Linux 4.9.243
[linux/fpc-iii.git] / drivers / net / ieee802154 / mrf24j40.c
blob7b131f8e40937000a273cfabbbf04a03a4af2f17
1 /*
2 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
4 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
5 * Signal 11 Software
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/spi/spi.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/regmap.h>
22 #include <linux/ieee802154.h>
23 #include <linux/irq.h>
24 #include <net/cfg802154.h>
25 #include <net/mac802154.h>
27 /* MRF24J40 Short Address Registers */
28 #define REG_RXMCR 0x00 /* Receive MAC control */
29 #define BIT_PROMI BIT(0)
30 #define BIT_ERRPKT BIT(1)
31 #define BIT_NOACKRSP BIT(5)
32 #define BIT_PANCOORD BIT(3)
34 #define REG_PANIDL 0x01 /* PAN ID (low) */
35 #define REG_PANIDH 0x02 /* PAN ID (high) */
36 #define REG_SADRL 0x03 /* Short address (low) */
37 #define REG_SADRH 0x04 /* Short address (high) */
38 #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
39 #define REG_EADR1 0x06
40 #define REG_EADR2 0x07
41 #define REG_EADR3 0x08
42 #define REG_EADR4 0x09
43 #define REG_EADR5 0x0A
44 #define REG_EADR6 0x0B
45 #define REG_EADR7 0x0C
46 #define REG_RXFLUSH 0x0D
47 #define REG_ORDER 0x10
48 #define REG_TXMCR 0x11 /* Transmit MAC control */
49 #define TXMCR_MIN_BE_SHIFT 3
50 #define TXMCR_MIN_BE_MASK 0x18
51 #define TXMCR_CSMA_RETRIES_SHIFT 0
52 #define TXMCR_CSMA_RETRIES_MASK 0x07
54 #define REG_ACKTMOUT 0x12
55 #define REG_ESLOTG1 0x13
56 #define REG_SYMTICKL 0x14
57 #define REG_SYMTICKH 0x15
58 #define REG_PACON0 0x16 /* Power Amplifier Control */
59 #define REG_PACON1 0x17 /* Power Amplifier Control */
60 #define REG_PACON2 0x18 /* Power Amplifier Control */
61 #define REG_TXBCON0 0x1A
62 #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
63 #define BIT_TXNTRIG BIT(0)
64 #define BIT_TXNSECEN BIT(1)
65 #define BIT_TXNACKREQ BIT(2)
67 #define REG_TXG1CON 0x1C
68 #define REG_TXG2CON 0x1D
69 #define REG_ESLOTG23 0x1E
70 #define REG_ESLOTG45 0x1F
71 #define REG_ESLOTG67 0x20
72 #define REG_TXPEND 0x21
73 #define REG_WAKECON 0x22
74 #define REG_FROMOFFSET 0x23
75 #define REG_TXSTAT 0x24 /* TX MAC Status Register */
76 #define REG_TXBCON1 0x25
77 #define REG_GATECLK 0x26
78 #define REG_TXTIME 0x27
79 #define REG_HSYMTMRL 0x28
80 #define REG_HSYMTMRH 0x29
81 #define REG_SOFTRST 0x2A /* Soft Reset */
82 #define REG_SECCON0 0x2C
83 #define REG_SECCON1 0x2D
84 #define REG_TXSTBL 0x2E /* TX Stabilization */
85 #define REG_RXSR 0x30
86 #define REG_INTSTAT 0x31 /* Interrupt Status */
87 #define BIT_TXNIF BIT(0)
88 #define BIT_RXIF BIT(3)
89 #define BIT_SECIF BIT(4)
90 #define BIT_SECIGNORE BIT(7)
92 #define REG_INTCON 0x32 /* Interrupt Control */
93 #define BIT_TXNIE BIT(0)
94 #define BIT_RXIE BIT(3)
95 #define BIT_SECIE BIT(4)
97 #define REG_GPIO 0x33 /* GPIO */
98 #define REG_TRISGPIO 0x34 /* GPIO direction */
99 #define REG_SLPACK 0x35
100 #define REG_RFCTL 0x36 /* RF Control Mode Register */
101 #define BIT_RFRST BIT(2)
103 #define REG_SECCR2 0x37
104 #define REG_BBREG0 0x38
105 #define REG_BBREG1 0x39 /* Baseband Registers */
106 #define BIT_RXDECINV BIT(2)
108 #define REG_BBREG2 0x3A /* */
109 #define BBREG2_CCA_MODE_SHIFT 6
110 #define BBREG2_CCA_MODE_MASK 0xc0
112 #define REG_BBREG3 0x3B
113 #define REG_BBREG4 0x3C
114 #define REG_BBREG6 0x3E /* */
115 #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
117 /* MRF24J40 Long Address Registers */
118 #define REG_RFCON0 0x200 /* RF Control Registers */
119 #define RFCON0_CH_SHIFT 4
120 #define RFCON0_CH_MASK 0xf0
121 #define RFOPT_RECOMMEND 3
123 #define REG_RFCON1 0x201
124 #define REG_RFCON2 0x202
125 #define REG_RFCON3 0x203
127 #define TXPWRL_MASK 0xc0
128 #define TXPWRL_SHIFT 6
129 #define TXPWRL_30 0x3
130 #define TXPWRL_20 0x2
131 #define TXPWRL_10 0x1
132 #define TXPWRL_0 0x0
134 #define TXPWRS_MASK 0x38
135 #define TXPWRS_SHIFT 3
136 #define TXPWRS_6_3 0x7
137 #define TXPWRS_4_9 0x6
138 #define TXPWRS_3_7 0x5
139 #define TXPWRS_2_8 0x4
140 #define TXPWRS_1_9 0x3
141 #define TXPWRS_1_2 0x2
142 #define TXPWRS_0_5 0x1
143 #define TXPWRS_0 0x0
145 #define REG_RFCON5 0x205
146 #define REG_RFCON6 0x206
147 #define REG_RFCON7 0x207
148 #define REG_RFCON8 0x208
149 #define REG_SLPCAL0 0x209
150 #define REG_SLPCAL1 0x20A
151 #define REG_SLPCAL2 0x20B
152 #define REG_RFSTATE 0x20F
153 #define REG_RSSI 0x210
154 #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
