Linux 4.9.243
[linux/fpc-iii.git] / drivers / of / base.c
blobaf80e3d34eda74a92800c23d7208d3253dc9a54e
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #define pr_fmt(fmt) "OF: " fmt
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_graph.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/proc_fs.h>
34 #include "of_private.h"
36 LIST_HEAD(aliases_lookup);
38 struct device_node *of_root;
39 EXPORT_SYMBOL(of_root);
40 struct device_node *of_chosen;
41 struct device_node *of_aliases;
42 struct device_node *of_stdout;
43 static const char *of_stdout_options;
45 struct kset *of_kset;
48 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
49 * This mutex must be held whenever modifications are being made to the
50 * device tree. The of_{attach,detach}_node() and
51 * of_{add,remove,update}_property() helpers make sure this happens.
53 DEFINE_MUTEX(of_mutex);
55 /* use when traversing tree through the child, sibling,
56 * or parent members of struct device_node.
58 DEFINE_RAW_SPINLOCK(devtree_lock);
60 int of_n_addr_cells(struct device_node *np)
62 const __be32 *ip;
64 do {
65 if (np->parent)
66 np = np->parent;
67 ip = of_get_property(np, "#address-cells", NULL);
68 if (ip)
69 return be32_to_cpup(ip);
70 } while (np->parent);
71 /* No #address-cells property for the root node */
72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
74 EXPORT_SYMBOL(of_n_addr_cells);
76 int of_n_size_cells(struct device_node *np)
78 const __be32 *ip;
80 do {
81 if (np->parent)
82 np = np->parent;
83 ip = of_get_property(np, "#size-cells", NULL);
84 if (ip)
85 return be32_to_cpup(ip);
86 } while (np->parent);
87 /* No #size-cells property for the root node */
88 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
90 EXPORT_SYMBOL(of_n_size_cells);
92 #ifdef CONFIG_NUMA
93 int __weak of_node_to_nid(struct device_node *np)
95 return NUMA_NO_NODE;
97 #endif
99 #ifndef CONFIG_OF_DYNAMIC
100 static void of_node_release(struct kobject *kobj)
102 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
104 #endif /* CONFIG_OF_DYNAMIC */
106 struct kobj_type of_node_ktype = {
107 .release = of_node_release,
110 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
111 struct bin_attribute *bin_attr, char *buf,
112 loff_t offset, size_t count)
114 struct property *pp = container_of(bin_attr, struct property, attr);
115 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
118 /* always return newly allocated name, caller must free after use */
119 static const char *safe_name(struct kobject *kobj, const char *orig_name)
121 const char *name = orig_name;
122 struct kernfs_node *kn;
123 int i = 0;
125 /* don't be a hero. After 16 tries give up */
126 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
127 sysfs_put(kn);
128 if (name != orig_name)
129 kfree(name);
130 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
133 if (name == orig_name) {
134 name = kstrdup(orig_name, GFP_KERNEL);
135 } else {
136 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
137 kobject_name(kobj), name);
139 return name;
142 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
144 int rc;
146 /* Important: Don't leak passwords */
147 bool secure = strncmp(pp->name, "security-", 9) == 0;
149 if (!IS_ENABLED(CONFIG_SYSFS))
150 return 0;
152 if (!of_kset || !of_node_is_attached(np))
153 return 0;
155 sysfs_bin_attr_init(&pp->attr);
156 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
157 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
158 pp->attr.size = secure ? 0 : pp->length;
159 pp->attr.read = of_node_property_read;
161 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
162 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
163 return rc;
166 int __of_attach_node_sysfs(struct device_node *np)
168 const char *name;
169 struct kobject *parent;
170 struct property *pp;
171 int rc;
173 if (!of_kset)
174 return 0;
176 np->kobj.kset = of_kset;
177 if (!np->parent) {
178 /* Nodes without parents are new top level trees */
179 name = safe_name(&of_kset->kobj, "base");
180 parent = NULL;
181 } else {
182 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
183 parent = &np->parent->kobj;
185 if (!name)
186 return -ENOMEM;
187 rc = kobject_add(&np->kobj, parent, "%s", name);
188 kfree(name);
189 if (rc)
190 return rc;
192 for_each_property_of_node(np, pp)
193 __of_add_property_sysfs(np, pp);
195 return 0;
198 void __init of_core_init(void)
200 struct device_node *np;
202 /* Create the kset, and register existing nodes */
203 mutex_lock(&of_mutex);
204 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
205 if (!of_kset) {
206 mutex_unlock(&of_mutex);
207 pr_err("failed to register existing nodes\n");
208 return;
210 for_each_of_allnodes(np)
211 __of_attach_node_sysfs(np);
212 mutex_unlock(&of_mutex);
214 /* Symlink in /proc as required by userspace ABI */
215 if (of_root)
216 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
219 static struct property *__of_find_property(const struct device_node *np,
220 const char *name, int *lenp)
222 struct property *pp;
224 if (!np)
225 return NULL;
227 for (pp = np->properties; pp; pp = pp->next) {
228 if (of_prop_cmp(pp->name, name) == 0) {
229 if (lenp)
230 *lenp = pp->length;
231 break;
235 return pp;
238 struct property *of_find_property(const struct device_node *np,
239 const char *name,
240 int *lenp)
242 struct property *pp;
243 unsigned long flags;
245 raw_spin_lock_irqsave(&devtree_lock, flags);
246 pp = __of_find_property(np, name, lenp);
247 raw_spin_unlock_irqrestore(&devtree_lock, flags);
249 return pp;
251 EXPORT_SYMBOL(of_find_property);
253 struct device_node *__of_find_all_nodes(struct device_node *prev)
255 struct device_node *np;
256 if (!prev) {
257 np = of_root;
258 } else if (prev->child) {
259 np = prev->child;
260 } else {
261 /* Walk back up looking for a sibling, or the end of the structure */
262 np = prev;
263 while (np->parent && !np->sibling)
264 np = np->parent;
265 np = np->sibling; /* Might be null at the end of the tree */
267 return np;
271 * of_find_all_nodes - Get next node in global list
272 * @prev: Previous node or NULL to start iteration
273 * of_node_put() will be called on it
275 * Returns a node pointer with refcount incremented, use
276 * of_node_put() on it when done.
278 struct device_node *of_find_all_nodes(struct device_node *prev)
280 struct device_node *np;
281 unsigned long flags;
283 raw_spin_lock_irqsave(&devtree_lock, flags);
284 np = __of_find_all_nodes(prev);
285 of_node_get(np);
286 of_node_put(prev);
287 raw_spin_unlock_irqrestore(&devtree_lock, flags);
288 return np;
290 EXPORT_SYMBOL(of_find_all_nodes);
293 * Find a property with a given name for a given node
294 * and return the value.
296 const void *__of_get_property(const struct device_node *np,
297 const char *name, int *lenp)
299 struct property *pp = __of_find_property(np, name, lenp);
301 return pp ? pp->value : NULL;
305 * Find a property with a given name for a given node
306 * and return the value.
308 const void *of_get_property(const struct device_node *np, const char *name,
309 int *lenp)
311 struct property *pp = of_find_property(np, name, lenp);
313 return pp ? pp->value : NULL;
315 EXPORT_SYMBOL(of_get_property);
318 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
320 * @cpu: logical cpu index of a core/thread
321 * @phys_id: physical identifier of a core/thread
323 * CPU logical to physical index mapping is architecture specific.
324 * However this __weak function provides a default match of physical
325 * id to logical cpu index. phys_id provided here is usually values read
326 * from the device tree which must match the hardware internal registers.
328 * Returns true if the physical identifier and the logical cpu index
329 * correspond to the same core/thread, false otherwise.
331 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
333 return (u32)phys_id == cpu;
337 * Checks if the given "prop_name" property holds the physical id of the
338 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
339 * NULL, local thread number within the core is returned in it.
341 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
342 const char *prop_name, int cpu, unsigned int *thread)
344 const __be32 *cell;
345 int ac, prop_len, tid;
346 u64 hwid;
348 ac = of_n_addr_cells(cpun);
349 cell = of_get_property(cpun, prop_name, &prop_len);
350 if (!cell || !ac)
351 return false;
352 prop_len /= sizeof(*cell) * ac;
353 for (tid = 0; tid < prop_len; tid++) {
354 hwid = of_read_number(cell, ac);
355 if (arch_match_cpu_phys_id(cpu, hwid)) {
356 if (thread)
357 *thread = tid;
358 return true;
360 cell += ac;
362 return false;
366 * arch_find_n_match_cpu_physical_id - See if the given device node is
367 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
368 * else false. If 'thread' is non-NULL, the local thread number within the
369 * core is returned in it.
