Linux 4.9.243
[linux/fpc-iii.git] / fs / f2fs / super.c
blobe0ac676e0a35c92429b27270bd2433b1de48cbaf
1 /*
2 * fs/f2fs/super.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_PAGE_ALLOC] = "page alloc",
47 [FAULT_ALLOC_NID] = "alloc nid",
48 [FAULT_ORPHAN] = "orphan",
49 [FAULT_BLOCK] = "no more block",
50 [FAULT_DIR_DEPTH] = "too big dir depth",
51 [FAULT_EVICT_INODE] = "evict_inode fail",
52 [FAULT_IO] = "IO error",
53 [FAULT_CHECKPOINT] = "checkpoint error",
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57 unsigned int rate)
59 struct f2fs_fault_info *ffi = &sbi->fault_info;
61 if (rate) {
62 atomic_set(&ffi->inject_ops, 0);
63 ffi->inject_rate = rate;
64 ffi->inject_type = (1 << FAULT_MAX) - 1;
65 } else {
66 memset(ffi, 0, sizeof(struct f2fs_fault_info));
69 #endif
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73 .scan_objects = f2fs_shrink_scan,
74 .count_objects = f2fs_shrink_count,
75 .seeks = DEFAULT_SEEKS,
78 enum {
79 Opt_gc_background,
80 Opt_disable_roll_forward,
81 Opt_norecovery,
82 Opt_discard,
83 Opt_nodiscard,
84 Opt_noheap,
85 Opt_user_xattr,
86 Opt_nouser_xattr,
87 Opt_acl,
88 Opt_noacl,
89 Opt_active_logs,
90 Opt_disable_ext_identify,
91 Opt_inline_xattr,
92 Opt_inline_data,
93 Opt_inline_dentry,
94 Opt_noinline_dentry,
95 Opt_flush_merge,
96 Opt_noflush_merge,
97 Opt_nobarrier,
98 Opt_fastboot,
99 Opt_extent_cache,
100 Opt_noextent_cache,
101 Opt_noinline_data,
102 Opt_data_flush,
103 Opt_mode,
104 Opt_fault_injection,
105 Opt_lazytime,
106 Opt_nolazytime,
107 Opt_err,
110 static match_table_t f2fs_tokens = {
111 {Opt_gc_background, "background_gc=%s"},
112 {Opt_disable_roll_forward, "disable_roll_forward"},
113 {Opt_norecovery, "norecovery"},
114 {Opt_discard, "discard"},
115 {Opt_nodiscard, "nodiscard"},
116 {Opt_noheap, "no_heap"},
117 {Opt_user_xattr, "user_xattr"},
118 {Opt_nouser_xattr, "nouser_xattr"},
119 {Opt_acl, "acl"},
120 {Opt_noacl, "noacl"},
121 {Opt_active_logs, "active_logs=%u"},
122 {Opt_disable_ext_identify, "disable_ext_identify"},
123 {Opt_inline_xattr, "inline_xattr"},
124 {Opt_inline_data, "inline_data"},
125 {Opt_inline_dentry, "inline_dentry"},
126 {Opt_noinline_dentry, "noinline_dentry"},
127 {Opt_flush_merge, "flush_merge"},
128 {Opt_noflush_merge, "noflush_merge"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_fastboot, "fastboot"},
131 {Opt_extent_cache, "extent_cache"},
132 {Opt_noextent_cache, "noextent_cache"},
133 {Opt_noinline_data, "noinline_data"},
134 {Opt_data_flush, "data_flush"},
135 {Opt_mode, "mode=%s"},
136 {Opt_fault_injection, "fault_injection=%u"},
137 {Opt_lazytime, "lazytime"},
138 {Opt_nolazytime, "nolazytime"},
139 {Opt_err, NULL},
142 /* Sysfs support for f2fs */
143 enum {
144 GC_THREAD, /* struct f2fs_gc_thread */
145 SM_INFO, /* struct f2fs_sm_info */
146 NM_INFO, /* struct f2fs_nm_info */
147 F2FS_SBI, /* struct f2fs_sb_info */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149 FAULT_INFO_RATE, /* struct f2fs_fault_info */
150 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
151 #endif
154 struct f2fs_attr {
155 struct attribute attr;
156 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
157 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
158 const char *, size_t);
159 int struct_type;
160 int offset;
163 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
165 if (struct_type == GC_THREAD)
166 return (unsigned char *)sbi->gc_thread;
167 else if (struct_type == SM_INFO)
168 return (unsigned char *)SM_I(sbi);
169 else if (struct_type == NM_INFO)
170 return (unsigned char *)NM_I(sbi);
171 else if (struct_type == F2FS_SBI)
172 return (unsigned char *)sbi;
173 #ifdef CONFIG_F2FS_FAULT_INJECTION
174 else if (struct_type == FAULT_INFO_RATE ||
175 struct_type == FAULT_INFO_TYPE)
176 return (unsigned char *)&sbi->fault_info;
177 #endif
178 return NULL;
181 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
182 struct f2fs_sb_info *sbi, char *buf)
184 struct super_block *sb = sbi->sb;
186 if (!sb->s_bdev->bd_part)
187 return snprintf(buf, PAGE_SIZE, "0\n");
189 return snprintf(buf, PAGE_SIZE, "%llu\n",
190 (unsigned long long)(sbi->kbytes_written +
191 BD_PART_WRITTEN(sbi)));
194 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
195 struct f2fs_sb_info *sbi, char *buf)
197 unsigned char *ptr = NULL;
198 unsigned int *ui;
200 ptr = __struct_ptr(sbi, a->struct_type);
201 if (!ptr)
202 return -EINVAL;
204 ui = (unsigned int *)(ptr + a->offset);
206 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
