Linux 4.9.243
[linux/fpc-iii.git] / drivers / mtd / nand / omap2.c
blob62c0ca437c91e7b2c8560d60d3d0febeab17192c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/nand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
64 #define TF(value) (value ? 1 : 0)
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
107 #define CS_MASK 0x7
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
114 #define ECC1 0x1
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142 0x07, 0x0e};
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 /* Shared among all NAND instances to synchronize access to the ECC Engine */
148 static struct nand_hw_control omap_gpmc_controller = {
149 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
150 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
153 struct omap_nand_info {
154 struct nand_chip nand;
155 struct platform_device *pdev;
157 int gpmc_cs;
158 bool dev_ready;
159 enum nand_io xfer_type;
160 int devsize;
161 enum omap_ecc ecc_opt;
162 struct device_node *elm_of_node;
164 unsigned long phys_base;
165 struct completion comp;
166 struct dma_chan *dma;
167 int gpmc_irq_fifo;
168 int gpmc_irq_count;
169 enum {
170 OMAP_NAND_IO_READ = 0, /* read */
171 OMAP_NAND_IO_WRITE, /* write */
172 } iomode;
173 u_char *buf;
174 int buf_len;
175 /* Interface to GPMC */
176 struct gpmc_nand_regs reg;
177 struct gpmc_nand_ops *ops;
178 bool flash_bbt;
179 /* fields specific for BCHx_HW ECC scheme */
180 struct device *elm_dev;
181 /* NAND ready gpio */
182 struct gpio_desc *ready_gpiod;
185 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
187 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
191 * omap_prefetch_enable - configures and starts prefetch transfer
192 * @cs: cs (chip select) number
193 * @fifo_th: fifo threshold to be used for read/ write
194 * @dma_mode: dma mode enable (1) or disable (0)
195 * @u32_count: number of bytes to be transferred
196 * @is_write: prefetch read(0) or write post(1) mode
198 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
199 unsigned int u32_count, int is_write, struct omap_nand_info *info)
201 u32 val;
203 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
204 return -1;
206 if (readl(info->reg.gpmc_prefetch_control))
207 return -EBUSY;
209 /* Set the amount of bytes to be prefetched */
210 writel(u32_count, info->reg.gpmc_prefetch_config2);
212 /* Set dma/mpu mode, the prefetch read / post write and
213 * enable the engine. Set which cs is has requested for.
215 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
216 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
217 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
218 writel(val, info->reg.gpmc_prefetch_config1);
220 /* Start the prefetch engine */
221 writel(0x1, info->reg.gpmc_prefetch_control);
223 return 0;
227 * omap_prefetch_reset - disables and stops the prefetch engine
229 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
231 u32 config1;
233 /* check if the same module/cs is trying to reset */
234 config1 = readl(info->reg.gpmc_prefetch_config1);
235 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
236 return -EINVAL;
238 /* Stop the PFPW engine */
239 writel(0x0, info->reg.gpmc_prefetch_control);
241 /* Reset/disable the PFPW engine */
242 writel(0x0, info->reg.gpmc_prefetch_config1);
244 return 0;
248 * omap_hwcontrol - hardware specific access to control-lines
249 * @mtd: MTD device structure
250 * @cmd: command to device
251 * @ctrl:
252 * NAND_NCE: bit 0 -> don't care
253 * NAND_CLE: bit 1 -> Command Latch
254 * NAND_ALE: bit 2 -> Address Latch
256 * NOTE: boards may use different bits for these!!
258 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
260 struct omap_nand_info *info = mtd_to_omap(mtd);
262 if (cmd != NAND_CMD_NONE) {
263 if (ctrl & NAND_CLE)
264 writeb(cmd, info->reg.gpmc_nand_command);
266 else if (ctrl & NAND_ALE)
267 writeb(cmd, info->reg.gpmc_nand_address);
269 else /* NAND_NCE */
270 writeb(cmd, info->reg.gpmc_nand_data);
275 * omap_read_buf8 - read data from NAND controller into buffer
276 * @mtd: MTD device structure
277 * @buf: buffer to store date
278 * @len: number of bytes to read
280 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
282 struct nand_chip *nand = mtd_to_nand(mtd);
284 ioread8_rep(nand->IO_ADDR_R, buf, len);
288 * omap_write_buf8 - write buffer to NAND controller
289 * @mtd: MTD device structure
290 * @buf: data buffer
291 * @len: number of bytes to write
293 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
295 struct omap_nand_info *info = mtd_to_omap(mtd);
296 u_char *p = (u_char *)buf;
297 bool status;
299 while (len--) {
300 iowrite8(*p++, info->nand.IO_ADDR_W);
301 /* wait until buffer is available for write */
302 do {
303 status = info->ops->nand_writebuffer_empty();
304 } while (!status);
309 * omap_read_buf16 - read data from NAND controller into buffer
310 * @mtd: MTD device structure
311 * @buf: buffer to store date
312 * @len: number of bytes to read
314 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
316 struct nand_chip *nand = mtd_to_nand(mtd);
318 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
322 * omap_write_buf16 - write buffer to NAND controller
323 * @mtd: MTD device structure
324 * @buf: data buffer
325 * @len: number of bytes to write
327 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
329 struct omap_nand_info *info = mtd_to_omap(mtd);
330 u16 *p = (u16 *) buf;
331 bool status;
332 /* FIXME try bursts of writesw() or DMA ... */
333 len >>= 1;
335 while (len--) {
336 iowrite16(*p++, info->nand.IO_ADDR_W);
337 /* wait until buffer is available for write */
338 do {
339 status = info->ops->nand_writebuffer_empty();
340 } while (!status);
345 * omap_read_buf_pref - read data from NAND controller into buffer
346 * @mtd: MTD device structure
347 * @buf: buffer to store date
348 * @len: number of bytes to read
350 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
352 struct omap_nand_info *info = mtd_to_omap(mtd);
353 uint32_t r_count = 0;
354 int ret = 0;
355 u32 *p = (u32 *)buf;
357 /* take care of subpage reads */
358 if (len % 4) {
359 if (info->nand.options & NAND_BUSWIDTH_16)
360 omap_read_buf16(mtd, buf, len % 4);
361 else
362 omap_read_buf8(mtd, buf, len % 4);
363 p = (u32 *) (buf + len % 4);
364 len -= len % 4;
367 /* configure and start prefetch transfer */
368 ret = omap_prefetch_enable(info->gpmc_cs,
369 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
370 if (ret) {
371 /* PFPW engine is busy, use cpu copy method */
372 if (info->nand.options & NAND_BUSWIDTH_16)
373 omap_read_buf16(mtd, (u_char *)p, len);
374 else
375 omap_read_buf8(mtd, (u_char *)p, len);
376 } else {
377 do {
378 r_count = readl(info->reg.gpmc_prefetch_status);
379 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
380 r_count = r_count >> 2;
381 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
382 p += r_count;
383 len -= r_count << 2;
384 } while (len);
385 /* disable and stop the PFPW engine */
386 omap_prefetch_reset(info->gpmc_cs, info);
391 * omap_write_buf_pref - write buffer to NAND controller
392 * @mtd: MTD device structure
393 * @buf: data buffer
394 * @len: number of bytes to write
396 static void omap_write_buf_pref(struct mtd_info *mtd,
397 const u_char *buf, int len)
399 struct omap_nand_info *info = mtd_to_omap(mtd);
400 uint32_t w_count = 0;
401 int i = 0, ret = 0;
402 u16 *p = (u16 *)buf;
403 unsigned long tim, limit;
404 u32 val;
406 /* take care of subpage writes */
407 if (len % 2 != 0) {
408 writeb(*buf, info->nand.IO_ADDR_W);
409 p = (u16 *)(buf + 1);
410 len--;
413 /* configure and start prefetch transfer */
414 ret = omap_prefetch_enable(info->gpmc_cs,
415 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
416 if (ret) {
417 /* PFPW engine is busy, use cpu copy method */
418 if (info->nand.options & NAND_BUSWIDTH_16)
419 omap_write_buf16(mtd, (u_char *)p, len);
420 else
421 omap_write_buf8(mtd, (u_char *)p, len);
422 } else {
423 while (len) {
424 w_count = readl(info->reg.gpmc_prefetch_status);
425 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
426 w_count = w_count >> 1;
427 for (i = 0; (i < w_count) && len; i++, len -= 2)
428 iowrite16(*p++, info->nand.IO_ADDR_W);
430 /* wait for data to flushed-out before reset the prefetch */
431 tim = 0;
432 limit = (loops_per_jiffy *
433 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
434 do {