371 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
372 int cpu, unsigned int *thread)
374 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
375 * for thread ids on PowerPC. If it doesn't exist fallback to
376 * standard "reg" property.
378 if (IS_ENABLED(CONFIG_PPC) &&
379 __of_find_n_match_cpu_property(cpun,
380 "ibm,ppc-interrupt-server#s",
381 cpu, thread))
382 return true;
384 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
388 * of_get_cpu_node - Get device node associated with the given logical CPU
390 * @cpu: CPU number(logical index) for which device node is required
391 * @thread: if not NULL, local thread number within the physical core is
392 * returned
394 * The main purpose of this function is to retrieve the device node for the
395 * given logical CPU index. It should be used to initialize the of_node in
396 * cpu device. Once of_node in cpu device is populated, all the further
397 * references can use that instead.
399 * CPU logical to physical index mapping is architecture specific and is built
400 * before booting secondary cores. This function uses arch_match_cpu_phys_id
401 * which can be overridden by architecture specific implementation.
403 * Returns a node pointer for the logical cpu with refcount incremented, use
404 * of_node_put() on it when done. Returns NULL if not found.
406 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
408 struct device_node *cpun;
410 for_each_node_by_type(cpun, "cpu") {
411 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
412 return cpun;
414 return NULL;
416 EXPORT_SYMBOL(of_get_cpu_node);
419 * __of_device_is_compatible() - Check if the node matches given constraints
420 * @device: pointer to node
421 * @compat: required compatible string, NULL or "" for any match
422 * @type: required device_type value, NULL or "" for any match
423 * @name: required node name, NULL or "" for any match
425 * Checks if the given @compat, @type and @name strings match the
426 * properties of the given @device. A constraints can be skipped by
427 * passing NULL or an empty string as the constraint.
429 * Returns 0 for no match, and a positive integer on match. The return
430 * value is a relative score with larger values indicating better
431 * matches. The score is weighted for the most specific compatible value
432 * to get the highest score. Matching type is next, followed by matching
433 * name. Practically speaking, this results in the following priority
434 * order for matches:
436 * 1. specific compatible && type && name
437 * 2. specific compatible && type
438 * 3. specific compatible && name
439 * 4. specific compatible
440 * 5. general compatible && type && name
441 * 6. general compatible && type
442 * 7. general compatible && name
443 * 8. general compatible
444 * 9. type && name
445 * 10. type
446 * 11. name
448 static int __of_device_is_compatible(const struct device_node *device,
449 const char *compat, const char *type, const char *name)
451 struct property *prop;
452 const char *cp;
453 int index = 0, score = 0;
455 /* Compatible match has highest priority */
456 if (compat && compat[0]) {
457 prop = __of_find_property(device, "compatible", NULL);
458 for (cp = of_prop_next_string(prop, NULL); cp;
459 cp = of_prop_next_string(prop, cp), index++) {
460 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
461 score = INT_MAX/2 - (index << 2);
462 break;
465 if (!score)
466 return 0;
469 /* Matching type is better than matching name */
470 if (type && type[0]) {
471 if (!device->type || of_node_cmp(type, device->type))
472 return 0;
473 score += 2;
476 /* Matching name is a bit better than not */
477 if (name && name[0]) {
478 if (!device->name || of_node_cmp(name, device->name))
479 return 0;
480 score++;
483 return score;
486 /** Checks if the given "compat" string matches one of the strings in
487 * the device's "compatible" property
489 int of_device_is_compatible(const struct device_node *device,
490 const char *compat)
492 unsigned long flags;
493 int res;
495 raw_spin_lock_irqsave(&devtree_lock, flags);
496 res = __of_device_is_compatible(device, compat, NULL, NULL);
497 raw_spin_unlock_irqrestore(&devtree_lock, flags);
498 return res;
500 EXPORT_SYMBOL(of_device_is_compatible);
502 /** Checks if the device is compatible with any of the entries in
503 * a NULL terminated array of strings. Returns the best match
504 * score or 0.
506 int of_device_compatible_match(struct device_node *device,
507 const char *const *compat)
509 unsigned int tmp, score = 0;
511 if (!compat)
512 return 0;
514 while (*compat) {
515 tmp = of_device_is_compatible(device, *compat);
516 if (tmp > score)
517 score = tmp;
518 compat++;
521 return score;
525 * of_machine_is_compatible - Test root of device tree for a given compatible value
526 * @compat: compatible string to look for in root node's compatible property.
528 * Returns a positive integer if the root node has the given value in its
529 * compatible property.
531 int of_machine_is_compatible(const char *compat)
533 struct device_node *root;
534 int rc = 0;
536 root = of_find_node_by_path("/");
537 if (root) {
538 rc = of_device_is_compatible(root, compat);
539 of_node_put(root);
541 return rc;
543 EXPORT_SYMBOL(of_machine_is_compatible);
546 * __of_device_is_available - check if a device is available for use
548 * @device: Node to check for availability, with locks already held
550 * Returns true if the status property is absent or set to "okay" or "ok",
551 * false otherwise
553 static bool __of_device_is_available(const struct device_node *device)
555 const char *status;
556 int statlen;
558 if (!device)
559 return false;
561 status = __of_get_property(device, "status", &statlen);
562 if (status == NULL)
563 return true;
565 if (statlen > 0) {
566 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
567 return true;
570 return false;
574 * of_device_is_available - check if a device is available for use
576 * @device: Node to check for availability
578 * Returns true if the status property is absent or set to "okay" or "ok",
579 * false otherwise
581 bool of_device_is_available(const struct device_node *device)
583 unsigned long flags;
584 bool res;
586 raw_spin_lock_irqsave(&devtree_lock, flags);
587 res = __of_device_is_available(device);
588 raw_spin_unlock_irqrestore(&devtree_lock, flags);
589 return res;
592 EXPORT_SYMBOL(of_device_is_available);
595 * of_device_is_big_endian - check if a device has BE registers
597 * @device: Node to check for endianness
599 * Returns true if the device has a "big-endian" property, or if the kernel
600 * was compiled for BE *and* the device has a "native-endian" property.
601 * Returns false otherwise.
603 * Callers would nominally use ioread32be/iowrite32be if
604 * of_device_is_big_endian() == true, or readl/writel otherwise.
606 bool of_device_is_big_endian(const struct device_node *device)
608 if (of_property_read_bool(device, "big-endian"))
609 return true;
610 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
611 of_property_read_bool(device, "native-endian"))
612 return true;
613 return false;
615 EXPORT_SYMBOL(of_device_is_big_endian);
618 * of_get_parent - Get a node's parent if any
619 * @node: Node to get parent
621 * Returns a node pointer with refcount incremented, use
622 * of_node_put() on it when done.
624 struct device_node *of_get_parent(const struct device_node *node)
626 struct device_node *np;
627 unsigned long flags;
629 if (!node)
630 return NULL;
632 raw_spin_lock_irqsave(&devtree_lock, flags);
633 np = of_node_get(node->parent);
634 raw_spin_unlock_irqrestore(&devtree_lock, flags);
635 return np;
637 EXPORT_SYMBOL(of_get_parent);
640 * of_get_next_parent - Iterate to a node's parent
641 * @node: Node to get parent of
643 * This is like of_get_parent() except that it drops the
644 * refcount on the passed node, making it suitable for iterating
645 * through a node's parents.
647 * Returns a node pointer with refcount incremented, use
648 * of_node_put() on it when done.
650 struct device_node *of_get_next_parent(struct device_node *node)
652 struct device_node *parent;
653 unsigned long flags;
655 if (!node)
656 return NULL;
658 raw_spin_lock_irqsave(&devtree_lock, flags);
659 parent = of_node_get(node->parent);
660 of_node_put(node);
661 raw_spin_unlock_irqrestore(&devtree_lock, flags);
662 return parent;
664 EXPORT_SYMBOL(of_get_next_parent);
666 static struct device_node *__of_get_next_child(const struct device_node *node,
667 struct device_node *prev)
669 struct device_node *next;
671 if (!node)
672 return NULL;
674 next = prev ? prev->sibling : node->child;
675 for (; next; next = next->sibling)
676 if (of_node_get(next))
677 break;
678 of_node_put(prev);
679 return next;
681 #define __for_each_child_of_node(parent, child) \
682 for (child = __of_get_next_child(parent, NULL); child != NULL; \
683 child = __of_get_next_child(parent, child))
686 * of_get_next_child - Iterate a node childs
687 * @node: parent node
688 * @prev: previous child of the parent node, or NULL to get first
690 * Returns a node pointer with refcount incremented, use of_node_put() on
691 * it when done. Returns NULL when prev is the last child. Decrements the
692 * refcount of prev.