209 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
210 struct f2fs_sb_info *sbi,
211 const char *buf, size_t count)
213 unsigned char *ptr;
214 unsigned long t;
215 unsigned int *ui;
216 ssize_t ret;
218 ptr = __struct_ptr(sbi, a->struct_type);
219 if (!ptr)
220 return -EINVAL;
222 ui = (unsigned int *)(ptr + a->offset);
224 ret = kstrtoul(skip_spaces(buf), 0, &t);
225 if (ret < 0)
226 return ret;
227 #ifdef CONFIG_F2FS_FAULT_INJECTION
228 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
229 return -EINVAL;
230 #endif
231 *ui = t;
232 return count;
235 static ssize_t f2fs_attr_show(struct kobject *kobj,
236 struct attribute *attr, char *buf)
238 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
239 s_kobj);
240 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
242 return a->show ? a->show(a, sbi, buf) : 0;
245 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
246 const char *buf, size_t len)
248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249 s_kobj);
250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
252 return a->store ? a->store(a, sbi, buf, len) : 0;
255 static void f2fs_sb_release(struct kobject *kobj)
257 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
258 s_kobj);
259 complete(&sbi->s_kobj_unregister);
262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263 static struct f2fs_attr f2fs_attr_##_name = { \
264 .attr = {.name = __stringify(_name), .mode = _mode }, \
265 .show = _show, \
266 .store = _store, \
267 .struct_type = _struct_type, \
268 .offset = _offset \
271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
273 f2fs_sbi_show, f2fs_sbi_store, \
274 offsetof(struct struct_name, elname))
276 #define F2FS_GENERAL_RO_ATTR(name) \
277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
280 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
281 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
282 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
286 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
287 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
288 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
289 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
290 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
291 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
293 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
294 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
295 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
296 #ifdef CONFIG_F2FS_FAULT_INJECTION
297 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
298 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
299 #endif
300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303 static struct attribute *f2fs_attrs[] = {
304 ATTR_LIST(gc_min_sleep_time),
305 ATTR_LIST(gc_max_sleep_time),
306 ATTR_LIST(gc_no_gc_sleep_time),
307 ATTR_LIST(gc_idle),
308 ATTR_LIST(reclaim_segments),
309 ATTR_LIST(max_small_discards),
310 ATTR_LIST(batched_trim_sections),
311 ATTR_LIST(ipu_policy),
312 ATTR_LIST(min_ipu_util),
313 ATTR_LIST(min_fsync_blocks),
314 ATTR_LIST(max_victim_search),
315 ATTR_LIST(dir_level),
316 ATTR_LIST(ram_thresh),
317 ATTR_LIST(ra_nid_pages),
318 ATTR_LIST(dirty_nats_ratio),
319 ATTR_LIST(cp_interval),
320 ATTR_LIST(idle_interval),
321 #ifdef CONFIG_F2FS_FAULT_INJECTION
322 ATTR_LIST(inject_rate),
323 ATTR_LIST(inject_type),
324 #endif
325 ATTR_LIST(lifetime_write_kbytes),
326 NULL,
329 static const struct sysfs_ops f2fs_attr_ops = {
330 .show = f2fs_attr_show,
331 .store = f2fs_attr_store,
334 static struct kobj_type f2fs_ktype = {
335 .default_attrs = f2fs_attrs,
336 .sysfs_ops = &f2fs_attr_ops,
337 .release = f2fs_sb_release,
340 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
342 struct va_format vaf;
343 va_list args;
345 va_start(args, fmt);
346 vaf.fmt = fmt;
347 vaf.va = &args;
348 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
349 va_end(args);
352 static void init_once(void *foo)
354 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
356 inode_init_once(&fi->vfs_inode);
359 static int parse_options(struct super_block *sb, char *options)
361 struct f2fs_sb_info *sbi = F2FS_SB(sb);
362 struct request_queue *q;
363 substring_t args[MAX_OPT_ARGS];
364 char *p, *name;
365 int arg = 0;
367 if (!options)
368 return 0;
370 while ((p = strsep(&options, ",")) != NULL) {
371 int token;
372 if (!*p)
373 continue;
375 * Initialize args struct so we know whether arg was
376 * found; some options take optional arguments.
