2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/nand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
25 #include <linux/slab.h>
27 #include <linux/of_device.h>
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
64 #define TF(value) (value ? 1 : 0)
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 static u_char bch16_vector
[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
143 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 /* Shared among all NAND instances to synchronize access to the ECC Engine */
148 static struct nand_hw_control omap_gpmc_controller
= {
149 .lock
= __SPIN_LOCK_UNLOCKED(omap_gpmc_controller
.lock
),
150 .wq
= __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller
.wq
),
153 struct omap_nand_info
{
154 struct nand_chip nand
;
155 struct platform_device
*pdev
;
159 enum nand_io xfer_type
;
161 enum omap_ecc ecc_opt
;
162 struct device_node
*elm_of_node
;
164 unsigned long phys_base
;
165 struct completion comp
;
166 struct dma_chan
*dma
;
170 OMAP_NAND_IO_READ
= 0, /* read */
171 OMAP_NAND_IO_WRITE
, /* write */
175 /* Interface to GPMC */
176 struct gpmc_nand_regs reg
;
177 struct gpmc_nand_ops
*ops
;
179 /* fields specific for BCHx_HW ECC scheme */
180 struct device
*elm_dev
;
181 /* NAND ready gpio */
182 struct gpio_desc
*ready_gpiod
;
185 static inline struct omap_nand_info
*mtd_to_omap(struct mtd_info
*mtd
)
187 return container_of(mtd_to_nand(mtd
), struct omap_nand_info
, nand
);
191 * omap_prefetch_enable - configures and starts prefetch transfer
192 * @cs: cs (chip select) number
193 * @fifo_th: fifo threshold to be used for read/ write
194 * @dma_mode: dma mode enable (1) or disable (0)
195 * @u32_count: number of bytes to be transferred
196 * @is_write: prefetch read(0) or write post(1) mode
198 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
199 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
203 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
206 if (readl(info
->reg
.gpmc_prefetch_control
))
209 /* Set the amount of bytes to be prefetched */
210 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
212 /* Set dma/mpu mode, the prefetch read / post write and
213 * enable the engine. Set which cs is has requested for.
215 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
216 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
217 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (is_write
& 0x1));
218 writel(val
, info
->reg
.gpmc_prefetch_config1
);
220 /* Start the prefetch engine */
221 writel(0x1, info
->reg
.gpmc_prefetch_control
);
227 * omap_prefetch_reset - disables and stops the prefetch engine
229 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
233 /* check if the same module/cs is trying to reset */
234 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
235 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
238 /* Stop the PFPW engine */
239 writel(0x0, info
->reg
.gpmc_prefetch_control
);
241 /* Reset/disable the PFPW engine */
242 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
248 * omap_hwcontrol - hardware specific access to control-lines
249 * @mtd: MTD device structure
250 * @cmd: command to device
252 * NAND_NCE: bit 0 -> don't care
253 * NAND_CLE: bit 1 -> Command Latch
254 * NAND_ALE: bit 2 -> Address Latch
256 * NOTE: boards may use different bits for these!!
258 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
260 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
262 if (cmd
!= NAND_CMD_NONE
) {
264 writeb(cmd
, info
->reg
.gpmc_nand_command
);
266 else if (ctrl
& NAND_ALE
)
267 writeb(cmd
, info
->reg
.gpmc_nand_address
);
270 writeb(cmd
, info
->reg
.gpmc_nand_data
);
275 * omap_read_buf8 - read data from NAND controller into buffer
276 * @mtd: MTD device structure
277 * @buf: buffer to store date
278 * @len: number of bytes to read
280 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
282 struct nand_chip
*nand
= mtd_to_nand(mtd
);
284 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
288 * omap_write_buf8 - write buffer to NAND controller
289 * @mtd: MTD device structure
291 * @len: number of bytes to write
293 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
295 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
296 u_char
*p
= (u_char
*)buf
;
300 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
301 /* wait until buffer is available for write */
303 status
= info
->ops
->nand_writebuffer_empty();
309 * omap_read_buf16 - read data from NAND controller into buffer
310 * @mtd: MTD device structure
311 * @buf: buffer to store date
312 * @len: number of bytes to read
314 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
316 struct nand_chip
*nand
= mtd_to_nand(mtd
);
318 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
322 * omap_write_buf16 - write buffer to NAND controller
323 * @mtd: MTD device structure
325 * @len: number of bytes to write
327 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
329 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
330 u16
*p
= (u16
*) buf
;
332 /* FIXME try bursts of writesw() or DMA ... */
336 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
337 /* wait until buffer is available for write */
339 status
= info
->ops
->nand_writebuffer_empty();
345 * omap_read_buf_pref - read data from NAND controller into buffer
346 * @mtd: MTD device structure
347 * @buf: buffer to store date
348 * @len: number of bytes to read
350 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
352 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
353 uint32_t r_count
= 0;
357 /* take care of subpage reads */
359 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
360 omap_read_buf16(mtd
, buf
, len
% 4);
362 omap_read_buf8(mtd
, buf
, len
% 4);
363 p
= (u32
*) (buf
+ len
% 4);
367 /* configure and start prefetch transfer */
368 ret
= omap_prefetch_enable(info
->gpmc_cs
,
369 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
371 /* PFPW engine is busy, use cpu copy method */
372 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
373 omap_read_buf16(mtd
, (u_char
*)p
, len
);
375 omap_read_buf8(mtd
, (u_char
*)p
, len
);
378 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
379 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
380 r_count
= r_count
>> 2;
381 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
385 /* disable and stop the PFPW engine */
386 omap_prefetch_reset(info
->gpmc_cs
, info
);
391 * omap_write_buf_pref - write buffer to NAND controller
392 * @mtd: MTD device structure
394 * @len: number of bytes to write
396 static void omap_write_buf_pref(struct mtd_info
*mtd
,
397 const u_char
*buf
, int len
)
399 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
400 uint32_t w_count
= 0;
403 unsigned long tim
, limit
;
406 /* take care of subpage writes */
408 writeb(*buf
, info
->nand
.IO_ADDR_W
);
409 p
= (u16
*)(buf
+ 1);
413 /* configure and start prefetch transfer */
414 ret
= omap_prefetch_enable(info
->gpmc_cs
,
415 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
417 /* PFPW engine is busy, use cpu copy method */
418 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
419 omap_write_buf16(mtd
, (u_char
*)p
, len
);
421 omap_write_buf8(mtd
, (u_char
*)p
, len
);
424 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
425 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
426 w_count
= w_count
>> 1;
427 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
428 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
430 /* wait for data to flushed-out before reset the prefetch */
432 limit
= (loops_per_jiffy
*
433 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
436 val
= readl(info
->reg
.gpmc_prefetch_status
);
437 val
= PREFETCH_STATUS_COUNT(val
);
438 } while (val
&& (tim
++ < limit
));
440 /* disable and stop the PFPW engine */
