4340 struct device_node *dn = nand_get_flash_node(chip);
4341 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4343 if (!dn)
4344 return 0;
4346 if (of_get_nand_bus_width(dn) == 16)
4347 chip->options |= NAND_BUSWIDTH_16;
4349 if (of_get_nand_on_flash_bbt(dn))
4350 chip->bbt_options |= NAND_BBT_USE_FLASH;
4352 ecc_mode = of_get_nand_ecc_mode(dn);
4353 ecc_algo = of_get_nand_ecc_algo(dn);
4354 ecc_strength = of_get_nand_ecc_strength(dn);
4355 ecc_step = of_get_nand_ecc_step_size(dn);
4357 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
4358 (!(ecc_step >= 0) && ecc_strength >= 0)) {
4359 pr_err("must set both strength and step size in DT\n");
4360 return -EINVAL;
4363 if (ecc_mode >= 0)
4364 chip->ecc.mode = ecc_mode;
4366 if (ecc_algo >= 0)
4367 chip->ecc.algo = ecc_algo;
4369 if (ecc_strength >= 0)
4370 chip->ecc.strength = ecc_strength;
4372 if (ecc_step > 0)
4373 chip->ecc.size = ecc_step;
4375 if (of_property_read_bool(dn, "nand-ecc-maximize"))
4376 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4378 return 0;
4382 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4383 * @mtd: MTD device structure
4384 * @maxchips: number of chips to scan for
4385 * @table: alternative NAND ID table
4387 * This is the first phase of the normal nand_scan() function. It reads the
4388 * flash ID and sets up MTD fields accordingly.
4391 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4392 struct nand_flash_dev *table)
4394 int i, nand_maf_id, nand_dev_id;
4395 struct nand_chip *chip = mtd_to_nand(mtd);
4396 struct nand_flash_dev *type;
4397 int ret;
4399 ret = nand_dt_init(chip);
4400 if (ret)
4401 return ret;
4403 if (!mtd->name && mtd->dev.parent)
4404 mtd->name = dev_name(mtd->dev.parent);
4406 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
4408 * Default functions assigned for chip_select() and
4409 * cmdfunc() both expect cmd_ctrl() to be populated,
4410 * so we need to check that that's the case
4412 pr_err("chip.cmd_ctrl() callback is not provided");
4413 return -EINVAL;
4415 /* Set the default functions */
4416 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4418 /* Read the flash type */
4419 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4420 &nand_dev_id, table);
4422 if (IS_ERR(type)) {
4423 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4424 pr_warn("No NAND device found\n");
4425 chip->select_chip(mtd, -1);
4426 return PTR_ERR(type);
4429 /* Initialize the ->data_interface field. */
4430 ret = nand_init_data_interface(chip);
4431 if (ret)
4432 return ret;
4435 * Setup the data interface correctly on the chip and controller side.
4436 * This explicit call to nand_setup_data_interface() is only required
4437 * for the first die, because nand_reset() has been called before
4438 * ->data_interface and ->default_onfi_timing_mode were set.
4439 * For the other dies, nand_reset() will automatically switch to the
4440 * best mode for us.
4442 ret = nand_setup_data_interface(chip);
4443 if (ret)
4444 return ret;
4446 chip->select_chip(mtd, -1);
4448 /* Check for a chip array */
4449 for (i = 1; i < maxchips; i++) {
4450 /* See comment in nand_get_flash_type for reset */
4451 nand_reset(chip, i);
4453 chip->select_chip(mtd, i);
4454 /* Send the command for reading device ID */
4455 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4456 /* Read manufacturer and device IDs */
4457 if (nand_maf_id != chip->read_byte(mtd) ||
4458 nand_dev_id != chip->read_byte(mtd)) {
4459 chip->select_chip(mtd, -1);
4460 break;
4462 chip->select_chip(mtd, -1);
4464 if (i > 1)
4465 pr_info("%d chips detected\n", i);
4467 /* Store the number of chips and calc total size for mtd */
4468 chip->numchips = i;
4469 mtd->size = i * chip->chipsize;
4471 return 0;
4473 EXPORT_SYMBOL(nand_scan_ident);
4475 static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
4477 struct nand_chip *chip = mtd_to_nand(mtd);
4478 struct nand_ecc_ctrl *ecc = &chip->ecc;
4480 if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4481 return -EINVAL;
4483 switch (ecc->algo) {
4484 case NAND_ECC_HAMMING:
4485 ecc->calculate = nand_calculate_ecc;
4486 ecc->correct = nand_correct_data;
4487 ecc->read_page = nand_read_page_swecc;
4488 ecc->read_subpage = nand_read_subpage;
4489 ecc->write_page = nand_write_page_swecc;
4490 ecc->read_page_raw = nand_read_page_raw;
4491 ecc->write_page_raw = nand_write_page_raw;
4492 ecc->read_oob = nand_read_oob_std;
4493 ecc->write_oob = nand_write_oob_std;
4494 if (!ecc->size)
4495 ecc->size = 256;
4496 ecc->bytes = 3;
4497 ecc->strength = 1;
4498 return 0;
4499 case NAND_ECC_BCH:
4500 if (!mtd_nand_has_bch()) {
4501 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4502 return -EINVAL;
4504 ecc->calculate = nand_bch_calculate_ecc;
4505 ecc->correct = nand_bch_correct_data;
4506 ecc->read_page = nand_read_page_swecc;
4507 ecc->read_subpage = nand_read_subpage;
4508 ecc->write_page = nand_write_page_swecc;
4509 ecc->read_page_raw = nand_read_page_raw;
4510 ecc->write_page_raw = nand_write_page_raw;
4511 ecc->read_oob = nand_read_oob_std;
4512 ecc->write_oob = nand_write_oob_std;
4515 * Board driver should supply ecc.size and ecc.strength
4516 * values to select how many bits are correctable.
