Linux 4.9.243
[linux/fpc-iii.git] / drivers / w1 / masters / ds2490.c
blob2287e1be0e55adafa22da1adde34351e71efa37c
1 /*
2 * ds2490.c USB to one wire bridge
4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
28 #include "../w1_int.h"
29 #include "../w1.h"
31 /* USB Standard */
32 /* USB Control request vendor type */
33 #define VENDOR 0x40
35 /* COMMAND TYPE CODES */
36 #define CONTROL_CMD 0x00
37 #define COMM_CMD 0x01
38 #define MODE_CMD 0x02
40 /* CONTROL COMMAND CODES */
41 #define CTL_RESET_DEVICE 0x0000
42 #define CTL_START_EXE 0x0001
43 #define CTL_RESUME_EXE 0x0002
44 #define CTL_HALT_EXE_IDLE 0x0003
45 #define CTL_HALT_EXE_DONE 0x0004
46 #define CTL_FLUSH_COMM_CMDS 0x0007
47 #define CTL_FLUSH_RCV_BUFFER 0x0008
48 #define CTL_FLUSH_XMT_BUFFER 0x0009
49 #define CTL_GET_COMM_CMDS 0x000A
51 /* MODE COMMAND CODES */
52 #define MOD_PULSE_EN 0x0000
53 #define MOD_SPEED_CHANGE_EN 0x0001
54 #define MOD_1WIRE_SPEED 0x0002
55 #define MOD_STRONG_PU_DURATION 0x0003
56 #define MOD_PULLDOWN_SLEWRATE 0x0004
57 #define MOD_PROG_PULSE_DURATION 0x0005
58 #define MOD_WRITE1_LOWTIME 0x0006
59 #define MOD_DSOW0_TREC 0x0007
61 /* COMMUNICATION COMMAND CODES */
62 #define COMM_ERROR_ESCAPE 0x0601
63 #define COMM_SET_DURATION 0x0012
64 #define COMM_BIT_IO 0x0020
65 #define COMM_PULSE 0x0030
66 #define COMM_1_WIRE_RESET 0x0042
67 #define COMM_BYTE_IO 0x0052
68 #define COMM_MATCH_ACCESS 0x0064
69 #define COMM_BLOCK_IO 0x0074
70 #define COMM_READ_STRAIGHT 0x0080
71 #define COMM_DO_RELEASE 0x6092
72 #define COMM_SET_PATH 0x00A2
73 #define COMM_WRITE_SRAM_PAGE 0x00B2
74 #define COMM_WRITE_EPROM 0x00C4
75 #define COMM_READ_CRC_PROT_PAGE 0x00D4
76 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
77 #define COMM_SEARCH_ACCESS 0x00F4
79 /* Communication command bits */
80 #define COMM_TYPE 0x0008
81 #define COMM_SE 0x0008
82 #define COMM_D 0x0008
83 #define COMM_Z 0x0008
84 #define COMM_CH 0x0008
85 #define COMM_SM 0x0008
86 #define COMM_R 0x0008
87 #define COMM_IM 0x0001
89 #define COMM_PS 0x4000
90 #define COMM_PST 0x4000
91 #define COMM_CIB 0x4000
92 #define COMM_RTS 0x4000
93 #define COMM_DT 0x2000
94 #define COMM_SPU 0x1000
95 #define COMM_F 0x0800
96 #define COMM_NTF 0x0400
97 #define COMM_ICP 0x0200
98 #define COMM_RST 0x0100
100 #define PULSE_PROG 0x01
101 #define PULSE_SPUE 0x02
103 #define BRANCH_MAIN 0xCC
104 #define BRANCH_AUX 0x33
106 /* Status flags */
107 #define ST_SPUA 0x01 /* Strong Pull-up is active */
108 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
109 #define ST_12VP 0x04 /* external 12V programming voltage is present */
110 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
111 #define ST_HALT 0x10 /* DS2490 is currently halted */
112 #define ST_IDLE 0x20 /* DS2490 is currently idle */
113 #define ST_EPOF 0x80
114 /* Status transfer size, 16 bytes status, 16 byte result flags */
115 #define ST_SIZE 0x20
117 /* Result Register flags */
118 #define RR_DETECT 0xA5 /* New device detected */
119 #define RR_NRS 0x01 /* Reset no presence or ... */
120 #define RR_SH 0x02 /* short on reset or set path */
121 #define RR_APP 0x04 /* alarming presence on reset */
122 #define RR_VPP 0x08 /* 12V expected not seen */
123 #define RR_CMP 0x10 /* compare error */