155 #define BIT_INTEDGE BIT(1)
157 #define REG_SLPCON1 0x220
158 #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
159 #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
160 #define REG_REMCNTL 0x224
161 #define REG_REMCNTH 0x225
162 #define REG_MAINCNT0 0x226
163 #define REG_MAINCNT1 0x227
164 #define REG_MAINCNT2 0x228
165 #define REG_MAINCNT3 0x229
166 #define REG_TESTMODE 0x22F /* Test mode */
167 #define REG_ASSOEAR0 0x230
168 #define REG_ASSOEAR1 0x231
169 #define REG_ASSOEAR2 0x232
170 #define REG_ASSOEAR3 0x233
171 #define REG_ASSOEAR4 0x234
172 #define REG_ASSOEAR5 0x235
173 #define REG_ASSOEAR6 0x236
174 #define REG_ASSOEAR7 0x237
175 #define REG_ASSOSAR0 0x238
176 #define REG_ASSOSAR1 0x239
177 #define REG_UNONCE0 0x240
178 #define REG_UNONCE1 0x241
179 #define REG_UNONCE2 0x242
180 #define REG_UNONCE3 0x243
181 #define REG_UNONCE4 0x244
182 #define REG_UNONCE5 0x245
183 #define REG_UNONCE6 0x246
184 #define REG_UNONCE7 0x247
185 #define REG_UNONCE8 0x248
186 #define REG_UNONCE9 0x249
187 #define REG_UNONCE10 0x24A
188 #define REG_UNONCE11 0x24B
189 #define REG_UNONCE12 0x24C
190 #define REG_RX_FIFO 0x300 /* Receive FIFO */
192 /* Device configuration: Only channels 11-26 on page 0 are supported. */
193 #define MRF24J40_CHAN_MIN 11
194 #define MRF24J40_CHAN_MAX 26
195 #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
196 - ((u32)1 << MRF24J40_CHAN_MIN))
198 #define TX_FIFO_SIZE 128 /* From datasheet */
199 #define RX_FIFO_SIZE 144 /* From datasheet */
200 #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
202 enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
204 /* Device Private Data */
205 struct mrf24j40 {
206 struct spi_device *spi;
207 struct ieee802154_hw *hw;
209 struct regmap *regmap_short;
210 struct regmap *regmap_long;
212 /* for writing txfifo */
213 struct spi_message tx_msg;
214 u8 tx_hdr_buf[2];
215 struct spi_transfer tx_hdr_trx;
216 u8 tx_len_buf[2];
217 struct spi_transfer tx_len_trx;
218 struct spi_transfer tx_buf_trx;
219 struct sk_buff *tx_skb;
221 /* post transmit message to send frame out */
222 struct spi_message tx_post_msg;
223 u8 tx_post_buf[2];
224 struct spi_transfer tx_post_trx;
226 /* for protect/unprotect/read length rxfifo */
227 struct spi_message rx_msg;
228 u8 rx_buf[3];
229 struct spi_transfer rx_trx;
231 /* receive handling */
232 struct spi_message rx_buf_msg;
233 u8 rx_addr_buf[2];
234 struct spi_transfer rx_addr_trx;
235 u8 rx_lqi_buf[2];
236 struct spi_transfer rx_lqi_trx;
237 u8 rx_fifo_buf[RX_FIFO_SIZE];
238 struct spi_transfer rx_fifo_buf_trx;
240 /* isr handling for reading intstat */
241 struct spi_message irq_msg;
242 u8 irq_buf[2];
243 struct spi_transfer irq_trx;
246 /* regmap information for short address register access */
247 #define MRF24J40_SHORT_WRITE 0x01
248 #define MRF24J40_SHORT_READ 0x00
249 #define MRF24J40_SHORT_NUMREGS 0x3F
251 /* regmap information for long address register access */
252 #define MRF24J40_LONG_ACCESS 0x80
253 #define MRF24J40_LONG_NUMREGS 0x38F
255 /* Read/Write SPI Commands for Short and Long Address registers. */
256 #define MRF24J40_READSHORT(reg) ((reg) << 1)
257 #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
258 #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
259 #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
261 /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
262 #define MAX_SPI_SPEED_HZ 10000000
264 #define printdev(X) (&X->spi->dev)
266 static bool
267 mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
269 switch (reg) {
270 case REG_RXMCR:
271 case REG_PANIDL:
272 case REG_PANIDH:
273 case REG_SADRL:
274 case REG_SADRH:
275 case REG_EADR0:
276 case REG_EADR1:
277 case REG_EADR2:
278 case REG_EADR3:
279 case REG_EADR4:
280 case REG_EADR5:
281 case REG_EADR6:
282 case REG_EADR7:
283 case REG_RXFLUSH:
284 case REG_ORDER:
285 case REG_TXMCR:
286 case REG_ACKTMOUT:
287 case REG_ESLOTG1:
288 case REG_SYMTICKL:
289 case REG_SYMTICKH:
290 case REG_PACON0:
291 case REG_PACON1:
292 case REG_PACON2:
293 case REG_TXBCON0:
294 case REG_TXNCON:
295 case REG_TXG1CON:
296 case REG_TXG2CON:
297 case REG_ESLOTG23:
298 case REG_ESLOTG45:
299 case REG_ESLOTG67:
300 case REG_TXPEND:
301 case REG_WAKECON:
302 case REG_FROMOFFSET:
303 case REG_TXBCON1:
304 case REG_GATECLK:
305 case REG_TXTIME:
306 case REG_HSYMTMRL:
307 case REG_HSYMTMRH:
308 case REG_SOFTRST:
309 case REG_SECCON0:
310 case REG_SECCON1:
311 case REG_TXSTBL:
312 case REG_RXSR:
313 case REG_INTCON:
314 case REG_TRISGPIO:
315 case REG_GPIO:
316 case REG_RFCTL:
317 case REG_SECCR2:
318 case REG_SLPACK:
319 case REG_BBREG0:
320 case REG_BBREG1:
321 case REG_BBREG2:
322 case REG_BBREG3:
323 case REG_BBREG4:
324 case REG_BBREG6:
325 case REG_CCAEDTH:
326 return true;
327 default:
328 return false;
332 static bool
333 mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
335 bool rc;
337 /* all writeable are also readable */
338 rc = mrf24j40_short_reg_writeable(dev, reg);
339 if (rc)
340 return rc;
342 /* readonly regs */
343 switch (reg) {
344 case REG_TXSTAT:
345 case REG_INTSTAT:
346 return true;
347 default:
348 return false;
352 static bool
353 mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
355 /* can be changed during runtime */
356 switch (reg) {
357 case REG_TXSTAT:
358 case REG_INTSTAT:
359 case REG_RXFLUSH:
360 case REG_TXNCON:
361 case REG_SOFTRST:
362 case REG_RFCTL:
363 case REG_TXBCON0:
364 case REG_TXG1CON:
365 case REG_TXG2CON:
366 case REG_TXBCON1:
367 case REG_SECCON0:
368 case REG_RXSR:
369 case REG_SLPACK:
370 case REG_SECCR2:
371 case REG_BBREG6:
372 /* use them in spi_async and regmap so it's volatile */
373 case REG_BBREG1:
374 return true;
375 default:
376 return false;
380 static bool
381 mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
383 /* don't clear irq line on read */
384 switch (reg) {
385 case REG_INTSTAT:
386 return true;
387 default:
388 return false;
392 static const struct regmap_config mrf24j40_short_regmap = {
393 .name = "mrf24j40_short",
394 .reg_bits = 7,
395 .val_bits = 8,
396 .pad_bits = 1,
397 .write_flag_mask = MRF24J40_SHORT_WRITE,
398 .read_flag_mask = MRF24J40_SHORT_READ,
399 .cache_type = REGCACHE_RBTREE,
400 .max_register = MRF24J40_SHORT_NUMREGS,
401 .writeable_reg = mrf24j40_short_reg_writeable,
402 .readable_reg = mrf24j40_short_reg_readable,
403 .volatile_reg = mrf24j40_short_reg_volatile,
404 .precious_reg = mrf24j40_short_reg_precious,
407 static bool
408 mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
410 switch (reg) {
411 case REG_RFCON0:
412 case REG_RFCON1:
413 case REG_RFCON2:
414 case REG_RFCON3:
415 case REG_RFCON5:
416 case REG_RFCON6:
417 case REG_RFCON7:
418 case REG_RFCON8:
419 case REG_SLPCAL2:
420 case REG_SLPCON0:
421 case REG_SLPCON1:
422 case REG_WAKETIMEL:
423 case REG_WAKETIMEH:
424 case REG_REMCNTL:
425 case REG_REMCNTH:
426 case REG_MAINCNT0:
427 case REG_MAINCNT1:
428 case REG_MAINCNT2:
429 case REG_MAINCNT3:
430 case REG_TESTMODE:
431 case REG_ASSOEAR0:
432 case REG_ASSOEAR1:
433 case REG_ASSOEAR2:
434 case REG_ASSOEAR3:
435 case REG_ASSOEAR4:
436 case REG_ASSOEAR5:
437 case REG_ASSOEAR6:
438 case REG_ASSOEAR7:
439 case REG_ASSOSAR0:
440 case REG_ASSOSAR1:
441 case REG_UNONCE0:
442 case REG_UNONCE1:
443 case REG_UNONCE2:
444 case REG_UNONCE3:
445 case REG_UNONCE4:
446 case REG_UNONCE5:
447 case REG_UNONCE6:
448 case REG_UNONCE7:
449 case REG_UNONCE8:
450 case REG_UNONCE9:
451 case REG_UNONCE10:
452 case REG_UNONCE11:
453 case REG_UNONCE12:
454 return true;
455 default:
456 return false;
460 static bool
461 mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
463 bool rc;
465 /* all writeable are also readable */
466 rc = mrf24j40_long_reg_writeable(dev, reg);
467 if (rc)
468 return rc;
470 /* readonly regs */
471 switch (reg) {
472 case REG_SLPCAL0:
473 case REG_SLPCAL1:
474 case REG_RFSTATE:
475 case REG_RSSI:
476 return true;
477 default:
478 return false;
482 static bool
483 mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
485 /* can be changed during runtime */
486 switch (reg) {
487 case REG_SLPCAL0:
488 case REG_SLPCAL1:
489 case REG_SLPCAL2:
490 case REG_RFSTATE:
491 case REG_RSSI:
492 case REG_MAINCNT3:
493 return true;
494 default:
495 return false;
499 static const struct regmap_config mrf24j40_long_regmap = {
500 .name = "mrf24j40_long",
501 .reg_bits = 11,
502 .val_bits = 8,
503 .pad_bits = 5,
504 .write_flag_mask = MRF24J40_LONG_ACCESS,
505 .read_flag_mask = MRF24J40_LONG_ACCESS,
506 .cache_type = REGCACHE_RBTREE,
507 .max_register = MRF24J40_LONG_NUMREGS,
508 .writeable_reg = mrf24j40_long_reg_writeable,
509 .readable_reg = mrf24j40_long_reg_readable,
510 .volatile_reg = mrf24j40_long_reg_volatile,
513 static int mrf24j40_long_regmap_write(void *context, const void *data,