378 args[0].to = args[0].from = NULL;
379 token = match_token(p, f2fs_tokens, args);
381 switch (token) {
382 case Opt_gc_background:
383 name = match_strdup(&args[0]);
385 if (!name)
386 return -ENOMEM;
387 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
388 set_opt(sbi, BG_GC);
389 clear_opt(sbi, FORCE_FG_GC);
390 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
391 clear_opt(sbi, BG_GC);
392 clear_opt(sbi, FORCE_FG_GC);
393 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
394 set_opt(sbi, BG_GC);
395 set_opt(sbi, FORCE_FG_GC);
396 } else {
397 kfree(name);
398 return -EINVAL;
400 kfree(name);
401 break;
402 case Opt_disable_roll_forward:
403 set_opt(sbi, DISABLE_ROLL_FORWARD);
404 break;
405 case Opt_norecovery:
406 /* this option mounts f2fs with ro */
407 set_opt(sbi, DISABLE_ROLL_FORWARD);
408 if (!f2fs_readonly(sb))
409 return -EINVAL;
410 break;
411 case Opt_discard:
412 q = bdev_get_queue(sb->s_bdev);
413 if (blk_queue_discard(q)) {
414 set_opt(sbi, DISCARD);
415 } else {
416 f2fs_msg(sb, KERN_WARNING,
417 "mounting with \"discard\" option, but "
418 "the device does not support discard");
420 break;
421 case Opt_nodiscard:
422 clear_opt(sbi, DISCARD);
423 case Opt_noheap:
424 set_opt(sbi, NOHEAP);
425 break;
426 #ifdef CONFIG_F2FS_FS_XATTR
427 case Opt_user_xattr:
428 set_opt(sbi, XATTR_USER);
429 break;
430 case Opt_nouser_xattr:
431 clear_opt(sbi, XATTR_USER);
432 break;
433 case Opt_inline_xattr:
434 set_opt(sbi, INLINE_XATTR);
435 break;
436 #else
437 case Opt_user_xattr:
438 f2fs_msg(sb, KERN_INFO,
439 "user_xattr options not supported");
440 break;
441 case Opt_nouser_xattr:
442 f2fs_msg(sb, KERN_INFO,
443 "nouser_xattr options not supported");
444 break;
445 case Opt_inline_xattr:
446 f2fs_msg(sb, KERN_INFO,
447 "inline_xattr options not supported");
448 break;
449 #endif
450 #ifdef CONFIG_F2FS_FS_POSIX_ACL
451 case Opt_acl:
452 set_opt(sbi, POSIX_ACL);
453 break;
454 case Opt_noacl:
455 clear_opt(sbi, POSIX_ACL);
456 break;
457 #else
458 case Opt_acl:
459 f2fs_msg(sb, KERN_INFO, "acl options not supported");
460 break;
461 case Opt_noacl:
462 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
463 break;
464 #endif
465 case Opt_active_logs:
466 if (args->from && match_int(args, &arg))
467 return -EINVAL;
468 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
469 return -EINVAL;
470 sbi->active_logs = arg;
471 break;
472 case Opt_disable_ext_identify:
473 set_opt(sbi, DISABLE_EXT_IDENTIFY);
474 break;
475 case Opt_inline_data:
476 set_opt(sbi, INLINE_DATA);
