2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
48 * There are three level of locking required by epoll :
52 * 3) ep->lock (spinlock)
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
100 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 /* Maximum number of nesting allowed inside epoll sets */
103 #define EP_MAX_NESTS 4
105 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 #define EP_UNACTIVE_PTR ((void *) -1L)
109 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 struct epoll_filefd
{
117 * Structure used to track possible nested calls, for too deep recursions
120 struct nested_call_node
{
121 struct list_head llink
;
127 * This structure is used as collector for nested calls, to check for
128 * maximum recursion dept and loop cycles.
130 struct nested_calls
{
131 struct list_head tasks_call_list
;
136 * Each file descriptor added to the eventpoll interface will
137 * have an entry of this type linked to the "rbr" RB tree.
138 * Avoid increasing the size of this struct, there can be many thousands
139 * of these on a server and we do not want this to take another cache line.
143 /* RB tree node links this structure to the eventpoll RB tree */
145 /* Used to free the struct epitem */
149 /* List header used to link this structure to the eventpoll ready list */
150 struct list_head rdllink
;
153 * Works together "struct eventpoll"->ovflist in keeping the
154 * single linked chain of items.
158 /* The file descriptor information this item refers to */
159 struct epoll_filefd ffd
;
161 /* Number of active wait queue attached to poll operations */
164 /* List containing poll wait queues */
165 struct list_head pwqlist
;
167 /* The "container" of this item */
168 struct eventpoll
*ep
;
170 /* List header used to link this item to the "struct file" items list */
171 struct list_head fllink
;
173 /* wakeup_source used when EPOLLWAKEUP is set */
174 struct wakeup_source __rcu
*ws
;
176 /* The structure that describe the interested events and the source fd */
177 struct epoll_event event
;
181 * This structure is stored inside the "private_data" member of the file
182 * structure and represents the main data structure for the eventpoll
186 /* Protect the access to this structure */
190 * This mutex is used to ensure that files are not removed
191 * while epoll is using them. This is held during the event
192 * collection loop, the file cleanup path, the epoll file exit
193 * code and the ctl operations.
197 /* Wait queue used by sys_epoll_wait() */
198 wait_queue_head_t wq
;
200 /* Wait queue used by file->poll() */
201 wait_queue_head_t poll_wait
;
203 /* List of ready file descriptors */
204 struct list_head rdllist
;
206 /* RB tree root used to store monitored fd structs */
210 * This is a single linked list that chains all the "struct epitem" that
211 * happened while transferring ready events to userspace w/out
214 struct epitem
*ovflist
;
216 /* wakeup_source used when ep_scan_ready_list is running */
217 struct wakeup_source
*ws
;
219 /* The user that created the eventpoll descriptor */
220 struct user_struct
*user
;
224 /* used to optimize loop detection check */
228 /* Wait structure used by the poll hooks */
229 struct eppoll_entry
{
230 /* List header used to link this structure to the "struct epitem" */
231 struct list_head llink
;
233 /* The "base" pointer is set to the container "struct epitem" */
237 * Wait queue item that will be linked to the target file wait
242 /* The wait queue head that linked the "wait" wait queue item */
243 wait_queue_head_t
*whead
;
246 /* Wrapper struct used by poll queueing */
252 /* Used by the ep_send_events() function as callback private data */
253 struct ep_send_events_data
{
255 struct epoll_event __user
*events
;
259 * Configuration options available inside /proc/sys/fs/epoll/
261 /* Maximum number of epoll watched descriptors, per user */
262 static long max_user_watches __read_mostly
;
265 * This mutex is used to serialize ep_free() and eventpoll_release_file().
267 static DEFINE_MUTEX(epmutex
);
269 static u64 loop_check_gen
= 0;
271 /* Used to check for epoll file descriptor inclusion loops */
272 static struct nested_calls poll_loop_ncalls
;
274 /* Used for safe wake up implementation */
275 static struct nested_calls poll_safewake_ncalls
;
277 /* Used to call file's f_op->poll() under the nested calls boundaries */
278 static struct nested_calls poll_readywalk_ncalls
;
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache
*epi_cache __read_mostly
;
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache
*pwq_cache __read_mostly
;
287 * List of files with newly added links, where we may need to limit the number
288 * of emanating paths. Protected by the epmutex.
290 static LIST_HEAD(tfile_check_list
);
294 #include <linux/sysctl.h>
297 static long long_max
= LONG_MAX
;
299 struct ctl_table epoll_table
[] = {
301 .procname
= "max_user_watches",
302 .data
= &max_user_watches
,
303 .maxlen
= sizeof(max_user_watches
),
305 .proc_handler
= proc_doulongvec_minmax
,
311 #endif /* CONFIG_SYSCTL */
313 static const struct file_operations eventpoll_fops
;
315 static inline int is_file_epoll(struct file
*f
)
317 return f
->f_op
== &eventpoll_fops
;
320 /* Setup the structure that is used as key for the RB tree */
321 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
322 struct file
*file
, int fd
)
328 /* Compare RB tree keys */
329 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
330 struct epoll_filefd
*p2
)
332 return (p1
->file
> p2
->file
? +1:
333 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
336 /* Tells us if the item is currently linked */
337 static inline int ep_is_linked(struct list_head
*p
)
339 return !list_empty(p
);
342 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_t
*p
)
344 return container_of(p
, struct eppoll_entry
, wait
);
347 /* Get the "struct epitem" from a wait queue pointer */
348 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
350 return container_of(p
, struct eppoll_entry
, wait
)->base
;
353 /* Get the "struct epitem" from an epoll queue wrapper */
354 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
356 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
359 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
360 static inline int ep_op_has_event(int op
)
362 return op
!= EPOLL_CTL_DEL
;
365 /* Initialize the poll safe wake up structure */
366 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
368 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
369 spin_lock_init(&ncalls
->lock
);
373 * ep_events_available - Checks if ready events might be available.
375 * @ep: Pointer to the eventpoll context.
377 * Returns: Returns a value different than zero if ready events are available,
380 static inline int ep_events_available(struct eventpoll
*ep
)
382 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
386 * ep_call_nested - Perform a bound (possibly) nested call, by checking
387 * that the recursion limit is not exceeded, and that
388 * the same nested call (by the meaning of same cookie) is
391 * @ncalls: Pointer to the nested_calls structure to be used for this call.