435 cpu_relax();
436 val = readl(info->reg.gpmc_prefetch_status);
437 val = PREFETCH_STATUS_COUNT(val);
438 } while (val && (tim++ < limit));
440 /* disable and stop the PFPW engine */
441 omap_prefetch_reset(info->gpmc_cs, info);
446 * omap_nand_dma_callback: callback on the completion of dma transfer
447 * @data: pointer to completion data structure
449 static void omap_nand_dma_callback(void *data)
451 complete((struct completion *) data);
455 * omap_nand_dma_transfer: configure and start dma transfer
456 * @mtd: MTD device structure
457 * @addr: virtual address in RAM of source/destination
458 * @len: number of data bytes to be transferred
459 * @is_write: flag for read/write operation
461 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
462 unsigned int len, int is_write)
464 struct omap_nand_info *info = mtd_to_omap(mtd);
465 struct dma_async_tx_descriptor *tx;
466 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
467 DMA_FROM_DEVICE;
468 struct scatterlist sg;
469 unsigned long tim, limit;
470 unsigned n;
471 int ret;
472 u32 val;
474 if (!virt_addr_valid(addr))
475 goto out_copy;
477 sg_init_one(&sg, addr, len);
478 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
479 if (n == 0) {
480 dev_err(&info->pdev->dev,
481 "Couldn't DMA map a %d byte buffer\n", len);
482 goto out_copy;
485 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
486 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
487 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
488 if (!tx)
489 goto out_copy_unmap;
491 tx->callback = omap_nand_dma_callback;
492 tx->callback_param = &info->comp;
493 dmaengine_submit(tx);
495 init_completion(&info->comp);
497 /* setup and start DMA using dma_addr */
498 dma_async_issue_pending(info->dma);
500 /* configure and start prefetch transfer */
501 ret = omap_prefetch_enable(info->gpmc_cs,
502 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
503 if (ret)
504 /* PFPW engine is busy, use cpu copy method */
505 goto out_copy_unmap;
507 wait_for_completion(&info->comp);
508 tim = 0;
509 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
511 do {
512 cpu_relax();
513 val = readl(info->reg.gpmc_prefetch_status);
514 val = PREFETCH_STATUS_COUNT(val);
515 } while (val && (tim++ < limit));
517 /* disable and stop the PFPW engine */
518 omap_prefetch_reset(info->gpmc_cs, info);
520 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
521 return 0;
523 out_copy_unmap:
524 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
525 out_copy:
526 if (info->nand.options & NAND_BUSWIDTH_16)
527 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
528 : omap_write_buf16(mtd, (u_char *) addr, len);
529 else
530 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
531 : omap_write_buf8(mtd, (u_char *) addr, len);
532 return 0;
536 * omap_read_buf_dma_pref - read data from NAND controller into buffer
537 * @mtd: MTD device structure
538 * @buf: buffer to store date
539 * @len: number of bytes to read
541 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
543 if (len <= mtd->oobsize)
544 omap_read_buf_pref(mtd, buf, len);
545 else
546 /* start transfer in DMA mode */
547 omap_nand_dma_transfer(mtd, buf, len, 0x0);
551 * omap_write_buf_dma_pref - write buffer to NAND controller
552 * @mtd: MTD device structure
553 * @buf: data buffer
554 * @len: number of bytes to write
556 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
557 const u_char *buf, int len)
559 if (len <= mtd->oobsize)
560 omap_write_buf_pref(mtd, buf, len);
561 else
562 /* start transfer in DMA mode */
563 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
567 * omap_nand_irq - GPMC irq handler
568 * @this_irq: gpmc irq number
569 * @dev: omap_nand_info structure pointer is passed here
571 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
573 struct omap_nand_info *info = (struct omap_nand_info *) dev;
574 u32 bytes;
576 bytes = readl(info->reg.gpmc_prefetch_status);
577 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
578 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
579 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
580 if (this_irq == info->gpmc_irq_count)
581 goto done;
583 if (info->buf_len && (info->buf_len < bytes))
584 bytes = info->buf_len;
585 else if (!info->buf_len)
586 bytes = 0;
587 iowrite32_rep(info->nand.IO_ADDR_W,
588 (u32 *)info->buf, bytes >> 2);
589 info->buf = info->buf + bytes;
590 info->buf_len -= bytes;
592 } else {
593 ioread32_rep(info->nand.IO_ADDR_R,
594 (u32 *)info->buf, bytes >> 2);
595 info->buf = info->buf + bytes;
597 if (this_irq == info->gpmc_irq_count)
598 goto done;
601 return IRQ_HANDLED;
603 done:
604 complete(&info->comp);
606 disable_irq_nosync(info->gpmc_irq_fifo);
607 disable_irq_nosync(info->gpmc_irq_count);
609 return IRQ_HANDLED;
613 * omap_read_buf_irq_pref - read data from NAND controller into buffer
614 * @mtd: MTD device structure
615 * @buf: buffer to store date
616 * @len: number of bytes to read
618 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
620 struct omap_nand_info *info = mtd_to_omap(mtd);
621 int ret = 0;
623 if (len <= mtd->oobsize) {
624 omap_read_buf_pref(mtd, buf, len);
625 return;
628 info->iomode = OMAP_NAND_IO_READ;
629 info->buf = buf;
630 init_completion(&info->comp);
632 /* configure and start prefetch transfer */
633 ret = omap_prefetch_enable(info->gpmc_cs,
634 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
635 if (ret)
636 /* PFPW engine is busy, use cpu copy method */
637 goto out_copy;
639 info->buf_len = len;
641 enable_irq(info->gpmc_irq_count);
642 enable_irq(info->gpmc_irq_fifo);
644 /* waiting for read to complete */
645 wait_for_completion(&info->comp);
647 /* disable and stop the PFPW engine */
648 omap_prefetch_reset(info->gpmc_cs, info);
649 return;
651 out_copy:
652 if (info->nand.options & NAND_BUSWIDTH_16)
653 omap_read_buf16(mtd, buf, len);
654 else
655 omap_read_buf8(mtd, buf, len);
659 * omap_write_buf_irq_pref - write buffer to NAND controller
660 * @mtd: MTD device structure
661 * @buf: data buffer
662 * @len: number of bytes to write
664 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
665 const u_char *buf, int len)
667 struct omap_nand_info *info = mtd_to_omap(mtd);
668 int ret = 0;
669 unsigned long tim, limit;
670 u32 val;
672 if (len <= mtd->oobsize) {
673 omap_write_buf_pref(mtd, buf, len);
674 return;
677 info->iomode = OMAP_NAND_IO_WRITE;
678 info->buf = (u_char *) buf;
679 init_completion(&info->comp);
681 /* configure and start prefetch transfer : size=24 */
682 ret = omap_prefetch_enable(info->gpmc_cs,
683 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
684 if (ret)
685 /* PFPW engine is busy, use cpu copy method */
686 goto out_copy;
688 info->buf_len = len;
690 enable_irq(info->gpmc_irq_count);
691 enable_irq(info->gpmc_irq_fifo);
693 /* waiting for write to complete */
694 wait_for_completion(&info->comp);
696 /* wait for data to flushed-out before reset the prefetch */
697 tim = 0;
698 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
699 do {
700 val = readl(info->reg.gpmc_prefetch_status);
701 val = PREFETCH_STATUS_COUNT(val);
702 cpu_relax();
703 } while (val && (tim++ < limit));
705 /* disable and stop the PFPW engine */
706 omap_prefetch_reset(info->gpmc_cs, info);
707 return;
709 out_copy:
710 if (info->nand.options & NAND_BUSWIDTH_16)
711 omap_write_buf16(mtd, buf, len);
712 else
713 omap_write_buf8(mtd, buf, len);
717 * gen_true_ecc - This function will generate true ECC value
718 * @ecc_buf: buffer to store ecc code
720 * This generated true ECC value can be used when correcting
721 * data read from NAND flash memory core
723 static void gen_true_ecc(u8 *ecc_buf)
725 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
726 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
728 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
729 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
730 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
731 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
732 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
733 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
737 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
738 * @ecc_data1: ecc code from nand spare area
739 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
740 * @page_data: page data
742 * This function compares two ECC's and indicates if there is an error.