477 break;
478 case Opt_inline_dentry:
479 set_opt(sbi, INLINE_DENTRY);
480 break;
481 case Opt_noinline_dentry:
482 clear_opt(sbi, INLINE_DENTRY);
483 break;
484 case Opt_flush_merge:
485 set_opt(sbi, FLUSH_MERGE);
486 break;
487 case Opt_noflush_merge:
488 clear_opt(sbi, FLUSH_MERGE);
489 break;
490 case Opt_nobarrier:
491 set_opt(sbi, NOBARRIER);
492 break;
493 case Opt_fastboot:
494 set_opt(sbi, FASTBOOT);
495 break;
496 case Opt_extent_cache:
497 set_opt(sbi, EXTENT_CACHE);
498 break;
499 case Opt_noextent_cache:
500 clear_opt(sbi, EXTENT_CACHE);
501 break;
502 case Opt_noinline_data:
503 clear_opt(sbi, INLINE_DATA);
504 break;
505 case Opt_data_flush:
506 set_opt(sbi, DATA_FLUSH);
507 break;
508 case Opt_mode:
509 name = match_strdup(&args[0]);
511 if (!name)
512 return -ENOMEM;
513 if (strlen(name) == 8 &&
514 !strncmp(name, "adaptive", 8)) {
515 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
516 } else if (strlen(name) == 3 &&
517 !strncmp(name, "lfs", 3)) {
518 set_opt_mode(sbi, F2FS_MOUNT_LFS);
519 } else {
520 kfree(name);
521 return -EINVAL;
523 kfree(name);
524 break;
525 case Opt_fault_injection:
526 if (args->from && match_int(args, &arg))
527 return -EINVAL;
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529 f2fs_build_fault_attr(sbi, arg);
530 #else
531 f2fs_msg(sb, KERN_INFO,
532 "FAULT_INJECTION was not selected");
533 #endif
534 break;
535 case Opt_lazytime:
536 sb->s_flags |= MS_LAZYTIME;
537 break;
538 case Opt_nolazytime:
539 sb->s_flags &= ~MS_LAZYTIME;
540 break;
541 default:
542 f2fs_msg(sb, KERN_ERR,
543 "Unrecognized mount option \"%s\" or missing value",
545 return -EINVAL;
548 return 0;
551 static struct inode *f2fs_alloc_inode(struct super_block *sb)
553 struct f2fs_inode_info *fi;
555 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
556 if (!fi)
557 return NULL;
559 init_once((void *) fi);
561 /* Initialize f2fs-specific inode info */
562 fi->vfs_inode.i_version = 1;
563 atomic_set(&fi->dirty_pages, 0);
564 fi->i_current_depth = 1;
565 fi->i_advise = 0;
566 init_rwsem(&fi->i_sem);
567 INIT_LIST_HEAD(&fi->dirty_list);
568 INIT_LIST_HEAD(&fi->gdirty_list);
569 INIT_LIST_HEAD(&fi->inmem_pages);
570 mutex_init(&fi->inmem_lock);
571 init_rwsem(&fi->dio_rwsem[READ]);
572 init_rwsem(&fi->dio_rwsem[WRITE]);
574 /* Will be used by directory only */
575 fi->i_dir_level = F2FS_SB(sb)->dir_level;
576 return &fi->vfs_inode;
579 static int f2fs_drop_inode(struct inode *inode)
582 * This is to avoid a deadlock condition like below.