392 * @max_nests: Maximum number of allowed nesting calls.
393 * @nproc: Nested call core function pointer.
394 * @priv: Opaque data to be passed to the @nproc callback.
395 * @cookie: Cookie to be used to identify this nested call.
396 * @ctx: This instance context.
398 * Returns: Returns the code returned by the @nproc callback, or -1 if
399 * the maximum recursion limit has been exceeded.
401 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
402 int (*nproc
)(void *, void *, int), void *priv
,
403 void *cookie
, void *ctx
)
405 int error
, call_nests
= 0;
407 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
408 struct nested_call_node
*tncur
;
409 struct nested_call_node tnode
;
411 spin_lock_irqsave(&ncalls
->lock
, flags
);
414 * Try to see if the current task is already inside this wakeup call.
415 * We use a list here, since the population inside this set is always
418 list_for_each_entry(tncur
, lsthead
, llink
) {
419 if (tncur
->ctx
== ctx
&&
420 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
422 * Ops ... loop detected or maximum nest level reached.
423 * We abort this wake by breaking the cycle itself.
430 /* Add the current task and cookie to the list */
432 tnode
.cookie
= cookie
;
433 list_add(&tnode
.llink
, lsthead
);
435 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
437 /* Call the nested function */
438 error
= (*nproc
)(priv
, cookie
, call_nests
);
440 /* Remove the current task from the list */
441 spin_lock_irqsave(&ncalls
->lock
, flags
);
442 list_del(&tnode
.llink
);
444 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
450 * As described in commit 0ccf831cb lockdep: annotate epoll
451 * the use of wait queues used by epoll is done in a very controlled
452 * manner. Wake ups can nest inside each other, but are never done
453 * with the same locking. For example:
456 * efd1 = epoll_create();
457 * efd2 = epoll_create();
458 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
459 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
461 * When a packet arrives to the device underneath "dfd", the net code will
462 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
463 * callback wakeup entry on that queue, and the wake_up() performed by the
464 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
465 * (efd1) notices that it may have some event ready, so it needs to wake up
466 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
467 * that ends up in another wake_up(), after having checked about the
468 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
469 * avoid stack blasting.
471 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
472 * this special case of epoll.
474 #ifdef CONFIG_DEBUG_LOCK_ALLOC
475 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
476 unsigned long events
, int subclass
)
480 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
481 wake_up_locked_poll(wqueue
, events
);
482 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
485 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
486 unsigned long events
, int subclass
)
488 wake_up_poll(wqueue
, events
);
492 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
494 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
500 * Perform a safe wake up of the poll wait list. The problem is that
501 * with the new callback'd wake up system, it is possible that the
502 * poll callback is reentered from inside the call to wake_up() done
503 * on the poll wait queue head. The rule is that we cannot reenter the
504 * wake up code from the same task more than EP_MAX_NESTS times,
505 * and we cannot reenter the same wait queue head at all. This will
506 * enable to have a hierarchy of epoll file descriptor of no more than
509 static void ep_poll_safewake(wait_queue_head_t
*wq
)
511 int this_cpu
= get_cpu();
513 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
514 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
519 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
521 wait_queue_head_t
*whead
;
525 * If it is cleared by POLLFREE, it should be rcu-safe.
526 * If we read NULL we need a barrier paired with
527 * smp_store_release() in ep_poll_callback(), otherwise
528 * we rely on whead->lock.
530 whead
= smp_load_acquire(&pwq
->whead
);
532 remove_wait_queue(whead
, &pwq
->wait
);
537 * This function unregisters poll callbacks from the associated file
538 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
541 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
543 struct list_head
*lsthead
= &epi
->pwqlist
;
544 struct eppoll_entry
*pwq
;
546 while (!list_empty(lsthead
)) {
547 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
549 list_del(&pwq
->llink
);
550 ep_remove_wait_queue(pwq
);
551 kmem_cache_free(pwq_cache
, pwq
);
555 /* call only when ep->mtx is held */
556 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
558 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
561 /* call only when ep->mtx is held */
562 static inline void ep_pm_stay_awake(struct epitem
*epi
)
564 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
570 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
572 return rcu_access_pointer(epi
->ws
) ? true : false;
575 /* call when ep->mtx cannot be held (ep_poll_callback) */
576 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
578 struct wakeup_source
*ws
;
581 ws
= rcu_dereference(epi
->ws
);
588 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
589 * the scan code, to call f_op->poll(). Also allows for
590 * O(NumReady) performance.
592 * @ep: Pointer to the epoll private data structure.
593 * @sproc: Pointer to the scan callback.
594 * @priv: Private opaque data passed to the @sproc callback.
595 * @depth: The current depth of recursive f_op->poll calls.
596 * @ep_locked: caller already holds ep->mtx
598 * Returns: The same integer error code returned by the @sproc callback.
600 static int ep_scan_ready_list(struct eventpoll
*ep
,
601 int (*sproc
)(struct eventpoll
*,
602 struct list_head
*, void *),
603 void *priv
, int depth
, bool ep_locked
)
605 int error
, pwake
= 0;
607 struct epitem
*epi
, *nepi
;
611 * We need to lock this because we could be hit by
612 * eventpoll_release_file() and epoll_ctl().
616 mutex_lock_nested(&ep
->mtx
, depth
);
619 * Steal the ready list, and re-init the original one to the
620 * empty list. Also, set ep->ovflist to NULL so that events
621 * happening while looping w/out locks, are not lost. We cannot
622 * have the poll callback to queue directly on ep->rdllist,
623 * because we want the "sproc" callback to be able to do it
626 spin_lock_irqsave(&ep
->lock
, flags
);
627 list_splice_init(&ep
->rdllist
, &txlist
);
629 spin_unlock_irqrestore(&ep
->lock
, flags
);
632 * Now call the callback function.
634 error
= (*sproc
)(ep
, &txlist
, priv
);
636 spin_lock_irqsave(&ep
->lock
, flags
);
638 * During the time we spent inside the "sproc" callback, some
639 * other events might have been queued by the poll callback.