124 #define RR_CRC 0x20 /* CRC error detected */
125 #define RR_RDP 0x40 /* redirected page */
126 #define RR_EOS 0x80 /* end of search error */
128 #define SPEED_NORMAL 0x00
129 #define SPEED_FLEXIBLE 0x01
130 #define SPEED_OVERDRIVE 0x02
132 #define NUM_EP 4
133 #define EP_CONTROL 0
134 #define EP_STATUS 1
135 #define EP_DATA_OUT 2
136 #define EP_DATA_IN 3
138 struct ds_device
140 struct list_head ds_entry;
142 struct usb_device *udev;
143 struct usb_interface *intf;
145 int ep[NUM_EP];
147 /* Strong PullUp
148 * 0: pullup not active, else duration in milliseconds
150 int spu_sleep;
151 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
152 * should be active or not for writes.
154 u16 spu_bit;
156 u8 st_buf[ST_SIZE];
157 u8 byte_buf;
159 struct w1_bus_master master;
162 struct ds_status
164 u8 enable;
165 u8 speed;
166 u8 pullup_dur;
167 u8 ppuls_dur;
168 u8 pulldown_slew;
169 u8 write1_time;
170 u8 write0_time;
171 u8 reserved0;
172 u8 status;
173 u8 command0;
174 u8 command1;
175 u8 command_buffer_status;
176 u8 data_out_buffer_status;
177 u8 data_in_buffer_status;
178 u8 reserved1;
179 u8 reserved2;
182 static struct usb_device_id ds_id_table [] = {
183 { USB_DEVICE(0x04fa, 0x2490) },
184 { },
186 MODULE_DEVICE_TABLE(usb, ds_id_table);
188 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
189 static void ds_disconnect(struct usb_interface *);
191 static int ds_send_control(struct ds_device *, u16, u16);
192 static int ds_send_control_cmd(struct ds_device *, u16, u16);
194 static LIST_HEAD(ds_devices);
195 static DEFINE_MUTEX(ds_mutex);
197 static struct usb_driver ds_driver = {
198 .name = "DS9490R",
199 .probe = ds_probe,
200 .disconnect = ds_disconnect,
201 .id_table = ds_id_table,
204 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
206 int err;
208 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
209 CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
210 if (err < 0) {
211 pr_err("Failed to send command control message %x.%x: err=%d.\n",
212 value, index, err);
213 return err;
216 return err;
219 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
221 int err;
223 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
224 MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
225 if (err < 0) {
226 pr_err("Failed to send mode control message %x.%x: err=%d.\n",
227 value, index, err);
228 return err;
231 return err;
234 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
236 int err;
238 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
239 COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
240 if (err < 0) {
241 pr_err("Failed to send control message %x.%x: err=%d.\n",
242 value, index, err);
243 return err;
246 return err;
249 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
251 pr_info("%45s: %8x\n", str, buf[off]);
254 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
256 int i;
258 pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
259 for (i=0; i<count; ++i)
260 pr_info("%02x ", buf[i]);
261 pr_info("\n");
263 if (count >= 16) {
264 ds_print_msg(buf, "enable flag", 0);
265 ds_print_msg(buf, "1-wire speed", 1);
266 ds_print_msg(buf, "strong pullup duration", 2);