441 omap_prefetch_reset(info
->gpmc_cs
, info
);
446 * omap_nand_dma_callback: callback on the completion of dma transfer
447 * @data: pointer to completion data structure
449 static void omap_nand_dma_callback(void *data
)
451 complete((struct completion
*) data
);
455 * omap_nand_dma_transfer: configure and start dma transfer
456 * @mtd: MTD device structure
457 * @addr: virtual address in RAM of source/destination
458 * @len: number of data bytes to be transferred
459 * @is_write: flag for read/write operation
461 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
462 unsigned int len
, int is_write
)
464 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
465 struct dma_async_tx_descriptor
*tx
;
466 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
468 struct scatterlist sg
;
469 unsigned long tim
, limit
;
474 if (!virt_addr_valid(addr
))
477 sg_init_one(&sg
, addr
, len
);
478 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
480 dev_err(&info
->pdev
->dev
,
481 "Couldn't DMA map a %d byte buffer\n", len
);
485 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
486 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
487 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
491 tx
->callback
= omap_nand_dma_callback
;
492 tx
->callback_param
= &info
->comp
;
493 dmaengine_submit(tx
);
495 init_completion(&info
->comp
);
497 /* setup and start DMA using dma_addr */
498 dma_async_issue_pending(info
->dma
);
500 /* configure and start prefetch transfer */
501 ret
= omap_prefetch_enable(info
->gpmc_cs
,
502 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
504 /* PFPW engine is busy, use cpu copy method */
507 wait_for_completion(&info
->comp
);
509 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
513 val
= readl(info
->reg
.gpmc_prefetch_status
);
514 val
= PREFETCH_STATUS_COUNT(val
);
515 } while (val
&& (tim
++ < limit
));
517 /* disable and stop the PFPW engine */
518 omap_prefetch_reset(info
->gpmc_cs
, info
);
520 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
524 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
526 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
527 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
528 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
530 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
531 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
536 * omap_read_buf_dma_pref - read data from NAND controller into buffer
537 * @mtd: MTD device structure
538 * @buf: buffer to store date
539 * @len: number of bytes to read
541 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
543 if (len
<= mtd
->oobsize
)
544 omap_read_buf_pref(mtd
, buf
, len
);
546 /* start transfer in DMA mode */
547 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
551 * omap_write_buf_dma_pref - write buffer to NAND controller
552 * @mtd: MTD device structure
554 * @len: number of bytes to write
556 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
557 const u_char
*buf
, int len
)
559 if (len
<= mtd
->oobsize
)
560 omap_write_buf_pref(mtd
, buf
, len
);
562 /* start transfer in DMA mode */
563 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
567 * omap_nand_irq - GPMC irq handler
568 * @this_irq: gpmc irq number
569 * @dev: omap_nand_info structure pointer is passed here
571 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
573 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
576 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
577 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
578 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
579 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
580 if (this_irq
== info
->gpmc_irq_count
)
583 if (info
->buf_len
&& (info
->buf_len
< bytes
))
584 bytes
= info
->buf_len
;
585 else if (!info
->buf_len
)
587 iowrite32_rep(info
->nand
.IO_ADDR_W
,
588 (u32
*)info
->buf
, bytes
>> 2);
589 info
->buf
= info
->buf
+ bytes
;
590 info
->buf_len
-= bytes
;
593 ioread32_rep(info
->nand
.IO_ADDR_R
,
594 (u32
*)info
->buf
, bytes
>> 2);
595 info
->buf
= info
->buf
+ bytes
;
597 if (this_irq
== info
->gpmc_irq_count
)
604 complete(&info
->comp
);
606 disable_irq_nosync(info
->gpmc_irq_fifo
);
607 disable_irq_nosync(info
->gpmc_irq_count
);
613 * omap_read_buf_irq_pref - read data from NAND controller into buffer
614 * @mtd: MTD device structure
615 * @buf: buffer to store date
616 * @len: number of bytes to read
618 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
620 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
623 if (len
<= mtd
->oobsize
) {
624 omap_read_buf_pref(mtd
, buf
, len
);
628 info
->iomode
= OMAP_NAND_IO_READ
;
630 init_completion(&info
->comp
);
632 /* configure and start prefetch transfer */
633 ret
= omap_prefetch_enable(info
->gpmc_cs
,
634 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
636 /* PFPW engine is busy, use cpu copy method */
641 enable_irq(info
->gpmc_irq_count
);
642 enable_irq(info
->gpmc_irq_fifo
);
644 /* waiting for read to complete */
645 wait_for_completion(&info
->comp
);
647 /* disable and stop the PFPW engine */
648 omap_prefetch_reset(info
->gpmc_cs
, info
);
652 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
653 omap_read_buf16(mtd
, buf
, len
);
655 omap_read_buf8(mtd
, buf
, len
);
659 * omap_write_buf_irq_pref - write buffer to NAND controller
660 * @mtd: MTD device structure
662 * @len: number of bytes to write
664 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
665 const u_char
*buf
, int len
)
667 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
669 unsigned long tim
, limit
;
672 if (len
<= mtd
->oobsize
) {
673 omap_write_buf_pref(mtd
, buf
, len
);
677 info
->iomode
= OMAP_NAND_IO_WRITE
;
678 info
->buf
= (u_char
*) buf
;
679 init_completion(&info
->comp
);
681 /* configure and start prefetch transfer : size=24 */
682 ret
= omap_prefetch_enable(info
->gpmc_cs
,
683 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
685 /* PFPW engine is busy, use cpu copy method */
690 enable_irq(info
->gpmc_irq_count
);
691 enable_irq(info
->gpmc_irq_fifo
);
693 /* waiting for write to complete */
694 wait_for_completion(&info
->comp
);
696 /* wait for data to flushed-out before reset the prefetch */
698 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
700 val
= readl(info
->reg
.gpmc_prefetch_status
);
701 val
= PREFETCH_STATUS_COUNT(val
);
703 } while (val
&& (tim
++ < limit
));
705 /* disable and stop the PFPW engine */
706 omap_prefetch_reset(info
->gpmc_cs
, info
);
710 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
711 omap_write_buf16(mtd
, buf
, len
);
713 omap_write_buf8(mtd
, buf
, len
);
717 * gen_true_ecc - This function will generate true ECC value
718 * @ecc_buf: buffer to store ecc code
720 * This generated true ECC value can be used when correcting
721 * data read from NAND flash memory core
723 static void gen_true_ecc(u8
*ecc_buf
)
725 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
726 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
728 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
729 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
730 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
731 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
732 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
733 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
737 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
738 * @ecc_data1: ecc code from nand spare area
739 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
740 * @page_data: page data
742 * This function compares two ECC's and indicates if there is an error.
743 * If the error can be corrected it will be corrected to the buffer.
744 * If there is no error, %0 is returned. If there is an error but it
745 * was corrected, %1 is returned. Otherwise, %-1 is returned.