583 * writeback_single_inode(inode)
584 * - f2fs_write_data_page
585 * - f2fs_gc -> iput -> evict
586 * - inode_wait_for_writeback(inode)
588 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
589 if (!inode->i_nlink && !is_bad_inode(inode)) {
590 /* to avoid evict_inode call simultaneously */
591 atomic_inc(&inode->i_count);
592 spin_unlock(&inode->i_lock);
594 /* some remained atomic pages should discarded */
595 if (f2fs_is_atomic_file(inode))
596 drop_inmem_pages(inode);
598 /* should remain fi->extent_tree for writepage */
599 f2fs_destroy_extent_node(inode);
601 sb_start_intwrite(inode->i_sb);
602 f2fs_i_size_write(inode, 0);
604 if (F2FS_HAS_BLOCKS(inode))
605 f2fs_truncate(inode);
607 sb_end_intwrite(inode->i_sb);
609 fscrypt_put_encryption_info(inode, NULL);
610 spin_lock(&inode->i_lock);
611 atomic_dec(&inode->i_count);
613 return 0;
616 return generic_drop_inode(inode);
619 int f2fs_inode_dirtied(struct inode *inode)
621 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
623 spin_lock(&sbi->inode_lock[DIRTY_META]);
624 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
625 spin_unlock(&sbi->inode_lock[DIRTY_META]);
626 return 1;
629 set_inode_flag(inode, FI_DIRTY_INODE);
630 list_add_tail(&F2FS_I(inode)->gdirty_list,
631 &sbi->inode_list[DIRTY_META]);
632 inc_page_count(sbi, F2FS_DIRTY_IMETA);
633 stat_inc_dirty_inode(sbi, DIRTY_META);
634 spin_unlock(&sbi->inode_lock[DIRTY_META]);
636 return 0;
639 void f2fs_inode_synced(struct inode *inode)
641 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
643 spin_lock(&sbi->inode_lock[DIRTY_META]);
644 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
645 spin_unlock(&sbi->inode_lock[DIRTY_META]);
646 return;
648 list_del_init(&F2FS_I(inode)->gdirty_list);
649 clear_inode_flag(inode, FI_DIRTY_INODE);
650 clear_inode_flag(inode, FI_AUTO_RECOVER);
651 dec_page_count(sbi, F2FS_DIRTY_IMETA);
652 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
653 spin_unlock(&sbi->inode_lock[DIRTY_META]);
657 * f2fs_dirty_inode() is called from __mark_inode_dirty()
659 * We should call set_dirty_inode to write the dirty inode through write_inode.
661 static void f2fs_dirty_inode(struct inode *inode, int flags)
663 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
665 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
666 inode->i_ino == F2FS_META_INO(sbi))
667 return;
669 if (flags == I_DIRTY_TIME)
670 return;
672 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
673 clear_inode_flag(inode, FI_AUTO_RECOVER);
675 f2fs_inode_dirtied(inode);
678 static void f2fs_i_callback(struct rcu_head *head)
680 struct inode *inode = container_of(head, struct inode, i_rcu);
681 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
684 static void f2fs_destroy_inode(struct inode *inode)
686 call_rcu(&inode->i_rcu, f2fs_i_callback);
689 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
691 percpu_counter_destroy(&sbi->alloc_valid_block_count);
692 percpu_counter_destroy(&sbi->total_valid_inode_count);
695 static void f2fs_put_super(struct super_block *sb)
697 struct f2fs_sb_info *sbi = F2FS_SB(sb);
699 if (sbi->s_proc) {
700 remove_proc_entry("segment_info", sbi->s_proc);
701 remove_proc_entry("segment_bits", sbi->s_proc);
702 remove_proc_entry(sb->s_id, f2fs_proc_root);
704 kobject_del(&sbi->s_kobj);
706 stop_gc_thread(sbi);
708 /* prevent remaining shrinker jobs */
709 mutex_lock(&sbi->umount_mutex);
712 * We don't need to do checkpoint when superblock is clean.
713 * But, the previous checkpoint was not done by umount, it needs to do
714 * clean checkpoint again.
716 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
717 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
718 struct cp_control cpc = {
719 .reason = CP_UMOUNT,
721 write_checkpoint(sbi, &cpc);
724 /* write_checkpoint can update stat informaion */
725 f2fs_destroy_stats(sbi);
728 * normally superblock is clean, so we need to release this.
729 * In addition, EIO will skip do checkpoint, we need this as well.