4517 * Otherwise, default to 4 bits for large page devices.
4519 if (!ecc->size && (mtd->oobsize >= 64)) {
4520 ecc->size = 512;
4521 ecc->strength = 4;
4525 * if no ecc placement scheme was provided pickup the default
4526 * large page one.
4528 if (!mtd->ooblayout) {
4529 /* handle large page devices only */
4530 if (mtd->oobsize < 64) {
4531 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4532 return -EINVAL;
4535 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4540 * We can only maximize ECC config when the default layout is
4541 * used, otherwise we don't know how many bytes can really be
4542 * used.
4544 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
4545 ecc->options & NAND_ECC_MAXIMIZE) {
4546 int steps, bytes;
4548 /* Always prefer 1k blocks over 512bytes ones */
4549 ecc->size = 1024;
4550 steps = mtd->writesize / ecc->size;
4552 /* Reserve 2 bytes for the BBM */
4553 bytes = (mtd->oobsize - 2) / steps;
4554 ecc->strength = bytes * 8 / fls(8 * ecc->size);
4557 /* See nand_bch_init() for details. */
4558 ecc->bytes = 0;
4559 ecc->priv = nand_bch_init(mtd);
4560 if (!ecc->priv) {
4561 WARN(1, "BCH ECC initialization failed!\n");
4562 return -EINVAL;
4564 return 0;
4565 default:
4566 WARN(1, "Unsupported ECC algorithm!\n");
4567 return -EINVAL;
4572 * Check if the chip configuration meet the datasheet requirements.
4574 * If our configuration corrects A bits per B bytes and the minimum
4575 * required correction level is X bits per Y bytes, then we must ensure
4576 * both of the following are true:
4578 * (1) A / B >= X / Y
4579 * (2) A >= X
4581 * Requirement (1) ensures we can correct for the required bitflip density.
4582 * Requirement (2) ensures we can correct even when all bitflips are clumped
4583 * in the same sector.
4585 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4587 struct nand_chip *chip = mtd_to_nand(mtd);
4588 struct nand_ecc_ctrl *ecc = &chip->ecc;
4589 int corr, ds_corr;
4591 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4592 /* Not enough information */
4593 return true;
4596 * We get the number of corrected bits per page to compare
4597 * the correction density.
4599 corr = (mtd->writesize * ecc->strength) / ecc->size;
4600 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4602 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4606 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4607 * @mtd: MTD device structure
4609 * This is the second phase of the normal nand_scan() function. It fills out
4610 * all the uninitialized function pointers with the defaults and scans for a
4611 * bad block table if appropriate.
4613 int nand_scan_tail(struct mtd_info *mtd)
4615 struct nand_chip *chip = mtd_to_nand(mtd);
4616 struct nand_ecc_ctrl *ecc = &chip->ecc;
4617 struct nand_buffers *nbuf;
4618 int ret;
4620 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4621 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4622 !(chip->bbt_options & NAND_BBT_USE_FLASH)))
4623 return -EINVAL;
4625 if (!(chip->options & NAND_OWN_BUFFERS)) {
4626 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4627 + mtd->oobsize * 3, GFP_KERNEL);
4628 if (!nbuf)
4629 return -ENOMEM;
4630 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4631 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4632 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4634 chip->buffers = nbuf;
4635 } else {
4636 if (!chip->buffers)
4637 return -ENOMEM;
4640 /* Set the internal oob buffer location, just after the page data */
4641 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4644 * If no default placement scheme is given, select an appropriate one.