514 size_t count)
516 struct spi_device *spi = context;
517 u8 buf[3];
519 if (count > 3)
520 return -EINVAL;
522 /* regmap supports read/write mask only in frist byte
523 * long write access need to set the 12th bit, so we
524 * make special handling for write.
526 memcpy(buf, data, count);
527 buf[1] |= (1 << 4);
529 return spi_write(spi, buf, count);
532 static int
533 mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
534 void *val, size_t val_size)
536 struct spi_device *spi = context;
538 return spi_write_then_read(spi, reg, reg_size, val, val_size);
541 static const struct regmap_bus mrf24j40_long_regmap_bus = {
542 .write = mrf24j40_long_regmap_write,
543 .read = mrf24j40_long_regmap_read,
544 .reg_format_endian_default = REGMAP_ENDIAN_BIG,
545 .val_format_endian_default = REGMAP_ENDIAN_BIG,
548 static void write_tx_buf_complete(void *context)
550 struct mrf24j40 *devrec = context;
551 __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
552 u8 val = BIT_TXNTRIG;
553 int ret;
555 if (ieee802154_is_secen(fc))
556 val |= BIT_TXNSECEN;
558 if (ieee802154_is_ackreq(fc))
559 val |= BIT_TXNACKREQ;
561 devrec->tx_post_msg.complete = NULL;
562 devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
563 devrec->tx_post_buf[1] = val;
565 ret = spi_async(devrec->spi, &devrec->tx_post_msg);
566 if (ret)
567 dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
570 /* This function relies on an undocumented write method. Once a write command
571 and address is set, as many bytes of data as desired can be clocked into
572 the device. The datasheet only shows setting one byte at a time. */
573 static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
574 const u8 *data, size_t length)
576 u16 cmd;
577 int ret;
579 /* Range check the length. 2 bytes are used for the length fields.*/
580 if (length > TX_FIFO_SIZE-2) {
581 dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
582 length = TX_FIFO_SIZE-2;
585 cmd = MRF24J40_WRITELONG(reg);
586 devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
587 devrec->tx_hdr_buf[1] = cmd & 0xff;
588 devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
589 devrec->tx_len_buf[1] = length; /* Total length */
590 devrec->tx_buf_trx.tx_buf = data;
591 devrec->tx_buf_trx.len = length;
593 ret = spi_async(devrec->spi, &devrec->tx_msg);
594 if (ret)
595 dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
597 return ret;
600 static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
602 struct mrf24j40 *devrec = hw->priv;
604 dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
605 devrec->tx_skb = skb;
607 return write_tx_buf(devrec, 0x000, skb->data, skb->len);
610 static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
612 /* TODO: */
613 pr_warn("mrf24j40: ed not implemented\n");
614 *level = 0;
615 return 0;
618 static int mrf24j40_start(struct ieee802154_hw *hw)
620 struct mrf24j40 *devrec = hw->priv;
622 dev_dbg(printdev(devrec), "start\n");
624 /* Clear TXNIE and RXIE. Enable interrupts */
625 return regmap_update_bits(devrec->regmap_short, REG_INTCON,
626 BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
629 static void mrf24j40_stop(struct ieee802154_hw *hw)
631 struct mrf24j40 *devrec = hw->priv;
633 dev_dbg(printdev(devrec), "stop\n");
635 /* Set TXNIE and RXIE. Disable Interrupts */
636 regmap_update_bits(devrec->regmap_short, REG_INTCON,
637 BIT_TXNIE | BIT_TXNIE, BIT_TXNIE | BIT_TXNIE);
640 static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
642 struct mrf24j40 *devrec = hw->priv;
643 u8 val;
644 int ret;
646 dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
648 WARN_ON(page != 0);
649 WARN_ON(channel < MRF24J40_CHAN_MIN);
650 WARN_ON(channel > MRF24J40_CHAN_MAX);
652 /* Set Channel TODO */
653 val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
654 ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
655 RFCON0_CH_MASK, val);
656 if (ret)
657 return ret;
659 /* RF Reset */
660 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
661 BIT_RFRST);
662 if (ret)
663 return ret;
665 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
666 if (!ret)
667 udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
669 return ret;
672 static int mrf24j40_filter(struct ieee802154_hw *hw,
673 struct ieee802154_hw_addr_filt *filt,
674 unsigned long changed)
676 struct mrf24j40 *devrec = hw->priv;