747 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
748 u8
*ecc_data2
, /* read from register */
752 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
753 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
760 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
762 gen_true_ecc(ecc_data1
);
763 gen_true_ecc(ecc_data2
);
765 for (i
= 0; i
<= 2; i
++) {
766 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
767 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
770 for (i
= 0; i
< 8; i
++) {
771 tmp0_bit
[i
] = *ecc_data1
% 2;
772 *ecc_data1
= *ecc_data1
/ 2;
775 for (i
= 0; i
< 8; i
++) {
776 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
777 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
780 for (i
= 0; i
< 8; i
++) {
781 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
782 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
785 for (i
= 0; i
< 8; i
++) {
786 comp0_bit
[i
] = *ecc_data2
% 2;
787 *ecc_data2
= *ecc_data2
/ 2;
790 for (i
= 0; i
< 8; i
++) {
791 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
792 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
795 for (i
= 0; i
< 8; i
++) {
796 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
797 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
800 for (i
= 0; i
< 6; i
++)
801 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
803 for (i
= 0; i
< 8; i
++)
804 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
806 for (i
= 0; i
< 8; i
++)
807 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
809 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
810 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
812 for (i
= 0; i
< 24; i
++)
813 ecc_sum
+= ecc_bit
[i
];
817 /* Not reached because this function is not called if
818 * ECC values are equal
823 /* Uncorrectable error */
824 pr_debug("ECC UNCORRECTED_ERROR 1\n");
828 /* UN-Correctable error */
829 pr_debug("ECC UNCORRECTED_ERROR B\n");
833 /* Correctable error */
834 find_byte
= (ecc_bit
[23] << 8) +
844 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
846 pr_debug("Correcting single bit ECC error at offset: "
847 "%d, bit: %d\n", find_byte
, find_bit
);
849 page_data
[find_byte
] ^= (1 << find_bit
);
854 if (ecc_data2
[0] == 0 &&
859 pr_debug("UNCORRECTED_ERROR default\n");
865 * omap_correct_data - Compares the ECC read with HW generated ECC
866 * @mtd: MTD device structure
868 * @read_ecc: ecc read from nand flash
869 * @calc_ecc: ecc read from HW ECC registers
871 * Compares the ecc read from nand spare area with ECC registers values
872 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
873 * detection and correction. If there are no errors, %0 is returned. If
874 * there were errors and all of the errors were corrected, the number of
875 * corrected errors is returned. If uncorrectable errors exist, %-1 is
878 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
879 u_char
*read_ecc
, u_char
*calc_ecc
)
881 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
882 int blockCnt
= 0, i
= 0, ret
= 0;
885 /* Ex NAND_ECC_HW12_2048 */
886 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
887 (info
->nand
.ecc
.size
== 2048))
892 for (i
= 0; i
< blockCnt
; i
++) {
893 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
894 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
897 /* keep track of the number of corrected errors */
908 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
909 * @mtd: MTD device structure
910 * @dat: The pointer to data on which ecc is computed
911 * @ecc_code: The ecc_code buffer
913 * Using noninverted ECC can be considered ugly since writing a blank
914 * page ie. padding will clear the ECC bytes. This is no problem as long
915 * nobody is trying to write data on the seemingly unused page. Reading
916 * an erased page will produce an ECC mismatch between generated and read
917 * ECC bytes that has to be dealt with separately.
919 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
922 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
925 val
= readl(info
->reg
.gpmc_ecc_config
);
926 if (((val
>> ECC_CONFIG_CS_SHIFT
) & CS_MASK
) != info
->gpmc_cs
)
929 /* read ecc result */
930 val
= readl(info
->reg
.gpmc_ecc1_result
);
931 *ecc_code
++ = val
; /* P128e, ..., P1e */
932 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
933 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
934 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
940 * omap_enable_hwecc - This function enables the hardware ecc functionality
941 * @mtd: MTD device structure
942 * @mode: Read/Write mode
944 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
946 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
947 struct nand_chip
*chip
= mtd_to_nand(mtd
);
948 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
951 /* clear ecc and enable bits */
952 val
= ECCCLEAR
| ECC1
;
953 writel(val
, info
->reg
.gpmc_ecc_control
);
955 /* program ecc and result sizes */
956 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
958 writel(val
, info
->reg
.gpmc_ecc_size_config
);
963 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
965 case NAND_ECC_READSYN
:
966 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
969 dev_info(&info
->pdev
->dev
,
970 "error: unrecognized Mode[%d]!\n", mode
);
974 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
975 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
976 writel(val
, info
->reg
.gpmc_ecc_config
);
980 * omap_wait - wait until the command is done
981 * @mtd: MTD device structure
982 * @chip: NAND Chip structure
984 * Wait function is called during Program and erase operations and
985 * the way it is called from MTD layer, we should wait till the NAND
986 * chip is ready after the programming/erase operation has completed.
988 * Erase can take up to 400ms and program up to 20ms according to
989 * general NAND and SmartMedia specs
991 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
993 struct nand_chip
*this = mtd_to_nand(mtd
);
994 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
995 unsigned long timeo
= jiffies
;
996 int status
, state
= this->state
;
998 if (state
== FL_ERASING
)
999 timeo
+= msecs_to_jiffies(400);
1001 timeo
+= msecs_to_jiffies(20);
1003 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
1004 while (time_before(jiffies
, timeo
)) {
1005 status
= readb(info
->reg
.gpmc_nand_data
);
1006 if (status
& NAND_STATUS_READY
)
1011 status
= readb(info
->reg
.gpmc_nand_data
);
1016 * omap_dev_ready - checks the NAND Ready GPIO line
1017 * @mtd: MTD device structure
1019 * Returns true if ready and false if busy.
1021 static int omap_dev_ready(struct mtd_info
*mtd
)
1023 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1025 return gpiod_get_value(info
->ready_gpiod
);
1029 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1030 * @mtd: MTD device structure
1031 * @mode: Read/Write mode
1033 * When using BCH with SW correction (i.e. no ELM), sector size is set
1034 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1035 * for both reading and writing with:
1036 * eccsize0 = 0 (no additional protected byte in spare area)
1037 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1039 static void __maybe_unused
omap_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1041 unsigned int bch_type
;
1042 unsigned int dev_width
, nsectors
;
1043 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1044 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1045 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1047 unsigned int ecc_size1
, ecc_size0
;
1049 /* GPMC configurations for calculating ECC */
1051 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1054 wr_mode
= BCH_WRAPMODE_6
;
1055 ecc_size0
= BCH_ECC_SIZE0
;
1056 ecc_size1
= BCH_ECC_SIZE1
;
1058 case OMAP_ECC_BCH4_CODE_HW
:
1060 nsectors
= chip
->ecc
.steps
;
1061 if (mode
== NAND_ECC_READ
) {
1062 wr_mode
= BCH_WRAPMODE_1
;
1063 ecc_size0
= BCH4R_ECC_SIZE0
;
1064 ecc_size1
= BCH4R_ECC_SIZE1
;
1066 wr_mode
= BCH_WRAPMODE_6
;
1067 ecc_size0
= BCH_ECC_SIZE0
;
1068 ecc_size1
= BCH_ECC_SIZE1
;
1071 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1074 wr_mode
= BCH_WRAPMODE_6
;
1075 ecc_size0
= BCH_ECC_SIZE0
;
1076 ecc_size1
= BCH_ECC_SIZE1
;
1078 case OMAP_ECC_BCH8_CODE_HW
:
1080 nsectors
= chip
->ecc
.steps
;
1081 if (mode
== NAND_ECC_READ
) {
1082 wr_mode
= BCH_WRAPMODE_1
;
1083 ecc_size0
= BCH8R_ECC_SIZE0
;
1084 ecc_size1
= BCH8R_ECC_SIZE1
;
1086 wr_mode
= BCH_WRAPMODE_6
;
1087 ecc_size0
= BCH_ECC_SIZE0
;
1088 ecc_size1
= BCH_ECC_SIZE1
;
1091 case OMAP_ECC_BCH16_CODE_HW
:
1093 nsectors
= chip
->ecc
.steps
;
1094 if (mode
== NAND_ECC_READ
) {
1096 ecc_size0
= 52; /* ECC bits in nibbles per sector */
1097 ecc_size1
= 0; /* non-ECC bits in nibbles per sector */
1100 ecc_size0
= 0; /* extra bits in nibbles per sector */
1101 ecc_size1
= 52; /* OOB bits in nibbles per sector */
1108 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1110 /* Configure ecc size for BCH */
1111 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1112 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1114 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1116 /* BCH configuration */
1117 val
= ((1 << 16) | /* enable BCH */
1118 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1119 (wr_mode
<< 8) | /* wrap mode */
1120 (dev_width
<< 7) | /* bus width */
1121 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1122 (info
->gpmc_cs
<< 1) | /* ECC CS */
1123 (0x1)); /* enable ECC */
1125 writel(val
, info
->reg
.gpmc_ecc_config
);
1127 /* Clear ecc and enable bits */
1128 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1131 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133 0x97, 0x79, 0xe5, 0x24, 0xb5};
1136 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1137 * @mtd: MTD device structure
1138 * @dat: The pointer to data on which ecc is computed
1139 * @ecc_code: The ecc_code buffer
1140 * @i: The sector number (for a multi sector page)
1142 * Support calculating of BCH4/8/16 ECC vectors for one sector
1143 * within a page. Sector number is in @i.