743 * If the error can be corrected it will be corrected to the buffer.
744 * If there is no error, %0 is returned. If there is an error but it
745 * was corrected, %1 is returned. Otherwise, %-1 is returned.
747 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
748 u8 *ecc_data2, /* read from register */
749 u8 *page_data)
751 uint i;
752 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
753 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
754 u8 ecc_bit[24];
755 u8 ecc_sum = 0;
756 u8 find_bit = 0;
757 uint find_byte = 0;
758 int isEccFF;
760 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
762 gen_true_ecc(ecc_data1);
763 gen_true_ecc(ecc_data2);
765 for (i = 0; i <= 2; i++) {
766 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
767 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
770 for (i = 0; i < 8; i++) {
771 tmp0_bit[i] = *ecc_data1 % 2;
772 *ecc_data1 = *ecc_data1 / 2;
775 for (i = 0; i < 8; i++) {
776 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
777 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
780 for (i = 0; i < 8; i++) {
781 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
782 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
785 for (i = 0; i < 8; i++) {
786 comp0_bit[i] = *ecc_data2 % 2;
787 *ecc_data2 = *ecc_data2 / 2;
790 for (i = 0; i < 8; i++) {
791 comp1_bit[i] = *(ecc_data2 + 1) % 2;
792 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
795 for (i = 0; i < 8; i++) {
796 comp2_bit[i] = *(ecc_data2 + 2) % 2;
797 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
800 for (i = 0; i < 6; i++)
801 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
803 for (i = 0; i < 8; i++)
804 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
806 for (i = 0; i < 8; i++)
807 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
809 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
810 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
812 for (i = 0; i < 24; i++)
813 ecc_sum += ecc_bit[i];
815 switch (ecc_sum) {
816 case 0:
817 /* Not reached because this function is not called if
818 * ECC values are equal
820 return 0;
822 case 1:
823 /* Uncorrectable error */
824 pr_debug("ECC UNCORRECTED_ERROR 1\n");
825 return -EBADMSG;
827 case 11:
828 /* UN-Correctable error */
829 pr_debug("ECC UNCORRECTED_ERROR B\n");
830 return -EBADMSG;
832 case 12:
833 /* Correctable error */
834 find_byte = (ecc_bit[23] << 8) +
835 (ecc_bit[21] << 7) +
836 (ecc_bit[19] << 6) +
837 (ecc_bit[17] << 5) +
838 (ecc_bit[15] << 4) +
839 (ecc_bit[13] << 3) +
840 (ecc_bit[11] << 2) +
841 (ecc_bit[9] << 1) +
842 ecc_bit[7];
844 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
846 pr_debug("Correcting single bit ECC error at offset: "
847 "%d, bit: %d\n", find_byte, find_bit);
849 page_data[find_byte] ^= (1 << find_bit);
851 return 1;
852 default:
853 if (isEccFF) {
854 if (ecc_data2[0] == 0 &&
855 ecc_data2[1] == 0 &&
856 ecc_data2[2] == 0)
857 return 0;
859 pr_debug("UNCORRECTED_ERROR default\n");
860 return -EBADMSG;
865 * omap_correct_data - Compares the ECC read with HW generated ECC
866 * @mtd: MTD device structure
867 * @dat: page data
868 * @read_ecc: ecc read from nand flash
869 * @calc_ecc: ecc read from HW ECC registers
871 * Compares the ecc read from nand spare area with ECC registers values
872 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
873 * detection and correction. If there are no errors, %0 is returned. If
874 * there were errors and all of the errors were corrected, the number of
875 * corrected errors is returned. If uncorrectable errors exist, %-1 is
876 * returned.
878 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
879 u_char *read_ecc, u_char *calc_ecc)
881 struct omap_nand_info *info = mtd_to_omap(mtd);
882 int blockCnt = 0, i = 0, ret = 0;
883 int stat = 0;
885 /* Ex NAND_ECC_HW12_2048 */
886 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
887 (info->nand.ecc.size == 2048))
888 blockCnt = 4;
889 else
890 blockCnt = 1;
892 for (i = 0; i < blockCnt; i++) {
893 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
894 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
895 if (ret < 0)
896 return ret;
897 /* keep track of the number of corrected errors */
898 stat += ret;
900 read_ecc += 3;
901 calc_ecc += 3;
902 dat += 512;
904 return stat;
908 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
909 * @mtd: MTD device structure
910 * @dat: The pointer to data on which ecc is computed
911 * @ecc_code: The ecc_code buffer
913 * Using noninverted ECC can be considered ugly since writing a blank
914 * page ie. padding will clear the ECC bytes. This is no problem as long
915 * nobody is trying to write data on the seemingly unused page. Reading
916 * an erased page will produce an ECC mismatch between generated and read
917 * ECC bytes that has to be dealt with separately.
919 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
920 u_char *ecc_code)
922 struct omap_nand_info *info = mtd_to_omap(mtd);
923 u32 val;
925 val = readl(info->reg.gpmc_ecc_config);
926 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
927 return -EINVAL;
929 /* read ecc result */
930 val = readl(info->reg.gpmc_ecc1_result);
931 *ecc_code++ = val; /* P128e, ..., P1e */
932 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
933 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
934 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
936 return 0;
940 * omap_enable_hwecc - This function enables the hardware ecc functionality
941 * @mtd: MTD device structure
942 * @mode: Read/Write mode
944 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
946 struct omap_nand_info *info = mtd_to_omap(mtd);
947 struct nand_chip *chip = mtd_to_nand(mtd);
948 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
949 u32 val;
951 /* clear ecc and enable bits */
952 val = ECCCLEAR | ECC1;
953 writel(val, info->reg.gpmc_ecc_control);
955 /* program ecc and result sizes */
956 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
957 ECC1RESULTSIZE);
958 writel(val, info->reg.gpmc_ecc_size_config);
960 switch (mode) {
961 case NAND_ECC_READ:
962 case NAND_ECC_WRITE:
963 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
964 break;
965 case NAND_ECC_READSYN:
966 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
967 break;
968 default:
969 dev_info(&info->pdev->dev,
970 "error: unrecognized Mode[%d]!\n", mode);
971 break;
974 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
975 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
976 writel(val, info->reg.gpmc_ecc_config);
980 * omap_wait - wait until the command is done
981 * @mtd: MTD device structure
982 * @chip: NAND Chip structure
984 * Wait function is called during Program and erase operations and
985 * the way it is called from MTD layer, we should wait till the NAND
986 * chip is ready after the programming/erase operation has completed.
988 * Erase can take up to 400ms and program up to 20ms according to
989 * general NAND and SmartMedia specs
991 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
993 struct nand_chip *this = mtd_to_nand(mtd);
994 struct omap_nand_info *info = mtd_to_omap(mtd);
995 unsigned long timeo = jiffies;
996 int status, state = this->state;
998 if (state == FL_ERASING)
999 timeo += msecs_to_jiffies(400);
1000 else
1001 timeo += msecs_to_jiffies(20);
1003 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004 while (time_before(jiffies, timeo)) {
1005 status = readb(info->reg.gpmc_nand_data);
1006 if (status & NAND_STATUS_READY)
1007 break;
1008 cond_resched();
1011 status = readb(info->reg.gpmc_nand_data);
1012 return status;
1016 * omap_dev_ready - checks the NAND Ready GPIO line
1017 * @mtd: MTD device structure
1019 * Returns true if ready and false if busy.