694 struct device_node *of_get_next_child(const struct device_node *node,
695 struct device_node *prev)
697 struct device_node *next;
698 unsigned long flags;
700 raw_spin_lock_irqsave(&devtree_lock, flags);
701 next = __of_get_next_child(node, prev);
702 raw_spin_unlock_irqrestore(&devtree_lock, flags);
703 return next;
705 EXPORT_SYMBOL(of_get_next_child);
708 * of_get_next_available_child - Find the next available child node
709 * @node: parent node
710 * @prev: previous child of the parent node, or NULL to get first
712 * This function is like of_get_next_child(), except that it
713 * automatically skips any disabled nodes (i.e. status = "disabled").
715 struct device_node *of_get_next_available_child(const struct device_node *node,
716 struct device_node *prev)
718 struct device_node *next;
719 unsigned long flags;
721 if (!node)
722 return NULL;
724 raw_spin_lock_irqsave(&devtree_lock, flags);
725 next = prev ? prev->sibling : node->child;
726 for (; next; next = next->sibling) {
727 if (!__of_device_is_available(next))
728 continue;
729 if (of_node_get(next))
730 break;
732 of_node_put(prev);
733 raw_spin_unlock_irqrestore(&devtree_lock, flags);
734 return next;
736 EXPORT_SYMBOL(of_get_next_available_child);
739 * of_get_compatible_child - Find compatible child node
740 * @parent: parent node
741 * @compatible: compatible string
743 * Lookup child node whose compatible property contains the given compatible
744 * string.
746 * Returns a node pointer with refcount incremented, use of_node_put() on it
747 * when done; or NULL if not found.
749 struct device_node *of_get_compatible_child(const struct device_node *parent,
750 const char *compatible)
752 struct device_node *child;
754 for_each_child_of_node(parent, child) {
755 if (of_device_is_compatible(child, compatible))
756 break;
759 return child;
761 EXPORT_SYMBOL(of_get_compatible_child);
764 * of_get_child_by_name - Find the child node by name for a given parent
765 * @node: parent node
766 * @name: child name to look for.
768 * This function looks for child node for given matching name
770 * Returns a node pointer if found, with refcount incremented, use
771 * of_node_put() on it when done.
772 * Returns NULL if node is not found.
774 struct device_node *of_get_child_by_name(const struct device_node *node,
775 const char *name)
777 struct device_node *child;
779 for_each_child_of_node(node, child)
780 if (child->name && (of_node_cmp(child->name, name) == 0))
781 break;
782 return child;
784 EXPORT_SYMBOL(of_get_child_by_name);
786 static struct device_node *__of_find_node_by_path(struct device_node *parent,
787 const char *path)
789 struct device_node *child;
790 int len;
792 len = strcspn(path, "/:");
793 if (!len)
794 return NULL;
796 __for_each_child_of_node(parent, child) {
797 const char *name = strrchr(child->full_name, '/');
798 if (WARN(!name, "malformed device_node %s\n", child->full_name))
799 continue;
800 name++;
801 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
802 return child;
804 return NULL;
808 * of_find_node_opts_by_path - Find a node matching a full OF path
809 * @path: Either the full path to match, or if the path does not
810 * start with '/', the name of a property of the /aliases
811 * node (an alias). In the case of an alias, the node
812 * matching the alias' value will be returned.
813 * @opts: Address of a pointer into which to store the start of
814 * an options string appended to the end of the path with
815 * a ':' separator.
817 * Valid paths:
818 * /foo/bar Full path
819 * foo Valid alias
820 * foo/bar Valid alias + relative path
822 * Returns a node pointer with refcount incremented, use
823 * of_node_put() on it when done.
825 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
827 struct device_node *np = NULL;
828 struct property *pp;
829 unsigned long flags;
830 const char *separator = strchr(path, ':');
832 if (opts)
833 *opts = separator ? separator + 1 : NULL;
835 if (strcmp(path, "/") == 0)
836 return of_node_get(of_root);
838 /* The path could begin with an alias */
839 if (*path != '/') {
840 int len;
841 const char *p = separator;
843 if (!p)
844 p = strchrnul(path, '/');
845 len = p - path;
847 /* of_aliases must not be NULL */
848 if (!of_aliases)
849 return NULL;
851 for_each_property_of_node(of_aliases, pp) {
852 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
853 np = of_find_node_by_path(pp->value);
854 break;
857 if (!np)
858 return NULL;
859 path = p;
862 /* Step down the tree matching path components */
863 raw_spin_lock_irqsave(&devtree_lock, flags);
864 if (!np)
865 np = of_node_get(of_root);
866 while (np && *path == '/') {
867 path++; /* Increment past '/' delimiter */
868 np = __of_find_node_by_path(np, path);
869 path = strchrnul(path, '/');
870 if (separator && separator < path)
871 break;
873 raw_spin_unlock_irqrestore(&devtree_lock, flags);
874 return np;
876 EXPORT_SYMBOL(of_find_node_opts_by_path);
879 * of_find_node_by_name - Find a node by its "name" property
880 * @from: The node to start searching from or NULL, the node
881 * you pass will not be searched, only the next one
882 * will; typically, you pass what the previous call
883 * returned. of_node_put() will be called on it
884 * @name: The name string to match against
886 * Returns a node pointer with refcount incremented, use
887 * of_node_put() on it when done.
889 struct device_node *of_find_node_by_name(struct device_node *from,
890 const char *name)
892 struct device_node *np;
893 unsigned long flags;
895 raw_spin_lock_irqsave(&devtree_lock, flags);
896 for_each_of_allnodes_from(from, np)
897 if (np->name && (of_node_cmp(np->name, name) == 0)
898 && of_node_get(np))
899 break;
900 of_node_put(from);
901 raw_spin_unlock_irqrestore(&devtree_lock, flags);
902 return np;
904 EXPORT_SYMBOL(of_find_node_by_name);
907 * of_find_node_by_type - Find a node by its "device_type" property
908 * @from: The node to start searching from, or NULL to start searching
909 * the entire device tree. The node you pass will not be
910 * searched, only the next one will; typically, you pass
911 * what the previous call returned. of_node_put() will be
912 * called on from for you.
913 * @type: The type string to match against
915 * Returns a node pointer with refcount incremented, use
916 * of_node_put() on it when done.
918 struct device_node *of_find_node_by_type(struct device_node *from,
919 const char *type)
921 struct device_node *np;
922 unsigned long flags;
924 raw_spin_lock_irqsave(&devtree_lock, flags);
925 for_each_of_allnodes_from(from, np)
926 if (np->type && (of_node_cmp(np->type, type) == 0)
927 && of_node_get(np))
928 break;
929 of_node_put(from);
930 raw_spin_unlock_irqrestore(&devtree_lock, flags);
931 return np;
933 EXPORT_SYMBOL(of_find_node_by_type);
936 * of_find_compatible_node - Find a node based on type and one of the
937 * tokens in its "compatible" property
938 * @from: The node to start searching from or NULL, the node
939 * you pass will not be searched, only the next one
940 * will; typically, you pass what the previous call
941 * returned. of_node_put() will be called on it
942 * @type: The type string to match "device_type" or NULL to ignore
943 * @compatible: The string to match to one of the tokens in the device
944 * "compatible" list.
946 * Returns a node pointer with refcount incremented, use
947 * of_node_put() on it when done.
949 struct device_node *of_find_compatible_node(struct device_node *from,
950 const char *type, const char *compatible)
952 struct device_node *np;
953 unsigned long flags;
955 raw_spin_lock_irqsave(&devtree_lock, flags);
956 for_each_of_allnodes_from(from, np)
957 if (__of_device_is_compatible(np, compatible, type, NULL) &&
958 of_node_get(np))
959 break;
960 of_node_put(from);
961 raw_spin_unlock_irqrestore(&devtree_lock, flags);
962 return np;
964 EXPORT_SYMBOL(of_find_compatible_node);
967 * of_find_node_with_property - Find a node which has a property with
968 * the given name.