267 ds_print_msg(buf, "programming pulse duration", 3);
268 ds_print_msg(buf, "pulldown slew rate control", 4);
269 ds_print_msg(buf, "write-1 low time", 5);
270 ds_print_msg(buf, "data sample offset/write-0 recovery time",
272 ds_print_msg(buf, "reserved (test register)", 7);
273 ds_print_msg(buf, "device status flags", 8);
274 ds_print_msg(buf, "communication command byte 1", 9);
275 ds_print_msg(buf, "communication command byte 2", 10);
276 ds_print_msg(buf, "communication command buffer status", 11);
277 ds_print_msg(buf, "1-wire data output buffer status", 12);
278 ds_print_msg(buf, "1-wire data input buffer status", 13);
279 ds_print_msg(buf, "reserved", 14);
280 ds_print_msg(buf, "reserved", 15);
282 for (i = 16; i < count; ++i) {
283 if (buf[i] == RR_DETECT) {
284 ds_print_msg(buf, "new device detect", i);
285 continue;
287 ds_print_msg(buf, "Result Register Value: ", i);
288 if (buf[i] & RR_NRS)
289 pr_info("NRS: Reset no presence or ...\n");
290 if (buf[i] & RR_SH)
291 pr_info("SH: short on reset or set path\n");
292 if (buf[i] & RR_APP)
293 pr_info("APP: alarming presence on reset\n");
294 if (buf[i] & RR_VPP)
295 pr_info("VPP: 12V expected not seen\n");
296 if (buf[i] & RR_CMP)
297 pr_info("CMP: compare error\n");
298 if (buf[i] & RR_CRC)
299 pr_info("CRC: CRC error detected\n");
300 if (buf[i] & RR_RDP)
301 pr_info("RDP: redirected page\n");
302 if (buf[i] & RR_EOS)
303 pr_info("EOS: end of search error\n");
307 static int ds_recv_status(struct ds_device *dev, struct ds_status *st,
308 bool dump)
310 int count, err;
312 if (st)
313 memset(st, 0, sizeof(*st));
315 count = 0;
316 err = usb_interrupt_msg(dev->udev,
317 usb_rcvintpipe(dev->udev,
318 dev->ep[EP_STATUS]),
319 dev->st_buf, sizeof(dev->st_buf),
320 &count, 1000);
321 if (err < 0) {
322 pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
323 dev->ep[EP_STATUS], err);
324 return err;
327 if (dump)
328 ds_dump_status(dev, dev->st_buf, count);
330 if (st && count >= sizeof(*st))
331 memcpy(st, dev->st_buf, sizeof(*st));
333 return count;
336 static void ds_reset_device(struct ds_device *dev)
338 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
339 /* Always allow strong pullup which allow individual writes to use
340 * the strong pullup.
342 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
343 pr_err("ds_reset_device: Error allowing strong pullup\n");
344 /* Chip strong pullup time was cleared. */
345 if (dev->spu_sleep) {
346 /* lower 4 bits are 0, see ds_set_pullup */
347 u8 del = dev->spu_sleep>>4;
348 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
349 pr_err("ds_reset_device: Error setting duration\n");
353 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
355 int count, err;
357 /* Careful on size. If size is less than what is available in
358 * the input buffer, the device fails the bulk transfer and
359 * clears the input buffer. It could read the maximum size of
360 * the data buffer, but then do you return the first, last, or
361 * some set of the middle size bytes? As long as the rest of
362 * the code is correct there will be size bytes waiting. A
363 * call to ds_wait_status will wait until the device is idle
364 * and any data to be received would have been available.
