Linux 4.9.243
[linux/fpc-iii.git] / fs / eventpoll.c
blob865afb58266a7b7394de7de369cdcfaf5cb4832f
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
47 * LOCKING:
48 * There are three level of locking required by epoll :
50 * 1) epmutex (mutex)
51 * 2) ep->mtx (mutex)
52 * 3) ep->lock (spinlock)
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
65 * and ep_free().
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
76 * going to.
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
85 * the lockdep subkey.
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
100 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 /* Maximum number of nesting allowed inside epoll sets */
103 #define EP_MAX_NESTS 4
105 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 #define EP_UNACTIVE_PTR ((void *) -1L)
109 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 struct epoll_filefd {
112 struct file *file;
113 int fd;
114 } __packed;
117 * Structure used to track possible nested calls, for too deep recursions
118 * and loop cycles.
120 struct nested_call_node {
121 struct list_head llink;
122 void *cookie;
123 void *ctx;
127 * This structure is used as collector for nested calls, to check for
128 * maximum recursion dept and loop cycles.
130 struct nested_calls {
131 struct list_head tasks_call_list;
132 spinlock_t lock;
136 * Each file descriptor added to the eventpoll interface will
137 * have an entry of this type linked to the "rbr" RB tree.
138 * Avoid increasing the size of this struct, there can be many thousands
139 * of these on a server and we do not want this to take another cache line.
141 struct epitem {
142 union {
143 /* RB tree node links this structure to the eventpoll RB tree */
144 struct rb_node rbn;
145 /* Used to free the struct epitem */
146 struct rcu_head rcu;
149 /* List header used to link this structure to the eventpoll ready list */
150 struct list_head rdllink;
153 * Works together "struct eventpoll"->ovflist in keeping the
154 * single linked chain of items.
156 struct epitem *next;
158 /* The file descriptor information this item refers to */
159 struct epoll_filefd ffd;
161 /* Number of active wait queue attached to poll operations */
162 int nwait;
164 /* List containing poll wait queues */
165 struct list_head pwqlist;
167 /* The "container" of this item */
168 struct eventpoll *ep;
170 /* List header used to link this item to the "struct file" items list */
171 struct list_head fllink;
173 /* wakeup_source used when EPOLLWAKEUP is set */
174 struct wakeup_source __rcu *ws;
176 /* The structure that describe the interested events and the source fd */
177 struct epoll_event event;
181 * This structure is stored inside the "private_data" member of the file
182 * structure and represents the main data structure for the eventpoll
183 * interface.
185 struct eventpoll {
186 /* Protect the access to this structure */
187 spinlock_t lock;
190 * This mutex is used to ensure that files are not removed
191 * while epoll is using them. This is held during the event
192 * collection loop, the file cleanup path, the epoll file exit
193 * code and the ctl operations.
195 struct mutex mtx;
197 /* Wait queue used by sys_epoll_wait() */
198 wait_queue_head_t wq;
200 /* Wait queue used by file->poll() */
201 wait_queue_head_t poll_wait;
203 /* List of ready file descriptors */
204 struct list_head rdllist;
206 /* RB tree root used to store monitored fd structs */
207 struct rb_root rbr;
210 * This is a single linked list that chains all the "struct epitem" that
211 * happened while transferring ready events to userspace w/out
212 * holding ->lock.
214 struct epitem *ovflist;
216 /* wakeup_source used when ep_scan_ready_list is running */
217 struct wakeup_source *ws;
219 /* The user that created the eventpoll descriptor */
220 struct user_struct *user;
222 struct file *file;
224 /* used to optimize loop detection check */
225 u64 gen;
228 /* Wait structure used by the poll hooks */
229 struct eppoll_entry {
230 /* List header used to link this structure to the "struct epitem" */
231 struct list_head llink;
233 /* The "base" pointer is set to the container "struct epitem" */
234 struct epitem *base;
237 * Wait queue item that will be linked to the target file wait
238 * queue head.
240 wait_queue_t wait;
242 /* The wait queue head that linked the "wait" wait queue item */
243 wait_queue_head_t *whead;
246 /* Wrapper struct used by poll queueing */
247 struct ep_pqueue {
248 poll_table pt;
249 struct epitem *epi;
252 /* Used by the ep_send_events() function as callback private data */
253 struct ep_send_events_data {
254 int maxevents;
255 struct epoll_event __user *events;
259 * Configuration options available inside /proc/sys/fs/epoll/
261 /* Maximum number of epoll watched descriptors, per user */
262 static long max_user_watches __read_mostly;
265 * This mutex is used to serialize ep_free() and eventpoll_release_file().
267 static DEFINE_MUTEX(epmutex);
269 static u64 loop_check_gen = 0;
271 /* Used to check for epoll file descriptor inclusion loops */
272 static struct nested_calls poll_loop_ncalls;
274 /* Used for safe wake up implementation */
275 static struct nested_calls poll_safewake_ncalls;
277 /* Used to call file's f_op->poll() under the nested calls boundaries */
278 static struct nested_calls poll_readywalk_ncalls;
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache *epi_cache __read_mostly;
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache *pwq_cache __read_mostly;
287 * List of files with newly added links, where we may need to limit the number
288 * of emanating paths. Protected by the epmutex.
290 static LIST_HEAD(tfile_check_list);
292 #ifdef CONFIG_SYSCTL
294 #include <linux/sysctl.h>
296 static long zero;
297 static long long_max = LONG_MAX;
299 struct ctl_table epoll_table[] = {
301 .procname = "max_user_watches",
302 .data = &max_user_watches,
303 .maxlen = sizeof(max_user_watches),
304 .mode = 0644,
305 .proc_handler = proc_doulongvec_minmax,
306 .extra1 = &zero,
307 .extra2 = &long_max,
311 #endif /* CONFIG_SYSCTL */
313 static const struct file_operations eventpoll_fops;
315 static inline int is_file_epoll(struct file *f)
317 return f->f_op == &eventpoll_fops;
320 /* Setup the structure that is used as key for the RB tree */
321 static inline void ep_set_ffd(struct epoll_filefd *ffd,
322 struct file *file, int fd)
324 ffd->file = file;
325 ffd->fd = fd;
328 /* Compare RB tree keys */
329 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
330 struct epoll_filefd *p2)
332 return (p1->file > p2->file ? +1:
333 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
336 /* Tells us if the item is currently linked */
337 static inline int ep_is_linked(struct list_head *p)
339 return !list_empty(p);
342 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
344 return container_of(p, struct eppoll_entry, wait);
347 /* Get the "struct epitem" from a wait queue pointer */
348 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
350 return container_of(p, struct eppoll_entry, wait)->base;
353 /* Get the "struct epitem" from an epoll queue wrapper */
354 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
356 return container_of(p, struct ep_pqueue, pt)->epi;
359 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
360 static inline int ep_op_has_event(int op)
362 return op != EPOLL_CTL_DEL;
365 /* Initialize the poll safe wake up structure */
366 static void ep_nested_calls_init(struct nested_calls *ncalls)
368 INIT_LIST_HEAD(&ncalls->tasks_call_list);
369 spin_lock_init(&ncalls->lock);
373 * ep_events_available - Checks if ready events might be available.
375 * @ep: Pointer to the eventpoll context.
377 * Returns: Returns a value different than zero if ready events are available,
378 * or zero otherwise.