1145 static int _omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1146 const u_char
*dat
, u_char
*ecc_calc
, int i
)
1148 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1149 int eccbytes
= info
->nand
.ecc
.bytes
;
1150 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1152 unsigned long bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1156 ecc_code
= ecc_calc
;
1157 switch (info
->ecc_opt
) {
1158 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1159 case OMAP_ECC_BCH8_CODE_HW
:
1160 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1161 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1162 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1163 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1164 *ecc_code
++ = (bch_val4
& 0xFF);
1165 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1166 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1167 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1168 *ecc_code
++ = (bch_val3
& 0xFF);
1169 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1170 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1171 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1172 *ecc_code
++ = (bch_val2
& 0xFF);
1173 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1174 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1175 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1176 *ecc_code
++ = (bch_val1
& 0xFF);
1178 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1179 case OMAP_ECC_BCH4_CODE_HW
:
1180 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1181 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1182 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1183 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1184 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1185 ((bch_val1
>> 28) & 0xF);
1186 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1187 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1188 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1189 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1191 case OMAP_ECC_BCH16_CODE_HW
:
1192 val
= readl(gpmc_regs
->gpmc_bch_result6
[i
]);
1193 ecc_code
[0] = ((val
>> 8) & 0xFF);
1194 ecc_code
[1] = ((val
>> 0) & 0xFF);
1195 val
= readl(gpmc_regs
->gpmc_bch_result5
[i
]);
1196 ecc_code
[2] = ((val
>> 24) & 0xFF);
1197 ecc_code
[3] = ((val
>> 16) & 0xFF);
1198 ecc_code
[4] = ((val
>> 8) & 0xFF);
1199 ecc_code
[5] = ((val
>> 0) & 0xFF);
1200 val
= readl(gpmc_regs
->gpmc_bch_result4
[i
]);
1201 ecc_code
[6] = ((val
>> 24) & 0xFF);
1202 ecc_code
[7] = ((val
>> 16) & 0xFF);
1203 ecc_code
[8] = ((val
>> 8) & 0xFF);
1204 ecc_code
[9] = ((val
>> 0) & 0xFF);
1205 val
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1206 ecc_code
[10] = ((val
>> 24) & 0xFF);
1207 ecc_code
[11] = ((val
>> 16) & 0xFF);
1208 ecc_code
[12] = ((val
>> 8) & 0xFF);
1209 ecc_code
[13] = ((val
>> 0) & 0xFF);
1210 val
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1211 ecc_code
[14] = ((val
>> 24) & 0xFF);
1212 ecc_code
[15] = ((val
>> 16) & 0xFF);
1213 ecc_code
[16] = ((val
>> 8) & 0xFF);
1214 ecc_code
[17] = ((val
>> 0) & 0xFF);
1215 val
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1216 ecc_code
[18] = ((val
>> 24) & 0xFF);
1217 ecc_code
[19] = ((val
>> 16) & 0xFF);
1218 ecc_code
[20] = ((val
>> 8) & 0xFF);
1219 ecc_code
[21] = ((val
>> 0) & 0xFF);
1220 val
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1221 ecc_code
[22] = ((val
>> 24) & 0xFF);
1222 ecc_code
[23] = ((val
>> 16) & 0xFF);
1223 ecc_code
[24] = ((val
>> 8) & 0xFF);
1224 ecc_code
[25] = ((val
>> 0) & 0xFF);
1230 /* ECC scheme specific syndrome customizations */
1231 switch (info
->ecc_opt
) {
1232 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1233 /* Add constant polynomial to remainder, so that
1234 * ECC of blank pages results in 0x0 on reading back
1236 for (j
= 0; j
< eccbytes
; j
++)
1237 ecc_calc
[j
] ^= bch4_polynomial
[j
];
1239 case OMAP_ECC_BCH4_CODE_HW
:
1240 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1241 ecc_calc
[eccbytes
- 1] = 0x0;
1243 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1244 /* Add constant polynomial to remainder, so that
1245 * ECC of blank pages results in 0x0 on reading back
1247 for (j
= 0; j
< eccbytes
; j
++)
1248 ecc_calc
[j
] ^= bch8_polynomial
[j
];
1250 case OMAP_ECC_BCH8_CODE_HW
:
1251 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1252 ecc_calc
[eccbytes
- 1] = 0x0;
1254 case OMAP_ECC_BCH16_CODE_HW
:
1264 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1265 * @mtd: MTD device structure
1266 * @dat: The pointer to data on which ecc is computed
1267 * @ecc_code: The ecc_code buffer
1269 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1270 * when SW based correction is required as ECC is required for one sector
1273 static int omap_calculate_ecc_bch_sw(struct mtd_info
*mtd
,
1274 const u_char
*dat
, u_char
*ecc_calc
)
1276 return _omap_calculate_ecc_bch(mtd
, dat
, ecc_calc
, 0);
1280 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1281 * @mtd: MTD device structure
1282 * @dat: The pointer to data on which ecc is computed
1283 * @ecc_code: The ecc_code buffer
1285 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1287 static int omap_calculate_ecc_bch_multi(struct mtd_info
*mtd
,
1288 const u_char
*dat
, u_char
*ecc_calc
)
1290 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1291 int eccbytes
= info
->nand
.ecc
.bytes
;
1292 unsigned long nsectors
;
1295 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1296 for (i
= 0; i
< nsectors
; i
++) {
1297 ret
= _omap_calculate_ecc_bch(mtd
, dat
, ecc_calc
, i
);
1301 ecc_calc
+= eccbytes
;
1308 * erased_sector_bitflips - count bit flips
1309 * @data: data sector buffer
1311 * @info: omap_nand_info
1313 * Check the bit flips in erased page falls below correctable level.
1314 * If falls below, report the page as erased with correctable bit
1315 * flip, else report as uncorrectable page.
1317 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1318 struct omap_nand_info
*info
)
1320 int flip_bits
= 0, i
;
1322 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1323 flip_bits
+= hweight8(~data
[i
]);
1324 if (flip_bits
> info
->nand
.ecc
.strength
)
1328 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1329 flip_bits
+= hweight8(~oob
[i
]);
1330 if (flip_bits
> info
->nand
.ecc
.strength
)
1335 * Bit flips falls in correctable level.