640 * We re-insert them inside the main ready-list here.
642 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
643 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
645 * We need to check if the item is already in the list.
646 * During the "sproc" callback execution time, items are
647 * queued into ->ovflist but the "txlist" might already
648 * contain them, and the list_splice() below takes care of them.
650 if (!ep_is_linked(&epi
->rdllink
)) {
651 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
652 ep_pm_stay_awake(epi
);
656 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
657 * releasing the lock, events will be queued in the normal way inside
660 ep
->ovflist
= EP_UNACTIVE_PTR
;
663 * Quickly re-inject items left on "txlist".
665 list_splice(&txlist
, &ep
->rdllist
);
668 if (!list_empty(&ep
->rdllist
)) {
670 * Wake up (if active) both the eventpoll wait list and
671 * the ->poll() wait list (delayed after we release the lock).
673 if (waitqueue_active(&ep
->wq
))
674 wake_up_locked(&ep
->wq
);
675 if (waitqueue_active(&ep
->poll_wait
))
678 spin_unlock_irqrestore(&ep
->lock
, flags
);
681 mutex_unlock(&ep
->mtx
);
683 /* We have to call this outside the lock */
685 ep_poll_safewake(&ep
->poll_wait
);
690 static void epi_rcu_free(struct rcu_head
*head
)
692 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
693 kmem_cache_free(epi_cache
, epi
);
697 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
698 * all the associated resources. Must be called with "mtx" held.
700 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
703 struct file
*file
= epi
->ffd
.file
;
706 * Removes poll wait queue hooks. We _have_ to do this without holding
707 * the "ep->lock" otherwise a deadlock might occur. This because of the
708 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
709 * queue head lock when unregistering the wait queue. The wakeup callback
710 * will run by holding the wait queue head lock and will call our callback
711 * that will try to get "ep->lock".
713 ep_unregister_pollwait(ep
, epi
);
715 /* Remove the current item from the list of epoll hooks */
716 spin_lock(&file
->f_lock
);
717 list_del_rcu(&epi
->fllink
);
718 spin_unlock(&file
->f_lock
);
720 rb_erase(&epi
->rbn
, &ep
->rbr
);
722 spin_lock_irqsave(&ep
->lock
, flags
);
723 if (ep_is_linked(&epi
->rdllink
))
724 list_del_init(&epi
->rdllink
);
725 spin_unlock_irqrestore(&ep
->lock
, flags
);
727 wakeup_source_unregister(ep_wakeup_source(epi
));
729 * At this point it is safe to free the eventpoll item. Use the union
730 * field epi->rcu, since we are trying to minimize the size of
731 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
732 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
733 * use of the rbn field.
735 call_rcu(&epi
->rcu
, epi_rcu_free
);
737 atomic_long_dec(&ep
->user
->epoll_watches
);
742 static void ep_free(struct eventpoll
*ep
)
747 /* We need to release all tasks waiting for these file */
748 if (waitqueue_active(&ep
->poll_wait
))
749 ep_poll_safewake(&ep
->poll_wait
);
752 * We need to lock this because we could be hit by
753 * eventpoll_release_file() while we're freeing the "struct eventpoll".
754 * We do not need to hold "ep->mtx" here because the epoll file
755 * is on the way to be removed and no one has references to it
756 * anymore. The only hit might come from eventpoll_release_file() but
757 * holding "epmutex" is sufficient here.
759 mutex_lock(&epmutex
);
762 * Walks through the whole tree by unregistering poll callbacks.
764 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
765 epi
= rb_entry(rbp
, struct epitem
, rbn
);
767 ep_unregister_pollwait(ep
, epi
);
772 * Walks through the whole tree by freeing each "struct epitem". At this
773 * point we are sure no poll callbacks will be lingering around, and also by
774 * holding "epmutex" we can be sure that no file cleanup code will hit
775 * us during this operation. So we can avoid the lock on "ep->lock".
776 * We do not need to lock ep->mtx, either, we only do it to prevent
779 mutex_lock(&ep
->mtx
);
780 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
781 epi
= rb_entry(rbp
, struct epitem
, rbn
);
785 mutex_unlock(&ep
->mtx
);
787 mutex_unlock(&epmutex
);
788 mutex_destroy(&ep
->mtx
);
790 wakeup_source_unregister(ep
->ws
);
794 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
796 struct eventpoll
*ep
= file
->private_data
;
804 static inline unsigned int ep_item_poll(struct epitem
*epi
, poll_table
*pt
)
806 pt
->_key
= epi
->event
.events
;
808 return epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
811 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
814 struct epitem
*epi
, *tmp
;
817 init_poll_funcptr(&pt
, NULL
);
819 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
820 if (ep_item_poll(epi
, &pt
))
821 return POLLIN
| POLLRDNORM
;
824 * Item has been dropped into the ready list by the poll
825 * callback, but it's not actually ready, as far as
826 * caller requested events goes. We can remove it here.
828 __pm_relax(ep_wakeup_source(epi
));
829 list_del_init(&epi
->rdllink
);
836 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
839 struct readyevents_arg
{
840 struct eventpoll
*ep
;
844 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
846 struct readyevents_arg
*arg
= priv
;
848 return ep_scan_ready_list(arg
->ep
, ep_read_events_proc
, NULL
,
849 call_nests
+ 1, arg
->locked
);
852 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
855 struct eventpoll
*ep
= file
->private_data
;
856 struct readyevents_arg arg
;
859 * During ep_insert() we already hold the ep->mtx for the tfile.
860 * Prevent re-aquisition.
862 arg
.locked
= wait
&& (wait
->_qproc
== ep_ptable_queue_proc
);
865 /* Insert inside our poll wait queue */
866 poll_wait(file
, &ep
->poll_wait
, wait
);
869 * Proceed to find out if wanted events are really available inside
870 * the ready list. This need to be done under ep_call_nested()
871 * supervision, since the call to f_op->poll() done on listed files
872 * could re-enter here.