380 static inline int ep_events_available(struct eventpoll *ep)
382 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
386 * ep_call_nested - Perform a bound (possibly) nested call, by checking
387 * that the recursion limit is not exceeded, and that
388 * the same nested call (by the meaning of same cookie) is
389 * no re-entered.
391 * @ncalls: Pointer to the nested_calls structure to be used for this call.
392 * @max_nests: Maximum number of allowed nesting calls.
393 * @nproc: Nested call core function pointer.
394 * @priv: Opaque data to be passed to the @nproc callback.
395 * @cookie: Cookie to be used to identify this nested call.
396 * @ctx: This instance context.
398 * Returns: Returns the code returned by the @nproc callback, or -1 if
399 * the maximum recursion limit has been exceeded.
401 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
402 int (*nproc)(void *, void *, int), void *priv,
403 void *cookie, void *ctx)
405 int error, call_nests = 0;
406 unsigned long flags;
407 struct list_head *lsthead = &ncalls->tasks_call_list;
408 struct nested_call_node *tncur;
409 struct nested_call_node tnode;
411 spin_lock_irqsave(&ncalls->lock, flags);
414 * Try to see if the current task is already inside this wakeup call.
415 * We use a list here, since the population inside this set is always
416 * very much limited.
418 list_for_each_entry(tncur, lsthead, llink) {
419 if (tncur->ctx == ctx &&
420 (tncur->cookie == cookie || ++call_nests > max_nests)) {
422 * Ops ... loop detected or maximum nest level reached.
423 * We abort this wake by breaking the cycle itself.
425 error = -1;
426 goto out_unlock;
430 /* Add the current task and cookie to the list */
431 tnode.ctx = ctx;
432 tnode.cookie = cookie;
433 list_add(&tnode.llink, lsthead);
435 spin_unlock_irqrestore(&ncalls->lock, flags);
437 /* Call the nested function */
438 error = (*nproc)(priv, cookie, call_nests);
440 /* Remove the current task from the list */
441 spin_lock_irqsave(&ncalls->lock, flags);
442 list_del(&tnode.llink);
443 out_unlock:
444 spin_unlock_irqrestore(&ncalls->lock, flags);
446 return error;
450 * As described in commit 0ccf831cb lockdep: annotate epoll
451 * the use of wait queues used by epoll is done in a very controlled
452 * manner. Wake ups can nest inside each other, but are never done
453 * with the same locking. For example:
455 * dfd = socket(...);
456 * efd1 = epoll_create();
457 * efd2 = epoll_create();
458 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
459 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
461 * When a packet arrives to the device underneath "dfd", the net code will
462 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
463 * callback wakeup entry on that queue, and the wake_up() performed by the
464 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
465 * (efd1) notices that it may have some event ready, so it needs to wake up
466 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
467 * that ends up in another wake_up(), after having checked about the
468 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
469 * avoid stack blasting.
471 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
472 * this special case of epoll.
474 #ifdef CONFIG_DEBUG_LOCK_ALLOC
475 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
476 unsigned long events, int subclass)
478 unsigned long flags;
480 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
481 wake_up_locked_poll(wqueue, events);
482 spin_unlock_irqrestore(&wqueue->lock, flags);
484 #else
485 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
486 unsigned long events, int subclass)
488 wake_up_poll(wqueue, events);
490 #endif
492 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
494 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
495 1 + call_nests);
496 return 0;
500 * Perform a safe wake up of the poll wait list. The problem is that
501 * with the new callback'd wake up system, it is possible that the
502 * poll callback is reentered from inside the call to wake_up() done
503 * on the poll wait queue head. The rule is that we cannot reenter the
504 * wake up code from the same task more than EP_MAX_NESTS times,
505 * and we cannot reenter the same wait queue head at all. This will
506 * enable to have a hierarchy of epoll file descriptor of no more than
507 * EP_MAX_NESTS deep.
509 static void ep_poll_safewake(wait_queue_head_t *wq)
511 int this_cpu = get_cpu();
513 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
514 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
516 put_cpu();
519 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
521 wait_queue_head_t *whead;
523 rcu_read_lock();
525 * If it is cleared by POLLFREE, it should be rcu-safe.
526 * If we read NULL we need a barrier paired with
527 * smp_store_release() in ep_poll_callback(), otherwise
528 * we rely on whead->lock.
530 whead = smp_load_acquire(&pwq->whead);
531 if (whead)
532 remove_wait_queue(whead, &pwq->wait);
533 rcu_read_unlock();
537 * This function unregisters poll callbacks from the associated file
538 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
539 * ep_free).
541 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
543 struct list_head *lsthead = &epi->pwqlist;
544 struct eppoll_entry *pwq;
546 while (!list_empty(lsthead)) {
547 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
549 list_del(&pwq->llink);
550 ep_remove_wait_queue(pwq);
551 kmem_cache_free(pwq_cache, pwq);
555 /* call only when ep->mtx is held */
556 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
558 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
561 /* call only when ep->mtx is held */
562 static inline void ep_pm_stay_awake(struct epitem *epi)
564 struct wakeup_source *ws = ep_wakeup_source(epi);
566 if (ws)
567 __pm_stay_awake(ws);
570 static inline bool ep_has_wakeup_source(struct epitem *epi)
572 return rcu_access_pointer(epi->ws) ? true : false;
575 /* call when ep->mtx cannot be held (ep_poll_callback) */
576 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
578 struct wakeup_source *ws;
580 rcu_read_lock();
581 ws = rcu_dereference(epi->ws);
582 if (ws)
583 __pm_stay_awake(ws);
584 rcu_read_unlock();
588 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
589 * the scan code, to call f_op->poll(). Also allows for
590 * O(NumReady) performance.
592 * @ep: Pointer to the epoll private data structure.
593 * @sproc: Pointer to the scan callback.
594 * @priv: Private opaque data passed to the @sproc callback.
595 * @depth: The current depth of recursive f_op->poll calls.
596 * @ep_locked: caller already holds ep->mtx
598 * Returns: The same integer error code returned by the @sproc callback.
600 static int ep_scan_ready_list(struct eventpoll *ep,
601 int (*sproc)(struct eventpoll *,
602 struct list_head *, void *),
603 void *priv, int depth, bool ep_locked)
605 int error, pwake = 0;
606 unsigned long flags;
607 struct epitem *epi, *nepi;
608 LIST_HEAD(txlist);
611 * We need to lock this because we could be hit by
612 * eventpoll_release_file() and epoll_ctl().
615 if (!ep_locked)
616 mutex_lock_nested(&ep->mtx, depth);
619 * Steal the ready list, and re-init the original one to the
620 * empty list. Also, set ep->ovflist to NULL so that events
621 * happening while looping w/out locks, are not lost. We cannot
622 * have the poll callback to queue directly on ep->rdllist,
623 * because we want the "sproc" callback to be able to do it
624 * in a lockless way.
626 spin_lock_irqsave(&ep->lock, flags);
627 list_splice_init(&ep->rdllist, &txlist);
628 ep->ovflist = NULL;
629 spin_unlock_irqrestore(&ep->lock, flags);
632 * Now call the callback function.
634 error = (*sproc)(ep, &txlist, priv);
636 spin_lock_irqsave(&ep->lock, flags);
638 * During the time we spent inside the "sproc" callback, some
639 * other events might have been queued by the poll callback.
640 * We re-insert them inside the main ready-list here.