678 dev_dbg(printdev(devrec), "filter\n");
680 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
681 /* Short Addr */
682 u8 addrh, addrl;
684 addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
685 addrl = le16_to_cpu(filt->short_addr) & 0xff;
687 regmap_write(devrec->regmap_short, REG_SADRH, addrh);
688 regmap_write(devrec->regmap_short, REG_SADRL, addrl);
689 dev_dbg(printdev(devrec),
690 "Set short addr to %04hx\n", filt->short_addr);
693 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
694 /* Device Address */
695 u8 i, addr[8];
697 memcpy(addr, &filt->ieee_addr, 8);
698 for (i = 0; i < 8; i++)
699 regmap_write(devrec->regmap_short, REG_EADR0 + i,
700 addr[i]);
702 #ifdef DEBUG
703 pr_debug("Set long addr to: ");
704 for (i = 0; i < 8; i++)
705 pr_debug("%02hhx ", addr[7 - i]);
706 pr_debug("\n");
707 #endif
710 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
711 /* PAN ID */
712 u8 panidl, panidh;
714 panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
715 panidl = le16_to_cpu(filt->pan_id) & 0xff;
716 regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
717 regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
719 dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
722 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
723 /* Pan Coordinator */
724 u8 val;
725 int ret;
727 if (filt->pan_coord)
728 val = BIT_PANCOORD;
729 else
730 val = 0;
731 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
732 BIT_PANCOORD, val);
733 if (ret)
734 return ret;
736 /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
737 * REG_ORDER is maintained as default (no beacon/superframe).
740 dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
741 filt->pan_coord ? "on" : "off");
744 return 0;
747 static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
749 int ret;
751 /* Turn back on reception of packets off the air. */
752 devrec->rx_msg.complete = NULL;
753 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
754 devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
755 ret = spi_async(devrec->spi, &devrec->rx_msg);
756 if (ret)
757 dev_err(printdev(devrec), "failed to unlock rx buffer\n");
760 static void mrf24j40_handle_rx_read_buf_complete(void *context)
762 struct mrf24j40 *devrec = context;
763 u8 len = devrec->rx_buf[2];
764 u8 rx_local_buf[RX_FIFO_SIZE];
765 struct sk_buff *skb;
767 memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
768 mrf24j40_handle_rx_read_buf_unlock(devrec);
770 skb = dev_alloc_skb(IEEE802154_MTU);
771 if (!skb) {
772 dev_err(printdev(devrec), "failed to allocate skb\n");
773 return;
776 memcpy(skb_put(skb, len), rx_local_buf, len);
777 ieee802154_rx_irqsafe(devrec->hw, skb, 0);
779 #ifdef DEBUG
780 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
781 rx_local_buf, len, 0);
782 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
783 devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
784 #endif
787 static void mrf24j40_handle_rx_read_buf(void *context)
789 struct mrf24j40 *devrec = context;
790 u16 cmd;
791 int ret;
793 /* if length is invalid read the full MTU */
794 if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
795 devrec->rx_buf[2] = IEEE802154_MTU;
797 cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
798 devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
799 devrec->rx_addr_buf[1] = cmd & 0xff;
800 devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
801 ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
802 if (ret) {
803 dev_err(printdev(devrec), "failed to read rx buffer\n");
804 mrf24j40_handle_rx_read_buf_unlock(devrec);
808 static void mrf24j40_handle_rx_read_len(void *context)
810 struct mrf24j40 *devrec = context;
811 u16 cmd;
812 int ret;
814 /* read the length of received frame */
815 devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
816 devrec->rx_trx.len = 3;
817 cmd = MRF24J40_READLONG(REG_RX_FIFO);
818 devrec->rx_buf[0] = cmd >> 8 & 0xff;
819 devrec->rx_buf[1] = cmd & 0xff;
821 ret = spi_async(devrec->spi, &devrec->rx_msg);
822 if (ret) {
823 dev_err(printdev(devrec), "failed to read rx buffer length\n");
824 mrf24j40_handle_rx_read_buf_unlock(devrec);
828 static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
830 /* Turn off reception of packets off the air. This prevents the
831 * device from overwriting the buffer while we're reading it.