874 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
875 ep_poll_readyevents_proc
, &arg
, ep
, current
);
877 return pollflags
!= -1 ? pollflags
: 0;
880 #ifdef CONFIG_PROC_FS
881 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
883 struct eventpoll
*ep
= f
->private_data
;
886 mutex_lock(&ep
->mtx
);
887 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
888 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
890 seq_printf(m
, "tfd: %8d events: %8x data: %16llx\n",
891 epi
->ffd
.fd
, epi
->event
.events
,
892 (long long)epi
->event
.data
);
893 if (seq_has_overflowed(m
))
896 mutex_unlock(&ep
->mtx
);
900 /* File callbacks that implement the eventpoll file behaviour */
901 static const struct file_operations eventpoll_fops
= {
902 #ifdef CONFIG_PROC_FS
903 .show_fdinfo
= ep_show_fdinfo
,
905 .release
= ep_eventpoll_release
,
906 .poll
= ep_eventpoll_poll
,
907 .llseek
= noop_llseek
,
911 * This is called from eventpoll_release() to unlink files from the eventpoll
912 * interface. We need to have this facility to cleanup correctly files that are
913 * closed without being removed from the eventpoll interface.
915 void eventpoll_release_file(struct file
*file
)
917 struct eventpoll
*ep
;
918 struct epitem
*epi
, *next
;
921 * We don't want to get "file->f_lock" because it is not
922 * necessary. It is not necessary because we're in the "struct file"
923 * cleanup path, and this means that no one is using this file anymore.
924 * So, for example, epoll_ctl() cannot hit here since if we reach this
925 * point, the file counter already went to zero and fget() would fail.
926 * The only hit might come from ep_free() but by holding the mutex
927 * will correctly serialize the operation. We do need to acquire
928 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
929 * from anywhere but ep_free().
931 * Besides, ep_remove() acquires the lock, so we can't hold it here.
933 mutex_lock(&epmutex
);
934 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
936 mutex_lock_nested(&ep
->mtx
, 0);
938 mutex_unlock(&ep
->mtx
);
940 mutex_unlock(&epmutex
);
943 static int ep_alloc(struct eventpoll
**pep
)
946 struct user_struct
*user
;
947 struct eventpoll
*ep
;
949 user
= get_current_user();
951 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
955 spin_lock_init(&ep
->lock
);
956 mutex_init(&ep
->mtx
);
957 init_waitqueue_head(&ep
->wq
);
958 init_waitqueue_head(&ep
->poll_wait
);
959 INIT_LIST_HEAD(&ep
->rdllist
);
961 ep
->ovflist
= EP_UNACTIVE_PTR
;
974 * Search the file inside the eventpoll tree. The RB tree operations
975 * are protected by the "mtx" mutex, and ep_find() must be called with
978 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
982 struct epitem
*epi
, *epir
= NULL
;
983 struct epoll_filefd ffd
;
985 ep_set_ffd(&ffd
, file
, fd
);
986 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
987 epi
= rb_entry(rbp
, struct epitem
, rbn
);
988 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1003 * This is the callback that is passed to the wait queue wakeup
1004 * mechanism. It is called by the stored file descriptors when they
1005 * have events to report.
1007 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1010 unsigned long flags
;
1011 struct epitem
*epi
= ep_item_from_wait(wait
);
1012 struct eventpoll
*ep
= epi
->ep
;
1015 spin_lock_irqsave(&ep
->lock
, flags
);
1018 * If the event mask does not contain any poll(2) event, we consider the
1019 * descriptor to be disabled. This condition is likely the effect of the
1020 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1021 * until the next EPOLL_CTL_MOD will be issued.
1023 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1027 * Check the events coming with the callback. At this stage, not
1028 * every device reports the events in the "key" parameter of the
1029 * callback. We need to be able to handle both cases here, hence the
1030 * test for "key" != NULL before the event match test.
1032 if (key
&& !((unsigned long) key
& epi
->event
.events
))
1036 * If we are transferring events to userspace, we can hold no locks
1037 * (because we're accessing user memory, and because of linux f_op->poll()
1038 * semantics). All the events that happen during that period of time are
1039 * chained in ep->ovflist and requeued later on.
1041 if (ep
->ovflist
!= EP_UNACTIVE_PTR
) {
1042 if (epi
->next
== EP_UNACTIVE_PTR
) {
1043 epi
->next
= ep
->ovflist
;
1047 * Activate ep->ws since epi->ws may get
1048 * deactivated at any time.
1050 __pm_stay_awake(ep
->ws
);
1057 /* If this file is already in the ready list we exit soon */
1058 if (!ep_is_linked(&epi
->rdllink
)) {
1059 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1060 ep_pm_stay_awake_rcu(epi
);
1064 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1067 if (waitqueue_active(&ep
->wq
)) {
1068 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1069 !((unsigned long)key
& POLLFREE
)) {
1070 switch ((unsigned long)key
& EPOLLINOUT_BITS
) {
1072 if (epi
->event
.events
& POLLIN
)
1076 if (epi
->event
.events
& POLLOUT
)
1084 wake_up_locked(&ep
->wq
);
1086 if (waitqueue_active(&ep
->poll_wait
))
1090 spin_unlock_irqrestore(&ep
->lock
, flags
);
1092 /* We have to call this outside the lock */
1094 ep_poll_safewake(&ep
->poll_wait
);
1096 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1099 if ((unsigned long)key
& POLLFREE
) {
1101 * If we race with ep_remove_wait_queue() it can miss
1102 * ->whead = NULL and do another remove_wait_queue() after
1103 * us, so we can't use __remove_wait_queue().
1105 list_del_init(&wait
->task_list
);
1107 * ->whead != NULL protects us from the race with ep_free()
1108 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1109 * held by the caller. Once we nullify it, nothing protects
1110 * ep/epi or even wait.
1112 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1119 * This is the callback that is used to add our wait queue to the
1120 * target file wakeup lists.