969 * @from: The node to start searching from or NULL, the node
970 * you pass will not be searched, only the next one
971 * will; typically, you pass what the previous call
972 * returned. of_node_put() will be called on it
973 * @prop_name: The name of the property to look for.
975 * Returns a node pointer with refcount incremented, use
976 * of_node_put() on it when done.
978 struct device_node *of_find_node_with_property(struct device_node *from,
979 const char *prop_name)
981 struct device_node *np;
982 struct property *pp;
983 unsigned long flags;
985 raw_spin_lock_irqsave(&devtree_lock, flags);
986 for_each_of_allnodes_from(from, np) {
987 for (pp = np->properties; pp; pp = pp->next) {
988 if (of_prop_cmp(pp->name, prop_name) == 0) {
989 of_node_get(np);
990 goto out;
994 out:
995 of_node_put(from);
996 raw_spin_unlock_irqrestore(&devtree_lock, flags);
997 return np;
999 EXPORT_SYMBOL(of_find_node_with_property);
1001 static
1002 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1003 const struct device_node *node)
1005 const struct of_device_id *best_match = NULL;
1006 int score, best_score = 0;
1008 if (!matches)
1009 return NULL;
1011 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1012 score = __of_device_is_compatible(node, matches->compatible,
1013 matches->type, matches->name);
1014 if (score > best_score) {
1015 best_match = matches;
1016 best_score = score;
1020 return best_match;
1024 * of_match_node - Tell if a device_node has a matching of_match structure
1025 * @matches: array of of device match structures to search in
1026 * @node: the of device structure to match against
1028 * Low level utility function used by device matching.
1030 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1031 const struct device_node *node)
1033 const struct of_device_id *match;
1034 unsigned long flags;
1036 raw_spin_lock_irqsave(&devtree_lock, flags);
1037 match = __of_match_node(matches, node);
1038 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1039 return match;
1041 EXPORT_SYMBOL(of_match_node);
1044 * of_find_matching_node_and_match - Find a node based on an of_device_id
1045 * match table.
1046 * @from: The node to start searching from or NULL, the node
1047 * you pass will not be searched, only the next one
1048 * will; typically, you pass what the previous call
1049 * returned. of_node_put() will be called on it
1050 * @matches: array of of device match structures to search in
1051 * @match Updated to point at the matches entry which matched
1053 * Returns a node pointer with refcount incremented, use
1054 * of_node_put() on it when done.
1056 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1057 const struct of_device_id *matches,
1058 const struct of_device_id **match)
1060 struct device_node *np;
1061 const struct of_device_id *m;
1062 unsigned long flags;
1064 if (match)
1065 *match = NULL;
1067 raw_spin_lock_irqsave(&devtree_lock, flags);
1068 for_each_of_allnodes_from(from, np) {
1069 m = __of_match_node(matches, np);
1070 if (m && of_node_get(np)) {
1071 if (match)
1072 *match = m;
1073 break;
1076 of_node_put(from);
1077 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1078 return np;
1080 EXPORT_SYMBOL(of_find_matching_node_and_match);
1083 * of_modalias_node - Lookup appropriate modalias for a device node
1084 * @node: pointer to a device tree node
1085 * @modalias: Pointer to buffer that modalias value will be copied into
1086 * @len: Length of modalias value
1088 * Based on the value of the compatible property, this routine will attempt
1089 * to choose an appropriate modalias value for a particular device tree node.
1090 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1091 * from the first entry in the compatible list property.
1093 * This routine returns 0 on success, <0 on failure.
1095 int of_modalias_node(struct device_node *node, char *modalias, int len)
1097 const char *compatible, *p;
1098 int cplen;
1100 compatible = of_get_property(node, "compatible", &cplen);
1101 if (!compatible || strlen(compatible) > cplen)
1102 return -ENODEV;
1103 p = strchr(compatible, ',');
1104 strlcpy(modalias, p ? p + 1 : compatible, len);
1105 return 0;
1107 EXPORT_SYMBOL_GPL(of_modalias_node);
1110 * of_find_node_by_phandle - Find a node given a phandle
1111 * @handle: phandle of the node to find
1113 * Returns a node pointer with refcount incremented, use
1114 * of_node_put() on it when done.
1116 struct device_node *of_find_node_by_phandle(phandle handle)
1118 struct device_node *np;
1119 unsigned long flags;
1121 if (!handle)
1122 return NULL;
1124 raw_spin_lock_irqsave(&devtree_lock, flags);
1125 for_each_of_allnodes(np)
1126 if (np->phandle == handle)
1127 break;
1128 of_node_get(np);
1129 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1130 return np;
1132 EXPORT_SYMBOL(of_find_node_by_phandle);
1135 * of_property_count_elems_of_size - Count the number of elements in a property
1137 * @np: device node from which the property value is to be read.
1138 * @propname: name of the property to be searched.
1139 * @elem_size: size of the individual element
1141 * Search for a property in a device node and count the number of elements of
1142 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1143 * property does not exist or its length does not match a multiple of elem_size
1144 * and -ENODATA if the property does not have a value.
1146 int of_property_count_elems_of_size(const struct device_node *np,
1147 const char *propname, int elem_size)
1149 struct property *prop = of_find_property(np, propname, NULL);
1151 if (!prop)
1152 return -EINVAL;
1153 if (!prop->value)
1154 return -ENODATA;
1156 if (prop->length % elem_size != 0) {
1157 pr_err("size of %s in node %s is not a multiple of %d\n",
1158 propname, np->full_name, elem_size);
1159 return -EINVAL;
1162 return prop->length / elem_size;
1164 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1167 * of_find_property_value_of_size
1169 * @np: device node from which the property value is to be read.
1170 * @propname: name of the property to be searched.
1171 * @min: minimum allowed length of property value
1172 * @max: maximum allowed length of property value (0 means unlimited)
1173 * @len: if !=NULL, actual length is written to here
1175 * Search for a property in a device node and valid the requested size.
1176 * Returns the property value on success, -EINVAL if the property does not
1177 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1178 * property data is too small or too large.
1181 static void *of_find_property_value_of_size(const struct device_node *np,
1182 const char *propname, u32 min, u32 max, size_t *len)
1184 struct property *prop = of_find_property(np, propname, NULL);
1186 if (!prop)
1187 return ERR_PTR(-EINVAL);
1188 if (!prop->value)
1189 return ERR_PTR(-ENODATA);
1190 if (prop->length < min)
1191 return ERR_PTR(-EOVERFLOW);
1192 if (max && prop->length > max)
1193 return ERR_PTR(-EOVERFLOW);
1195 if (len)
1196 *len = prop->length;
1198 return prop->value;
1202 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1204 * @np: device node from which the property value is to be read.
1205 * @propname: name of the property to be searched.
1206 * @index: index of the u32 in the list of values
1207 * @out_value: pointer to return value, modified only if no error.
1209 * Search for a property in a device node and read nth 32-bit value from
1210 * it. Returns 0 on success, -EINVAL if the property does not exist,
1211 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1212 * property data isn't large enough.
1214 * The out_value is modified only if a valid u32 value can be decoded.
1216 int of_property_read_u32_index(const struct device_node *np,
1217 const char *propname,
1218 u32 index, u32 *out_value)
1220 const u32 *val = of_find_property_value_of_size(np, propname,
1221 ((index + 1) * sizeof(*out_value)),
1223 NULL);
1225 if (IS_ERR(val))
1226 return PTR_ERR(val);
1228 *out_value = be32_to_cpup(((__be32 *)val) + index);
1229 return 0;
1231 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1234 * of_property_read_variable_u8_array - Find and read an array of u8 from a
1235 * property, with bounds on the minimum and maximum array size.
1237 * @np: device node from which the property value is to be read.
1238 * @propname: name of the property to be searched.
1239 * @out_values: pointer to return value, modified only if return value is 0.
1240 * @sz_min: minimum number of array elements to read
1241 * @sz_max: maximum number of array elements to read, if zero there is no
1242 * upper limit on the number of elements in the dts entry but only
1243 * sz_min will be read.
1245 * Search for a property in a device node and read 8-bit value(s) from
1246 * it. Returns number of elements read on success, -EINVAL if the property
1247 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1248 * if the property data is smaller than sz_min or longer than sz_max.