642 for (nepi = ep->ovflist; (epi = nepi) != NULL;
643 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
645 * We need to check if the item is already in the list.
646 * During the "sproc" callback execution time, items are
647 * queued into ->ovflist but the "txlist" might already
648 * contain them, and the list_splice() below takes care of them.
650 if (!ep_is_linked(&epi->rdllink)) {
651 list_add_tail(&epi->rdllink, &ep->rdllist);
652 ep_pm_stay_awake(epi);
656 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
657 * releasing the lock, events will be queued in the normal way inside
658 * ep->rdllist.
660 ep->ovflist = EP_UNACTIVE_PTR;
663 * Quickly re-inject items left on "txlist".
665 list_splice(&txlist, &ep->rdllist);
666 __pm_relax(ep->ws);
668 if (!list_empty(&ep->rdllist)) {
670 * Wake up (if active) both the eventpoll wait list and
671 * the ->poll() wait list (delayed after we release the lock).
673 if (waitqueue_active(&ep->wq))
674 wake_up_locked(&ep->wq);
675 if (waitqueue_active(&ep->poll_wait))
676 pwake++;
678 spin_unlock_irqrestore(&ep->lock, flags);
680 if (!ep_locked)
681 mutex_unlock(&ep->mtx);
683 /* We have to call this outside the lock */
684 if (pwake)
685 ep_poll_safewake(&ep->poll_wait);
687 return error;
690 static void epi_rcu_free(struct rcu_head *head)
692 struct epitem *epi = container_of(head, struct epitem, rcu);
693 kmem_cache_free(epi_cache, epi);
697 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
698 * all the associated resources. Must be called with "mtx" held.
700 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
702 unsigned long flags;
703 struct file *file = epi->ffd.file;
706 * Removes poll wait queue hooks. We _have_ to do this without holding
707 * the "ep->lock" otherwise a deadlock might occur. This because of the
708 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
709 * queue head lock when unregistering the wait queue. The wakeup callback
710 * will run by holding the wait queue head lock and will call our callback
711 * that will try to get "ep->lock".
713 ep_unregister_pollwait(ep, epi);
715 /* Remove the current item from the list of epoll hooks */
716 spin_lock(&file->f_lock);
717 list_del_rcu(&epi->fllink);
718 spin_unlock(&file->f_lock);
720 rb_erase(&epi->rbn, &ep->rbr);
722 spin_lock_irqsave(&ep->lock, flags);
723 if (ep_is_linked(&epi->rdllink))
724 list_del_init(&epi->rdllink);
725 spin_unlock_irqrestore(&ep->lock, flags);
727 wakeup_source_unregister(ep_wakeup_source(epi));
729 * At this point it is safe to free the eventpoll item. Use the union
730 * field epi->rcu, since we are trying to minimize the size of
731 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
732 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
733 * use of the rbn field.
735 call_rcu(&epi->rcu, epi_rcu_free);
737 atomic_long_dec(&ep->user->epoll_watches);
739 return 0;
742 static void ep_free(struct eventpoll *ep)
744 struct rb_node *rbp;
745 struct epitem *epi;
747 /* We need to release all tasks waiting for these file */
748 if (waitqueue_active(&ep->poll_wait))
749 ep_poll_safewake(&ep->poll_wait);
752 * We need to lock this because we could be hit by
753 * eventpoll_release_file() while we're freeing the "struct eventpoll".
754 * We do not need to hold "ep->mtx" here because the epoll file
755 * is on the way to be removed and no one has references to it
756 * anymore. The only hit might come from eventpoll_release_file() but
757 * holding "epmutex" is sufficient here.
759 mutex_lock(&epmutex);
762 * Walks through the whole tree by unregistering poll callbacks.
764 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
765 epi = rb_entry(rbp, struct epitem, rbn);
767 ep_unregister_pollwait(ep, epi);
768 cond_resched();
772 * Walks through the whole tree by freeing each "struct epitem". At this
773 * point we are sure no poll callbacks will be lingering around, and also by
774 * holding "epmutex" we can be sure that no file cleanup code will hit
775 * us during this operation. So we can avoid the lock on "ep->lock".
776 * We do not need to lock ep->mtx, either, we only do it to prevent
777 * a lockdep warning.
779 mutex_lock(&ep->mtx);
780 while ((rbp = rb_first(&ep->rbr)) != NULL) {
781 epi = rb_entry(rbp, struct epitem, rbn);
782 ep_remove(ep, epi);
783 cond_resched();
785 mutex_unlock(&ep->mtx);
787 mutex_unlock(&epmutex);
788 mutex_destroy(&ep->mtx);
789 free_uid(ep->user);
790 wakeup_source_unregister(ep->ws);
791 kfree(ep);
794 static int ep_eventpoll_release(struct inode *inode, struct file *file)
796 struct eventpoll *ep = file->private_data;
798 if (ep)
799 ep_free(ep);
801 return 0;
804 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
806 pt->_key = epi->event.events;
808 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
811 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
812 void *priv)
814 struct epitem *epi, *tmp;
815 poll_table pt;
817 init_poll_funcptr(&pt, NULL);
819 list_for_each_entry_safe(epi, tmp, head, rdllink) {
820 if (ep_item_poll(epi, &pt))
821 return POLLIN | POLLRDNORM;
822 else {
824 * Item has been dropped into the ready list by the poll
825 * callback, but it's not actually ready, as far as
826 * caller requested events goes. We can remove it here.
828 __pm_relax(ep_wakeup_source(epi));
829 list_del_init(&epi->rdllink);
833 return 0;
836 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
837 poll_table *pt);
839 struct readyevents_arg {
840 struct eventpoll *ep;
841 bool locked;
844 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
846 struct readyevents_arg *arg = priv;
848 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
849 call_nests + 1, arg->locked);
852 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
854 int pollflags;
855 struct eventpoll *ep = file->private_data;
856 struct readyevents_arg arg;
859 * During ep_insert() we already hold the ep->mtx for the tfile.
860 * Prevent re-aquisition.
862 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
863 arg.ep = ep;
865 /* Insert inside our poll wait queue */
866 poll_wait(file, &ep->poll_wait, wait);
869 * Proceed to find out if wanted events are really available inside
870 * the ready list. This need to be done under ep_call_nested()
871 * supervision, since the call to f_op->poll() done on listed files
872 * could re-enter here.
874 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
875 ep_poll_readyevents_proc, &arg, ep, current);
877 return pollflags != -1 ? pollflags : 0;
880 #ifdef CONFIG_PROC_FS
881 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
883 struct eventpoll *ep = f->private_data;
884 struct rb_node *rbp;
886 mutex_lock(&ep->mtx);
887 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
888 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
890 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
891 epi->ffd.fd, epi->event.events,
892 (long long)epi->event.data);
893 if (seq_has_overflowed(m))
894 break;
896 mutex_unlock(&ep->mtx);
898 #endif
900 /* File callbacks that implement the eventpoll file behaviour */
901 static const struct file_operations eventpoll_fops = {
902 #ifdef CONFIG_PROC_FS
903 .show_fdinfo = ep_show_fdinfo,
904 #endif
905 .release = ep_eventpoll_release,
906 .poll = ep_eventpoll_poll,
907 .llseek = noop_llseek,
911 * This is called from eventpoll_release() to unlink files from the eventpoll
912 * interface. We need to have this facility to cleanup correctly files that are
913 * closed without being removed from the eventpoll interface.