731 release_ino_entry(sbi, true);
732 release_discard_addrs(sbi);
734 f2fs_leave_shrinker(sbi);
735 mutex_unlock(&sbi->umount_mutex);
737 /* our cp_error case, we can wait for any writeback page */
738 f2fs_flush_merged_bios(sbi);
740 iput(sbi->node_inode);
741 iput(sbi->meta_inode);
743 /* destroy f2fs internal modules */
744 destroy_node_manager(sbi);
745 destroy_segment_manager(sbi);
747 kfree(sbi->ckpt);
748 kobject_put(&sbi->s_kobj);
749 wait_for_completion(&sbi->s_kobj_unregister);
751 sb->s_fs_info = NULL;
752 if (sbi->s_chksum_driver)
753 crypto_free_shash(sbi->s_chksum_driver);
754 kfree(sbi->raw_super);
756 destroy_percpu_info(sbi);
757 kfree(sbi);
760 int f2fs_sync_fs(struct super_block *sb, int sync)
762 struct f2fs_sb_info *sbi = F2FS_SB(sb);
763 int err = 0;
765 trace_f2fs_sync_fs(sb, sync);
767 if (sync) {
768 struct cp_control cpc;
770 cpc.reason = __get_cp_reason(sbi);
772 mutex_lock(&sbi->gc_mutex);
773 err = write_checkpoint(sbi, &cpc);
774 mutex_unlock(&sbi->gc_mutex);
776 f2fs_trace_ios(NULL, 1);
778 return err;
781 static int f2fs_freeze(struct super_block *sb)
783 int err;
785 if (f2fs_readonly(sb))
786 return 0;
788 err = f2fs_sync_fs(sb, 1);
789 return err;
792 static int f2fs_unfreeze(struct super_block *sb)
794 return 0;
797 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
799 struct super_block *sb = dentry->d_sb;
800 struct f2fs_sb_info *sbi = F2FS_SB(sb);
801 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
802 block_t total_count, user_block_count, start_count, ovp_count;
804 total_count = le64_to_cpu(sbi->raw_super->block_count);
805 user_block_count = sbi->user_block_count;
806 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
807 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
808 buf->f_type = F2FS_SUPER_MAGIC;
809 buf->f_bsize = sbi->blocksize;
811 buf->f_blocks = total_count - start_count;
812 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
813 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
815 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
816 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
818 buf->f_namelen = F2FS_NAME_LEN;
819 buf->f_fsid.val[0] = (u32)id;
820 buf->f_fsid.val[1] = (u32)(id >> 32);
822 return 0;
825 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
827 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
829 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
830 if (test_opt(sbi, FORCE_FG_GC))
831 seq_printf(seq, ",background_gc=%s", "sync");
832 else
833 seq_printf(seq, ",background_gc=%s", "on");
834 } else {
835 seq_printf(seq, ",background_gc=%s", "off");
837 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
838 seq_puts(seq, ",disable_roll_forward");
839 if (test_opt(sbi, DISCARD))
840 seq_puts(seq, ",discard");
841 if (test_opt(sbi, NOHEAP))
842 seq_puts(seq, ",no_heap_alloc");
843 #ifdef CONFIG_F2FS_FS_XATTR
844 if (test_opt(sbi, XATTR_USER))
845 seq_puts(seq, ",user_xattr");
846 else
847 seq_puts(seq, ",nouser_xattr");
848 if (test_opt(sbi, INLINE_XATTR))
849 seq_puts(seq, ",inline_xattr");
850 #endif
851 #ifdef CONFIG_F2FS_FS_POSIX_ACL
852 if (test_opt(sbi, POSIX_ACL))
853 seq_puts(seq, ",acl");
854 else
855 seq_puts(seq, ",noacl");
856 #endif
857 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
858 seq_puts(seq, ",disable_ext_identify");
859 if (test_opt(sbi, INLINE_DATA))
860 seq_puts(seq, ",inline_data");
861 else
862 seq_puts(seq, ",noinline_data");
863 if (test_opt(sbi, INLINE_DENTRY))
864 seq_puts(seq, ",inline_dentry");
865 else
866 seq_puts(seq, ",noinline_dentry");
867 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
868 seq_puts(seq, ",flush_merge");
869 if (test_opt(sbi, NOBARRIER))
870 seq_puts(seq, ",nobarrier");
871 if (test_opt(sbi, FASTBOOT))
872 seq_puts(seq, ",fastboot");
873 if (test_opt(sbi, EXTENT_CACHE))
874 seq_puts(seq, ",extent_cache");
875 else
876 seq_puts(seq, ",noextent_cache");
877 if (test_opt(sbi, DATA_FLUSH))
878 seq_puts(seq, ",data_flush");
880 seq_puts(seq, ",mode=");
881 if (test_opt(sbi, ADAPTIVE))
882 seq_puts(seq, "adaptive");
883 else if (test_opt(sbi, LFS))
884 seq_puts(seq, "lfs");
885 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
887 return 0;