1122 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1125 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1126 struct eppoll_entry
*pwq
;
1128 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1129 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1132 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1133 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1135 add_wait_queue(whead
, &pwq
->wait
);
1136 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1139 /* We have to signal that an error occurred */
1144 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1147 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
1148 struct epitem
*epic
;
1152 epic
= rb_entry(parent
, struct epitem
, rbn
);
1153 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1155 p
= &parent
->rb_right
;
1157 p
= &parent
->rb_left
;
1159 rb_link_node(&epi
->rbn
, parent
, p
);
1160 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
1165 #define PATH_ARR_SIZE 5
1167 * These are the number paths of length 1 to 5, that we are allowing to emanate
1168 * from a single file of interest. For example, we allow 1000 paths of length
1169 * 1, to emanate from each file of interest. This essentially represents the
1170 * potential wakeup paths, which need to be limited in order to avoid massive
1171 * uncontrolled wakeup storms. The common use case should be a single ep which
1172 * is connected to n file sources. In this case each file source has 1 path
1173 * of length 1. Thus, the numbers below should be more than sufficient. These
1174 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1175 * and delete can't add additional paths. Protected by the epmutex.
1177 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1178 static int path_count
[PATH_ARR_SIZE
];
1180 static int path_count_inc(int nests
)
1182 /* Allow an arbitrary number of depth 1 paths */
1186 if (++path_count
[nests
] > path_limits
[nests
])
1191 static void path_count_init(void)
1195 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1199 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1202 struct file
*file
= priv
;
1203 struct file
*child_file
;
1206 /* CTL_DEL can remove links here, but that can't increase our count */
1208 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1209 child_file
= epi
->ep
->file
;
1210 if (is_file_epoll(child_file
)) {
1211 if (list_empty(&child_file
->f_ep_links
)) {
1212 if (path_count_inc(call_nests
)) {
1217 error
= ep_call_nested(&poll_loop_ncalls
,
1219 reverse_path_check_proc
,
1220 child_file
, child_file
,
1226 printk(KERN_ERR
"reverse_path_check_proc: "
1227 "file is not an ep!\n");
1235 * reverse_path_check - The tfile_check_list is list of file *, which have
1236 * links that are proposed to be newly added. We need to
1237 * make sure that those added links don't add too many
1238 * paths such that we will spend all our time waking up
1239 * eventpoll objects.
1241 * Returns: Returns zero if the proposed links don't create too many paths,
1244 static int reverse_path_check(void)
1247 struct file
*current_file
;
1249 /* let's call this for all tfiles */
1250 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1252 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1253 reverse_path_check_proc
, current_file
,
1254 current_file
, current
);
1261 static int ep_create_wakeup_source(struct epitem
*epi
)
1263 struct name_snapshot n
;
1264 struct wakeup_source
*ws
;
1267 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1272 take_dentry_name_snapshot(&n
, epi
->ffd
.file
->f_path
.dentry
);
1273 ws
= wakeup_source_register(n
.name
);
1274 release_dentry_name_snapshot(&n
);
1278 rcu_assign_pointer(epi
->ws
, ws
);
1283 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1284 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1286 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1288 RCU_INIT_POINTER(epi
->ws
, NULL
);
1291 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1292 * used internally by wakeup_source_remove, too (called by
1293 * wakeup_source_unregister), so we cannot use call_rcu
1296 wakeup_source_unregister(ws
);
1300 * Must be called with "mtx" held.
1302 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1303 struct file
*tfile
, int fd
, int full_check
)
1305 int error
, revents
, pwake
= 0;
1306 unsigned long flags
;
1309 struct ep_pqueue epq
;
1311 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1312 if (unlikely(user_watches
>= max_user_watches
))
1314 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1317 /* Item initialization follow here ... */
1318 INIT_LIST_HEAD(&epi
->rdllink
);
1319 INIT_LIST_HEAD(&epi
->fllink
);
1320 INIT_LIST_HEAD(&epi
->pwqlist
);
1322 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1323 epi
->event
= *event
;
1325 epi
->next
= EP_UNACTIVE_PTR
;
1326 if (epi
->event
.events
& EPOLLWAKEUP
) {
1327 error
= ep_create_wakeup_source(epi
);
1329 goto error_create_wakeup_source
;
1331 RCU_INIT_POINTER(epi
->ws
, NULL
);
1334 /* Add the current item to the list of active epoll hook for this file */
1335 spin_lock(&tfile
->f_lock
);
1336 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1337 spin_unlock(&tfile
->f_lock
);
1340 * Add the current item to the RB tree. All RB tree operations are
1341 * protected by "mtx", and ep_insert() is called with "mtx" held.
1343 ep_rbtree_insert(ep
, epi
);
1345 /* now check if we've created too many backpaths */
1347 if (full_check
&& reverse_path_check())
1348 goto error_remove_epi
;
1350 /* Initialize the poll table using the queue callback */
1352 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1355 * Attach the item to the poll hooks and get current event bits.
1356 * We can safely use the file* here because its usage count has
1357 * been increased by the caller of this function. Note that after
1358 * this operation completes, the poll callback can start hitting
1361 revents
= ep_item_poll(epi
, &epq
.pt
);
1364 * We have to check if something went wrong during the poll wait queue
1365 * install process. Namely an allocation for a wait queue failed due
1366 * high memory pressure.
1370 goto error_unregister
;
1372 /* We have to drop the new item inside our item list to keep track of it */
1373 spin_lock_irqsave(&ep
->lock
, flags
);
1375 /* If the file is already "ready" we drop it inside the ready list */
1376 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1377 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1378 ep_pm_stay_awake(epi
);
1380 /* Notify waiting tasks that events are available */
1381 if (waitqueue_active(&ep
->wq
))
1382 wake_up_locked(&ep
->wq
);
1383 if (waitqueue_active(&ep
->poll_wait
))
1387 spin_unlock_irqrestore(&ep
->lock
, flags
);
1389 atomic_long_inc(&ep
->user
->epoll_watches
);
1391 /* We have to call this outside the lock */
1393 ep_poll_safewake(&ep
->poll_wait
);
1398 ep_unregister_pollwait(ep
, epi
);
1400 spin_lock(&tfile
->f_lock
);
1401 list_del_rcu(&epi
->fllink
);
1402 spin_unlock(&tfile
->f_lock
);
1404 rb_erase(&epi
->rbn
, &ep
->rbr
);
1407 * We need to do this because an event could have been arrived on some
1408 * allocated wait queue. Note that we don't care about the ep->ovflist
1409 * list, since that is used/cleaned only inside a section bound by "mtx".