915 void eventpoll_release_file(struct file *file)
917 struct eventpoll *ep;
918 struct epitem *epi, *next;
921 * We don't want to get "file->f_lock" because it is not
922 * necessary. It is not necessary because we're in the "struct file"
923 * cleanup path, and this means that no one is using this file anymore.
924 * So, for example, epoll_ctl() cannot hit here since if we reach this
925 * point, the file counter already went to zero and fget() would fail.
926 * The only hit might come from ep_free() but by holding the mutex
927 * will correctly serialize the operation. We do need to acquire
928 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
929 * from anywhere but ep_free().
931 * Besides, ep_remove() acquires the lock, so we can't hold it here.
933 mutex_lock(&epmutex);
934 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
935 ep = epi->ep;
936 mutex_lock_nested(&ep->mtx, 0);
937 ep_remove(ep, epi);
938 mutex_unlock(&ep->mtx);
940 mutex_unlock(&epmutex);
943 static int ep_alloc(struct eventpoll **pep)
945 int error;
946 struct user_struct *user;
947 struct eventpoll *ep;
949 user = get_current_user();
950 error = -ENOMEM;
951 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
952 if (unlikely(!ep))
953 goto free_uid;
955 spin_lock_init(&ep->lock);
956 mutex_init(&ep->mtx);
957 init_waitqueue_head(&ep->wq);
958 init_waitqueue_head(&ep->poll_wait);
959 INIT_LIST_HEAD(&ep->rdllist);
960 ep->rbr = RB_ROOT;
961 ep->ovflist = EP_UNACTIVE_PTR;
962 ep->user = user;
964 *pep = ep;
966 return 0;
968 free_uid:
969 free_uid(user);
970 return error;
974 * Search the file inside the eventpoll tree. The RB tree operations
975 * are protected by the "mtx" mutex, and ep_find() must be called with
976 * "mtx" held.
978 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
980 int kcmp;
981 struct rb_node *rbp;
982 struct epitem *epi, *epir = NULL;
983 struct epoll_filefd ffd;
985 ep_set_ffd(&ffd, file, fd);
986 for (rbp = ep->rbr.rb_node; rbp; ) {
987 epi = rb_entry(rbp, struct epitem, rbn);
988 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
989 if (kcmp > 0)
990 rbp = rbp->rb_right;
991 else if (kcmp < 0)
992 rbp = rbp->rb_left;
993 else {
994 epir = epi;
995 break;
999 return epir;
1003 * This is the callback that is passed to the wait queue wakeup
1004 * mechanism. It is called by the stored file descriptors when they
1005 * have events to report.
1007 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1009 int pwake = 0;
1010 unsigned long flags;
1011 struct epitem *epi = ep_item_from_wait(wait);
1012 struct eventpoll *ep = epi->ep;
1013 int ewake = 0;
1015 spin_lock_irqsave(&ep->lock, flags);
1018 * If the event mask does not contain any poll(2) event, we consider the
1019 * descriptor to be disabled. This condition is likely the effect of the
1020 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1021 * until the next EPOLL_CTL_MOD will be issued.
1023 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1024 goto out_unlock;
1027 * Check the events coming with the callback. At this stage, not
1028 * every device reports the events in the "key" parameter of the
1029 * callback. We need to be able to handle both cases here, hence the
1030 * test for "key" != NULL before the event match test.
1032 if (key && !((unsigned long) key & epi->event.events))
1033 goto out_unlock;
1036 * If we are transferring events to userspace, we can hold no locks
1037 * (because we're accessing user memory, and because of linux f_op->poll()
1038 * semantics). All the events that happen during that period of time are
1039 * chained in ep->ovflist and requeued later on.
1041 if (ep->ovflist != EP_UNACTIVE_PTR) {
1042 if (epi->next == EP_UNACTIVE_PTR) {
1043 epi->next = ep->ovflist;
1044 ep->ovflist = epi;
1045 if (epi->ws) {
1047 * Activate ep->ws since epi->ws may get
1048 * deactivated at any time.
1050 __pm_stay_awake(ep->ws);
1054 goto out_unlock;
1057 /* If this file is already in the ready list we exit soon */
1058 if (!ep_is_linked(&epi->rdllink)) {
1059 list_add_tail(&epi->rdllink, &ep->rdllist);
1060 ep_pm_stay_awake_rcu(epi);
1064 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1065 * wait list.
1067 if (waitqueue_active(&ep->wq)) {
1068 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1069 !((unsigned long)key & POLLFREE)) {
1070 switch ((unsigned long)key & EPOLLINOUT_BITS) {
1071 case POLLIN:
1072 if (epi->event.events & POLLIN)
1073 ewake = 1;
1074 break;
1075 case POLLOUT:
1076 if (epi->event.events & POLLOUT)
1077 ewake = 1;
1078 break;
1079 case 0:
1080 ewake = 1;
1081 break;
1084 wake_up_locked(&ep->wq);
1086 if (waitqueue_active(&ep->poll_wait))
1087 pwake++;
1089 out_unlock:
1090 spin_unlock_irqrestore(&ep->lock, flags);
1092 /* We have to call this outside the lock */
1093 if (pwake)
1094 ep_poll_safewake(&ep->poll_wait);
1096 if (!(epi->event.events & EPOLLEXCLUSIVE))
1097 ewake = 1;
1099 if ((unsigned long)key & POLLFREE) {
1101 * If we race with ep_remove_wait_queue() it can miss
1102 * ->whead = NULL and do another remove_wait_queue() after
1103 * us, so we can't use __remove_wait_queue().
1105 list_del_init(&wait->task_list);
1107 * ->whead != NULL protects us from the race with ep_free()
1108 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1109 * held by the caller. Once we nullify it, nothing protects
1110 * ep/epi or even wait.
1112 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1115 return ewake;
1119 * This is the callback that is used to add our wait queue to the
1120 * target file wakeup lists.
1122 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1123 poll_table *pt)
1125 struct epitem *epi = ep_item_from_epqueue(pt);
1126 struct eppoll_entry *pwq;
1128 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1129 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1130 pwq->whead = whead;
1131 pwq->base = epi;
1132 if (epi->event.events & EPOLLEXCLUSIVE)
1133 add_wait_queue_exclusive(whead, &pwq->wait);
1134 else
1135 add_wait_queue(whead, &pwq->wait);
1136 list_add_tail(&pwq->llink, &epi->pwqlist);
1137 epi->nwait++;
1138 } else {
1139 /* We have to signal that an error occurred */
1140 epi->nwait = -1;
1144 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1146 int kcmp;
1147 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1148 struct epitem *epic;
1150 while (*p) {
1151 parent = *p;
1152 epic = rb_entry(parent, struct epitem, rbn);
1153 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1154 if (kcmp > 0)
1155 p = &parent->rb_right;
1156 else
1157 p = &parent->rb_left;
1159 rb_link_node(&epi->rbn, parent, p);
1160 rb_insert_color(&epi->rbn, &ep->rbr);
1165 #define PATH_ARR_SIZE 5
1167 * These are the number paths of length 1 to 5, that we are allowing to emanate
1168 * from a single file of interest. For example, we allow 1000 paths of length
1169 * 1, to emanate from each file of interest. This essentially represents the
1170 * potential wakeup paths, which need to be limited in order to avoid massive
1171 * uncontrolled wakeup storms. The common use case should be a single ep which
1172 * is connected to n file sources. In this case each file source has 1 path
1173 * of length 1. Thus, the numbers below should be more than sufficient. These
1174 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1175 * and delete can't add additional paths. Protected by the epmutex.