1021 static int omap_dev_ready(struct mtd_info *mtd)
1023 struct omap_nand_info *info = mtd_to_omap(mtd);
1025 return gpiod_get_value(info->ready_gpiod);
1029 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1030 * @mtd: MTD device structure
1031 * @mode: Read/Write mode
1033 * When using BCH with SW correction (i.e. no ELM), sector size is set
1034 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1035 * for both reading and writing with:
1036 * eccsize0 = 0 (no additional protected byte in spare area)
1037 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1039 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1041 unsigned int bch_type;
1042 unsigned int dev_width, nsectors;
1043 struct omap_nand_info *info = mtd_to_omap(mtd);
1044 enum omap_ecc ecc_opt = info->ecc_opt;
1045 struct nand_chip *chip = mtd_to_nand(mtd);
1046 u32 val, wr_mode;
1047 unsigned int ecc_size1, ecc_size0;
1049 /* GPMC configurations for calculating ECC */
1050 switch (ecc_opt) {
1051 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052 bch_type = 0;
1053 nsectors = 1;
1054 wr_mode = BCH_WRAPMODE_6;
1055 ecc_size0 = BCH_ECC_SIZE0;
1056 ecc_size1 = BCH_ECC_SIZE1;
1057 break;
1058 case OMAP_ECC_BCH4_CODE_HW:
1059 bch_type = 0;
1060 nsectors = chip->ecc.steps;
1061 if (mode == NAND_ECC_READ) {
1062 wr_mode = BCH_WRAPMODE_1;
1063 ecc_size0 = BCH4R_ECC_SIZE0;
1064 ecc_size1 = BCH4R_ECC_SIZE1;
1065 } else {
1066 wr_mode = BCH_WRAPMODE_6;
1067 ecc_size0 = BCH_ECC_SIZE0;
1068 ecc_size1 = BCH_ECC_SIZE1;
1070 break;
1071 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072 bch_type = 1;
1073 nsectors = 1;
1074 wr_mode = BCH_WRAPMODE_6;
1075 ecc_size0 = BCH_ECC_SIZE0;
1076 ecc_size1 = BCH_ECC_SIZE1;
1077 break;
1078 case OMAP_ECC_BCH8_CODE_HW:
1079 bch_type = 1;
1080 nsectors = chip->ecc.steps;
1081 if (mode == NAND_ECC_READ) {
1082 wr_mode = BCH_WRAPMODE_1;
1083 ecc_size0 = BCH8R_ECC_SIZE0;
1084 ecc_size1 = BCH8R_ECC_SIZE1;
1085 } else {
1086 wr_mode = BCH_WRAPMODE_6;
1087 ecc_size0 = BCH_ECC_SIZE0;
1088 ecc_size1 = BCH_ECC_SIZE1;
1090 break;
1091 case OMAP_ECC_BCH16_CODE_HW:
1092 bch_type = 0x2;
1093 nsectors = chip->ecc.steps;
1094 if (mode == NAND_ECC_READ) {
1095 wr_mode = 0x01;
1096 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1097 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1098 } else {
1099 wr_mode = 0x01;
1100 ecc_size0 = 0; /* extra bits in nibbles per sector */
1101 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1103 break;
1104 default:
1105 return;
1108 writel(ECC1, info->reg.gpmc_ecc_control);
1110 /* Configure ecc size for BCH */
1111 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112 writel(val, info->reg.gpmc_ecc_size_config);
1114 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1116 /* BCH configuration */
1117 val = ((1 << 16) | /* enable BCH */
1118 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
1119 (wr_mode << 8) | /* wrap mode */
1120 (dev_width << 7) | /* bus width */
1121 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1122 (info->gpmc_cs << 1) | /* ECC CS */
1123 (0x1)); /* enable ECC */
1125 writel(val, info->reg.gpmc_ecc_config);
1127 /* Clear ecc and enable bits */
1128 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1131 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133 0x97, 0x79, 0xe5, 0x24, 0xb5};
1136 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1137 * @mtd: MTD device structure
1138 * @dat: The pointer to data on which ecc is computed
1139 * @ecc_code: The ecc_code buffer
1140 * @i: The sector number (for a multi sector page)
1142 * Support calculating of BCH4/8/16 ECC vectors for one sector
1143 * within a page. Sector number is in @i.
1145 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1146 const u_char *dat, u_char *ecc_calc, int i)
1148 struct omap_nand_info *info = mtd_to_omap(mtd);
1149 int eccbytes = info->nand.ecc.bytes;
1150 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1151 u8 *ecc_code;
1152 unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1153 u32 val;
1154 int j;
1156 ecc_code = ecc_calc;
1157 switch (info->ecc_opt) {
1158 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159 case OMAP_ECC_BCH8_CODE_HW:
1160 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164 *ecc_code++ = (bch_val4 & 0xFF);
1165 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168 *ecc_code++ = (bch_val3 & 0xFF);
1169 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172 *ecc_code++ = (bch_val2 & 0xFF);
1173 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176 *ecc_code++ = (bch_val1 & 0xFF);
1177 break;
1178 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179 case OMAP_ECC_BCH4_CODE_HW:
1180 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185 ((bch_val1 >> 28) & 0xF);
1186 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1190 break;
1191 case OMAP_ECC_BCH16_CODE_HW:
1192 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193 ecc_code[0] = ((val >> 8) & 0xFF);
1194 ecc_code[1] = ((val >> 0) & 0xFF);
1195 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196 ecc_code[2] = ((val >> 24) & 0xFF);
1197 ecc_code[3] = ((val >> 16) & 0xFF);
1198 ecc_code[4] = ((val >> 8) & 0xFF);
1199 ecc_code[5] = ((val >> 0) & 0xFF);
1200 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201 ecc_code[6] = ((val >> 24) & 0xFF);
1202 ecc_code[7] = ((val >> 16) & 0xFF);
1203 ecc_code[8] = ((val >> 8) & 0xFF);
1204 ecc_code[9] = ((val >> 0) & 0xFF);
1205 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206 ecc_code[10] = ((val >> 24) & 0xFF);
1207 ecc_code[11] = ((val >> 16) & 0xFF);
1208 ecc_code[12] = ((val >> 8) & 0xFF);
1209 ecc_code[13] = ((val >> 0) & 0xFF);
1210 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211 ecc_code[14] = ((val >> 24) & 0xFF);
1212 ecc_code[15] = ((val >> 16) & 0xFF);
1213 ecc_code[16] = ((val >> 8) & 0xFF);
1214 ecc_code[17] = ((val >> 0) & 0xFF);
1215 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216 ecc_code[18] = ((val >> 24) & 0xFF);
1217 ecc_code[19] = ((val >> 16) & 0xFF);
1218 ecc_code[20] = ((val >> 8) & 0xFF);
1219 ecc_code[21] = ((val >> 0) & 0xFF);
1220 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221 ecc_code[22] = ((val >> 24) & 0xFF);
1222 ecc_code[23] = ((val >> 16) & 0xFF);
1223 ecc_code[24] = ((val >> 8) & 0xFF);
1224 ecc_code[25] = ((val >> 0) & 0xFF);
1225 break;
1226 default:
1227 return -EINVAL;
1230 /* ECC scheme specific syndrome customizations */
1231 switch (info->ecc_opt) {
1232 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233 /* Add constant polynomial to remainder, so that
1234 * ECC of blank pages results in 0x0 on reading back
1236 for (j = 0; j < eccbytes; j++)
1237 ecc_calc[j] ^= bch4_polynomial[j];
1238 break;
1239 case OMAP_ECC_BCH4_CODE_HW:
1240 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1241 ecc_calc[eccbytes - 1] = 0x0;
1242 break;
1243 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1244 /* Add constant polynomial to remainder, so that
1245 * ECC of blank pages results in 0x0 on reading back
1247 for (j = 0; j < eccbytes; j++)
1248 ecc_calc[j] ^= bch8_polynomial[j];
1249 break;
1250 case OMAP_ECC_BCH8_CODE_HW:
1251 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1252 ecc_calc[eccbytes - 1] = 0x0;
1253 break;
1254 case OMAP_ECC_BCH16_CODE_HW:
1255 break;
1256 default:
1257 return -EINVAL;
1260 return 0;
1264 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1265 * @mtd: MTD device structure
1266 * @dat: The pointer to data on which ecc is computed
1267 * @ecc_code: The ecc_code buffer
1269 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1270 * when SW based correction is required as ECC is required for one sector
1271 * at a time.