366 count = 0;
367 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
368 buf, size, &count, 1000);
369 if (err < 0) {
370 pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
371 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
372 ds_recv_status(dev, NULL, true);
373 return err;
376 #if 0
378 int i;
380 printk("%s: count=%d: ", __func__, count);
381 for (i=0; i<count; ++i)
382 printk("%02x ", buf[i]);
383 printk("\n");
385 #endif
386 return count;
389 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
391 int count, err;
393 count = 0;
394 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
395 if (err < 0) {
396 pr_err("Failed to write 1-wire data to ep0x%x: "
397 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
398 return err;
401 return err;
404 #if 0
406 int ds_stop_pulse(struct ds_device *dev, int limit)
408 struct ds_status st;
409 int count = 0, err = 0;
411 do {
412 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
413 if (err)
414 break;
415 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
416 if (err)
417 break;
418 err = ds_recv_status(dev, &st, false);
419 if (err)
420 break;
422 if ((st.status & ST_SPUA) == 0) {
423 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
424 if (err)
425 break;
427 } while(++count < limit);
429 return err;
432 int ds_detect(struct ds_device *dev, struct ds_status *st)
434 int err;
436 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
437 if (err)
438 return err;
440 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
441 if (err)
442 return err;
444 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
445 if (err)
446 return err;
448 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
449 if (err)
450 return err;
452 err = ds_dump_status(dev, st);
454 return err;
457 #endif /* 0 */
459 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
461 int err, count = 0;
463 do {
464 st->status = 0;
465 err = ds_recv_status(dev, st, false);
466 #if 0
467 if (err >= 0) {
468 int i;
469 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
470 for (i=0; i<err; ++i)
471 printk("%02x ", dev->st_buf[i]);
472 printk("\n");
474 #endif
475 } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
477 if (err >= 16 && st->status & ST_EPOF) {
478 pr_info("Resetting device after ST_EPOF.\n");
479 ds_reset_device(dev);
480 /* Always dump the device status. */
481 count = 101;
484 /* Dump the status for errors or if there is extended return data.
485 * The extended status includes new device detection (maybe someone
486 * can do something with it).
488 if (err > 16 || count >= 100 || err < 0)
489 ds_dump_status(dev, dev->st_buf, err);
491 /* Extended data isn't an error. Well, a short is, but the dump
492 * would have already told the user that and we can't do anything
493 * about it in software anyway.
495 if (count >= 100 || err < 0)
496 return -1;
497 else
498 return 0;
501 static int ds_reset(struct ds_device *dev)
503 int err;
505 /* Other potentionally interesting flags for reset.
507 * COMM_NTF: Return result register feedback. This could be used to
508 * detect some conditions such as short, alarming presence, or
509 * detect if a new device was detected.
511 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
512 * Select the data transfer rate.
514 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
515 if (err)
516 return err;
518 return 0;
521 #if 0
522 static int ds_set_speed(struct ds_device *dev, int speed)
524 int err;
526 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
527 return -EINVAL;
529 if (speed != SPEED_OVERDRIVE)
530 speed = SPEED_FLEXIBLE;
532 speed &= 0xff;
534 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
535 if (err)
536 return err;
538 return err;
540 #endif /* 0 */
542 static int ds_set_pullup(struct ds_device *dev, int delay)
544 int err = 0;
545 u8 del = 1 + (u8)(delay >> 4);
546 /* Just storing delay would not get the trunication and roundup. */
547 int ms = del<<4;
549 /* Enable spu_bit if a delay is set. */
550 dev->spu_bit = delay ? COMM_SPU : 0;
551 /* If delay is zero, it has already been disabled, if the time is
552 * the same as the hardware was last programmed to, there is also
553 * nothing more to do. Compare with the recalculated value ms
554 * rather than del or delay which can have a different value.
556 if (delay == 0 || ms == dev->spu_sleep)
557 return err;
559 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
560 if (err)
561 return err;
563 dev->spu_sleep = ms;
565 return err;
568 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
570 int err;
571 struct ds_status st;
573 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
575 if (err)
576 return err;
578 ds_wait_status(dev, &st);
580 err = ds_recv_data(dev, tbit, sizeof(*tbit));
581 if (err < 0)
582 return err;
584 return 0;
587 #if 0
588 static int ds_write_bit(struct ds_device *dev, u8 bit)
590 int err;
591 struct ds_status st;
593 /* Set COMM_ICP to write without a readback. Note, this will
594 * produce one time slot, a down followed by an up with COMM_D
595 * only determing the timing.