1250 * dts entry of array should be like:
1251 * property = /bits/ 8 <0x50 0x60 0x70>;
1253 * The out_values is modified only if a valid u8 value can be decoded.
1255 int of_property_read_variable_u8_array(const struct device_node *np,
1256 const char *propname, u8 *out_values,
1257 size_t sz_min, size_t sz_max)
1259 size_t sz, count;
1260 const u8 *val = of_find_property_value_of_size(np, propname,
1261 (sz_min * sizeof(*out_values)),
1262 (sz_max * sizeof(*out_values)),
1263 &sz);
1265 if (IS_ERR(val))
1266 return PTR_ERR(val);
1268 if (!sz_max)
1269 sz = sz_min;
1270 else
1271 sz /= sizeof(*out_values);
1273 count = sz;
1274 while (count--)
1275 *out_values++ = *val++;
1277 return sz;
1279 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1282 * of_property_read_variable_u16_array - Find and read an array of u16 from a
1283 * property, with bounds on the minimum and maximum array size.
1285 * @np: device node from which the property value is to be read.
1286 * @propname: name of the property to be searched.
1287 * @out_values: pointer to return value, modified only if return value is 0.
1288 * @sz_min: minimum number of array elements to read
1289 * @sz_max: maximum number of array elements to read, if zero there is no
1290 * upper limit on the number of elements in the dts entry but only
1291 * sz_min will be read.
1293 * Search for a property in a device node and read 16-bit value(s) from
1294 * it. Returns number of elements read on success, -EINVAL if the property
1295 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1296 * if the property data is smaller than sz_min or longer than sz_max.
1298 * dts entry of array should be like:
1299 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1301 * The out_values is modified only if a valid u16 value can be decoded.
1303 int of_property_read_variable_u16_array(const struct device_node *np,
1304 const char *propname, u16 *out_values,
1305 size_t sz_min, size_t sz_max)
1307 size_t sz, count;
1308 const __be16 *val = of_find_property_value_of_size(np, propname,
1309 (sz_min * sizeof(*out_values)),
1310 (sz_max * sizeof(*out_values)),
1311 &sz);
1313 if (IS_ERR(val))
1314 return PTR_ERR(val);
1316 if (!sz_max)
1317 sz = sz_min;
1318 else
1319 sz /= sizeof(*out_values);
1321 count = sz;
1322 while (count--)
1323 *out_values++ = be16_to_cpup(val++);
1325 return sz;
1327 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1330 * of_property_read_variable_u32_array - Find and read an array of 32 bit
1331 * integers from a property, with bounds on the minimum and maximum array size.
1333 * @np: device node from which the property value is to be read.
1334 * @propname: name of the property to be searched.
1335 * @out_values: pointer to return value, modified only if return value is 0.
1336 * @sz_min: minimum number of array elements to read
1337 * @sz_max: maximum number of array elements to read, if zero there is no
1338 * upper limit on the number of elements in the dts entry but only
1339 * sz_min will be read.
1341 * Search for a property in a device node and read 32-bit value(s) from
1342 * it. Returns number of elements read on success, -EINVAL if the property
1343 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1344 * if the property data is smaller than sz_min or longer than sz_max.
1346 * The out_values is modified only if a valid u32 value can be decoded.
1348 int of_property_read_variable_u32_array(const struct device_node *np,
1349 const char *propname, u32 *out_values,
1350 size_t sz_min, size_t sz_max)
1352 size_t sz, count;
1353 const __be32 *val = of_find_property_value_of_size(np, propname,
1354 (sz_min * sizeof(*out_values)),
1355 (sz_max * sizeof(*out_values)),
1356 &sz);
1358 if (IS_ERR(val))
1359 return PTR_ERR(val);
1361 if (!sz_max)
1362 sz = sz_min;
1363 else
1364 sz /= sizeof(*out_values);
1366 count = sz;
1367 while (count--)
1368 *out_values++ = be32_to_cpup(val++);
1370 return sz;
1372 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1375 * of_property_read_u64 - Find and read a 64 bit integer from a property
1376 * @np: device node from which the property value is to be read.
1377 * @propname: name of the property to be searched.
1378 * @out_value: pointer to return value, modified only if return value is 0.
1380 * Search for a property in a device node and read a 64-bit value from
1381 * it. Returns 0 on success, -EINVAL if the property does not exist,
1382 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1383 * property data isn't large enough.
1385 * The out_value is modified only if a valid u64 value can be decoded.
1387 int of_property_read_u64(const struct device_node *np, const char *propname,
1388 u64 *out_value)
1390 const __be32 *val = of_find_property_value_of_size(np, propname,
1391 sizeof(*out_value),
1393 NULL);
1395 if (IS_ERR(val))
1396 return PTR_ERR(val);
1398 *out_value = of_read_number(val, 2);
1399 return 0;
1401 EXPORT_SYMBOL_GPL(of_property_read_u64);
1404 * of_property_read_variable_u64_array - Find and read an array of 64 bit
1405 * integers from a property, with bounds on the minimum and maximum array size.
1407 * @np: device node from which the property value is to be read.
1408 * @propname: name of the property to be searched.
1409 * @out_values: pointer to return value, modified only if return value is 0.
1410 * @sz_min: minimum number of array elements to read
1411 * @sz_max: maximum number of array elements to read, if zero there is no
1412 * upper limit on the number of elements in the dts entry but only
1413 * sz_min will be read.
1415 * Search for a property in a device node and read 64-bit value(s) from
1416 * it. Returns number of elements read on success, -EINVAL if the property
1417 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1418 * if the property data is smaller than sz_min or longer than sz_max.
1420 * The out_values is modified only if a valid u64 value can be decoded.
1422 int of_property_read_variable_u64_array(const struct device_node *np,
1423 const char *propname, u64 *out_values,
1424 size_t sz_min, size_t sz_max)
1426 size_t sz, count;
1427 const __be32 *val = of_find_property_value_of_size(np, propname,
1428 (sz_min * sizeof(*out_values)),
1429 (sz_max * sizeof(*out_values)),
1430 &sz);
1432 if (IS_ERR(val))
1433 return PTR_ERR(val);
1435 if (!sz_max)
1436 sz = sz_min;
1437 else
1438 sz /= sizeof(*out_values);
1440 count = sz;
1441 while (count--) {
1442 *out_values++ = of_read_number(val, 2);
1443 val += 2;
1446 return sz;
1448 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1451 * of_property_read_string - Find and read a string from a property
1452 * @np: device node from which the property value is to be read.
1453 * @propname: name of the property to be searched.
1454 * @out_string: pointer to null terminated return string, modified only if
1455 * return value is 0.
1457 * Search for a property in a device tree node and retrieve a null
1458 * terminated string value (pointer to data, not a copy). Returns 0 on
1459 * success, -EINVAL if the property does not exist, -ENODATA if property
1460 * does not have a value, and -EILSEQ if the string is not null-terminated
1461 * within the length of the property data.
1463 * The out_string pointer is modified only if a valid string can be decoded.
1465 int of_property_read_string(const struct device_node *np, const char *propname,
1466 const char **out_string)
1468 const struct property *prop = of_find_property(np, propname, NULL);
1469 if (!prop)
1470 return -EINVAL;
1471 if (!prop->value)
1472 return -ENODATA;
1473 if (strnlen(prop->value, prop->length) >= prop->length)
1474 return -EILSEQ;
1475 *out_string = prop->value;
1476 return 0;
1478 EXPORT_SYMBOL_GPL(of_property_read_string);
1481 * of_property_match_string() - Find string in a list and return index
1482 * @np: pointer to node containing string list property
1483 * @propname: string list property name
1484 * @string: pointer to string to search for in string list
1486 * This function searches a string list property and returns the index
1487 * of a specific string value.
1489 int of_property_match_string(const struct device_node *np, const char *propname,
1490 const char *string)
1492 const struct property *prop = of_find_property(np, propname, NULL);
1493 size_t l;
1494 int i;
1495 const char *p, *end;
1497 if (!prop)
1498 return -EINVAL;
1499 if (!prop->value)
1500 return -ENODATA;
1502 p = prop->value;
1503 end = p + prop->length;
1505 for (i = 0; p < end; i++, p += l) {
1506 l = strnlen(p, end - p) + 1;
1507 if (p + l > end)
1508 return -EILSEQ;
1509 pr_debug("comparing %s with %s\n", string, p);
1510 if (strcmp(string, p) == 0)
1511 return i; /* Found it; return index */
1513 return -ENODATA;
1515 EXPORT_SYMBOL_GPL(of_property_match_string);
1518 * of_property_read_string_helper() - Utility helper for parsing string properties
1519 * @np: device node from which the property value is to be read.