4646 if (!mtd->ooblayout &&
4647 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4648 switch (mtd->oobsize) {
4649 case 8:
4650 case 16:
4651 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
4652 break;
4653 case 64:
4654 case 128:
4655 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
4656 break;
4657 default:
4658 WARN(1, "No oob scheme defined for oobsize %d\n",
4659 mtd->oobsize);
4660 ret = -EINVAL;
4661 goto err_free;
4665 if (!chip->write_page)
4666 chip->write_page = nand_write_page;
4669 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4670 * selected and we have 256 byte pagesize fallback to software ECC
4673 switch (ecc->mode) {
4674 case NAND_ECC_HW_OOB_FIRST:
4675 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4676 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4677 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4678 ret = -EINVAL;
4679 goto err_free;
4681 if (!ecc->read_page)
4682 ecc->read_page = nand_read_page_hwecc_oob_first;
4684 case NAND_ECC_HW:
4685 /* Use standard hwecc read page function? */
4686 if (!ecc->read_page)
4687 ecc->read_page = nand_read_page_hwecc;
4688 if (!ecc->write_page)
4689 ecc->write_page = nand_write_page_hwecc;
4690 if (!ecc->read_page_raw)
4691 ecc->read_page_raw = nand_read_page_raw;
4692 if (!ecc->write_page_raw)
4693 ecc->write_page_raw = nand_write_page_raw;
4694 if (!ecc->read_oob)
4695 ecc->read_oob = nand_read_oob_std;
4696 if (!ecc->write_oob)
4697 ecc->write_oob = nand_write_oob_std;
4698 if (!ecc->read_subpage)
4699 ecc->read_subpage = nand_read_subpage;
4700 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4701 ecc->write_subpage = nand_write_subpage_hwecc;
4703 case NAND_ECC_HW_SYNDROME:
4704 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4705 (!ecc->read_page ||
4706 ecc->read_page == nand_read_page_hwecc ||
4707 !ecc->write_page ||
4708 ecc->write_page == nand_write_page_hwecc)) {
4709 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4710 ret = -EINVAL;
4711 goto err_free;
4713 /* Use standard syndrome read/write page function? */
4714 if (!ecc->read_page)
4715 ecc->read_page = nand_read_page_syndrome;
4716 if (!ecc->write_page)
4717 ecc->write_page = nand_write_page_syndrome;
4718 if (!ecc->read_page_raw)
4719 ecc->read_page_raw = nand_read_page_raw_syndrome;
4720 if (!ecc->write_page_raw)
4721 ecc->write_page_raw = nand_write_page_raw_syndrome;
4722 if (!ecc->read_oob)
4723 ecc->read_oob = nand_read_oob_syndrome;
4724 if (!ecc->write_oob)
4725 ecc->write_oob = nand_write_oob_syndrome;
4727 if (mtd->writesize >= ecc->size) {
4728 if (!ecc->strength) {
4729 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4730 ret = -EINVAL;
4731 goto err_free;
4733 break;
4735 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4736 ecc->size, mtd->writesize);
4737 ecc->mode = NAND_ECC_SOFT;
4738 ecc->algo = NAND_ECC_HAMMING;
4740 case NAND_ECC_SOFT:
4741 ret = nand_set_ecc_soft_ops(mtd);
4742 if (ret) {
4743 ret = -EINVAL;
4744 goto err_free;
4746 break;
4748 case NAND_ECC_NONE:
4749 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4750 ecc->read_page = nand_read_page_raw;
4751 ecc->write_page = nand_write_page_raw;
4752 ecc->read_oob = nand_read_oob_std;
4753 ecc->read_page_raw = nand_read_page_raw;
4754 ecc->write_page_raw = nand_write_page_raw;
4755 ecc->write_oob = nand_write_oob_std;
4756 ecc->size = mtd->writesize;
4757 ecc->bytes = 0;
4758 ecc->strength = 0;
4759 break;
4761 default:
4762 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
4763 ret = -EINVAL;
4764 goto err_free;
4767 /* For many systems, the standard OOB write also works for raw */
4768 if (!ecc->read_oob_raw)
4769 ecc->read_oob_raw = ecc->read_oob;
4770 if (!ecc->write_oob_raw)
4771 ecc->write_oob_raw = ecc->write_oob;
4773 /* propagate ecc info to mtd_info */
4774 mtd->ecc_strength = ecc->strength;
4775 mtd->ecc_step_size = ecc->size;
4778 * Set the number of read / write steps for one page depending on ECC
4779 * mode.
4781 ecc->steps = mtd->writesize / ecc->size;
4782 if (ecc->steps * ecc->size != mtd->writesize) {
4783 WARN(1, "Invalid ECC parameters\n");
4784 ret = -EINVAL;
4785 goto err_free;
4787 ecc->total = ecc->steps * ecc->bytes;
4788 if (ecc->total > mtd->oobsize) {
4789 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
4790 ret = -EINVAL;
4791 goto err_free;
4795 * The number of bytes available for a client to place data into
4796 * the out of band area.