597 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
598 (bit ? COMM_D : 0), 0);
599 if (err)
600 return err;
602 ds_wait_status(dev, &st);
604 return 0;
606 #endif
608 static int ds_write_byte(struct ds_device *dev, u8 byte)
610 int err;
611 struct ds_status st;
613 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
614 if (err)
615 return err;
617 if (dev->spu_bit)
618 msleep(dev->spu_sleep);
620 err = ds_wait_status(dev, &st);
621 if (err)
622 return err;
624 err = ds_recv_data(dev, &dev->byte_buf, 1);
625 if (err < 0)
626 return err;
628 return !(byte == dev->byte_buf);
631 static int ds_read_byte(struct ds_device *dev, u8 *byte)
633 int err;
634 struct ds_status st;
636 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
637 if (err)
638 return err;
640 ds_wait_status(dev, &st);
642 err = ds_recv_data(dev, byte, sizeof(*byte));
643 if (err < 0)
644 return err;
646 return 0;
649 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
651 struct ds_status st;
652 int err;
654 if (len > 64*1024)
655 return -E2BIG;
657 memset(buf, 0xFF, len);
659 err = ds_send_data(dev, buf, len);
660 if (err < 0)
661 return err;
663 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
664 if (err)
665 return err;
667 ds_wait_status(dev, &st);
669 memset(buf, 0x00, len);
670 err = ds_recv_data(dev, buf, len);
672 return err;
675 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
677 int err;
678 struct ds_status st;
680 err = ds_send_data(dev, buf, len);
681 if (err < 0)
682 return err;
684 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
685 if (err)
686 return err;
688 if (dev->spu_bit)
689 msleep(dev->spu_sleep);
691 ds_wait_status(dev, &st);
693 err = ds_recv_data(dev, buf, len);
694 if (err < 0)
695 return err;
697 return !(err == len);
700 static void ds9490r_search(void *data, struct w1_master *master,
701 u8 search_type, w1_slave_found_callback callback)
703 /* When starting with an existing id, the first id returned will
704 * be that device (if it is still on the bus most likely).
706 * If the number of devices found is less than or equal to the
707 * search_limit, that number of IDs will be returned. If there are
708 * more, search_limit IDs will be returned followed by a non-zero
709 * discrepency value.
711 struct ds_device *dev = data;
712 int err;
713 u16 value, index;
714 struct ds_status st;
715 int search_limit;
716 int found = 0;
717 int i;
719 /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
720 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
722 const unsigned long jtime = msecs_to_jiffies(1000*8/75);
723 /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
724 * packet size.
726 const size_t bufsize = 2 * 64;
727 u64 *buf;
729 buf = kmalloc(bufsize, GFP_KERNEL);
730 if (!buf)
731 return;
733 mutex_lock(&master->bus_mutex);
735 /* address to start searching at */
736 if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
737 goto search_out;
738 master->search_id = 0;
740 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
741 COMM_RTS;
742 search_limit = master->max_slave_count;
743 if (search_limit > 255)
744 search_limit = 0;
745 index = search_type | (search_limit << 8);
746 if (ds_send_control(dev, value, index) < 0)
747 goto search_out;
749 do {
750 schedule_timeout(jtime);
752 err = ds_recv_status(dev, &st, false);
753 if (err < 0 || err < sizeof(st))
754 break;
756 if (st.data_in_buffer_status) {
757 /* Bulk in can receive partial ids, but when it does
758 * they fail crc and will be discarded anyway.
759 * That has only been seen when status in buffer
760 * is 0 and bulk is read anyway, so don't read
761 * bulk without first checking if status says there
762 * is data to read.
764 err = ds_recv_data(dev, (u8 *)buf, bufsize);
765 if (err < 0)
766 break;
767 for (i = 0; i < err/8; ++i) {
768 ++found;
769 if (found <= search_limit)
770 callback(master, buf[i]);
771 /* can't know if there will be a discrepancy
772 * value after until the next id */
773 if (found == search_limit)
774 master->search_id = buf[i];
778 if (test_bit(W1_ABORT_SEARCH, &master->flags))
779 break;
780 } while (!(st.status & (ST_IDLE | ST_HALT)));
782 /* only continue the search if some weren't found */
783 if (found <= search_limit) {
784 master->search_id = 0;
785 } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
786 /* Only max_slave_count will be scanned in a search,
787 * but it will start where it left off next search
788 * until all ids are identified and then it will start
789 * over. A continued search will report the previous
790 * last id as the first id (provided it is still on the
791 * bus).