1520 * @propname: name of the property to be searched.
1521 * @out_strs: output array of string pointers.
1522 * @sz: number of array elements to read.
1523 * @skip: Number of strings to skip over at beginning of list.
1525 * Don't call this function directly. It is a utility helper for the
1526 * of_property_read_string*() family of functions.
1528 int of_property_read_string_helper(const struct device_node *np,
1529 const char *propname, const char **out_strs,
1530 size_t sz, int skip)
1532 const struct property *prop = of_find_property(np, propname, NULL);
1533 int l = 0, i = 0;
1534 const char *p, *end;
1536 if (!prop)
1537 return -EINVAL;
1538 if (!prop->value)
1539 return -ENODATA;
1540 p = prop->value;
1541 end = p + prop->length;
1543 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1544 l = strnlen(p, end - p) + 1;
1545 if (p + l > end)
1546 return -EILSEQ;
1547 if (out_strs && i >= skip)
1548 *out_strs++ = p;
1550 i -= skip;
1551 return i <= 0 ? -ENODATA : i;
1553 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1555 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1557 int i;
1558 printk("%s %s", msg, of_node_full_name(args->np));
1559 for (i = 0; i < args->args_count; i++)
1560 printk(i ? ",%08x" : ":%08x", args->args[i]);
1561 printk("\n");
1564 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1565 const struct device_node *np,
1566 const char *list_name,
1567 const char *cells_name,
1568 int cell_count)
1570 const __be32 *list;
1571 int size;
1573 memset(it, 0, sizeof(*it));
1575 list = of_get_property(np, list_name, &size);
1576 if (!list)
1577 return -ENOENT;
1579 it->cells_name = cells_name;
1580 it->cell_count = cell_count;
1581 it->parent = np;
1582 it->list_end = list + size / sizeof(*list);
1583 it->phandle_end = list;
1584 it->cur = list;
1586 return 0;
1589 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1591 uint32_t count = 0;
1593 if (it->node) {
1594 of_node_put(it->node);
1595 it->node = NULL;
1598 if (!it->cur || it->phandle_end >= it->list_end)
1599 return -ENOENT;
1601 it->cur = it->phandle_end;
1603 /* If phandle is 0, then it is an empty entry with no arguments. */
1604 it->phandle = be32_to_cpup(it->cur++);
1606 if (it->phandle) {
1609 * Find the provider node and parse the #*-cells property to
1610 * determine the argument length.
1612 it->node = of_find_node_by_phandle(it->phandle);
1614 if (it->cells_name) {
1615 if (!it->node) {
1616 pr_err("%s: could not find phandle\n",
1617 it->parent->full_name);
1618 goto err;
1621 if (of_property_read_u32(it->node, it->cells_name,
1622 &count)) {
1623 pr_err("%s: could not get %s for %s\n",
1624 it->parent->full_name,
1625 it->cells_name,
1626 it->node->full_name);
1627 goto err;
1629 } else {
1630 count = it->cell_count;
1634 * Make sure that the arguments actually fit in the remaining
1635 * property data length
1637 if (it->cur + count > it->list_end) {
1638 pr_err("%s: arguments longer than property\n",
1639 it->parent->full_name);
1640 goto err;
1644 it->phandle_end = it->cur + count;
1645 it->cur_count = count;
1647 return 0;
1649 err:
1650 if (it->node) {
1651 of_node_put(it->node);
1652 it->node = NULL;
1655 return -EINVAL;
1658 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1659 uint32_t *args,
1660 int size)
1662 int i, count;
1664 count = it->cur_count;
1666 if (WARN_ON(size < count))
1667 count = size;
1669 for (i = 0; i < count; i++)
1670 args[i] = be32_to_cpup(it->cur++);
1672 return count;
1675 static int __of_parse_phandle_with_args(const struct device_node *np,
1676 const char *list_name,
1677 const char *cells_name,
1678 int cell_count, int index,
1679 struct of_phandle_args *out_args)
1681 struct of_phandle_iterator it;
1682 int rc, cur_index = 0;
1684 /* Loop over the phandles until all the requested entry is found */
1685 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1687 * All of the error cases bail out of the loop, so at
1688 * this point, the parsing is successful. If the requested
1689 * index matches, then fill the out_args structure and return,
1690 * or return -ENOENT for an empty entry.
1692 rc = -ENOENT;
1693 if (cur_index == index) {
1694 if (!it.phandle)
1695 goto err;
1697 if (out_args) {
1698 int c;
1700 c = of_phandle_iterator_args(&it,
1701 out_args->args,
1702 MAX_PHANDLE_ARGS);
1703 out_args->np = it.node;
1704 out_args->args_count = c;
1705 } else {
1706 of_node_put(it.node);
1709 /* Found it! return success */
1710 return 0;
1713 cur_index++;
1717 * Unlock node before returning result; will be one of:
1718 * -ENOENT : index is for empty phandle
1719 * -EINVAL : parsing error on data
1722 err:
1723 of_node_put(it.node);
1724 return rc;
1728 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1729 * @np: Pointer to device node holding phandle property
1730 * @phandle_name: Name of property holding a phandle value
1731 * @index: For properties holding a table of phandles, this is the index into
1732 * the table
1734 * Returns the device_node pointer with refcount incremented. Use
1735 * of_node_put() on it when done.
1737 struct device_node *of_parse_phandle(const struct device_node *np,
1738 const char *phandle_name, int index)
1740 struct of_phandle_args args;
1742 if (index < 0)
1743 return NULL;
1745 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1746 index, &args))
1747 return NULL;
1749 return args.np;
1751 EXPORT_SYMBOL(of_parse_phandle);
1754 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1755 * @np: pointer to a device tree node containing a list
1756 * @list_name: property name that contains a list
1757 * @cells_name: property name that specifies phandles' arguments count
1758 * @index: index of a phandle to parse out
1759 * @out_args: optional pointer to output arguments structure (will be filled)
1761 * This function is useful to parse lists of phandles and their arguments.
1762 * Returns 0 on success and fills out_args, on error returns appropriate
1763 * errno value.
1765 * Caller is responsible to call of_node_put() on the returned out_args->np
1766 * pointer.
1768 * Example:
1770 * phandle1: node1 {
1771 * #list-cells = <2>;
1774 * phandle2: node2 {
1775 * #list-cells = <1>;
1778 * node3 {
1779 * list = <&phandle1 1 2 &phandle2 3>;
1782 * To get a device_node of the `node2' node you may call this:
1783 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1785 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1786 const char *cells_name, int index,
1787 struct of_phandle_args *out_args)
1789 if (index < 0)
1790 return -EINVAL;
1791 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1792 index, out_args);
1794 EXPORT_SYMBOL(of_parse_phandle_with_args);
1797 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1798 * @np: pointer to a device tree node containing a list
1799 * @list_name: property name that contains a list
1800 * @cell_count: number of argument cells following the phandle
1801 * @index: index of a phandle to parse out
1802 * @out_args: optional pointer to output arguments structure (will be filled)
1804 * This function is useful to parse lists of phandles and their arguments.
1805 * Returns 0 on success and fills out_args, on error returns appropriate
1806 * errno value.
1808 * Caller is responsible to call of_node_put() on the returned out_args->np
1809 * pointer.
1811 * Example:
1813 * phandle1: node1 {
1816 * phandle2: node2 {
1819 * node3 {
1820 * list = <&phandle1 0 2 &phandle2 2 3>;
1823 * To get a device_node of the `node2' node you may call this:
1824 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1826 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1827 const char *list_name, int cell_count,
1828 int index, struct of_phandle_args *out_args)
1830 if (index < 0)
1831 return -EINVAL;
1832 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1833 index, out_args);
1835 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1838 * of_count_phandle_with_args() - Find the number of phandles references in a property
1839 * @np: pointer to a device tree node containing a list
1840 * @list_name: property name that contains a list
1841 * @cells_name: property name that specifies phandles' arguments count
1843 * Returns the number of phandle + argument tuples within a property. It
1844 * is a typical pattern to encode a list of phandle and variable
1845 * arguments into a single property. The number of arguments is encoded
1846 * by a property in the phandle-target node. For example, a gpios
1847 * property would contain a list of GPIO specifies consisting of a
1848 * phandle and 1 or more arguments. The number of arguments are
1849 * determined by the #gpio-cells property in the node pointed to by the
1850 * phandle.