1177 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1178 static int path_count[PATH_ARR_SIZE];
1180 static int path_count_inc(int nests)
1182 /* Allow an arbitrary number of depth 1 paths */
1183 if (nests == 0)
1184 return 0;
1186 if (++path_count[nests] > path_limits[nests])
1187 return -1;
1188 return 0;
1191 static void path_count_init(void)
1193 int i;
1195 for (i = 0; i < PATH_ARR_SIZE; i++)
1196 path_count[i] = 0;
1199 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1201 int error = 0;
1202 struct file *file = priv;
1203 struct file *child_file;
1204 struct epitem *epi;
1206 /* CTL_DEL can remove links here, but that can't increase our count */
1207 rcu_read_lock();
1208 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1209 child_file = epi->ep->file;
1210 if (is_file_epoll(child_file)) {
1211 if (list_empty(&child_file->f_ep_links)) {
1212 if (path_count_inc(call_nests)) {
1213 error = -1;
1214 break;
1216 } else {
1217 error = ep_call_nested(&poll_loop_ncalls,
1218 EP_MAX_NESTS,
1219 reverse_path_check_proc,
1220 child_file, child_file,
1221 current);
1223 if (error != 0)
1224 break;
1225 } else {
1226 printk(KERN_ERR "reverse_path_check_proc: "
1227 "file is not an ep!\n");
1230 rcu_read_unlock();
1231 return error;
1235 * reverse_path_check - The tfile_check_list is list of file *, which have
1236 * links that are proposed to be newly added. We need to
1237 * make sure that those added links don't add too many
1238 * paths such that we will spend all our time waking up
1239 * eventpoll objects.
1241 * Returns: Returns zero if the proposed links don't create too many paths,
1242 * -1 otherwise.
1244 static int reverse_path_check(void)
1246 int error = 0;
1247 struct file *current_file;
1249 /* let's call this for all tfiles */
1250 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1251 path_count_init();
1252 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1253 reverse_path_check_proc, current_file,
1254 current_file, current);
1255 if (error)
1256 break;
1258 return error;
1261 static int ep_create_wakeup_source(struct epitem *epi)
1263 struct name_snapshot n;
1264 struct wakeup_source *ws;
1266 if (!epi->ep->ws) {
1267 epi->ep->ws = wakeup_source_register("eventpoll");
1268 if (!epi->ep->ws)
1269 return -ENOMEM;
1272 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1273 ws = wakeup_source_register(n.name);
1274 release_dentry_name_snapshot(&n);
1276 if (!ws)
1277 return -ENOMEM;
1278 rcu_assign_pointer(epi->ws, ws);
1280 return 0;
1283 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1284 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1286 struct wakeup_source *ws = ep_wakeup_source(epi);
1288 RCU_INIT_POINTER(epi->ws, NULL);
1291 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1292 * used internally by wakeup_source_remove, too (called by
1293 * wakeup_source_unregister), so we cannot use call_rcu
1295 synchronize_rcu();
1296 wakeup_source_unregister(ws);
1300 * Must be called with "mtx" held.
1302 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1303 struct file *tfile, int fd, int full_check)
1305 int error, revents, pwake = 0;
1306 unsigned long flags;
1307 long user_watches;
1308 struct epitem *epi;
1309 struct ep_pqueue epq;
1311 user_watches = atomic_long_read(&ep->user->epoll_watches);
1312 if (unlikely(user_watches >= max_user_watches))
1313 return -ENOSPC;
1314 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1315 return -ENOMEM;
1317 /* Item initialization follow here ... */
1318 INIT_LIST_HEAD(&epi->rdllink);
1319 INIT_LIST_HEAD(&epi->fllink);
1320 INIT_LIST_HEAD(&epi->pwqlist);
1321 epi->ep = ep;
1322 ep_set_ffd(&epi->ffd, tfile, fd);
1323 epi->event = *event;
1324 epi->nwait = 0;
1325 epi->next = EP_UNACTIVE_PTR;
1326 if (epi->event.events & EPOLLWAKEUP) {
1327 error = ep_create_wakeup_source(epi);
1328 if (error)
1329 goto error_create_wakeup_source;
1330 } else {
1331 RCU_INIT_POINTER(epi->ws, NULL);
1334 /* Add the current item to the list of active epoll hook for this file */
1335 spin_lock(&tfile->f_lock);
1336 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1337 spin_unlock(&tfile->f_lock);
1340 * Add the current item to the RB tree. All RB tree operations are
1341 * protected by "mtx", and ep_insert() is called with "mtx" held.
1343 ep_rbtree_insert(ep, epi);
1345 /* now check if we've created too many backpaths */
1346 error = -EINVAL;
1347 if (full_check && reverse_path_check())
1348 goto error_remove_epi;
1350 /* Initialize the poll table using the queue callback */
1351 epq.epi = epi;
1352 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1355 * Attach the item to the poll hooks and get current event bits.
1356 * We can safely use the file* here because its usage count has
1357 * been increased by the caller of this function. Note that after
1358 * this operation completes, the poll callback can start hitting
1359 * the new item.
1361 revents = ep_item_poll(epi, &epq.pt);
1364 * We have to check if something went wrong during the poll wait queue
1365 * install process. Namely an allocation for a wait queue failed due
1366 * high memory pressure.
1368 error = -ENOMEM;
1369 if (epi->nwait < 0)
1370 goto error_unregister;
1372 /* We have to drop the new item inside our item list to keep track of it */
1373 spin_lock_irqsave(&ep->lock, flags);
1375 /* If the file is already "ready" we drop it inside the ready list */
1376 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1377 list_add_tail(&epi->rdllink, &ep->rdllist);
1378 ep_pm_stay_awake(epi);
1380 /* Notify waiting tasks that events are available */
1381 if (waitqueue_active(&ep->wq))
1382 wake_up_locked(&ep->wq);
1383 if (waitqueue_active(&ep->poll_wait))
1384 pwake++;
1387 spin_unlock_irqrestore(&ep->lock, flags);
1389 atomic_long_inc(&ep->user->epoll_watches);
1391 /* We have to call this outside the lock */
1392 if (pwake)
1393 ep_poll_safewake(&ep->poll_wait);
1395 return 0;
1397 error_unregister:
1398 ep_unregister_pollwait(ep, epi);
1399 error_remove_epi:
1400 spin_lock(&tfile->f_lock);
1401 list_del_rcu(&epi->fllink);
1402 spin_unlock(&tfile->f_lock);
1404 rb_erase(&epi->rbn, &ep->rbr);
1407 * We need to do this because an event could have been arrived on some
1408 * allocated wait queue. Note that we don't care about the ep->ovflist
1409 * list, since that is used/cleaned only inside a section bound by "mtx".
1410 * And ep_insert() is called with "mtx" held.
1412 spin_lock_irqsave(&ep->lock, flags);
1413 if (ep_is_linked(&epi->rdllink))
1414 list_del_init(&epi->rdllink);
1415 spin_unlock_irqrestore(&ep->lock, flags);
1417 wakeup_source_unregister(ep_wakeup_source(epi));
1419 error_create_wakeup_source:
1420 kmem_cache_free(epi_cache, epi);
1422 return error;
1426 * Modify the interest event mask by dropping an event if the new mask
1427 * has a match in the current file status. Must be called with "mtx" held.