1410 * And ep_insert() is called with "mtx" held.
1412 spin_lock_irqsave(&ep
->lock
, flags
);
1413 if (ep_is_linked(&epi
->rdllink
))
1414 list_del_init(&epi
->rdllink
);
1415 spin_unlock_irqrestore(&ep
->lock
, flags
);
1417 wakeup_source_unregister(ep_wakeup_source(epi
));
1419 error_create_wakeup_source
:
1420 kmem_cache_free(epi_cache
, epi
);
1426 * Modify the interest event mask by dropping an event if the new mask
1427 * has a match in the current file status. Must be called with "mtx" held.
1429 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1432 unsigned int revents
;
1435 init_poll_funcptr(&pt
, NULL
);
1438 * Set the new event interest mask before calling f_op->poll();
1439 * otherwise we might miss an event that happens between the
1440 * f_op->poll() call and the new event set registering.
1442 epi
->event
.events
= event
->events
; /* need barrier below */
1443 epi
->event
.data
= event
->data
; /* protected by mtx */
1444 if (epi
->event
.events
& EPOLLWAKEUP
) {
1445 if (!ep_has_wakeup_source(epi
))
1446 ep_create_wakeup_source(epi
);
1447 } else if (ep_has_wakeup_source(epi
)) {
1448 ep_destroy_wakeup_source(epi
);
1452 * The following barrier has two effects:
1454 * 1) Flush epi changes above to other CPUs. This ensures
1455 * we do not miss events from ep_poll_callback if an
1456 * event occurs immediately after we call f_op->poll().
1457 * We need this because we did not take ep->lock while
1458 * changing epi above (but ep_poll_callback does take
1461 * 2) We also need to ensure we do not miss _past_ events
1462 * when calling f_op->poll(). This barrier also
1463 * pairs with the barrier in wq_has_sleeper (see
1464 * comments for wq_has_sleeper).
1466 * This barrier will now guarantee ep_poll_callback or f_op->poll
1467 * (or both) will notice the readiness of an item.
1472 * Get current event bits. We can safely use the file* here because
1473 * its usage count has been increased by the caller of this function.
1475 revents
= ep_item_poll(epi
, &pt
);
1478 * If the item is "hot" and it is not registered inside the ready
1479 * list, push it inside.
1481 if (revents
& event
->events
) {
1482 spin_lock_irq(&ep
->lock
);
1483 if (!ep_is_linked(&epi
->rdllink
)) {
1484 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1485 ep_pm_stay_awake(epi
);
1487 /* Notify waiting tasks that events are available */
1488 if (waitqueue_active(&ep
->wq
))
1489 wake_up_locked(&ep
->wq
);
1490 if (waitqueue_active(&ep
->poll_wait
))
1493 spin_unlock_irq(&ep
->lock
);
1496 /* We have to call this outside the lock */
1498 ep_poll_safewake(&ep
->poll_wait
);
1503 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1506 struct ep_send_events_data
*esed
= priv
;
1508 unsigned int revents
;
1510 struct epoll_event __user
*uevent
;
1511 struct wakeup_source
*ws
;
1514 init_poll_funcptr(&pt
, NULL
);
1517 * We can loop without lock because we are passed a task private list.
1518 * Items cannot vanish during the loop because ep_scan_ready_list() is
1519 * holding "mtx" during this call.
1521 for (eventcnt
= 0, uevent
= esed
->events
;
1522 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1523 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1526 * Activate ep->ws before deactivating epi->ws to prevent
1527 * triggering auto-suspend here (in case we reactive epi->ws
1530 * This could be rearranged to delay the deactivation of epi->ws
1531 * instead, but then epi->ws would temporarily be out of sync
1532 * with ep_is_linked().
1534 ws
= ep_wakeup_source(epi
);
1537 __pm_stay_awake(ep
->ws
);
1541 list_del_init(&epi
->rdllink
);
1543 revents
= ep_item_poll(epi
, &pt
);
1546 * If the event mask intersect the caller-requested one,
1547 * deliver the event to userspace. Again, ep_scan_ready_list()
1548 * is holding "mtx", so no operations coming from userspace
1549 * can change the item.
1552 if (__put_user(revents
, &uevent
->events
) ||
1553 __put_user(epi
->event
.data
, &uevent
->data
)) {
1554 list_add(&epi
->rdllink
, head
);
1555 ep_pm_stay_awake(epi
);
1556 return eventcnt
? eventcnt
: -EFAULT
;
1560 if (epi
->event
.events
& EPOLLONESHOT
)
1561 epi
->event
.events
&= EP_PRIVATE_BITS
;
1562 else if (!(epi
->event
.events
& EPOLLET
)) {
1564 * If this file has been added with Level
1565 * Trigger mode, we need to insert back inside
1566 * the ready list, so that the next call to
1567 * epoll_wait() will check again the events
1568 * availability. At this point, no one can insert
1569 * into ep->rdllist besides us. The epoll_ctl()
1570 * callers are locked out by
1571 * ep_scan_ready_list() holding "mtx" and the
1572 * poll callback will queue them in ep->ovflist.
1574 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1575 ep_pm_stay_awake(epi
);
1583 static int ep_send_events(struct eventpoll
*ep
,
1584 struct epoll_event __user
*events
, int maxevents
)
1586 struct ep_send_events_data esed
;
1588 esed
.maxevents
= maxevents
;
1589 esed
.events
= events
;
1591 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1594 static inline struct timespec64
ep_set_mstimeout(long ms
)
1596 struct timespec64 now
, ts
= {
1597 .tv_sec
= ms
/ MSEC_PER_SEC
,
1598 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1601 ktime_get_ts64(&now
);
1602 return timespec64_add_safe(now
, ts
);
1606 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1609 * @ep: Pointer to the eventpoll context.
1610 * @events: Pointer to the userspace buffer where the ready events should be
1612 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1613 * @timeout: Maximum timeout for the ready events fetch operation, in
1614 * milliseconds. If the @timeout is zero, the function will not block,
1615 * while if the @timeout is less than zero, the function will block
1616 * until at least one event has been retrieved (or an error
1619 * Returns: Returns the number of ready events which have been fetched, or an
1620 * error code, in case of error.