1273 static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
1274 const u_char *dat, u_char *ecc_calc)
1276 return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
1280 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1281 * @mtd: MTD device structure
1282 * @dat: The pointer to data on which ecc is computed
1283 * @ecc_code: The ecc_code buffer
1285 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1287 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1288 const u_char *dat, u_char *ecc_calc)
1290 struct omap_nand_info *info = mtd_to_omap(mtd);
1291 int eccbytes = info->nand.ecc.bytes;
1292 unsigned long nsectors;
1293 int i, ret;
1295 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1296 for (i = 0; i < nsectors; i++) {
1297 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1298 if (ret)
1299 return ret;
1301 ecc_calc += eccbytes;
1304 return 0;
1308 * erased_sector_bitflips - count bit flips
1309 * @data: data sector buffer
1310 * @oob: oob buffer
1311 * @info: omap_nand_info
1313 * Check the bit flips in erased page falls below correctable level.
1314 * If falls below, report the page as erased with correctable bit
1315 * flip, else report as uncorrectable page.
1317 static int erased_sector_bitflips(u_char *data, u_char *oob,
1318 struct omap_nand_info *info)
1320 int flip_bits = 0, i;
1322 for (i = 0; i < info->nand.ecc.size; i++) {
1323 flip_bits += hweight8(~data[i]);
1324 if (flip_bits > info->nand.ecc.strength)
1325 return 0;
1328 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1329 flip_bits += hweight8(~oob[i]);
1330 if (flip_bits > info->nand.ecc.strength)
1331 return 0;
1335 * Bit flips falls in correctable level.
1336 * Fill data area with 0xFF
1338 if (flip_bits) {
1339 memset(data, 0xFF, info->nand.ecc.size);
1340 memset(oob, 0xFF, info->nand.ecc.bytes);
1343 return flip_bits;
1347 * omap_elm_correct_data - corrects page data area in case error reported
1348 * @mtd: MTD device structure
1349 * @data: page data
1350 * @read_ecc: ecc read from nand flash
1351 * @calc_ecc: ecc read from HW ECC registers
1353 * Calculated ecc vector reported as zero in case of non-error pages.
1354 * In case of non-zero ecc vector, first filter out erased-pages, and
1355 * then process data via ELM to detect bit-flips.
1357 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1358 u_char *read_ecc, u_char *calc_ecc)
1360 struct omap_nand_info *info = mtd_to_omap(mtd);
1361 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1362 int eccsteps = info->nand.ecc.steps;
1363 int i , j, stat = 0;
1364 int eccflag, actual_eccbytes;
1365 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1366 u_char *ecc_vec = calc_ecc;
1367 u_char *spare_ecc = read_ecc;
1368 u_char *erased_ecc_vec;
1369 u_char *buf;
1370 int bitflip_count;
1371 bool is_error_reported = false;
1372 u32 bit_pos, byte_pos, error_max, pos;
1373 int err;
1375 switch (info->ecc_opt) {
1376 case OMAP_ECC_BCH4_CODE_HW:
1377 /* omit 7th ECC byte reserved for ROM code compatibility */
1378 actual_eccbytes = ecc->bytes - 1;
1379 erased_ecc_vec = bch4_vector;
1380 break;
1381 case OMAP_ECC_BCH8_CODE_HW:
1382 /* omit 14th ECC byte reserved for ROM code compatibility */
1383 actual_eccbytes = ecc->bytes - 1;
1384 erased_ecc_vec = bch8_vector;
1385 break;
1386 case OMAP_ECC_BCH16_CODE_HW:
1387 actual_eccbytes = ecc->bytes;
1388 erased_ecc_vec = bch16_vector;
1389 break;
1390 default:
1391 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1392 return -EINVAL;
1395 /* Initialize elm error vector to zero */
1396 memset(err_vec, 0, sizeof(err_vec));
1398 for (i = 0; i < eccsteps ; i++) {
1399 eccflag = 0; /* initialize eccflag */
1402 * Check any error reported,
1403 * In case of error, non zero ecc reported.
1405 for (j = 0; j < actual_eccbytes; j++) {
1406 if (calc_ecc[j] != 0) {
1407 eccflag = 1; /* non zero ecc, error present */
1408 break;
1412 if (eccflag == 1) {
1413 if (memcmp(calc_ecc, erased_ecc_vec,
1414 actual_eccbytes) == 0) {
1416 * calc_ecc[] matches pattern for ECC(all 0xff)
1417 * so this is definitely an erased-page
1419 } else {
1420 buf = &data[info->nand.ecc.size * i];
1422 * count number of 0-bits in read_buf.
1423 * This check can be removed once a similar
1424 * check is introduced in generic NAND driver
1426 bitflip_count = erased_sector_bitflips(
1427 buf, read_ecc, info);
1428 if (bitflip_count) {
1430 * number of 0-bits within ECC limits
1431 * So this may be an erased-page
1433 stat += bitflip_count;
1434 } else {
1436 * Too many 0-bits. It may be a
1437 * - programmed-page, OR
1438 * - erased-page with many bit-flips
1439 * So this page requires check by ELM
1441 err_vec[i].error_reported = true;
1442 is_error_reported = true;
1447 /* Update the ecc vector */
1448 calc_ecc += ecc->bytes;
1449 read_ecc += ecc->bytes;
1452 /* Check if any error reported */
1453 if (!is_error_reported)
1454 return stat;
1456 /* Decode BCH error using ELM module */
1457 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1459 err = 0;
1460 for (i = 0; i < eccsteps; i++) {
1461 if (err_vec[i].error_uncorrectable) {
1462 dev_err(&info->pdev->dev,
1463 "uncorrectable bit-flips found\n");
1464 err = -EBADMSG;
1465 } else if (err_vec[i].error_reported) {
1466 for (j = 0; j < err_vec[i].error_count; j++) {
1467 switch (info->ecc_opt) {
1468 case OMAP_ECC_BCH4_CODE_HW:
1469 /* Add 4 bits to take care of padding */
1470 pos = err_vec[i].error_loc[j] +
1471 BCH4_BIT_PAD;
1472 break;
1473 case OMAP_ECC_BCH8_CODE_HW:
1474 case OMAP_ECC_BCH16_CODE_HW:
1475 pos = err_vec[i].error_loc[j];
1476 break;
1477 default:
1478 return -EINVAL;
1480 error_max = (ecc->size + actual_eccbytes) * 8;
1481 /* Calculate bit position of error */
1482 bit_pos = pos % 8;
1484 /* Calculate byte position of error */
1485 byte_pos = (error_max - pos - 1) / 8;
1487 if (pos < error_max) {
1488 if (byte_pos < 512) {
1489 pr_debug("bitflip@dat[%d]=%x\n",
1490 byte_pos, data[byte_pos]);
1491 data[byte_pos] ^= 1 << bit_pos;
1492 } else {
1493 pr_debug("bitflip@oob[%d]=%x\n",
1494 (byte_pos - 512),
1495 spare_ecc[byte_pos - 512]);
1496 spare_ecc[byte_pos - 512] ^=
1497 1 << bit_pos;
1499 } else {
1500 dev_err(&info->pdev->dev,
1501 "invalid bit-flip @ %d:%d\n",
1502 byte_pos, bit_pos);
1503 err = -EBADMSG;
1508 /* Update number of correctable errors */
1509 stat += err_vec[i].error_count;
1511 /* Update page data with sector size */
1512 data += ecc->size;
1513 spare_ecc += ecc->bytes;
1516 return (err) ? err : stat;
1520 * omap_write_page_bch - BCH ecc based write page function for entire page
1521 * @mtd: mtd info structure
1522 * @chip: nand chip info structure
1523 * @buf: data buffer
1524 * @oob_required: must write chip->oob_poi to OOB
1525 * @page: page
1527 * Custom write page method evolved to support multi sector writing in one shot
1529 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1530 const uint8_t *buf, int oob_required, int page)
1532 int ret;
1533 uint8_t *ecc_calc = chip->buffers->ecccalc;
1535 /* Enable GPMC ecc engine */
1536 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1538 /* Write data */
1539 chip->write_buf(mtd, buf, mtd->writesize);
1541 /* Update ecc vector from GPMC result registers */
1542 omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1544 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1545 chip->ecc.total);
1546 if (ret)
1547 return ret;
1549 /* Write ecc vector to OOB area */
1550 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1551 return 0;
1555 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1556 * @mtd: mtd info structure
1557 * @chip: nand chip info structure
1558 * @offset: column address of subpage within the page
1559 * @data_len: data length
1560 * @buf: data buffer
1561 * @oob_required: must write chip->oob_poi to OOB
1562 * @page: page number to write
1564 * OMAP optimized subpage write method.