793 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
794 "will continue next search.\n", __func__,
795 master->max_slave_count);
796 set_bit(W1_WARN_MAX_COUNT, &master->flags);
798 search_out:
799 mutex_unlock(&master->bus_mutex);
800 kfree(buf);
803 #if 0
805 * FIXME: if this disabled code is ever used in the future all ds_send_data()
806 * calls must be changed to use a DMAable buffer.
808 static int ds_match_access(struct ds_device *dev, u64 init)
810 int err;
811 struct ds_status st;
813 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
814 if (err)
815 return err;
817 ds_wait_status(dev, &st);
819 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
820 if (err)
821 return err;
823 ds_wait_status(dev, &st);
825 return 0;
828 static int ds_set_path(struct ds_device *dev, u64 init)
830 int err;
831 struct ds_status st;
832 u8 buf[9];
834 memcpy(buf, &init, 8);
835 buf[8] = BRANCH_MAIN;
837 err = ds_send_data(dev, buf, sizeof(buf));
838 if (err)
839 return err;
841 ds_wait_status(dev, &st);
843 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
844 if (err)
845 return err;
847 ds_wait_status(dev, &st);
849 return 0;
852 #endif /* 0 */
854 static u8 ds9490r_touch_bit(void *data, u8 bit)
856 struct ds_device *dev = data;
858 if (ds_touch_bit(dev, bit, &dev->byte_buf))
859 return 0;
861 return dev->byte_buf;
864 #if 0
865 static void ds9490r_write_bit(void *data, u8 bit)
867 struct ds_device *dev = data;
869 ds_write_bit(dev, bit);
872 static u8 ds9490r_read_bit(void *data)
874 struct ds_device *dev = data;
875 int err;
877 err = ds_touch_bit(dev, 1, &dev->byte_buf);
878 if (err)
879 return 0;
881 return dev->byte_buf & 1;
883 #endif
885 static void ds9490r_write_byte(void *data, u8 byte)
887 struct ds_device *dev = data;
889 ds_write_byte(dev, byte);
892 static u8 ds9490r_read_byte(void *data)
894 struct ds_device *dev = data;
895 int err;
897 err = ds_read_byte(dev, &dev->byte_buf);
898 if (err)
899 return 0;
901 return dev->byte_buf;
904 static void ds9490r_write_block(void *data, const u8 *buf, int len)
906 struct ds_device *dev = data;
907 u8 *tbuf;
909 if (len <= 0)
910 return;
912 tbuf = kmalloc(len, GFP_KERNEL);
913 if (!tbuf)
914 return;
916 memcpy(tbuf, buf, len);
917 ds_write_block(dev, tbuf, len);
919 kfree(tbuf);
922 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
924 struct ds_device *dev = data;
925 int err;
926 u8 *tbuf;
928 if (len <= 0)
929 return 0;
931 tbuf = kmalloc(len, GFP_KERNEL);
932 if (!tbuf)
933 return 0;
935 err = ds_read_block(dev, tbuf, len);
936 if (err >= 0)
937 memcpy(buf, tbuf, len);
939 kfree(tbuf);
941 return err >= 0 ? len : 0;
944 static u8 ds9490r_reset(void *data)
946 struct ds_device *dev = data;
947 int err;
949 err = ds_reset(dev);
950 if (err)
951 return 1;
953 return 0;
956 static u8 ds9490r_set_pullup(void *data, int delay)
958 struct ds_device *dev = data;
960 if (ds_set_pullup(dev, delay))
961 return 1;
963 return 0;
966 static int ds_w1_init(struct ds_device *dev)
968 memset(&dev->master, 0, sizeof(struct w1_bus_master));
970 /* Reset the device as it can be in a bad state.
971 * This is necessary because a block write will wait for data
972 * to be placed in the output buffer and block any later
973 * commands which will keep accumulating and the device will
974 * not be idle. Another case is removing the ds2490 module
975 * while a bus search is in progress, somehow a few commands
976 * get through, but the input transfers fail leaving data in
977 * the input buffer. This will cause the next read to fail
978 * see the note in ds_recv_data.