833 devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
834 devrec->rx_trx.len = 2;
835 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
836 devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
838 return spi_async(devrec->spi, &devrec->rx_msg);
841 static int
842 mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
843 u8 retries)
845 struct mrf24j40 *devrec = hw->priv;
846 u8 val;
848 /* min_be */
849 val = min_be << TXMCR_MIN_BE_SHIFT;
850 /* csma backoffs */
851 val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
853 return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
854 TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
855 val);
858 static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
859 const struct wpan_phy_cca *cca)
861 struct mrf24j40 *devrec = hw->priv;
862 u8 val;
864 /* mapping 802.15.4 to driver spec */
865 switch (cca->mode) {
866 case NL802154_CCA_ENERGY:
867 val = 2;
868 break;
869 case NL802154_CCA_CARRIER:
870 val = 1;
871 break;
872 case NL802154_CCA_ENERGY_CARRIER:
873 switch (cca->opt) {
874 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
875 val = 3;
876 break;
877 default:
878 return -EINVAL;
880 break;
881 default:
882 return -EINVAL;
885 return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
886 BBREG2_CCA_MODE_MASK,
887 val << BBREG2_CCA_MODE_SHIFT);
890 /* array for representing ed levels */
891 static const s32 mrf24j40_ed_levels[] = {
892 -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
893 -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
894 -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
895 -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
896 -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
897 -4000, -3900, -3800, -3700, -3600, -3500
900 /* map ed levels to register value */
901 static const s32 mrf24j40_ed_levels_map[][2] = {
902 { -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
903 { -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
904 { -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
905 { -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
906 { -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
907 { -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
908 { -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
909 { -6100, 133 }, { -6000, 138 }, { -5900, 143 }, { -5800, 148 },
910 { -5700, 153 }, { -5600, 159 }, { -5500, 165 }, { -5400, 170 },
911 { -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
912 { -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
913 { -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
914 { -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
915 { -3700, 253 }, { -3600, 254 }, { -3500, 255 },
918 static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
920 struct mrf24j40 *devrec = hw->priv;
921 int i;
923 for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
924 if (mrf24j40_ed_levels_map[i][0] == mbm)
925 return regmap_write(devrec->regmap_short, REG_CCAEDTH,
926 mrf24j40_ed_levels_map[i][1]);
929 return -EINVAL;
932 static const s32 mrf24j40ma_powers[] = {
933 0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
934 -1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
935 -2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
938 static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
940 struct mrf24j40 *devrec = hw->priv;
941 s32 small_scale;
942 u8 val;
944 if (0 >= mbm && mbm > -1000) {
945 val = TXPWRL_0 << TXPWRL_SHIFT;
946 small_scale = mbm;
947 } else if (-1000 >= mbm && mbm > -2000) {
948 val = TXPWRL_10 << TXPWRL_SHIFT;
949 small_scale = mbm + 1000;
950 } else if (-2000 >= mbm && mbm > -3000) {
951 val = TXPWRL_20 << TXPWRL_SHIFT;
952 small_scale = mbm + 2000;
953 } else if (-3000 >= mbm && mbm > -4000) {
954 val = TXPWRL_30 << TXPWRL_SHIFT;
955 small_scale = mbm + 3000;
956 } else {
957 return -EINVAL;
960 switch (small_scale) {
961 case 0:
962 val |= (TXPWRS_0 << TXPWRS_SHIFT);
963 break;
964 case -50:
965 val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
966 break;
967 case -120:
968 val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
969 break;
970 case -190:
971 val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
972 break;
973 case -280:
974 val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
975 break;
976 case -370:
977 val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
978 break;
979 case -490:
980 val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
981 break;
982 case -630:
983 val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
984 break;
985 default:
986 return -EINVAL;
989 return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
990 TXPWRL_MASK | TXPWRS_MASK, val);
993 static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
995 struct mrf24j40 *devrec = hw->priv;
996 int ret;
998 if (on) {
999 /* set PROMI, ERRPKT and NOACKRSP */
1000 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
1001 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
1002 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
1003 } else {
1004 /* clear PROMI, ERRPKT and NOACKRSP */
1005 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
1006 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
1010 return ret;
1013 static const struct ieee802154_ops mrf24j40_ops = {
1014 .owner = THIS_MODULE,
1015 .xmit_async = mrf24j40_tx,
1016 .ed = mrf24j40_ed,
1017 .start = mrf24j40_start,
1018 .stop = mrf24j40_stop,
1019 .set_channel = mrf24j40_set_channel,
1020 .set_hw_addr_filt = mrf24j40_filter,
1021 .set_csma_params = mrf24j40_csma_params,
1022 .set_cca_mode = mrf24j40_set_cca_mode,
1023 .set_cca_ed_level = mrf24j40_set_cca_ed_level,
1024 .set_txpower = mrf24j40_set_txpower,
1025 .set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1028 static void mrf24j40_intstat_complete(void *context)
1030 struct mrf24j40 *devrec = context;
1031 u8 intstat = devrec->irq_buf[1];
1033 enable_irq(devrec->spi->irq);
1035 /* Ignore Rx security decryption */
1036 if (intstat & BIT_SECIF)
1037 regmap_write_async(devrec->regmap_short, REG_SECCON0,
1038 BIT_SECIGNORE);
1040 /* Check for TX complete */
1041 if (intstat & BIT_TXNIF)
1042 ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1044 /* Check for Rx */
1045 if (intstat & BIT_RXIF)
1046 mrf24j40_handle_rx(devrec);
1049 static irqreturn_t mrf24j40_isr(int irq, void *data)
1051 struct mrf24j40 *devrec = data;
1052 int ret;
1054 disable_irq_nosync(irq);
1056 devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1057 devrec->irq_buf[1] = 0;
1059 /* Read the interrupt status */
1060 ret = spi_async(devrec->spi, &devrec->irq_msg);
1061 if (ret) {
1062 enable_irq(irq);
1063 return IRQ_NONE;
1066 return IRQ_HANDLED;
1069 static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1071 u32 irq_type;
1072 int ret;
1074 /* Initialize the device.