1566 static int omap_write_subpage_bch(struct mtd_info *mtd,
1567 struct nand_chip *chip, u32 offset,
1568 u32 data_len, const u8 *buf,
1569 int oob_required, int page)
1571 u8 *ecc_calc = chip->buffers->ecccalc;
1572 int ecc_size = chip->ecc.size;
1573 int ecc_bytes = chip->ecc.bytes;
1574 int ecc_steps = chip->ecc.steps;
1575 u32 start_step = offset / ecc_size;
1576 u32 end_step = (offset + data_len - 1) / ecc_size;
1577 int step, ret = 0;
1580 * Write entire page at one go as it would be optimal
1581 * as ECC is calculated by hardware.
1582 * ECC is calculated for all subpages but we choose
1583 * only what we want.
1586 /* Enable GPMC ECC engine */
1587 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1589 /* Write data */
1590 chip->write_buf(mtd, buf, mtd->writesize);
1592 for (step = 0; step < ecc_steps; step++) {
1593 /* mask ECC of un-touched subpages by padding 0xFF */
1594 if (step < start_step || step > end_step)
1595 memset(ecc_calc, 0xff, ecc_bytes);
1596 else
1597 ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1599 if (ret)
1600 return ret;
1602 buf += ecc_size;
1603 ecc_calc += ecc_bytes;
1606 /* copy calculated ECC for whole page to chip->buffer->oob */
1607 /* this include masked-value(0xFF) for unwritten subpages */
1608 ecc_calc = chip->buffers->ecccalc;
1609 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1610 chip->ecc.total);
1611 if (ret)
1612 return ret;
1614 /* write OOB buffer to NAND device */
1615 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1617 return 0;
1621 * omap_read_page_bch - BCH ecc based page read function for entire page
1622 * @mtd: mtd info structure
1623 * @chip: nand chip info structure
1624 * @buf: buffer to store read data
1625 * @oob_required: caller requires OOB data read to chip->oob_poi
1626 * @page: page number to read
1628 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1629 * used for error correction.
1630 * Custom method evolved to support ELM error correction & multi sector
1631 * reading. On reading page data area is read along with OOB data with
1632 * ecc engine enabled. ecc vector updated after read of OOB data.
1633 * For non error pages ecc vector reported as zero.
1635 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1636 uint8_t *buf, int oob_required, int page)
1638 uint8_t *ecc_calc = chip->buffers->ecccalc;
1639 uint8_t *ecc_code = chip->buffers->ecccode;
1640 int stat, ret;
1641 unsigned int max_bitflips = 0;
1643 /* Enable GPMC ecc engine */
1644 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1646 /* Read data */
1647 chip->read_buf(mtd, buf, mtd->writesize);
1649 /* Read oob bytes */
1650 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1651 mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
1652 chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1653 chip->ecc.total);
1655 /* Calculate ecc bytes */
1656 omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1658 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1659 chip->ecc.total);
1660 if (ret)
1661 return ret;
1663 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1665 if (stat < 0) {
1666 mtd->ecc_stats.failed++;
1667 } else {
1668 mtd->ecc_stats.corrected += stat;
1669 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1672 return max_bitflips;
1676 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1677 * @omap_nand_info: NAND device structure containing platform data
1679 static bool is_elm_present(struct omap_nand_info *info,
1680 struct device_node *elm_node)
1682 struct platform_device *pdev;
1684 /* check whether elm-id is passed via DT */
1685 if (!elm_node) {
1686 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1687 return false;
1689 pdev = of_find_device_by_node(elm_node);
1690 /* check whether ELM device is registered */
1691 if (!pdev) {
1692 dev_err(&info->pdev->dev, "ELM device not found\n");
1693 return false;
1695 /* ELM module available, now configure it */
1696 info->elm_dev = &pdev->dev;
1697 return true;
1700 static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1701 struct omap_nand_platform_data *pdata)
1703 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1705 switch (info->ecc_opt) {
1706 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1707 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1708 ecc_needs_omap_bch = false;
1709 ecc_needs_bch = true;
1710 ecc_needs_elm = false;
1711 break;
1712 case OMAP_ECC_BCH4_CODE_HW:
1713 case OMAP_ECC_BCH8_CODE_HW:
1714 case OMAP_ECC_BCH16_CODE_HW:
1715 ecc_needs_omap_bch = true;
1716 ecc_needs_bch = false;
1717 ecc_needs_elm = true;
1718 break;
1719 default:
1720 ecc_needs_omap_bch = false;
1721 ecc_needs_bch = false;
1722 ecc_needs_elm = false;
1723 break;
1726 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1727 dev_err(&info->pdev->dev,
1728 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1729 return false;
1731 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1732 dev_err(&info->pdev->dev,
1733 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1734 return false;
1736 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1737 dev_err(&info->pdev->dev, "ELM not available\n");
1738 return false;
1741 return true;
1744 static const char * const nand_xfer_types[] = {
1745 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1746 [NAND_OMAP_POLLED] = "polled",
1747 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1748 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1751 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1753 struct device_node *child = dev->of_node;
1754 int i;
1755 const char *s;
1756 u32 cs;
1758 if (of_property_read_u32(child, "reg", &cs) < 0) {
1759 dev_err(dev, "reg not found in DT\n");
1760 return -EINVAL;
1763 info->gpmc_cs = cs;
1765 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1766 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1767 if (!info->elm_of_node) {
1768 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1769 if (!info->elm_of_node)
1770 dev_dbg(dev, "ti,elm-id not in DT\n");
1773 /* select ecc-scheme for NAND */
1774 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1775 dev_err(dev, "ti,nand-ecc-opt not found\n");
1776 return -EINVAL;
1779 if (!strcmp(s, "sw")) {
1780 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1781 } else if (!strcmp(s, "ham1") ||
1782 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1783 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1784 } else if (!strcmp(s, "bch4")) {
1785 if (info->elm_of_node)
1786 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1787 else
1788 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1789 } else if (!strcmp(s, "bch8")) {
1790 if (info->elm_of_node)
1791 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1792 else
1793 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1794 } else if (!strcmp(s, "bch16")) {
1795 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1796 } else {
1797 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1798 return -EINVAL;
1801 /* select data transfer mode */
1802 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1803 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1804 if (!strcasecmp(s, nand_xfer_types[i])) {
1805 info->xfer_type = i;
1806 return 0;
1810 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1811 return -EINVAL;
1814 return 0;
1817 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1818 struct mtd_oob_region *oobregion)
1820 struct omap_nand_info *info = mtd_to_omap(mtd);
1821 struct nand_chip *chip = &info->nand;
1822 int off = BADBLOCK_MARKER_LENGTH;
1824 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1825 !(chip->options & NAND_BUSWIDTH_16))
1826 off = 1;
1828 if (section)
1829 return -ERANGE;
1831 oobregion->offset = off;
1832 oobregion->length = chip->ecc.total;
1834 return 0;
1837 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1838 struct mtd_oob_region *oobregion)
1840 struct omap_nand_info *info = mtd_to_omap(mtd);
1841 struct nand_chip *chip = &info->nand;
1842 int off = BADBLOCK_MARKER_LENGTH;
1844 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1845 !(chip->options & NAND_BUSWIDTH_16))
1846 off = 1;
1848 if (section)
1849 return -ERANGE;
1851 off += chip->ecc.total;
1852 if (off >= mtd->oobsize)
1853 return -ERANGE;
1855 oobregion->offset = off;
1856 oobregion->length = mtd->oobsize - off;
1858 return 0;
1861 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1862 .ecc = omap_ooblayout_ecc,
1863 .free = omap_ooblayout_free,
1866 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1867 struct mtd_oob_region *oobregion)
1869 struct nand_chip *chip = mtd_to_nand(mtd);
1870 int off = BADBLOCK_MARKER_LENGTH;
1872 if (section >= chip->ecc.steps)
1873 return -ERANGE;
1876 * When SW correction is employed, one OMAP specific marker byte is
1877 * reserved after each ECC step.