980 ds_reset_device(dev);
982 dev->master.data = dev;
983 dev->master.touch_bit = &ds9490r_touch_bit;
984 /* read_bit and write_bit in w1_bus_master are expected to set and
985 * sample the line level. For write_bit that means it is expected to
986 * set it to that value and leave it there. ds2490 only supports an
987 * individual time slot at the lowest level. The requirement from
988 * pulling the bus state down to reading the state is 15us, something
989 * that isn't realistic on the USB bus anyway.
990 dev->master.read_bit = &ds9490r_read_bit;
991 dev->master.write_bit = &ds9490r_write_bit;
993 dev->master.read_byte = &ds9490r_read_byte;
994 dev->master.write_byte = &ds9490r_write_byte;
995 dev->master.read_block = &ds9490r_read_block;
996 dev->master.write_block = &ds9490r_write_block;
997 dev->master.reset_bus = &ds9490r_reset;
998 dev->master.set_pullup = &ds9490r_set_pullup;
999 dev->master.search = &ds9490r_search;
1001 return w1_add_master_device(&dev->master);
1004 static void ds_w1_fini(struct ds_device *dev)
1006 w1_remove_master_device(&dev->master);
1009 static int ds_probe(struct usb_interface *intf,
1010 const struct usb_device_id *udev_id)
1012 struct usb_device *udev = interface_to_usbdev(intf);
1013 struct usb_endpoint_descriptor *endpoint;
1014 struct usb_host_interface *iface_desc;
1015 struct ds_device *dev;
1016 int i, err, alt;
1018 dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
1019 if (!dev) {
1020 pr_info("Failed to allocate new DS9490R structure.\n");
1021 return -ENOMEM;
1023 dev->udev = usb_get_dev(udev);
1024 if (!dev->udev) {
1025 err = -ENOMEM;
1026 goto err_out_free;
1028 memset(dev->ep, 0, sizeof(dev->ep));
1030 usb_set_intfdata(intf, dev);
1032 err = usb_reset_configuration(dev->udev);
1033 if (err) {
1034 dev_err(&dev->udev->dev,
1035 "Failed to reset configuration: err=%d.\n", err);
1036 goto err_out_clear;
1039 /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1040 alt = 3;
1041 err = usb_set_interface(dev->udev,
1042 intf->cur_altsetting->desc.bInterfaceNumber, alt);
1043 if (err) {
1044 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1045 "for %d interface: err=%d.\n", alt,
1046 intf->cur_altsetting->desc.bInterfaceNumber, err);
1047 goto err_out_clear;
1050 iface_desc = intf->cur_altsetting;
1051 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1052 pr_info("Num endpoints=%d. It is not DS9490R.\n",
1053 iface_desc->desc.bNumEndpoints);
1054 err = -EINVAL;
1055 goto err_out_clear;
1059 * This loop doesn'd show control 0 endpoint,
1060 * so we will fill only 1-3 endpoints entry.
1062 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1063 endpoint = &iface_desc->endpoint[i].desc;
1065 dev->ep[i+1] = endpoint->bEndpointAddress;
1066 #if 0
1067 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1068 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1069 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1070 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1071 #endif
1074 err = ds_w1_init(dev);
1075 if (err)
1076 goto err_out_clear;
1078 mutex_lock(&ds_mutex);
1079 list_add_tail(&dev->ds_entry, &ds_devices);
1080 mutex_unlock(&ds_mutex);
1082 return 0;
1084 err_out_clear:
1085 usb_set_intfdata(intf, NULL);
1086 usb_put_dev(dev->udev);
1087 err_out_free:
1088 kfree(dev);
1089 return err;
1092 static void ds_disconnect(struct usb_interface *intf)
1094 struct ds_device *dev;
1096 dev = usb_get_intfdata(intf);
1097 if (!dev)
1098 return;
1100 mutex_lock(&ds_mutex);
1101 list_del(&dev->ds_entry);
1102 mutex_unlock(&ds_mutex);
1104 ds_w1_fini(dev);
1106 usb_set_intfdata(intf, NULL);
1108 usb_put_dev(dev->udev);
1109 kfree(dev);
1112 module_usb_driver(ds_driver);
1114 MODULE_LICENSE("GPL");
1115 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1116 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");