1075 From datasheet section 3.2: Initialization. */
1076 ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1077 if (ret)
1078 goto err_ret;
1080 ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1081 if (ret)
1082 goto err_ret;
1084 ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1085 if (ret)
1086 goto err_ret;
1088 ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1089 if (ret)
1090 goto err_ret;
1092 ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1093 if (ret)
1094 goto err_ret;
1096 ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1097 if (ret)
1098 goto err_ret;
1100 ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1101 if (ret)
1102 goto err_ret;
1104 ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1105 if (ret)
1106 goto err_ret;
1108 ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1109 if (ret)
1110 goto err_ret;
1112 ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1113 if (ret)
1114 goto err_ret;
1116 ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1117 if (ret)
1118 goto err_ret;
1120 ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1121 if (ret)
1122 goto err_ret;
1124 ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1125 if (ret)
1126 goto err_ret;
1128 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1129 if (ret)
1130 goto err_ret;
1132 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1133 if (ret)
1134 goto err_ret;
1136 udelay(192);
1138 /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1139 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1140 if (ret)
1141 goto err_ret;
1143 if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1144 /* Enable external amplifier.
1145 * From MRF24J40MC datasheet section 1.3: Operation.
1147 regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1148 0x07);
1150 /* Set GPIO3 as output. */
1151 regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1152 0x08);
1154 /* Set GPIO3 HIGH to enable U5 voltage regulator */
1155 regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1157 /* Reduce TX pwr to meet FCC requirements.
1158 * From MRF24J40MC datasheet section 3.1.1
1160 regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1163 irq_type = irq_get_trigger_type(devrec->spi->irq);
1164 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1165 irq_type == IRQ_TYPE_EDGE_FALLING)
1166 dev_warn(&devrec->spi->dev,
1167 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1168 switch (irq_type) {
1169 case IRQ_TYPE_EDGE_RISING:
1170 case IRQ_TYPE_LEVEL_HIGH:
1171 /* set interrupt polarity to rising */
1172 ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1173 BIT_INTEDGE, BIT_INTEDGE);
1174 if (ret)
1175 goto err_ret;
1176 break;
1177 default:
1178 /* default is falling edge */
1179 break;
1182 return 0;
1184 err_ret:
1185 return ret;
1188 static void
1189 mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1191 spi_message_init(&devrec->tx_msg);
1192 devrec->tx_msg.context = devrec;
1193 devrec->tx_msg.complete = write_tx_buf_complete;
1194 devrec->tx_hdr_trx.len = 2;
1195 devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1196 spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1197 devrec->tx_len_trx.len = 2;
1198 devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1199 spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1200 spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1202 spi_message_init(&devrec->tx_post_msg);
1203 devrec->tx_post_msg.context = devrec;
1204 devrec->tx_post_trx.len = 2;
1205 devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1206 spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1209 static void
1210 mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1212 spi_message_init(&devrec->rx_msg);
1213 devrec->rx_msg.context = devrec;
1214 devrec->rx_trx.len = 2;
1215 devrec->rx_trx.tx_buf = devrec->rx_buf;
1216 devrec->rx_trx.rx_buf = devrec->rx_buf;
1217 spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1219 spi_message_init(&devrec->rx_buf_msg);
1220 devrec->rx_buf_msg.context = devrec;
1221 devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1222 devrec->rx_addr_trx.len = 2;
1223 devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1224 spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1225 devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1226 spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1227 devrec->rx_lqi_trx.len = 2;
1228 devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1229 spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1232 static void
1233 mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1235 spi_message_init(&devrec->irq_msg);
1236 devrec->irq_msg.context = devrec;
1237 devrec->irq_msg.complete = mrf24j40_intstat_complete;
1238 devrec->irq_trx.len = 2;
1239 devrec->irq_trx.tx_buf = devrec->irq_buf;
1240 devrec->irq_trx.rx_buf = devrec->irq_buf;
1241 spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1244 static void mrf24j40_phy_setup(struct mrf24j40 *devrec)
1246 ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1247 devrec->hw->phy->current_channel = 11;
1249 /* mrf24j40 supports max_minbe 0 - 3 */
1250 devrec->hw->phy->supported.max_minbe = 3;
1251 /* datasheet doesn't say anything about max_be, but we have min_be
1252 * So we assume the max_be default.