1622 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1623 int maxevents
, long timeout
)
1625 int res
= 0, eavail
, timed_out
= 0;
1626 unsigned long flags
;
1629 ktime_t expires
, *to
= NULL
;
1632 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1634 slack
= select_estimate_accuracy(&end_time
);
1636 *to
= timespec64_to_ktime(end_time
);
1637 } else if (timeout
== 0) {
1639 * Avoid the unnecessary trip to the wait queue loop, if the
1640 * caller specified a non blocking operation.
1643 spin_lock_irqsave(&ep
->lock
, flags
);
1648 spin_lock_irqsave(&ep
->lock
, flags
);
1650 if (!ep_events_available(ep
)) {
1652 * We don't have any available event to return to the caller.
1653 * We need to sleep here, and we will be wake up by
1654 * ep_poll_callback() when events will become available.
1656 init_waitqueue_entry(&wait
, current
);
1657 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1661 * We don't want to sleep if the ep_poll_callback() sends us
1662 * a wakeup in between. That's why we set the task state
1663 * to TASK_INTERRUPTIBLE before doing the checks.
1665 set_current_state(TASK_INTERRUPTIBLE
);
1666 if (ep_events_available(ep
) || timed_out
)
1668 if (signal_pending(current
)) {
1673 spin_unlock_irqrestore(&ep
->lock
, flags
);
1674 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1677 spin_lock_irqsave(&ep
->lock
, flags
);
1680 __remove_wait_queue(&ep
->wq
, &wait
);
1681 __set_current_state(TASK_RUNNING
);
1684 /* Is it worth to try to dig for events ? */
1685 eavail
= ep_events_available(ep
);
1687 spin_unlock_irqrestore(&ep
->lock
, flags
);
1690 * Try to transfer events to user space. In case we get 0 events and
1691 * there's still timeout left over, we go trying again in search of
1694 if (!res
&& eavail
&&
1695 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1702 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1703 * API, to verify that adding an epoll file inside another
1704 * epoll structure, does not violate the constraints, in
1705 * terms of closed loops, or too deep chains (which can
1706 * result in excessive stack usage).
1708 * @priv: Pointer to the epoll file to be currently checked.
1709 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1710 * data structure pointer.
1711 * @call_nests: Current dept of the @ep_call_nested() call stack.
1713 * Returns: Returns zero if adding the epoll @file inside current epoll
1714 * structure @ep does not violate the constraints, or -1 otherwise.
1716 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1719 struct file
*file
= priv
;
1720 struct eventpoll
*ep
= file
->private_data
;
1721 struct eventpoll
*ep_tovisit
;
1722 struct rb_node
*rbp
;
1725 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1726 ep
->gen
= loop_check_gen
;
1727 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1728 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1729 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1730 ep_tovisit
= epi
->ffd
.file
->private_data
;
1731 if (ep_tovisit
->gen
== loop_check_gen
)
1733 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1734 ep_loop_check_proc
, epi
->ffd
.file
,
1735 ep_tovisit
, current
);
1740 * If we've reached a file that is not associated with
1741 * an ep, then we need to check if the newly added
1742 * links are going to add too many wakeup paths. We do
1743 * this by adding it to the tfile_check_list, if it's
1744 * not already there, and calling reverse_path_check()
1745 * during ep_insert().
1747 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
)) {
1748 if (get_file_rcu(epi
->ffd
.file
))
1749 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1754 mutex_unlock(&ep
->mtx
);
1760 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1761 * another epoll file (represented by @ep) does not create
1762 * closed loops or too deep chains.
1764 * @ep: Pointer to the epoll private data structure.
1765 * @file: Pointer to the epoll file to be checked.
1767 * Returns: Returns zero if adding the epoll @file inside current epoll
1768 * structure @ep does not violate the constraints, or -1 otherwise.
1770 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1772 return ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1773 ep_loop_check_proc
, file
, ep
, current
);
1776 static void clear_tfile_check_list(void)
1780 /* first clear the tfile_check_list */
1781 while (!list_empty(&tfile_check_list
)) {
1782 file
= list_first_entry(&tfile_check_list
, struct file
,
1784 list_del_init(&file
->f_tfile_llink
);
1787 INIT_LIST_HEAD(&tfile_check_list
);
1791 * Open an eventpoll file descriptor.
1793 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1796 struct eventpoll
*ep
= NULL
;
1799 /* Check the EPOLL_* constant for consistency. */
1800 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1802 if (flags
& ~EPOLL_CLOEXEC
)
1805 * Create the internal data structure ("struct eventpoll").
1807 error
= ep_alloc(&ep
);
1811 * Creates all the items needed to setup an eventpoll file. That is,
1812 * a file structure and a free file descriptor.
1814 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1819 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1820 O_RDWR
| (flags
& O_CLOEXEC
));
1822 error
= PTR_ERR(file
);
1826 fd_install(fd
, file
);
1836 SYSCALL_DEFINE1(epoll_create
, int, size
)
1841 return sys_epoll_create1(0);
1845 * The following function implements the controller interface for
1846 * the eventpoll file that enables the insertion/removal/change of
1847 * file descriptors inside the interest set.
1849 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1850 struct epoll_event __user
*, event
)
1855 struct eventpoll
*ep
;
1857 struct epoll_event epds
;
1858 struct eventpoll
*tep
= NULL
;
1861 if (ep_op_has_event(op
) &&
1862 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1870 /* Get the "struct file *" for the target file */
1875 /* The target file descriptor must support poll */
1877 if (!tf
.file
->f_op
->poll
)
1878 goto error_tgt_fput
;
1880 /* Check if EPOLLWAKEUP is allowed */
1881 if (ep_op_has_event(op
))
1882 ep_take_care_of_epollwakeup(&epds
);
1885 * We have to check that the file structure underneath the file descriptor
1886 * the user passed to us _is_ an eventpoll file. And also we do not permit
1887 * adding an epoll file descriptor inside itself.
1890 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
1891 goto error_tgt_fput
;
1894 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
1895 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
1896 * Also, we do not currently supported nested exclusive wakeups.