1429 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1431 int pwake = 0;
1432 unsigned int revents;
1433 poll_table pt;
1435 init_poll_funcptr(&pt, NULL);
1438 * Set the new event interest mask before calling f_op->poll();
1439 * otherwise we might miss an event that happens between the
1440 * f_op->poll() call and the new event set registering.
1442 epi->event.events = event->events; /* need barrier below */
1443 epi->event.data = event->data; /* protected by mtx */
1444 if (epi->event.events & EPOLLWAKEUP) {
1445 if (!ep_has_wakeup_source(epi))
1446 ep_create_wakeup_source(epi);
1447 } else if (ep_has_wakeup_source(epi)) {
1448 ep_destroy_wakeup_source(epi);
1452 * The following barrier has two effects:
1454 * 1) Flush epi changes above to other CPUs. This ensures
1455 * we do not miss events from ep_poll_callback if an
1456 * event occurs immediately after we call f_op->poll().
1457 * We need this because we did not take ep->lock while
1458 * changing epi above (but ep_poll_callback does take
1459 * ep->lock).
1461 * 2) We also need to ensure we do not miss _past_ events
1462 * when calling f_op->poll(). This barrier also
1463 * pairs with the barrier in wq_has_sleeper (see
1464 * comments for wq_has_sleeper).
1466 * This barrier will now guarantee ep_poll_callback or f_op->poll
1467 * (or both) will notice the readiness of an item.
1469 smp_mb();
1472 * Get current event bits. We can safely use the file* here because
1473 * its usage count has been increased by the caller of this function.
1475 revents = ep_item_poll(epi, &pt);
1478 * If the item is "hot" and it is not registered inside the ready
1479 * list, push it inside.
1481 if (revents & event->events) {
1482 spin_lock_irq(&ep->lock);
1483 if (!ep_is_linked(&epi->rdllink)) {
1484 list_add_tail(&epi->rdllink, &ep->rdllist);
1485 ep_pm_stay_awake(epi);
1487 /* Notify waiting tasks that events are available */
1488 if (waitqueue_active(&ep->wq))
1489 wake_up_locked(&ep->wq);
1490 if (waitqueue_active(&ep->poll_wait))
1491 pwake++;
1493 spin_unlock_irq(&ep->lock);
1496 /* We have to call this outside the lock */
1497 if (pwake)
1498 ep_poll_safewake(&ep->poll_wait);
1500 return 0;
1503 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1504 void *priv)
1506 struct ep_send_events_data *esed = priv;
1507 int eventcnt;
1508 unsigned int revents;
1509 struct epitem *epi;
1510 struct epoll_event __user *uevent;
1511 struct wakeup_source *ws;
1512 poll_table pt;
1514 init_poll_funcptr(&pt, NULL);
1517 * We can loop without lock because we are passed a task private list.
1518 * Items cannot vanish during the loop because ep_scan_ready_list() is
1519 * holding "mtx" during this call.
1521 for (eventcnt = 0, uevent = esed->events;
1522 !list_empty(head) && eventcnt < esed->maxevents;) {
1523 epi = list_first_entry(head, struct epitem, rdllink);
1526 * Activate ep->ws before deactivating epi->ws to prevent
1527 * triggering auto-suspend here (in case we reactive epi->ws
1528 * below).
1530 * This could be rearranged to delay the deactivation of epi->ws
1531 * instead, but then epi->ws would temporarily be out of sync
1532 * with ep_is_linked().
1534 ws = ep_wakeup_source(epi);
1535 if (ws) {
1536 if (ws->active)
1537 __pm_stay_awake(ep->ws);
1538 __pm_relax(ws);
1541 list_del_init(&epi->rdllink);
1543 revents = ep_item_poll(epi, &pt);
1546 * If the event mask intersect the caller-requested one,
1547 * deliver the event to userspace. Again, ep_scan_ready_list()
1548 * is holding "mtx", so no operations coming from userspace
1549 * can change the item.
1551 if (revents) {
1552 if (__put_user(revents, &uevent->events) ||
1553 __put_user(epi->event.data, &uevent->data)) {
1554 list_add(&epi->rdllink, head);
1555 ep_pm_stay_awake(epi);
1556 return eventcnt ? eventcnt : -EFAULT;
1558 eventcnt++;
1559 uevent++;
1560 if (epi->event.events & EPOLLONESHOT)
1561 epi->event.events &= EP_PRIVATE_BITS;
1562 else if (!(epi->event.events & EPOLLET)) {
1564 * If this file has been added with Level
1565 * Trigger mode, we need to insert back inside
1566 * the ready list, so that the next call to
1567 * epoll_wait() will check again the events
1568 * availability. At this point, no one can insert
1569 * into ep->rdllist besides us. The epoll_ctl()
1570 * callers are locked out by
1571 * ep_scan_ready_list() holding "mtx" and the
1572 * poll callback will queue them in ep->ovflist.
1574 list_add_tail(&epi->rdllink, &ep->rdllist);
1575 ep_pm_stay_awake(epi);
1580 return eventcnt;
1583 static int ep_send_events(struct eventpoll *ep,
1584 struct epoll_event __user *events, int maxevents)
1586 struct ep_send_events_data esed;
1588 esed.maxevents = maxevents;
1589 esed.events = events;
1591 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1594 static inline struct timespec64 ep_set_mstimeout(long ms)
1596 struct timespec64 now, ts = {
1597 .tv_sec = ms / MSEC_PER_SEC,
1598 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1601 ktime_get_ts64(&now);
1602 return timespec64_add_safe(now, ts);
1606 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1607 * event buffer.
1609 * @ep: Pointer to the eventpoll context.
1610 * @events: Pointer to the userspace buffer where the ready events should be
1611 * stored.
1612 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1613 * @timeout: Maximum timeout for the ready events fetch operation, in
1614 * milliseconds. If the @timeout is zero, the function will not block,
1615 * while if the @timeout is less than zero, the function will block
1616 * until at least one event has been retrieved (or an error
1617 * occurred).
1619 * Returns: Returns the number of ready events which have been fetched, or an
1620 * error code, in case of error.
1622 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1623 int maxevents, long timeout)
1625 int res = 0, eavail, timed_out = 0;
1626 unsigned long flags;
1627 u64 slack = 0;
1628 wait_queue_t wait;
1629 ktime_t expires, *to = NULL;
1631 if (timeout > 0) {
1632 struct timespec64 end_time = ep_set_mstimeout(timeout);
1634 slack = select_estimate_accuracy(&end_time);
1635 to = &expires;
1636 *to = timespec64_to_ktime(end_time);
1637 } else if (timeout == 0) {
1639 * Avoid the unnecessary trip to the wait queue loop, if the
1640 * caller specified a non blocking operation.
1642 timed_out = 1;
1643 spin_lock_irqsave(&ep->lock, flags);
1644 goto check_events;
1647 fetch_events:
1648 spin_lock_irqsave(&ep->lock, flags);
1650 if (!ep_events_available(ep)) {
1652 * We don't have any available event to return to the caller.
1653 * We need to sleep here, and we will be wake up by
1654 * ep_poll_callback() when events will become available.