1852 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1853 const char *cells_name)
1855 struct of_phandle_iterator it;
1856 int rc, cur_index = 0;
1858 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1859 if (rc)
1860 return rc;
1862 while ((rc = of_phandle_iterator_next(&it)) == 0)
1863 cur_index += 1;
1865 if (rc != -ENOENT)
1866 return rc;
1868 return cur_index;
1870 EXPORT_SYMBOL(of_count_phandle_with_args);
1873 * __of_add_property - Add a property to a node without lock operations
1875 int __of_add_property(struct device_node *np, struct property *prop)
1877 struct property **next;
1879 prop->next = NULL;
1880 next = &np->properties;
1881 while (*next) {
1882 if (strcmp(prop->name, (*next)->name) == 0)
1883 /* duplicate ! don't insert it */
1884 return -EEXIST;
1886 next = &(*next)->next;
1888 *next = prop;
1890 return 0;
1894 * of_add_property - Add a property to a node
1896 int of_add_property(struct device_node *np, struct property *prop)
1898 unsigned long flags;
1899 int rc;
1901 mutex_lock(&of_mutex);
1903 raw_spin_lock_irqsave(&devtree_lock, flags);
1904 rc = __of_add_property(np, prop);
1905 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1907 if (!rc)
1908 __of_add_property_sysfs(np, prop);
1910 mutex_unlock(&of_mutex);
1912 if (!rc)
1913 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1915 return rc;
1918 int __of_remove_property(struct device_node *np, struct property *prop)
1920 struct property **next;
1922 for (next = &np->properties; *next; next = &(*next)->next) {
1923 if (*next == prop)
1924 break;
1926 if (*next == NULL)
1927 return -ENODEV;
1929 /* found the node */
1930 *next = prop->next;
1931 prop->next = np->deadprops;
1932 np->deadprops = prop;
1934 return 0;
1937 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1939 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1940 kfree(prop->attr.attr.name);
1943 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1945 if (!IS_ENABLED(CONFIG_SYSFS))
1946 return;
1948 /* at early boot, bail here and defer setup to of_init() */
1949 if (of_kset && of_node_is_attached(np))
1950 __of_sysfs_remove_bin_file(np, prop);
1954 * of_remove_property - Remove a property from a node.
1956 * Note that we don't actually remove it, since we have given out
1957 * who-knows-how-many pointers to the data using get-property.
1958 * Instead we just move the property to the "dead properties"
1959 * list, so it won't be found any more.
1961 int of_remove_property(struct device_node *np, struct property *prop)
1963 unsigned long flags;
1964 int rc;
1966 if (!prop)
1967 return -ENODEV;
1969 mutex_lock(&of_mutex);
1971 raw_spin_lock_irqsave(&devtree_lock, flags);
1972 rc = __of_remove_property(np, prop);
1973 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1975 if (!rc)
1976 __of_remove_property_sysfs(np, prop);
1978 mutex_unlock(&of_mutex);
1980 if (!rc)
1981 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1983 return rc;
1986 int __of_update_property(struct device_node *np, struct property *newprop,
1987 struct property **oldpropp)
1989 struct property **next, *oldprop;
1991 for (next = &np->properties; *next; next = &(*next)->next) {
1992 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1993 break;
1995 *oldpropp = oldprop = *next;
1997 if (oldprop) {
1998 /* replace the node */
1999 newprop->next = oldprop->next;
2000 *next = newprop;
2001 oldprop->next = np->deadprops;
2002 np->deadprops = oldprop;
2003 } else {
2004 /* new node */
2005 newprop->next = NULL;
2006 *next = newprop;
2009 return 0;
2012 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
2013 struct property *oldprop)
2015 if (!IS_ENABLED(CONFIG_SYSFS))
2016 return;
2018 /* At early boot, bail out and defer setup to of_init() */
2019 if (!of_kset)
2020 return;
2022 if (oldprop)
2023 __of_sysfs_remove_bin_file(np, oldprop);
2024 __of_add_property_sysfs(np, newprop);
2028 * of_update_property - Update a property in a node, if the property does
2029 * not exist, add it.
2031 * Note that we don't actually remove it, since we have given out
2032 * who-knows-how-many pointers to the data using get-property.
2033 * Instead we just move the property to the "dead properties" list,
2034 * and add the new property to the property list
2036 int of_update_property(struct device_node *np, struct property *newprop)
2038 struct property *oldprop;
2039 unsigned long flags;
2040 int rc;
2042 if (!newprop->name)
2043 return -EINVAL;
2045 mutex_lock(&of_mutex);
2047 raw_spin_lock_irqsave(&devtree_lock, flags);
2048 rc = __of_update_property(np, newprop, &oldprop);
2049 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2051 if (!rc)
2052 __of_update_property_sysfs(np, newprop, oldprop);
2054 mutex_unlock(&of_mutex);
2056 if (!rc)
2057 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2059 return rc;
2062 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2063 int id, const char *stem, int stem_len)
2065 ap->np = np;
2066 ap->id = id;
2067 strncpy(ap->stem, stem, stem_len);
2068 ap->stem[stem_len] = 0;
2069 list_add_tail(&ap->link, &aliases_lookup);
2070 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2071 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2075 * of_alias_scan - Scan all properties of the 'aliases' node
2077 * The function scans all the properties of the 'aliases' node and populates
2078 * the global lookup table with the properties. It returns the
2079 * number of alias properties found, or an error code in case of failure.
2081 * @dt_alloc: An allocator that provides a virtual address to memory
2082 * for storing the resulting tree
2084 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2086 struct property *pp;
2088 of_aliases = of_find_node_by_path("/aliases");
2089 of_chosen = of_find_node_by_path("/chosen");
2090 if (of_chosen == NULL)
2091 of_chosen = of_find_node_by_path("/chosen@0");
2093 if (of_chosen) {
2094 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2095 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2096 if (!name)
2097 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2098 if (IS_ENABLED(CONFIG_PPC) && !name)
2099 name = of_get_property(of_aliases, "stdout", NULL);
2100 if (name)
2101 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2104 if (!of_aliases)
2105 return;
2107 for_each_property_of_node(of_aliases, pp) {
2108 const char *start = pp->name;
2109 const char *end = start + strlen(start);
2110 struct device_node *np;
2111 struct alias_prop *ap;
2112 int id, len;
2114 /* Skip those we do not want to proceed */
2115 if (!strcmp(pp->name, "name") ||
2116 !strcmp(pp->name, "phandle") ||
2117 !strcmp(pp->name, "linux,phandle"))
2118 continue;
2120 np = of_find_node_by_path(pp->value);
2121 if (!np)
2122 continue;
2124 /* walk the alias backwards to extract the id and work out
2125 * the 'stem' string */
2126 while (isdigit(*(end-1)) && end > start)
2127 end--;
2128 len = end - start;
2130 if (kstrtoint(end, 10, &id) < 0)
2131 continue;
2133 /* Allocate an alias_prop with enough space for the stem */
2134 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2135 if (!ap)
2136 continue;
2137 memset(ap, 0, sizeof(*ap) + len + 1);
2138 ap->alias = start;
2139 of_alias_add(ap, np, id, start, len);
2144 * of_alias_get_id - Get alias id for the given device_node
2145 * @np: Pointer to the given device_node
2146 * @stem: Alias stem of the given device_node
2148 * The function travels the lookup table to get the alias id for the given
2149 * device_node and alias stem. It returns the alias id if found.
2151 int of_alias_get_id(struct device_node *np, const char *stem)
2153 struct alias_prop *app;
2154 int id = -ENODEV;
2156 mutex_lock(&of_mutex);
2157 list_for_each_entry(app, &aliases_lookup, link) {
2158 if (strcmp(app->stem, stem) != 0)
2159 continue;
2161 if (np == app->np) {
2162 id = app->id;
2163 break;
2166 mutex_unlock(&of_mutex);
2168 return id;
2170 EXPORT_SYMBOL_GPL(of_alias_get_id);
2173 * of_alias_get_highest_id - Get highest alias id for the given stem
2174 * @stem: Alias stem to be examined
2176 * The function travels the lookup table to get the highest alias id for the
2177 * given alias stem. It returns the alias id if found.