1879 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1880 oobregion->length = chip->ecc.bytes;
1882 return 0;
1885 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1886 struct mtd_oob_region *oobregion)
1888 struct nand_chip *chip = mtd_to_nand(mtd);
1889 int off = BADBLOCK_MARKER_LENGTH;
1891 if (section)
1892 return -ERANGE;
1895 * When SW correction is employed, one OMAP specific marker byte is
1896 * reserved after each ECC step.
1898 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1899 if (off >= mtd->oobsize)
1900 return -ERANGE;
1902 oobregion->offset = off;
1903 oobregion->length = mtd->oobsize - off;
1905 return 0;
1908 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1909 .ecc = omap_sw_ooblayout_ecc,
1910 .free = omap_sw_ooblayout_free,
1913 static int omap_nand_probe(struct platform_device *pdev)
1915 struct omap_nand_info *info;
1916 struct omap_nand_platform_data *pdata = NULL;
1917 struct mtd_info *mtd;
1918 struct nand_chip *nand_chip;
1919 int err;
1920 dma_cap_mask_t mask;
1921 struct resource *res;
1922 struct device *dev = &pdev->dev;
1923 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1924 int oobbytes_per_step;
1926 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1927 GFP_KERNEL);
1928 if (!info)
1929 return -ENOMEM;
1931 info->pdev = pdev;
1933 if (dev->of_node) {
1934 if (omap_get_dt_info(dev, info))
1935 return -EINVAL;
1936 } else {
1937 pdata = dev_get_platdata(&pdev->dev);
1938 if (!pdata) {
1939 dev_err(&pdev->dev, "platform data missing\n");
1940 return -EINVAL;
1943 info->gpmc_cs = pdata->cs;
1944 info->reg = pdata->reg;
1945 info->ecc_opt = pdata->ecc_opt;
1946 if (pdata->dev_ready)
1947 dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
1949 info->xfer_type = pdata->xfer_type;
1950 info->devsize = pdata->devsize;
1951 info->elm_of_node = pdata->elm_of_node;
1952 info->flash_bbt = pdata->flash_bbt;
1955 platform_set_drvdata(pdev, info);
1956 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1957 if (!info->ops) {
1958 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1959 return -ENODEV;
1962 nand_chip = &info->nand;
1963 mtd = nand_to_mtd(nand_chip);
1964 mtd->dev.parent = &pdev->dev;
1965 nand_chip->ecc.priv = NULL;
1966 nand_set_flash_node(nand_chip, dev->of_node);
1968 if (!mtd->name) {
1969 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1970 "omap2-nand.%d", info->gpmc_cs);
1971 if (!mtd->name) {
1972 dev_err(&pdev->dev, "Failed to set MTD name\n");
1973 return -ENOMEM;
1977 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1978 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1979 if (IS_ERR(nand_chip->IO_ADDR_R))
1980 return PTR_ERR(nand_chip->IO_ADDR_R);
1982 info->phys_base = res->start;
1984 nand_chip->controller = &omap_gpmc_controller;
1986 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1987 nand_chip->cmd_ctrl = omap_hwcontrol;
1989 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1990 GPIOD_IN);
1991 if (IS_ERR(info->ready_gpiod)) {
1992 dev_err(dev, "failed to get ready gpio\n");
1993 return PTR_ERR(info->ready_gpiod);
1997 * If RDY/BSY line is connected to OMAP then use the omap ready
1998 * function and the generic nand_wait function which reads the status
1999 * register after monitoring the RDY/BSY line. Otherwise use a standard
2000 * chip delay which is slightly more than tR (AC Timing) of the NAND
2001 * device and read status register until you get a failure or success
2003 if (info->ready_gpiod) {
2004 nand_chip->dev_ready = omap_dev_ready;
2005 nand_chip->chip_delay = 0;
2006 } else {
2007 nand_chip->waitfunc = omap_wait;
2008 nand_chip->chip_delay = 50;
2011 if (info->flash_bbt)
2012 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2014 /* scan NAND device connected to chip controller */
2015 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2016 if (nand_scan_ident(mtd, 1, NULL)) {
2017 dev_err(&info->pdev->dev,
2018 "scan failed, may be bus-width mismatch\n");
2019 err = -ENXIO;
2020 goto return_error;
2023 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
2024 nand_chip->bbt_options |= NAND_BBT_NO_OOB;
2025 else
2026 nand_chip->options |= NAND_SKIP_BBTSCAN;
2028 /* re-populate low-level callbacks based on xfer modes */
2029 switch (info->xfer_type) {
2030 case NAND_OMAP_PREFETCH_POLLED:
2031 nand_chip->read_buf = omap_read_buf_pref;
2032 nand_chip->write_buf = omap_write_buf_pref;
2033 break;
2035 case NAND_OMAP_POLLED:
2036 /* Use nand_base defaults for {read,write}_buf */
2037 break;
2039 case NAND_OMAP_PREFETCH_DMA:
2040 dma_cap_zero(mask);
2041 dma_cap_set(DMA_SLAVE, mask);
2042 info->dma = dma_request_chan(pdev->dev.parent, "rxtx");
2044 if (IS_ERR(info->dma)) {
2045 dev_err(&pdev->dev, "DMA engine request failed\n");
2046 err = PTR_ERR(info->dma);
2047 goto return_error;
2048 } else {
2049 struct dma_slave_config cfg;
2051 memset(&cfg, 0, sizeof(cfg));
2052 cfg.src_addr = info->phys_base;
2053 cfg.dst_addr = info->phys_base;
2054 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2055 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2056 cfg.src_maxburst = 16;
2057 cfg.dst_maxburst = 16;
2058 err = dmaengine_slave_config(info->dma, &cfg);
2059 if (err) {
2060 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
2061 err);
2062 goto return_error;
2064 nand_chip->read_buf = omap_read_buf_dma_pref;
2065 nand_chip->write_buf = omap_write_buf_dma_pref;
2067 break;
2069 case NAND_OMAP_PREFETCH_IRQ:
2070 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
2071 if (info->gpmc_irq_fifo <= 0) {
2072 dev_err(&pdev->dev, "error getting fifo irq\n");
2073 err = -ENODEV;
2074 goto return_error;
2076 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
2077 omap_nand_irq, IRQF_SHARED,
2078 "gpmc-nand-fifo", info);
2079 if (err) {
2080 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
2081 info->gpmc_irq_fifo, err);
2082 info->gpmc_irq_fifo = 0;
2083 goto return_error;
2086 info->gpmc_irq_count = platform_get_irq(pdev, 1);
2087 if (info->gpmc_irq_count <= 0) {
2088 dev_err(&pdev->dev, "error getting count irq\n");
2089 err = -ENODEV;
2090 goto return_error;
2092 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
2093 omap_nand_irq, IRQF_SHARED,
2094 "gpmc-nand-count", info);
2095 if (err) {
2096 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
2097 info->gpmc_irq_count, err);
2098 info->gpmc_irq_count = 0;
2099 goto return_error;
2102 nand_chip->read_buf = omap_read_buf_irq_pref;
2103 nand_chip->write_buf = omap_write_buf_irq_pref;
2105 break;
2107 default:
2108 dev_err(&pdev->dev,
2109 "xfer_type(%d) not supported!\n", info->xfer_type);
2110 err = -EINVAL;
2111 goto return_error;
2114 if (!omap2_nand_ecc_check(info, pdata)) {
2115 err = -EINVAL;
2116 goto return_error;
2120 * Bail out earlier to let NAND_ECC_SOFT code create its own
2121 * ooblayout instead of using ours.