1336 * Fill data area with 0xFF
1339 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1340 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1347 * omap_elm_correct_data - corrects page data area in case error reported
1348 * @mtd: MTD device structure
1350 * @read_ecc: ecc read from nand flash
1351 * @calc_ecc: ecc read from HW ECC registers
1353 * Calculated ecc vector reported as zero in case of non-error pages.
1354 * In case of non-zero ecc vector, first filter out erased-pages, and
1355 * then process data via ELM to detect bit-flips.
1357 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1358 u_char
*read_ecc
, u_char
*calc_ecc
)
1360 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1361 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1362 int eccsteps
= info
->nand
.ecc
.steps
;
1363 int i
, j
, stat
= 0;
1364 int eccflag
, actual_eccbytes
;
1365 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1366 u_char
*ecc_vec
= calc_ecc
;
1367 u_char
*spare_ecc
= read_ecc
;
1368 u_char
*erased_ecc_vec
;
1371 bool is_error_reported
= false;
1372 u32 bit_pos
, byte_pos
, error_max
, pos
;
1375 switch (info
->ecc_opt
) {
1376 case OMAP_ECC_BCH4_CODE_HW
:
1377 /* omit 7th ECC byte reserved for ROM code compatibility */
1378 actual_eccbytes
= ecc
->bytes
- 1;
1379 erased_ecc_vec
= bch4_vector
;
1381 case OMAP_ECC_BCH8_CODE_HW
:
1382 /* omit 14th ECC byte reserved for ROM code compatibility */
1383 actual_eccbytes
= ecc
->bytes
- 1;
1384 erased_ecc_vec
= bch8_vector
;
1386 case OMAP_ECC_BCH16_CODE_HW
:
1387 actual_eccbytes
= ecc
->bytes
;
1388 erased_ecc_vec
= bch16_vector
;
1391 dev_err(&info
->pdev
->dev
, "invalid driver configuration\n");
1395 /* Initialize elm error vector to zero */
1396 memset(err_vec
, 0, sizeof(err_vec
));
1398 for (i
= 0; i
< eccsteps
; i
++) {
1399 eccflag
= 0; /* initialize eccflag */
1402 * Check any error reported,
1403 * In case of error, non zero ecc reported.
1405 for (j
= 0; j
< actual_eccbytes
; j
++) {
1406 if (calc_ecc
[j
] != 0) {
1407 eccflag
= 1; /* non zero ecc, error present */
1413 if (memcmp(calc_ecc
, erased_ecc_vec
,
1414 actual_eccbytes
) == 0) {
1416 * calc_ecc[] matches pattern for ECC(all 0xff)
1417 * so this is definitely an erased-page
1420 buf
= &data
[info
->nand
.ecc
.size
* i
];
1422 * count number of 0-bits in read_buf.
1423 * This check can be removed once a similar
1424 * check is introduced in generic NAND driver
1426 bitflip_count
= erased_sector_bitflips(
1427 buf
, read_ecc
, info
);
1428 if (bitflip_count
) {
1430 * number of 0-bits within ECC limits
1431 * So this may be an erased-page
1433 stat
+= bitflip_count
;
1436 * Too many 0-bits. It may be a
1437 * - programmed-page, OR
1438 * - erased-page with many bit-flips
1439 * So this page requires check by ELM
1441 err_vec
[i
].error_reported
= true;
1442 is_error_reported
= true;
1447 /* Update the ecc vector */
1448 calc_ecc
+= ecc
->bytes
;
1449 read_ecc
+= ecc
->bytes
;
1452 /* Check if any error reported */
1453 if (!is_error_reported
)
1456 /* Decode BCH error using ELM module */
1457 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1460 for (i
= 0; i
< eccsteps
; i
++) {
1461 if (err_vec
[i
].error_uncorrectable
) {
1462 dev_err(&info
->pdev
->dev
,
1463 "uncorrectable bit-flips found\n");
1465 } else if (err_vec
[i
].error_reported
) {
1466 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1467 switch (info
->ecc_opt
) {
1468 case OMAP_ECC_BCH4_CODE_HW
:
1469 /* Add 4 bits to take care of padding */
1470 pos
= err_vec
[i
].error_loc
[j
] +
1473 case OMAP_ECC_BCH8_CODE_HW
:
1474 case OMAP_ECC_BCH16_CODE_HW
:
1475 pos
= err_vec
[i
].error_loc
[j
];
1480 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1481 /* Calculate bit position of error */
1484 /* Calculate byte position of error */
1485 byte_pos
= (error_max
- pos
- 1) / 8;
1487 if (pos
< error_max
) {
1488 if (byte_pos
< 512) {
1489 pr_debug("bitflip@dat[%d]=%x\n",
1490 byte_pos
, data
[byte_pos
]);
1491 data
[byte_pos
] ^= 1 << bit_pos
;
1493 pr_debug("bitflip@oob[%d]=%x\n",
1495 spare_ecc
[byte_pos
- 512]);
1496 spare_ecc
[byte_pos
- 512] ^=
1500 dev_err(&info
->pdev
->dev
,
1501 "invalid bit-flip @ %d:%d\n",
1508 /* Update number of correctable errors */
1509 stat
+= err_vec
[i
].error_count
;
1511 /* Update page data with sector size */
1513 spare_ecc
+= ecc
->bytes
;
1516 return (err
) ? err
: stat
;
1520 * omap_write_page_bch - BCH ecc based write page function for entire page
1521 * @mtd: mtd info structure
1522 * @chip: nand chip info structure
1524 * @oob_required: must write chip->oob_poi to OOB
1527 * Custom write page method evolved to support multi sector writing in one shot
1529 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1530 const uint8_t *buf
, int oob_required
, int page
)
1533 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1535 /* Enable GPMC ecc engine */
1536 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1539 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1541 /* Update ecc vector from GPMC result registers */
1542 omap_calculate_ecc_bch_multi(mtd
, buf
, &ecc_calc
[0]);
1544 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
1549 /* Write ecc vector to OOB area */
1550 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1555 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1556 * @mtd: mtd info structure
1557 * @chip: nand chip info structure
1558 * @offset: column address of subpage within the page
1559 * @data_len: data length
1561 * @oob_required: must write chip->oob_poi to OOB
1562 * @page: page number to write
1564 * OMAP optimized subpage write method.
1566 static int omap_write_subpage_bch(struct mtd_info
*mtd
,
1567 struct nand_chip
*chip
, u32 offset
,
1568 u32 data_len
, const u8
*buf
,
1569 int oob_required
, int page
)
1571 u8
*ecc_calc
= chip
->buffers
->ecccalc
;
1572 int ecc_size
= chip
->ecc
.size
;
1573 int ecc_bytes
= chip
->ecc
.bytes
;
1574 int ecc_steps
= chip
->ecc
.steps
;
1575 u32 start_step
= offset
/ ecc_size
;
1576 u32 end_step
= (offset
+ data_len
- 1) / ecc_size
;
1580 * Write entire page at one go as it would be optimal
1581 * as ECC is calculated by hardware.
1582 * ECC is calculated for all subpages but we choose
1583 * only what we want.