2179 int of_alias_get_highest_id(const char *stem)
2181 struct alias_prop *app;
2182 int id = -ENODEV;
2184 mutex_lock(&of_mutex);
2185 list_for_each_entry(app, &aliases_lookup, link) {
2186 if (strcmp(app->stem, stem) != 0)
2187 continue;
2189 if (app->id > id)
2190 id = app->id;
2192 mutex_unlock(&of_mutex);
2194 return id;
2196 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2198 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2199 u32 *pu)
2201 const void *curv = cur;
2203 if (!prop)
2204 return NULL;
2206 if (!cur) {
2207 curv = prop->value;
2208 goto out_val;
2211 curv += sizeof(*cur);
2212 if (curv >= prop->value + prop->length)
2213 return NULL;
2215 out_val:
2216 *pu = be32_to_cpup(curv);
2217 return curv;
2219 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2221 const char *of_prop_next_string(struct property *prop, const char *cur)
2223 const void *curv = cur;
2225 if (!prop)
2226 return NULL;
2228 if (!cur)
2229 return prop->value;
2231 curv += strlen(cur) + 1;
2232 if (curv >= prop->value + prop->length)
2233 return NULL;
2235 return curv;
2237 EXPORT_SYMBOL_GPL(of_prop_next_string);
2240 * of_console_check() - Test and setup console for DT setup
2241 * @dn - Pointer to device node
2242 * @name - Name to use for preferred console without index. ex. "ttyS"
2243 * @index - Index to use for preferred console.
2245 * Check if the given device node matches the stdout-path property in the
2246 * /chosen node. If it does then register it as the preferred console and return
2247 * TRUE. Otherwise return FALSE.
2249 bool of_console_check(struct device_node *dn, char *name, int index)
2251 if (!dn || dn != of_stdout || console_set_on_cmdline)
2252 return false;
2253 return !add_preferred_console(name, index,
2254 kstrdup(of_stdout_options, GFP_KERNEL));
2256 EXPORT_SYMBOL_GPL(of_console_check);
2259 * of_find_next_cache_node - Find a node's subsidiary cache
2260 * @np: node of type "cpu" or "cache"
2262 * Returns a node pointer with refcount incremented, use
2263 * of_node_put() on it when done. Caller should hold a reference
2264 * to np.
2266 struct device_node *of_find_next_cache_node(const struct device_node *np)
2268 struct device_node *child;
2269 const phandle *handle;
2271 handle = of_get_property(np, "l2-cache", NULL);
2272 if (!handle)
2273 handle = of_get_property(np, "next-level-cache", NULL);
2275 if (handle)
2276 return of_find_node_by_phandle(be32_to_cpup(handle));
2278 /* OF on pmac has nodes instead of properties named "l2-cache"
2279 * beneath CPU nodes.
2281 if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
2282 for_each_child_of_node(np, child)
2283 if (!strcmp(child->type, "cache"))
2284 return child;
2286 return NULL;
2290 * of_graph_parse_endpoint() - parse common endpoint node properties
2291 * @node: pointer to endpoint device_node
2292 * @endpoint: pointer to the OF endpoint data structure
2294 * The caller should hold a reference to @node.
2296 int of_graph_parse_endpoint(const struct device_node *node,
2297 struct of_endpoint *endpoint)
2299 struct device_node *port_node = of_get_parent(node);
2301 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2302 __func__, node->full_name);
2304 memset(endpoint, 0, sizeof(*endpoint));
2306 endpoint->local_node = node;
2308 * It doesn't matter whether the two calls below succeed.
2309 * If they don't then the default value 0 is used.
2311 of_property_read_u32(port_node, "reg", &endpoint->port);
2312 of_property_read_u32(node, "reg", &endpoint->id);
2314 of_node_put(port_node);
2316 return 0;
2318 EXPORT_SYMBOL(of_graph_parse_endpoint);
2321 * of_graph_get_port_by_id() - get the port matching a given id
2322 * @parent: pointer to the parent device node
2323 * @id: id of the port
2325 * Return: A 'port' node pointer with refcount incremented. The caller
2326 * has to use of_node_put() on it when done.
2328 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2330 struct device_node *node, *port;
2332 node = of_get_child_by_name(parent, "ports");
2333 if (node)
2334 parent = node;
2336 for_each_child_of_node(parent, port) {
2337 u32 port_id = 0;
2339 if (of_node_cmp(port->name, "port") != 0)
2340 continue;
2341 of_property_read_u32(port, "reg", &port_id);
2342 if (id == port_id)
2343 break;
2346 of_node_put(node);
2348 return port;
2350 EXPORT_SYMBOL(of_graph_get_port_by_id);
2353 * of_graph_get_next_endpoint() - get next endpoint node
2354 * @parent: pointer to the parent device node
2355 * @prev: previous endpoint node, or NULL to get first
2357 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2358 * of the passed @prev node is decremented.
2360 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2361 struct device_node *prev)
2363 struct device_node *endpoint;
2364 struct device_node *port;
2366 if (!parent)
2367 return NULL;
2370 * Start by locating the port node. If no previous endpoint is specified
2371 * search for the first port node, otherwise get the previous endpoint
2372 * parent port node.
2374 if (!prev) {
2375 struct device_node *node;
2377 node = of_get_child_by_name(parent, "ports");
2378 if (node)
2379 parent = node;
2381 port = of_get_child_by_name(parent, "port");
2382 of_node_put(node);
2384 if (!port) {
2385 pr_err("graph: no port node found in %s\n",
2386 parent->full_name);
2387 return NULL;
2389 } else {
2390 port = of_get_parent(prev);
2391 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2392 __func__, prev->full_name))
2393 return NULL;
2396 while (1) {
2398 * Now that we have a port node, get the next endpoint by
2399 * getting the next child. If the previous endpoint is NULL this
2400 * will return the first child.
2402 endpoint = of_get_next_child(port, prev);
2403 if (endpoint) {
2404 of_node_put(port);
2405 return endpoint;
2408 /* No more endpoints under this port, try the next one. */
2409 prev = NULL;
2411 do {
2412 port = of_get_next_child(parent, port);
2413 if (!port)
2414 return NULL;
2415 } while (of_node_cmp(port->name, "port"));
2418 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2421 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2422 * @parent: pointer to the parent device node
2423 * @port_reg: identifier (value of reg property) of the parent port node
2424 * @reg: identifier (value of reg property) of the endpoint node
2426 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2427 * is the child of a port node identified by port_reg. reg and port_reg are
2428 * ignored when they are -1.
2430 struct device_node *of_graph_get_endpoint_by_regs(
2431 const struct device_node *parent, int port_reg, int reg)
2433 struct of_endpoint endpoint;
2434 struct device_node *node = NULL;
2436 for_each_endpoint_of_node(parent, node) {
2437 of_graph_parse_endpoint(node, &endpoint);
2438 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2439 ((reg == -1) || (endpoint.id == reg)))
2440 return node;
2443 return NULL;
2445 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2448 * of_graph_get_remote_port_parent() - get remote port's parent node
2449 * @node: pointer to a local endpoint device_node
2451 * Return: Remote device node associated with remote endpoint node linked
2452 * to @node. Use of_node_put() on it when done.
2454 struct device_node *of_graph_get_remote_port_parent(
2455 const struct device_node *node)
2457 struct device_node *np;
2458 unsigned int depth;
2460 /* Get remote endpoint node. */
2461 np = of_parse_phandle(node, "remote-endpoint", 0);
2463 /* Walk 3 levels up only if there is 'ports' node. */
2464 for (depth = 3; depth && np; depth--) {
2465 np = of_get_next_parent(np);
2466 if (depth == 2 && of_node_cmp(np->name, "ports"))
2467 break;
2469 return np;
2471 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2474 * of_graph_get_remote_port() - get remote port node
2475 * @node: pointer to a local endpoint device_node
2477 * Return: Remote port node associated with remote endpoint node linked
2478 * to @node. Use of_node_put() on it when done.
2480 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2482 struct device_node *np;
2484 /* Get remote endpoint node. */
2485 np = of_parse_phandle(node, "remote-endpoint", 0);
2486 if (!np)
2487 return NULL;
2488 return of_get_next_parent(np);
2490 EXPORT_SYMBOL(of_graph_get_remote_port);