1656 init_waitqueue_entry(&wait, current);
1657 __add_wait_queue_exclusive(&ep->wq, &wait);
1659 for (;;) {
1661 * We don't want to sleep if the ep_poll_callback() sends us
1662 * a wakeup in between. That's why we set the task state
1663 * to TASK_INTERRUPTIBLE before doing the checks.
1665 set_current_state(TASK_INTERRUPTIBLE);
1666 if (ep_events_available(ep) || timed_out)
1667 break;
1668 if (signal_pending(current)) {
1669 res = -EINTR;
1670 break;
1673 spin_unlock_irqrestore(&ep->lock, flags);
1674 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1675 timed_out = 1;
1677 spin_lock_irqsave(&ep->lock, flags);
1680 __remove_wait_queue(&ep->wq, &wait);
1681 __set_current_state(TASK_RUNNING);
1683 check_events:
1684 /* Is it worth to try to dig for events ? */
1685 eavail = ep_events_available(ep);
1687 spin_unlock_irqrestore(&ep->lock, flags);
1690 * Try to transfer events to user space. In case we get 0 events and
1691 * there's still timeout left over, we go trying again in search of
1692 * more luck.
1694 if (!res && eavail &&
1695 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1696 goto fetch_events;
1698 return res;
1702 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1703 * API, to verify that adding an epoll file inside another
1704 * epoll structure, does not violate the constraints, in
1705 * terms of closed loops, or too deep chains (which can
1706 * result in excessive stack usage).
1708 * @priv: Pointer to the epoll file to be currently checked.
1709 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1710 * data structure pointer.
1711 * @call_nests: Current dept of the @ep_call_nested() call stack.
1713 * Returns: Returns zero if adding the epoll @file inside current epoll
1714 * structure @ep does not violate the constraints, or -1 otherwise.
1716 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1718 int error = 0;
1719 struct file *file = priv;
1720 struct eventpoll *ep = file->private_data;
1721 struct eventpoll *ep_tovisit;
1722 struct rb_node *rbp;
1723 struct epitem *epi;
1725 mutex_lock_nested(&ep->mtx, call_nests + 1);
1726 ep->gen = loop_check_gen;
1727 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1728 epi = rb_entry(rbp, struct epitem, rbn);
1729 if (unlikely(is_file_epoll(epi->ffd.file))) {
1730 ep_tovisit = epi->ffd.file->private_data;
1731 if (ep_tovisit->gen == loop_check_gen)
1732 continue;
1733 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1734 ep_loop_check_proc, epi->ffd.file,
1735 ep_tovisit, current);
1736 if (error != 0)
1737 break;
1738 } else {
1740 * If we've reached a file that is not associated with
1741 * an ep, then we need to check if the newly added
1742 * links are going to add too many wakeup paths. We do
1743 * this by adding it to the tfile_check_list, if it's
1744 * not already there, and calling reverse_path_check()
1745 * during ep_insert().
1747 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1748 if (get_file_rcu(epi->ffd.file))
1749 list_add(&epi->ffd.file->f_tfile_llink,
1750 &tfile_check_list);
1754 mutex_unlock(&ep->mtx);
1756 return error;
1760 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1761 * another epoll file (represented by @ep) does not create
1762 * closed loops or too deep chains.
1764 * @ep: Pointer to the epoll private data structure.
1765 * @file: Pointer to the epoll file to be checked.
1767 * Returns: Returns zero if adding the epoll @file inside current epoll
1768 * structure @ep does not violate the constraints, or -1 otherwise.
1770 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1772 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1773 ep_loop_check_proc, file, ep, current);
1776 static void clear_tfile_check_list(void)
1778 struct file *file;
1780 /* first clear the tfile_check_list */
1781 while (!list_empty(&tfile_check_list)) {
1782 file = list_first_entry(&tfile_check_list, struct file,
1783 f_tfile_llink);
1784 list_del_init(&file->f_tfile_llink);
1785 fput(file);
1787 INIT_LIST_HEAD(&tfile_check_list);
1791 * Open an eventpoll file descriptor.
1793 SYSCALL_DEFINE1(epoll_create1, int, flags)
1795 int error, fd;
1796 struct eventpoll *ep = NULL;
1797 struct file *file;
1799 /* Check the EPOLL_* constant for consistency. */
1800 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1802 if (flags & ~EPOLL_CLOEXEC)
1803 return -EINVAL;
1805 * Create the internal data structure ("struct eventpoll").
1807 error = ep_alloc(&ep);
1808 if (error < 0)
1809 return error;
1811 * Creates all the items needed to setup an eventpoll file. That is,
1812 * a file structure and a free file descriptor.
1814 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1815 if (fd < 0) {
1816 error = fd;
1817 goto out_free_ep;
1819 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1820 O_RDWR | (flags & O_CLOEXEC));
1821 if (IS_ERR(file)) {
1822 error = PTR_ERR(file);
1823 goto out_free_fd;
1825 ep->file = file;
1826 fd_install(fd, file);
1827 return fd;
1829 out_free_fd:
1830 put_unused_fd(fd);
1831 out_free_ep:
1832 ep_free(ep);
1833 return error;
1836 SYSCALL_DEFINE1(epoll_create, int, size)
1838 if (size <= 0)
1839 return -EINVAL;
1841 return sys_epoll_create1(0);
1845 * The following function implements the controller interface for
1846 * the eventpoll file that enables the insertion/removal/change of
1847 * file descriptors inside the interest set.
1849 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1850 struct epoll_event __user *, event)
1852 int error;
1853 int full_check = 0;
1854 struct fd f, tf;
1855 struct eventpoll *ep;
1856 struct epitem *epi;
1857 struct epoll_event epds;
1858 struct eventpoll *tep = NULL;
1860 error = -EFAULT;
1861 if (ep_op_has_event(op) &&
1862 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1863 goto error_return;
1865 error = -EBADF;
1866 f = fdget(epfd);
1867 if (!f.file)
1868 goto error_return;
1870 /* Get the "struct file *" for the target file */
1871 tf = fdget(fd);
1872 if (!tf.file)
1873 goto error_fput;
1875 /* The target file descriptor must support poll */
1876 error = -EPERM;
1877 if (!tf.file->f_op->poll)
1878 goto error_tgt_fput;
1880 /* Check if EPOLLWAKEUP is allowed */
1881 if (ep_op_has_event(op))
1882 ep_take_care_of_epollwakeup(&epds);
1885 * We have to check that the file structure underneath the file descriptor
1886 * the user passed to us _is_ an eventpoll file. And also we do not permit
1887 * adding an epoll file descriptor inside itself.
1889 error = -EINVAL;
1890 if (f.file == tf.file || !is_file_epoll(f.file))
1891 goto error_tgt_fput;
1894 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
1895 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
1896 * Also, we do not currently supported nested exclusive wakeups.
1898 if (epds.events & EPOLLEXCLUSIVE) {
1899 if (op == EPOLL_CTL_MOD)
1900 goto error_tgt_fput;
1901 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
1902 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
1903 goto error_tgt_fput;
1907 * At this point it is safe to assume that the "private_data" contains
1908 * our own data structure.
1910 ep = f.file->private_data;
1913 * When we insert an epoll file descriptor, inside another epoll file
1914 * descriptor, there is the change of creating closed loops, which are
1915 * better be handled here, than in more critical paths. While we are
1916 * checking for loops we also determine the list of files reachable
1917 * and hang them on the tfile_check_list, so we can check that we
1918 * haven't created too many possible wakeup paths.