1586 /* Enable GPMC ECC engine */
1587 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1590 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1592 for (step
= 0; step
< ecc_steps
; step
++) {
1593 /* mask ECC of un-touched subpages by padding 0xFF */
1594 if (step
< start_step
|| step
> end_step
)
1595 memset(ecc_calc
, 0xff, ecc_bytes
);
1597 ret
= _omap_calculate_ecc_bch(mtd
, buf
, ecc_calc
, step
);
1603 ecc_calc
+= ecc_bytes
;
1606 /* copy calculated ECC for whole page to chip->buffer->oob */
1607 /* this include masked-value(0xFF) for unwritten subpages */
1608 ecc_calc
= chip
->buffers
->ecccalc
;
1609 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
1614 /* write OOB buffer to NAND device */
1615 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1621 * omap_read_page_bch - BCH ecc based page read function for entire page
1622 * @mtd: mtd info structure
1623 * @chip: nand chip info structure
1624 * @buf: buffer to store read data
1625 * @oob_required: caller requires OOB data read to chip->oob_poi
1626 * @page: page number to read
1628 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1629 * used for error correction.
1630 * Custom method evolved to support ELM error correction & multi sector
1631 * reading. On reading page data area is read along with OOB data with
1632 * ecc engine enabled. ecc vector updated after read of OOB data.
1633 * For non error pages ecc vector reported as zero.
1635 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1636 uint8_t *buf
, int oob_required
, int page
)
1638 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1639 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1641 unsigned int max_bitflips
= 0;
1643 /* Enable GPMC ecc engine */
1644 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1647 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1649 /* Read oob bytes */
1650 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1651 mtd
->writesize
+ BADBLOCK_MARKER_LENGTH
, -1);
1652 chip
->read_buf(mtd
, chip
->oob_poi
+ BADBLOCK_MARKER_LENGTH
,
1655 /* Calculate ecc bytes */
1656 omap_calculate_ecc_bch_multi(mtd
, buf
, ecc_calc
);
1658 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1663 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1666 mtd
->ecc_stats
.failed
++;
1668 mtd
->ecc_stats
.corrected
+= stat
;
1669 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1672 return max_bitflips
;
1676 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1677 * @omap_nand_info: NAND device structure containing platform data
1679 static bool is_elm_present(struct omap_nand_info
*info
,
1680 struct device_node
*elm_node
)
1682 struct platform_device
*pdev
;
1684 /* check whether elm-id is passed via DT */
1686 dev_err(&info
->pdev
->dev
, "ELM devicetree node not found\n");
1689 pdev
= of_find_device_by_node(elm_node
);
1690 /* check whether ELM device is registered */
1692 dev_err(&info
->pdev
->dev
, "ELM device not found\n");
1695 /* ELM module available, now configure it */
1696 info
->elm_dev
= &pdev
->dev
;
1700 static bool omap2_nand_ecc_check(struct omap_nand_info
*info
,
1701 struct omap_nand_platform_data
*pdata
)
1703 bool ecc_needs_bch
, ecc_needs_omap_bch
, ecc_needs_elm
;
1705 switch (info
->ecc_opt
) {
1706 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1707 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1708 ecc_needs_omap_bch
= false;
1709 ecc_needs_bch
= true;
1710 ecc_needs_elm
= false;
1712 case OMAP_ECC_BCH4_CODE_HW
:
1713 case OMAP_ECC_BCH8_CODE_HW
:
1714 case OMAP_ECC_BCH16_CODE_HW
:
1715 ecc_needs_omap_bch
= true;
1716 ecc_needs_bch
= false;
1717 ecc_needs_elm
= true;
1720 ecc_needs_omap_bch
= false;
1721 ecc_needs_bch
= false;
1722 ecc_needs_elm
= false;
1726 if (ecc_needs_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH
)) {
1727 dev_err(&info
->pdev
->dev
,
1728 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1731 if (ecc_needs_omap_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH
)) {
1732 dev_err(&info
->pdev
->dev
,
1733 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1736 if (ecc_needs_elm
&& !is_elm_present(info
, info
->elm_of_node
)) {
1737 dev_err(&info
->pdev
->dev
, "ELM not available\n");
1744 static const char * const nand_xfer_types
[] = {
1745 [NAND_OMAP_PREFETCH_POLLED
] = "prefetch-polled",
1746 [NAND_OMAP_POLLED
] = "polled",
1747 [NAND_OMAP_PREFETCH_DMA
] = "prefetch-dma",
1748 [NAND_OMAP_PREFETCH_IRQ
] = "prefetch-irq",
1751 static int omap_get_dt_info(struct device
*dev
, struct omap_nand_info
*info
)
1753 struct device_node
*child
= dev
->of_node
;
1758 if (of_property_read_u32(child
, "reg", &cs
) < 0) {
1759 dev_err(dev
, "reg not found in DT\n");
1765 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1766 info
->elm_of_node
= of_parse_phandle(child
, "ti,elm-id", 0);
1767 if (!info
->elm_of_node
) {
1768 info
->elm_of_node
= of_parse_phandle(child
, "elm_id", 0);
1769 if (!info
->elm_of_node
)
1770 dev_dbg(dev
, "ti,elm-id not in DT\n");
1773 /* select ecc-scheme for NAND */
1774 if (of_property_read_string(child
, "ti,nand-ecc-opt", &s
)) {
1775 dev_err(dev
, "ti,nand-ecc-opt not found\n");
1779 if (!strcmp(s
, "sw")) {
1780 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_SW
;
1781 } else if (!strcmp(s
, "ham1") ||
1782 !strcmp(s
, "hw") || !strcmp(s
, "hw-romcode")) {
1783 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_HW
;
1784 } else if (!strcmp(s
, "bch4")) {
1785 if (info
->elm_of_node
)
1786 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW
;
1788 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
;
1789 } else if (!strcmp(s
, "bch8")) {
1790 if (info
->elm_of_node
)
1791 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW
;
1793 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
;
1794 } else if (!strcmp(s
, "bch16")) {
1795 info
->ecc_opt
= OMAP_ECC_BCH16_CODE_HW
;
1797 dev_err(dev
, "unrecognized value for ti,nand-ecc-opt\n");
1801 /* select data transfer mode */
1802 if (!of_property_read_string(child
, "ti,nand-xfer-type", &s
)) {
1803 for (i
= 0; i
< ARRAY_SIZE(nand_xfer_types
); i
++) {
1804 if (!strcasecmp(s
, nand_xfer_types
[i
])) {
1805 info
->xfer_type
= i
;
1810 dev_err(dev
, "unrecognized value for ti,nand-xfer-type\n");
1817 static int omap_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1818 struct mtd_oob_region
*oobregion
)
1820 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1821 struct nand_chip
*chip
= &info
->nand
;
1822 int off
= BADBLOCK_MARKER_LENGTH
;
1824 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1825 !(chip
->options
& NAND_BUSWIDTH_16
))
1831 oobregion
->offset
= off
;
1832 oobregion
->length
= chip
->ecc
.total
;
1837 static int omap_ooblayout_free(struct mtd_info
*mtd
, int section
,
1838 struct mtd_oob_region
*oobregion
)
1840 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1841 struct nand_chip
*chip
= &info
->nand
;
1842 int off
= BADBLOCK_MARKER_LENGTH
;
1844 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1845 !(chip
->options
& NAND_BUSWIDTH_16
))
1851 off
+= chip
->ecc
.total
;
1852 if (off
>= mtd
->oobsize
)
1855 oobregion
->offset
= off
;
1856 oobregion
->length
= mtd
->oobsize
- off
;
1861 static const struct mtd_ooblayout_ops omap_ooblayout_ops
= {
1862 .ecc
= omap_ooblayout_ecc
,
1863 .free
= omap_ooblayout_free
,
1866 static int omap_sw_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1867 struct mtd_oob_region
*oobregion
)
1869 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1870 int off
= BADBLOCK_MARKER_LENGTH
;
1872 if (section
>= chip
->ecc
.steps
)
1876 * When SW correction is employed, one OMAP specific marker byte is
1877 * reserved after each ECC step.