1898 if (epds
.events
& EPOLLEXCLUSIVE
) {
1899 if (op
== EPOLL_CTL_MOD
)
1900 goto error_tgt_fput
;
1901 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
1902 (epds
.events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
1903 goto error_tgt_fput
;
1907 * At this point it is safe to assume that the "private_data" contains
1908 * our own data structure.
1910 ep
= f
.file
->private_data
;
1913 * When we insert an epoll file descriptor, inside another epoll file
1914 * descriptor, there is the change of creating closed loops, which are
1915 * better be handled here, than in more critical paths. While we are
1916 * checking for loops we also determine the list of files reachable
1917 * and hang them on the tfile_check_list, so we can check that we
1918 * haven't created too many possible wakeup paths.
1920 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1921 * the epoll file descriptor is attaching directly to a wakeup source,
1922 * unless the epoll file descriptor is nested. The purpose of taking the
1923 * 'epmutex' on add is to prevent complex toplogies such as loops and
1924 * deep wakeup paths from forming in parallel through multiple
1925 * EPOLL_CTL_ADD operations.
1927 mutex_lock_nested(&ep
->mtx
, 0);
1928 if (op
== EPOLL_CTL_ADD
) {
1929 if (!list_empty(&f
.file
->f_ep_links
) ||
1930 ep
->gen
== loop_check_gen
||
1931 is_file_epoll(tf
.file
)) {
1933 mutex_unlock(&ep
->mtx
);
1934 mutex_lock(&epmutex
);
1935 if (is_file_epoll(tf
.file
)) {
1937 if (ep_loop_check(ep
, tf
.file
) != 0)
1938 goto error_tgt_fput
;
1941 list_add(&tf
.file
->f_tfile_llink
,
1944 mutex_lock_nested(&ep
->mtx
, 0);
1945 if (is_file_epoll(tf
.file
)) {
1946 tep
= tf
.file
->private_data
;
1947 mutex_lock_nested(&tep
->mtx
, 1);
1953 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1954 * above, we can be sure to be able to use the item looked up by
1955 * ep_find() till we release the mutex.
1957 epi
= ep_find(ep
, tf
.file
, fd
);
1963 epds
.events
|= POLLERR
| POLLHUP
;
1964 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
1970 error
= ep_remove(ep
, epi
);
1976 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
1977 epds
.events
|= POLLERR
| POLLHUP
;
1978 error
= ep_modify(ep
, epi
, &epds
);
1985 mutex_unlock(&tep
->mtx
);
1986 mutex_unlock(&ep
->mtx
);
1990 clear_tfile_check_list();
1992 mutex_unlock(&epmutex
);
2004 * Implement the event wait interface for the eventpoll file. It is the kernel
2005 * part of the user space epoll_wait(2).
2007 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2008 int, maxevents
, int, timeout
)
2012 struct eventpoll
*ep
;
2014 /* The maximum number of event must be greater than zero */
2015 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2018 /* Verify that the area passed by the user is writeable */
2019 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
2022 /* Get the "struct file *" for the eventpoll file */
2028 * We have to check that the file structure underneath the fd
2029 * the user passed to us _is_ an eventpoll file.
2032 if (!is_file_epoll(f
.file
))
2036 * At this point it is safe to assume that the "private_data" contains
2037 * our own data structure.
2039 ep
= f
.file
->private_data
;
2041 /* Time to fish for events ... */
2042 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2050 * Implement the event wait interface for the eventpoll file. It is the kernel
2051 * part of the user space epoll_pwait(2).
2053 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2054 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2058 sigset_t ksigmask
, sigsaved
;
2061 * If the caller wants a certain signal mask to be set during the wait,
2065 if (sigsetsize
!= sizeof(sigset_t
))
2067 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
2069 sigsaved
= current
->blocked
;
2070 set_current_blocked(&ksigmask
);
2073 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2076 * If we changed the signal mask, we need to restore the original one.
2077 * In case we've got a signal while waiting, we do not restore the
2078 * signal mask yet, and we allow do_signal() to deliver the signal on
2079 * the way back to userspace, before the signal mask is restored.
2082 if (error
== -EINTR
) {
2083 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2085 set_restore_sigmask();
2087 set_current_blocked(&sigsaved
);
2093 #ifdef CONFIG_COMPAT
2094 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2095 struct epoll_event __user
*, events
,
2096 int, maxevents
, int, timeout
,
2097 const compat_sigset_t __user
*, sigmask
,
2098 compat_size_t
, sigsetsize
)
2101 compat_sigset_t csigmask
;
2102 sigset_t ksigmask
, sigsaved
;
2105 * If the caller wants a certain signal mask to be set during the wait,
2109 if (sigsetsize
!= sizeof(compat_sigset_t
))
2111 if (copy_from_user(&csigmask
, sigmask
, sizeof(csigmask
)))
2113 sigset_from_compat(&ksigmask
, &csigmask
);
2114 sigsaved
= current
->blocked
;
2115 set_current_blocked(&ksigmask
);
2118 err
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2121 * If we changed the signal mask, we need to restore the original one.
2122 * In case we've got a signal while waiting, we do not restore the
2123 * signal mask yet, and we allow do_signal() to deliver the signal on
2124 * the way back to userspace, before the signal mask is restored.
2127 if (err
== -EINTR
) {
2128 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2130 set_restore_sigmask();
2132 set_current_blocked(&sigsaved
);
2139 static int __init
eventpoll_init(void)
2145 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2147 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2149 BUG_ON(max_user_watches
< 0);
2152 * Initialize the structure used to perform epoll file descriptor
2153 * inclusion loops checks.
2155 ep_nested_calls_init(&poll_loop_ncalls
);
2157 /* Initialize the structure used to perform safe poll wait head wake ups */
2158 ep_nested_calls_init(&poll_safewake_ncalls
);
2160 /* Initialize the structure used to perform file's f_op->poll() calls */
2161 ep_nested_calls_init(&poll_readywalk_ncalls
);
2164 * We can have many thousands of epitems, so prevent this from
2165 * using an extra cache line on 64-bit (and smaller) CPUs
2167 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2169 /* Allocates slab cache used to allocate "struct epitem" items */
2170 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2171 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2173 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2174 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2175 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
2179 fs_initcall(eventpoll_init
);