890 static int segment_info_seq_show(struct seq_file *seq, void *offset)
892 struct super_block *sb = seq->private;
893 struct f2fs_sb_info *sbi = F2FS_SB(sb);
894 unsigned int total_segs =
895 le32_to_cpu(sbi->raw_super->segment_count_main);
896 int i;
898 seq_puts(seq, "format: segment_type|valid_blocks\n"
899 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
901 for (i = 0; i < total_segs; i++) {
902 struct seg_entry *se = get_seg_entry(sbi, i);
904 if ((i % 10) == 0)
905 seq_printf(seq, "%-10d", i);
906 seq_printf(seq, "%d|%-3u", se->type,
907 get_valid_blocks(sbi, i, 1));
908 if ((i % 10) == 9 || i == (total_segs - 1))
909 seq_putc(seq, '\n');
910 else
911 seq_putc(seq, ' ');
914 return 0;
917 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
919 struct super_block *sb = seq->private;
920 struct f2fs_sb_info *sbi = F2FS_SB(sb);
921 unsigned int total_segs =
922 le32_to_cpu(sbi->raw_super->segment_count_main);
923 int i, j;
925 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
926 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
928 for (i = 0; i < total_segs; i++) {
929 struct seg_entry *se = get_seg_entry(sbi, i);
931 seq_printf(seq, "%-10d", i);
932 seq_printf(seq, "%d|%-3u|", se->type,
933 get_valid_blocks(sbi, i, 1));
934 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
935 seq_printf(seq, " %.2x", se->cur_valid_map[j]);
936 seq_putc(seq, '\n');
938 return 0;
941 #define F2FS_PROC_FILE_DEF(_name) \
942 static int _name##_open_fs(struct inode *inode, struct file *file) \
944 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
947 static const struct file_operations f2fs_seq_##_name##_fops = { \
948 .open = _name##_open_fs, \
949 .read = seq_read, \
950 .llseek = seq_lseek, \
951 .release = single_release, \
954 F2FS_PROC_FILE_DEF(segment_info);
955 F2FS_PROC_FILE_DEF(segment_bits);
957 static void default_options(struct f2fs_sb_info *sbi)
959 /* init some FS parameters */
960 sbi->active_logs = NR_CURSEG_TYPE;
962 set_opt(sbi, BG_GC);
963 set_opt(sbi, INLINE_DATA);
964 set_opt(sbi, INLINE_DENTRY);
965 set_opt(sbi, EXTENT_CACHE);
966 sbi->sb->s_flags |= MS_LAZYTIME;
967 set_opt(sbi, FLUSH_MERGE);
968 if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
969 set_opt_mode(sbi, F2FS_MOUNT_LFS);
970 set_opt(sbi, DISCARD);
971 } else {
972 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
975 #ifdef CONFIG_F2FS_FS_XATTR
976 set_opt(sbi, XATTR_USER);
977 #endif
978 #ifdef CONFIG_F2FS_FS_POSIX_ACL
979 set_opt(sbi, POSIX_ACL);
980 #endif
982 #ifdef CONFIG_F2FS_FAULT_INJECTION
983 f2fs_build_fault_attr(sbi, 0);
984 #endif
987 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
989 struct f2fs_sb_info *sbi = F2FS_SB(sb);
990 struct f2fs_mount_info org_mount_opt;
991 int err, active_logs;
992 bool need_restart_gc = false;
993 bool need_stop_gc = false;
994 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
995 #ifdef CONFIG_F2FS_FAULT_INJECTION
996 struct f2fs_fault_info ffi = sbi->fault_info;
997 #endif
1000 * Save the old mount options in case we
1001 * need to restore them.
1003 org_mount_opt = sbi->mount_opt;
1004 active_logs = sbi->active_logs;
1006 /* recover superblocks we couldn't write due to previous RO mount */
1007 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1008 err = f2fs_commit_super(sbi, false);
1009 f2fs_msg(sb, KERN_INFO,
1010 "Try to recover all the superblocks, ret: %d", err);
1011 if (!err)
1012 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1015 sbi->mount_opt.opt = 0;
1016 default_options(sbi);
1018 /* parse mount options */
1019 err = parse_options(sb, data);
1020 if (err)
1021 goto restore_opts;
1024 * Previous and new state of filesystem is RO,
1025 * so skip checking GC and FLUSH_MERGE conditions.
1027 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1028 goto skip;
1030 /* disallow enable/disable extent_cache dynamically */
1031 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1032 err = -EINVAL;
1033 f2fs_msg(sbi->sb, KERN_WARNING,
1034 "switch extent_cache option is not allowed");
1035 goto restore_opts;
1039 * We stop the GC thread if FS is mounted as RO
1040 * or if background_gc = off is passed in mount
1041 * option. Also sync the filesystem.