1879 oobregion
->offset
= off
+ (section
* (chip
->ecc
.bytes
+ 1));
1880 oobregion
->length
= chip
->ecc
.bytes
;
1885 static int omap_sw_ooblayout_free(struct mtd_info
*mtd
, int section
,
1886 struct mtd_oob_region
*oobregion
)
1888 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1889 int off
= BADBLOCK_MARKER_LENGTH
;
1895 * When SW correction is employed, one OMAP specific marker byte is
1896 * reserved after each ECC step.
1898 off
+= ((chip
->ecc
.bytes
+ 1) * chip
->ecc
.steps
);
1899 if (off
>= mtd
->oobsize
)
1902 oobregion
->offset
= off
;
1903 oobregion
->length
= mtd
->oobsize
- off
;
1908 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops
= {
1909 .ecc
= omap_sw_ooblayout_ecc
,
1910 .free
= omap_sw_ooblayout_free
,
1913 static int omap_nand_probe(struct platform_device
*pdev
)
1915 struct omap_nand_info
*info
;
1916 struct omap_nand_platform_data
*pdata
= NULL
;
1917 struct mtd_info
*mtd
;
1918 struct nand_chip
*nand_chip
;
1920 dma_cap_mask_t mask
;
1921 struct resource
*res
;
1922 struct device
*dev
= &pdev
->dev
;
1923 int min_oobbytes
= BADBLOCK_MARKER_LENGTH
;
1924 int oobbytes_per_step
;
1926 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
1934 if (omap_get_dt_info(dev
, info
))
1937 pdata
= dev_get_platdata(&pdev
->dev
);
1939 dev_err(&pdev
->dev
, "platform data missing\n");
1943 info
->gpmc_cs
= pdata
->cs
;
1944 info
->reg
= pdata
->reg
;
1945 info
->ecc_opt
= pdata
->ecc_opt
;
1946 if (pdata
->dev_ready
)
1947 dev_info(&pdev
->dev
, "pdata->dev_ready is deprecated\n");
1949 info
->xfer_type
= pdata
->xfer_type
;
1950 info
->devsize
= pdata
->devsize
;
1951 info
->elm_of_node
= pdata
->elm_of_node
;
1952 info
->flash_bbt
= pdata
->flash_bbt
;
1955 platform_set_drvdata(pdev
, info
);
1956 info
->ops
= gpmc_omap_get_nand_ops(&info
->reg
, info
->gpmc_cs
);
1958 dev_err(&pdev
->dev
, "Failed to get GPMC->NAND interface\n");
1962 nand_chip
= &info
->nand
;
1963 mtd
= nand_to_mtd(nand_chip
);
1964 mtd
->dev
.parent
= &pdev
->dev
;
1965 nand_chip
->ecc
.priv
= NULL
;
1966 nand_set_flash_node(nand_chip
, dev
->of_node
);
1969 mtd
->name
= devm_kasprintf(&pdev
->dev
, GFP_KERNEL
,
1970 "omap2-nand.%d", info
->gpmc_cs
);
1972 dev_err(&pdev
->dev
, "Failed to set MTD name\n");
1977 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1978 nand_chip
->IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
1979 if (IS_ERR(nand_chip
->IO_ADDR_R
))
1980 return PTR_ERR(nand_chip
->IO_ADDR_R
);
1982 info
->phys_base
= res
->start
;
1984 nand_chip
->controller
= &omap_gpmc_controller
;
1986 nand_chip
->IO_ADDR_W
= nand_chip
->IO_ADDR_R
;
1987 nand_chip
->cmd_ctrl
= omap_hwcontrol
;
1989 info
->ready_gpiod
= devm_gpiod_get_optional(&pdev
->dev
, "rb",
1991 if (IS_ERR(info
->ready_gpiod
)) {
1992 dev_err(dev
, "failed to get ready gpio\n");
1993 return PTR_ERR(info
->ready_gpiod
);
1997 * If RDY/BSY line is connected to OMAP then use the omap ready
1998 * function and the generic nand_wait function which reads the status
1999 * register after monitoring the RDY/BSY line. Otherwise use a standard
2000 * chip delay which is slightly more than tR (AC Timing) of the NAND
2001 * device and read status register until you get a failure or success
2003 if (info
->ready_gpiod
) {
2004 nand_chip
->dev_ready
= omap_dev_ready
;
2005 nand_chip
->chip_delay
= 0;
2007 nand_chip
->waitfunc
= omap_wait
;
2008 nand_chip
->chip_delay
= 50;
2011 if (info
->flash_bbt
)
2012 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2014 /* scan NAND device connected to chip controller */
2015 nand_chip
->options
|= info
->devsize
& NAND_BUSWIDTH_16
;
2016 if (nand_scan_ident(mtd
, 1, NULL
)) {
2017 dev_err(&info
->pdev
->dev
,
2018 "scan failed, may be bus-width mismatch\n");
2023 if (nand_chip
->bbt_options
& NAND_BBT_USE_FLASH
)
2024 nand_chip
->bbt_options
|= NAND_BBT_NO_OOB
;
2026 nand_chip
->options
|= NAND_SKIP_BBTSCAN
;
2028 /* re-populate low-level callbacks based on xfer modes */
2029 switch (info
->xfer_type
) {
2030 case NAND_OMAP_PREFETCH_POLLED
:
2031 nand_chip
->read_buf
= omap_read_buf_pref
;
2032 nand_chip
->write_buf
= omap_write_buf_pref
;
2035 case NAND_OMAP_POLLED
:
2036 /* Use nand_base defaults for {read,write}_buf */
2039 case NAND_OMAP_PREFETCH_DMA
:
2041 dma_cap_set(DMA_SLAVE
, mask
);
2042 info
->dma
= dma_request_chan(pdev
->dev
.parent
, "rxtx");
2044 if (IS_ERR(info
->dma
)) {
2045 dev_err(&pdev
->dev
, "DMA engine request failed\n");
2046 err
= PTR_ERR(info
->dma
);
2049 struct dma_slave_config cfg
;
2051 memset(&cfg
, 0, sizeof(cfg
));
2052 cfg
.src_addr
= info
->phys_base
;
2053 cfg
.dst_addr
= info
->phys_base
;
2054 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
2055 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
2056 cfg
.src_maxburst
= 16;
2057 cfg
.dst_maxburst
= 16;
2058 err
= dmaengine_slave_config(info
->dma
, &cfg
);
2060 dev_err(&pdev
->dev
, "DMA engine slave config failed: %d\n",
2064 nand_chip
->read_buf
= omap_read_buf_dma_pref
;
2065 nand_chip
->write_buf
= omap_write_buf_dma_pref
;
2069 case NAND_OMAP_PREFETCH_IRQ
:
2070 info
->gpmc_irq_fifo
= platform_get_irq(pdev
, 0);
2071 if (info
->gpmc_irq_fifo
<= 0) {
2072 dev_err(&pdev
->dev
, "error getting fifo irq\n");
2076 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_fifo
,
2077 omap_nand_irq
, IRQF_SHARED
,
2078 "gpmc-nand-fifo", info
);
2080 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
2081 info
->gpmc_irq_fifo
, err
);
2082 info
->gpmc_irq_fifo
= 0;
2086 info
->gpmc_irq_count
= platform_get_irq(pdev
, 1);
2087 if (info
->gpmc_irq_count
<= 0) {
2088 dev_err(&pdev
->dev
, "error getting count irq\n");
2092 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_count
,
2093 omap_nand_irq
, IRQF_SHARED
,
2094 "gpmc-nand-count", info
);
2096 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
2097 info
->gpmc_irq_count
, err
);
2098 info
->gpmc_irq_count
= 0;
2102 nand_chip
->read_buf
= omap_read_buf_irq_pref
;
2103 nand_chip
->write_buf
= omap_write_buf_irq_pref
;
2109 "xfer_type(%d) not supported!\n", info
->xfer_type
);
2114 if (!omap2_nand_ecc_check(info
, pdata
)) {
2120 * Bail out earlier to let NAND_ECC_SOFT code create its own
2121 * ooblayout instead of using ours.