4798 ret = mtd_ooblayout_count_freebytes(mtd);
4799 if (ret < 0)
4800 ret = 0;
4802 mtd->oobavail = ret;
4804 /* ECC sanity check: warn if it's too weak */
4805 if (!nand_ecc_strength_good(mtd))
4806 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4807 mtd->name);
4809 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4810 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4811 switch (ecc->steps) {
4812 case 2:
4813 mtd->subpage_sft = 1;
4814 break;
4815 case 4:
4816 case 8:
4817 case 16:
4818 mtd->subpage_sft = 2;
4819 break;
4822 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4824 /* Initialize state */
4825 chip->state = FL_READY;
4827 /* Invalidate the pagebuffer reference */
4828 chip->pagebuf = -1;
4830 /* Large page NAND with SOFT_ECC should support subpage reads */
4831 switch (ecc->mode) {
4832 case NAND_ECC_SOFT:
4833 if (chip->page_shift > 9)
4834 chip->options |= NAND_SUBPAGE_READ;
4835 break;
4837 default:
4838 break;
4841 /* Fill in remaining MTD driver data */
4842 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4843 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4844 MTD_CAP_NANDFLASH;
4845 mtd->_erase = nand_erase;
4846 mtd->_point = NULL;
4847 mtd->_unpoint = NULL;
4848 mtd->_read = nand_read;
4849 mtd->_write = nand_write;
4850 mtd->_panic_write = panic_nand_write;
4851 mtd->_read_oob = nand_read_oob;
4852 mtd->_write_oob = nand_write_oob;
4853 mtd->_sync = nand_sync;
4854 mtd->_lock = NULL;
4855 mtd->_unlock = NULL;
4856 mtd->_suspend = nand_suspend;
4857 mtd->_resume = nand_resume;
4858 mtd->_reboot = nand_shutdown;
4859 mtd->_block_isreserved = nand_block_isreserved;
4860 mtd->_block_isbad = nand_block_isbad;
4861 mtd->_block_markbad = nand_block_markbad;
4862 mtd->writebufsize = mtd->writesize;
4865 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4866 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4867 * properly set.
4869 if (!mtd->bitflip_threshold)
4870 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4872 /* Check, if we should skip the bad block table scan */
4873 if (chip->options & NAND_SKIP_BBTSCAN)
4874 return 0;
4876 /* Build bad block table */
4877 return chip->scan_bbt(mtd);
4878 err_free:
4879 if (!(chip->options & NAND_OWN_BUFFERS))
4880 kfree(chip->buffers);
4881 return ret;
4883 EXPORT_SYMBOL(nand_scan_tail);
4886 * is_module_text_address() isn't exported, and it's mostly a pointless
4887 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4888 * to call us from in-kernel code if the core NAND support is modular.
4890 #ifdef MODULE
4891 #define caller_is_module() (1)
4892 #else
4893 #define caller_is_module() \
4894 is_module_text_address((unsigned long)__builtin_return_address(0))
4895 #endif
4898 * nand_scan - [NAND Interface] Scan for the NAND device
4899 * @mtd: MTD device structure
4900 * @maxchips: number of chips to scan for
4902 * This fills out all the uninitialized function pointers with the defaults.
4903 * The flash ID is read and the mtd/chip structures are filled with the
4904 * appropriate values.
4906 int nand_scan(struct mtd_info *mtd, int maxchips)
4908 int ret;
4910 ret = nand_scan_ident(mtd, maxchips, NULL);
4911 if (!ret)
4912 ret = nand_scan_tail(mtd);
4913 return ret;
4915 EXPORT_SYMBOL(nand_scan);
4918 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
4919 * @chip: NAND chip object
4921 void nand_cleanup(struct nand_chip *chip)
4923 if (chip->ecc.mode == NAND_ECC_SOFT &&
4924 chip->ecc.algo == NAND_ECC_BCH)
4925 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4927 nand_release_data_interface(chip);
4929 /* Free bad block table memory */
4930 kfree(chip->bbt);
4931 if (!(chip->options & NAND_OWN_BUFFERS))
4932 kfree(chip->buffers);
4934 /* Free bad block descriptor memory */
4935 if (chip->badblock_pattern && chip->badblock_pattern->options
4936 & NAND_BBT_DYNAMICSTRUCT)
4937 kfree(chip->badblock_pattern);
4939 EXPORT_SYMBOL_GPL(nand_cleanup);
4942 * nand_release - [NAND Interface] Unregister the MTD device and free resources
4943 * held by the NAND device
4944 * @chip: NAND chip object
4946 void nand_release(struct nand_chip *chip)
4948 mtd_device_unregister(nand_to_mtd(chip));
4949 nand_cleanup(chip);
4951 EXPORT_SYMBOL_GPL(nand_release);
4953 MODULE_LICENSE("GPL");
4954 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4955 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4956 MODULE_DESCRIPTION("Generic NAND flash driver code");