2123 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2124 nand_chip->ecc.mode = NAND_ECC_SOFT;
2125 nand_chip->ecc.algo = NAND_ECC_HAMMING;
2126 goto scan_tail;
2129 /* populate MTD interface based on ECC scheme */
2130 switch (info->ecc_opt) {
2131 case OMAP_ECC_HAM1_CODE_HW:
2132 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2133 nand_chip->ecc.mode = NAND_ECC_HW;
2134 nand_chip->ecc.bytes = 3;
2135 nand_chip->ecc.size = 512;
2136 nand_chip->ecc.strength = 1;
2137 nand_chip->ecc.calculate = omap_calculate_ecc;
2138 nand_chip->ecc.hwctl = omap_enable_hwecc;
2139 nand_chip->ecc.correct = omap_correct_data;
2140 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2141 oobbytes_per_step = nand_chip->ecc.bytes;
2143 if (!(nand_chip->options & NAND_BUSWIDTH_16))
2144 min_oobbytes = 1;
2146 break;
2148 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2149 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2150 nand_chip->ecc.mode = NAND_ECC_HW;
2151 nand_chip->ecc.size = 512;
2152 nand_chip->ecc.bytes = 7;
2153 nand_chip->ecc.strength = 4;
2154 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2155 nand_chip->ecc.correct = nand_bch_correct_data;
2156 nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2157 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2158 /* Reserve one byte for the OMAP marker */
2159 oobbytes_per_step = nand_chip->ecc.bytes + 1;
2160 /* software bch library is used for locating errors */
2161 nand_chip->ecc.priv = nand_bch_init(mtd);
2162 if (!nand_chip->ecc.priv) {
2163 dev_err(&info->pdev->dev, "unable to use BCH library\n");
2164 err = -EINVAL;
2165 goto return_error;
2167 break;
2169 case OMAP_ECC_BCH4_CODE_HW:
2170 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2171 nand_chip->ecc.mode = NAND_ECC_HW;
2172 nand_chip->ecc.size = 512;
2173 /* 14th bit is kept reserved for ROM-code compatibility */
2174 nand_chip->ecc.bytes = 7 + 1;
2175 nand_chip->ecc.strength = 4;
2176 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2177 nand_chip->ecc.correct = omap_elm_correct_data;
2178 nand_chip->ecc.read_page = omap_read_page_bch;
2179 nand_chip->ecc.write_page = omap_write_page_bch;
2180 nand_chip->ecc.write_subpage = omap_write_subpage_bch;
2181 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2182 oobbytes_per_step = nand_chip->ecc.bytes;
2184 err = elm_config(info->elm_dev, BCH4_ECC,
2185 mtd->writesize / nand_chip->ecc.size,
2186 nand_chip->ecc.size, nand_chip->ecc.bytes);
2187 if (err < 0)
2188 goto return_error;
2189 break;
2191 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2192 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2193 nand_chip->ecc.mode = NAND_ECC_HW;
2194 nand_chip->ecc.size = 512;
2195 nand_chip->ecc.bytes = 13;
2196 nand_chip->ecc.strength = 8;
2197 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2198 nand_chip->ecc.correct = nand_bch_correct_data;
2199 nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
2200 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2201 /* Reserve one byte for the OMAP marker */
2202 oobbytes_per_step = nand_chip->ecc.bytes + 1;
2203 /* software bch library is used for locating errors */
2204 nand_chip->ecc.priv = nand_bch_init(mtd);
2205 if (!nand_chip->ecc.priv) {
2206 dev_err(&info->pdev->dev, "unable to use BCH library\n");
2207 err = -EINVAL;
2208 goto return_error;
2210 break;
2212 case OMAP_ECC_BCH8_CODE_HW:
2213 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2214 nand_chip->ecc.mode = NAND_ECC_HW;
2215 nand_chip->ecc.size = 512;
2216 /* 14th bit is kept reserved for ROM-code compatibility */
2217 nand_chip->ecc.bytes = 13 + 1;
2218 nand_chip->ecc.strength = 8;
2219 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2220 nand_chip->ecc.correct = omap_elm_correct_data;
2221 nand_chip->ecc.read_page = omap_read_page_bch;
2222 nand_chip->ecc.write_page = omap_write_page_bch;
2223 nand_chip->ecc.write_subpage = omap_write_subpage_bch;
2224 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2225 oobbytes_per_step = nand_chip->ecc.bytes;
2227 err = elm_config(info->elm_dev, BCH8_ECC,
2228 mtd->writesize / nand_chip->ecc.size,
2229 nand_chip->ecc.size, nand_chip->ecc.bytes);
2230 if (err < 0)
2231 goto return_error;
2233 break;
2235 case OMAP_ECC_BCH16_CODE_HW:
2236 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2237 nand_chip->ecc.mode = NAND_ECC_HW;
2238 nand_chip->ecc.size = 512;
2239 nand_chip->ecc.bytes = 26;
2240 nand_chip->ecc.strength = 16;
2241 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2242 nand_chip->ecc.correct = omap_elm_correct_data;
2243 nand_chip->ecc.read_page = omap_read_page_bch;
2244 nand_chip->ecc.write_page = omap_write_page_bch;
2245 nand_chip->ecc.write_subpage = omap_write_subpage_bch;
2246 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2247 oobbytes_per_step = nand_chip->ecc.bytes;
2249 err = elm_config(info->elm_dev, BCH16_ECC,
2250 mtd->writesize / nand_chip->ecc.size,
2251 nand_chip->ecc.size, nand_chip->ecc.bytes);
2252 if (err < 0)
2253 goto return_error;
2255 break;
2256 default:
2257 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2258 err = -EINVAL;
2259 goto return_error;
2262 /* check if NAND device's OOB is enough to store ECC signatures */
2263 min_oobbytes += (oobbytes_per_step *
2264 (mtd->writesize / nand_chip->ecc.size));
2265 if (mtd->oobsize < min_oobbytes) {
2266 dev_err(&info->pdev->dev,
2267 "not enough OOB bytes required = %d, available=%d\n",
2268 min_oobbytes, mtd->oobsize);
2269 err = -EINVAL;
2270 goto return_error;
2273 scan_tail:
2274 /* second phase scan */
2275 if (nand_scan_tail(mtd)) {
2276 err = -ENXIO;
2277 goto return_error;
2280 if (dev->of_node)
2281 mtd_device_register(mtd, NULL, 0);
2282 else
2283 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2285 platform_set_drvdata(pdev, mtd);
2287 return 0;
2289 return_error:
2290 if (!IS_ERR_OR_NULL(info->dma))
2291 dma_release_channel(info->dma);
2292 if (nand_chip->ecc.priv) {
2293 nand_bch_free(nand_chip->ecc.priv);
2294 nand_chip->ecc.priv = NULL;
2296 return err;
2299 static int omap_nand_remove(struct platform_device *pdev)
2301 struct mtd_info *mtd = platform_get_drvdata(pdev);
2302 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2303 struct omap_nand_info *info = mtd_to_omap(mtd);
2304 if (nand_chip->ecc.priv) {
2305 nand_bch_free(nand_chip->ecc.priv);
2306 nand_chip->ecc.priv = NULL;
2308 if (info->dma)
2309 dma_release_channel(info->dma);
2310 nand_release(nand_chip);
2311 return 0;
2314 static const struct of_device_id omap_nand_ids[] = {
2315 { .compatible = "ti,omap2-nand", },
2319 static struct platform_driver omap_nand_driver = {
2320 .probe = omap_nand_probe,
2321 .remove = omap_nand_remove,
2322 .driver = {
2323 .name = DRIVER_NAME,
2324 .of_match_table = of_match_ptr(omap_nand_ids),
2328 module_platform_driver(omap_nand_driver);
2330 MODULE_ALIAS("platform:" DRIVER_NAME);
2331 MODULE_LICENSE("GPL");
2332 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");