2123 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_SW
) {
2124 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
2125 nand_chip
->ecc
.algo
= NAND_ECC_HAMMING
;
2129 /* populate MTD interface based on ECC scheme */
2130 switch (info
->ecc_opt
) {
2131 case OMAP_ECC_HAM1_CODE_HW
:
2132 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2133 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2134 nand_chip
->ecc
.bytes
= 3;
2135 nand_chip
->ecc
.size
= 512;
2136 nand_chip
->ecc
.strength
= 1;
2137 nand_chip
->ecc
.calculate
= omap_calculate_ecc
;
2138 nand_chip
->ecc
.hwctl
= omap_enable_hwecc
;
2139 nand_chip
->ecc
.correct
= omap_correct_data
;
2140 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2141 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2143 if (!(nand_chip
->options
& NAND_BUSWIDTH_16
))
2148 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
2149 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2150 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2151 nand_chip
->ecc
.size
= 512;
2152 nand_chip
->ecc
.bytes
= 7;
2153 nand_chip
->ecc
.strength
= 4;
2154 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2155 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
2156 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch_sw
;
2157 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2158 /* Reserve one byte for the OMAP marker */
2159 oobbytes_per_step
= nand_chip
->ecc
.bytes
+ 1;
2160 /* software bch library is used for locating errors */
2161 nand_chip
->ecc
.priv
= nand_bch_init(mtd
);
2162 if (!nand_chip
->ecc
.priv
) {
2163 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
2169 case OMAP_ECC_BCH4_CODE_HW
:
2170 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2171 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2172 nand_chip
->ecc
.size
= 512;
2173 /* 14th bit is kept reserved for ROM-code compatibility */
2174 nand_chip
->ecc
.bytes
= 7 + 1;
2175 nand_chip
->ecc
.strength
= 4;
2176 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2177 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
2178 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
2179 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
2180 nand_chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2181 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2182 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2184 err
= elm_config(info
->elm_dev
, BCH4_ECC
,
2185 mtd
->writesize
/ nand_chip
->ecc
.size
,
2186 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
2191 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
2192 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2193 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2194 nand_chip
->ecc
.size
= 512;
2195 nand_chip
->ecc
.bytes
= 13;
2196 nand_chip
->ecc
.strength
= 8;
2197 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2198 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
2199 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch_sw
;
2200 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2201 /* Reserve one byte for the OMAP marker */
2202 oobbytes_per_step
= nand_chip
->ecc
.bytes
+ 1;
2203 /* software bch library is used for locating errors */
2204 nand_chip
->ecc
.priv
= nand_bch_init(mtd
);
2205 if (!nand_chip
->ecc
.priv
) {
2206 dev_err(&info
->pdev
->dev
, "unable to use BCH library\n");
2212 case OMAP_ECC_BCH8_CODE_HW
:
2213 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2214 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2215 nand_chip
->ecc
.size
= 512;
2216 /* 14th bit is kept reserved for ROM-code compatibility */
2217 nand_chip
->ecc
.bytes
= 13 + 1;
2218 nand_chip
->ecc
.strength
= 8;
2219 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2220 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
2221 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
2222 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
2223 nand_chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2224 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2225 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2227 err
= elm_config(info
->elm_dev
, BCH8_ECC
,
2228 mtd
->writesize
/ nand_chip
->ecc
.size
,
2229 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
2235 case OMAP_ECC_BCH16_CODE_HW
:
2236 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2237 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
2238 nand_chip
->ecc
.size
= 512;
2239 nand_chip
->ecc
.bytes
= 26;
2240 nand_chip
->ecc
.strength
= 16;
2241 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2242 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
2243 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
2244 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
2245 nand_chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2246 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2247 oobbytes_per_step
= nand_chip
->ecc
.bytes
;
2249 err
= elm_config(info
->elm_dev
, BCH16_ECC
,
2250 mtd
->writesize
/ nand_chip
->ecc
.size
,
2251 nand_chip
->ecc
.size
, nand_chip
->ecc
.bytes
);
2257 dev_err(&info
->pdev
->dev
, "invalid or unsupported ECC scheme\n");
2262 /* check if NAND device's OOB is enough to store ECC signatures */
2263 min_oobbytes
+= (oobbytes_per_step
*
2264 (mtd
->writesize
/ nand_chip
->ecc
.size
));
2265 if (mtd
->oobsize
< min_oobbytes
) {
2266 dev_err(&info
->pdev
->dev
,
2267 "not enough OOB bytes required = %d, available=%d\n",
2268 min_oobbytes
, mtd
->oobsize
);
2274 /* second phase scan */
2275 if (nand_scan_tail(mtd
)) {
2281 mtd_device_register(mtd
, NULL
, 0);
2283 mtd_device_register(mtd
, pdata
->parts
, pdata
->nr_parts
);
2285 platform_set_drvdata(pdev
, mtd
);
2290 if (!IS_ERR_OR_NULL(info
->dma
))
2291 dma_release_channel(info
->dma
);
2292 if (nand_chip
->ecc
.priv
) {
2293 nand_bch_free(nand_chip
->ecc
.priv
);
2294 nand_chip
->ecc
.priv
= NULL
;
2299 static int omap_nand_remove(struct platform_device
*pdev
)
2301 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2302 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
2303 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
2304 if (nand_chip
->ecc
.priv
) {
2305 nand_bch_free(nand_chip
->ecc
.priv
);
2306 nand_chip
->ecc
.priv
= NULL
;
2309 dma_release_channel(info
->dma
);
2310 nand_release(nand_chip
);
2314 static const struct of_device_id omap_nand_ids
[] = {
2315 { .compatible
= "ti,omap2-nand", },
2319 static struct platform_driver omap_nand_driver
= {
2320 .probe
= omap_nand_probe
,
2321 .remove
= omap_nand_remove
,
2323 .name
= DRIVER_NAME
,
2324 .of_match_table
= of_match_ptr(omap_nand_ids
),
2328 module_platform_driver(omap_nand_driver
);
2330 MODULE_ALIAS("platform:" DRIVER_NAME
);
2331 MODULE_LICENSE("GPL");
2332 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");