1920 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1921 * the epoll file descriptor is attaching directly to a wakeup source,
1922 * unless the epoll file descriptor is nested. The purpose of taking the
1923 * 'epmutex' on add is to prevent complex toplogies such as loops and
1924 * deep wakeup paths from forming in parallel through multiple
1925 * EPOLL_CTL_ADD operations.
1927 mutex_lock_nested(&ep->mtx, 0);
1928 if (op == EPOLL_CTL_ADD) {
1929 if (!list_empty(&f.file->f_ep_links) ||
1930 ep->gen == loop_check_gen ||
1931 is_file_epoll(tf.file)) {
1932 full_check = 1;
1933 mutex_unlock(&ep->mtx);
1934 mutex_lock(&epmutex);
1935 if (is_file_epoll(tf.file)) {
1936 error = -ELOOP;
1937 if (ep_loop_check(ep, tf.file) != 0)
1938 goto error_tgt_fput;
1939 } else {
1940 get_file(tf.file);
1941 list_add(&tf.file->f_tfile_llink,
1942 &tfile_check_list);
1944 mutex_lock_nested(&ep->mtx, 0);
1945 if (is_file_epoll(tf.file)) {
1946 tep = tf.file->private_data;
1947 mutex_lock_nested(&tep->mtx, 1);
1953 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1954 * above, we can be sure to be able to use the item looked up by
1955 * ep_find() till we release the mutex.
1957 epi = ep_find(ep, tf.file, fd);
1959 error = -EINVAL;
1960 switch (op) {
1961 case EPOLL_CTL_ADD:
1962 if (!epi) {
1963 epds.events |= POLLERR | POLLHUP;
1964 error = ep_insert(ep, &epds, tf.file, fd, full_check);
1965 } else
1966 error = -EEXIST;
1967 break;
1968 case EPOLL_CTL_DEL:
1969 if (epi)
1970 error = ep_remove(ep, epi);
1971 else
1972 error = -ENOENT;
1973 break;
1974 case EPOLL_CTL_MOD:
1975 if (epi) {
1976 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
1977 epds.events |= POLLERR | POLLHUP;
1978 error = ep_modify(ep, epi, &epds);
1980 } else
1981 error = -ENOENT;
1982 break;
1984 if (tep != NULL)
1985 mutex_unlock(&tep->mtx);
1986 mutex_unlock(&ep->mtx);
1988 error_tgt_fput:
1989 if (full_check) {
1990 clear_tfile_check_list();
1991 loop_check_gen++;
1992 mutex_unlock(&epmutex);
1995 fdput(tf);
1996 error_fput:
1997 fdput(f);
1998 error_return:
2000 return error;
2004 * Implement the event wait interface for the eventpoll file. It is the kernel
2005 * part of the user space epoll_wait(2).
2007 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2008 int, maxevents, int, timeout)
2010 int error;
2011 struct fd f;
2012 struct eventpoll *ep;
2014 /* The maximum number of event must be greater than zero */
2015 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2016 return -EINVAL;
2018 /* Verify that the area passed by the user is writeable */
2019 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2020 return -EFAULT;
2022 /* Get the "struct file *" for the eventpoll file */
2023 f = fdget(epfd);
2024 if (!f.file)
2025 return -EBADF;
2028 * We have to check that the file structure underneath the fd
2029 * the user passed to us _is_ an eventpoll file.
2031 error = -EINVAL;
2032 if (!is_file_epoll(f.file))
2033 goto error_fput;
2036 * At this point it is safe to assume that the "private_data" contains
2037 * our own data structure.
2039 ep = f.file->private_data;
2041 /* Time to fish for events ... */
2042 error = ep_poll(ep, events, maxevents, timeout);
2044 error_fput:
2045 fdput(f);
2046 return error;
2050 * Implement the event wait interface for the eventpoll file. It is the kernel
2051 * part of the user space epoll_pwait(2).
2053 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2054 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2055 size_t, sigsetsize)
2057 int error;
2058 sigset_t ksigmask, sigsaved;
2061 * If the caller wants a certain signal mask to be set during the wait,
2062 * we apply it here.
2064 if (sigmask) {
2065 if (sigsetsize != sizeof(sigset_t))
2066 return -EINVAL;
2067 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2068 return -EFAULT;
2069 sigsaved = current->blocked;
2070 set_current_blocked(&ksigmask);
2073 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2076 * If we changed the signal mask, we need to restore the original one.
2077 * In case we've got a signal while waiting, we do not restore the
2078 * signal mask yet, and we allow do_signal() to deliver the signal on
2079 * the way back to userspace, before the signal mask is restored.
2081 if (sigmask) {
2082 if (error == -EINTR) {
2083 memcpy(&current->saved_sigmask, &sigsaved,
2084 sizeof(sigsaved));
2085 set_restore_sigmask();
2086 } else
2087 set_current_blocked(&sigsaved);
2090 return error;
2093 #ifdef CONFIG_COMPAT
2094 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2095 struct epoll_event __user *, events,
2096 int, maxevents, int, timeout,
2097 const compat_sigset_t __user *, sigmask,
2098 compat_size_t, sigsetsize)
2100 long err;
2101 compat_sigset_t csigmask;
2102 sigset_t ksigmask, sigsaved;
2105 * If the caller wants a certain signal mask to be set during the wait,
2106 * we apply it here.
2108 if (sigmask) {
2109 if (sigsetsize != sizeof(compat_sigset_t))
2110 return -EINVAL;
2111 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2112 return -EFAULT;
2113 sigset_from_compat(&ksigmask, &csigmask);
2114 sigsaved = current->blocked;
2115 set_current_blocked(&ksigmask);
2118 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2121 * If we changed the signal mask, we need to restore the original one.
2122 * In case we've got a signal while waiting, we do not restore the
2123 * signal mask yet, and we allow do_signal() to deliver the signal on
2124 * the way back to userspace, before the signal mask is restored.
2126 if (sigmask) {
2127 if (err == -EINTR) {
2128 memcpy(&current->saved_sigmask, &sigsaved,
2129 sizeof(sigsaved));
2130 set_restore_sigmask();
2131 } else
2132 set_current_blocked(&sigsaved);
2135 return err;
2137 #endif
2139 static int __init eventpoll_init(void)
2141 struct sysinfo si;
2143 si_meminfo(&si);
2145 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2147 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2148 EP_ITEM_COST;
2149 BUG_ON(max_user_watches < 0);
2152 * Initialize the structure used to perform epoll file descriptor
2153 * inclusion loops checks.
2155 ep_nested_calls_init(&poll_loop_ncalls);
2157 /* Initialize the structure used to perform safe poll wait head wake ups */
2158 ep_nested_calls_init(&poll_safewake_ncalls);
2160 /* Initialize the structure used to perform file's f_op->poll() calls */
2161 ep_nested_calls_init(&poll_readywalk_ncalls);
2164 * We can have many thousands of epitems, so prevent this from
2165 * using an extra cache line on 64-bit (and smaller) CPUs
2167 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2169 /* Allocates slab cache used to allocate "struct epitem" items */
2170 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2171 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2173 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2174 pwq_cache = kmem_cache_create("eventpoll_pwq",
2175 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2177 return 0;
2179 fs_initcall(eventpoll_init);