1254 devrec->hw->phy->supported.min_maxbe = 5;
1255 devrec->hw->phy->supported.max_maxbe = 5;
1257 devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1258 devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1259 BIT(NL802154_CCA_CARRIER) |
1260 BIT(NL802154_CCA_ENERGY_CARRIER);
1261 devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1263 devrec->hw->phy->cca_ed_level = -6900;
1264 devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1265 devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1267 switch (spi_get_device_id(devrec->spi)->driver_data) {
1268 case MRF24J40:
1269 case MRF24J40MA:
1270 devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1271 devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1272 devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1273 break;
1274 default:
1275 break;
1279 static int mrf24j40_probe(struct spi_device *spi)
1281 int ret = -ENOMEM, irq_type;
1282 struct ieee802154_hw *hw;
1283 struct mrf24j40 *devrec;
1285 dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1287 /* Register with the 802154 subsystem */
1289 hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1290 if (!hw)
1291 goto err_ret;
1293 devrec = hw->priv;
1294 devrec->spi = spi;
1295 spi_set_drvdata(spi, devrec);
1296 devrec->hw = hw;
1297 devrec->hw->parent = &spi->dev;
1298 devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1299 devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1300 IEEE802154_HW_CSMA_PARAMS |
1301 IEEE802154_HW_PROMISCUOUS;
1303 devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1304 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1306 mrf24j40_setup_tx_spi_messages(devrec);
1307 mrf24j40_setup_rx_spi_messages(devrec);
1308 mrf24j40_setup_irq_spi_messages(devrec);
1310 devrec->regmap_short = devm_regmap_init_spi(spi,
1311 &mrf24j40_short_regmap);
1312 if (IS_ERR(devrec->regmap_short)) {
1313 ret = PTR_ERR(devrec->regmap_short);
1314 dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1315 ret);
1316 goto err_register_device;
1319 devrec->regmap_long = devm_regmap_init(&spi->dev,
1320 &mrf24j40_long_regmap_bus,
1321 spi, &mrf24j40_long_regmap);
1322 if (IS_ERR(devrec->regmap_long)) {
1323 ret = PTR_ERR(devrec->regmap_long);
1324 dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1325 ret);
1326 goto err_register_device;
1329 if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1330 dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1331 MAX_SPI_SPEED_HZ);
1332 return -EINVAL;
1335 ret = mrf24j40_hw_init(devrec);
1336 if (ret)
1337 goto err_register_device;
1339 mrf24j40_phy_setup(devrec);
1341 /* request IRQF_TRIGGER_LOW as fallback default */
1342 irq_type = irq_get_trigger_type(spi->irq);
1343 if (!irq_type)
1344 irq_type = IRQF_TRIGGER_LOW;
1346 ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1347 irq_type, dev_name(&spi->dev), devrec);
1348 if (ret) {
1349 dev_err(printdev(devrec), "Unable to get IRQ");
1350 goto err_register_device;
1353 dev_dbg(printdev(devrec), "registered mrf24j40\n");
1354 ret = ieee802154_register_hw(devrec->hw);
1355 if (ret)
1356 goto err_register_device;
1358 return 0;
1360 err_register_device:
1361 ieee802154_free_hw(devrec->hw);
1362 err_ret:
1363 return ret;
1366 static int mrf24j40_remove(struct spi_device *spi)
1368 struct mrf24j40 *devrec = spi_get_drvdata(spi);
1370 dev_dbg(printdev(devrec), "remove\n");
1372 ieee802154_unregister_hw(devrec->hw);
1373 ieee802154_free_hw(devrec->hw);
1374 /* TODO: Will ieee802154_free_device() wait until ->xmit() is
1375 * complete? */
1377 return 0;
1380 static const struct of_device_id mrf24j40_of_match[] = {
1381 { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1382 { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1383 { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1384 { },
1386 MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1388 static const struct spi_device_id mrf24j40_ids[] = {
1389 { "mrf24j40", MRF24J40 },
1390 { "mrf24j40ma", MRF24J40MA },
1391 { "mrf24j40mc", MRF24J40MC },
1392 { },
1394 MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1396 static struct spi_driver mrf24j40_driver = {
1397 .driver = {
1398 .of_match_table = of_match_ptr(mrf24j40_of_match),
1399 .name = "mrf24j40",
1401 .id_table = mrf24j40_ids,
1402 .probe = mrf24j40_probe,
1403 .remove = mrf24j40_remove,
1406 module_spi_driver(mrf24j40_driver);
1408 MODULE_LICENSE("GPL");
1409 MODULE_AUTHOR("Alan Ott");
1410 MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");