1043 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1044 if (sbi->gc_thread) {
1045 stop_gc_thread(sbi);
1046 need_restart_gc = true;
1048 } else if (!sbi->gc_thread) {
1049 err = start_gc_thread(sbi);
1050 if (err)
1051 goto restore_opts;
1052 need_stop_gc = true;
1055 if (*flags & MS_RDONLY) {
1056 writeback_inodes_sb(sb, WB_REASON_SYNC);
1057 sync_inodes_sb(sb);
1059 set_sbi_flag(sbi, SBI_IS_DIRTY);
1060 set_sbi_flag(sbi, SBI_IS_CLOSE);
1061 f2fs_sync_fs(sb, 1);
1062 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1066 * We stop issue flush thread if FS is mounted as RO
1067 * or if flush_merge is not passed in mount option.
1069 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1070 destroy_flush_cmd_control(sbi);
1071 } else if (!SM_I(sbi)->cmd_control_info) {
1072 err = create_flush_cmd_control(sbi);
1073 if (err)
1074 goto restore_gc;
1076 skip:
1077 /* Update the POSIXACL Flag */
1078 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1079 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1081 return 0;
1082 restore_gc:
1083 if (need_restart_gc) {
1084 if (start_gc_thread(sbi))
1085 f2fs_msg(sbi->sb, KERN_WARNING,
1086 "background gc thread has stopped");
1087 } else if (need_stop_gc) {
1088 stop_gc_thread(sbi);
1090 restore_opts:
1091 sbi->mount_opt = org_mount_opt;
1092 sbi->active_logs = active_logs;
1093 #ifdef CONFIG_F2FS_FAULT_INJECTION
1094 sbi->fault_info = ffi;
1095 #endif
1096 return err;
1099 static struct super_operations f2fs_sops = {
1100 .alloc_inode = f2fs_alloc_inode,
1101 .drop_inode = f2fs_drop_inode,
1102 .destroy_inode = f2fs_destroy_inode,
1103 .write_inode = f2fs_write_inode,
1104 .dirty_inode = f2fs_dirty_inode,
1105 .show_options = f2fs_show_options,
1106 .evict_inode = f2fs_evict_inode,
1107 .put_super = f2fs_put_super,
1108 .sync_fs = f2fs_sync_fs,
1109 .freeze_fs = f2fs_freeze,
1110 .unfreeze_fs = f2fs_unfreeze,
1111 .statfs = f2fs_statfs,
1112 .remount_fs = f2fs_remount,
1115 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1116 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1118 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1119 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1120 ctx, len, NULL);
1123 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1125 *key = F2FS_I_SB(inode)->key_prefix;
1126 return F2FS_I_SB(inode)->key_prefix_size;
1129 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1130 void *fs_data)
1132 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1133 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1134 ctx, len, fs_data, XATTR_CREATE);
1137 static unsigned f2fs_max_namelen(struct inode *inode)
1139 return S_ISLNK(inode->i_mode) ?
1140 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1143 static struct fscrypt_operations f2fs_cryptops = {
1144 .get_context = f2fs_get_context,
1145 .key_prefix = f2fs_key_prefix,
1146 .set_context = f2fs_set_context,
1147 .is_encrypted = f2fs_encrypted_inode,
1148 .empty_dir = f2fs_empty_dir,
1149 .max_namelen = f2fs_max_namelen,
1151 #else
1152 static struct fscrypt_operations f2fs_cryptops = {
1153 .is_encrypted = f2fs_encrypted_inode,
1155 #endif
1157 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1158 u64 ino, u32 generation)
1160 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1161 struct inode *inode;
1163 if (check_nid_range(sbi, ino))
1164 return ERR_PTR(-ESTALE);
1167 * f2fs_iget isn't quite right if the inode is currently unallocated!
1168 * However f2fs_iget currently does appropriate checks to handle stale
1169 * inodes so everything is OK.
1171 inode = f2fs_iget(sb, ino);
1172 if (IS_ERR(inode))
1173 return ERR_CAST(inode);
1174 if (unlikely(generation && inode->i_generation != generation)) {
1175 /* we didn't find the right inode.. */
1176 iput(inode);
1177 return ERR_PTR(-ESTALE);
1179 return inode;
1182 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1183 int fh_len, int fh_type)
1185 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1186 f2fs_nfs_get_inode);
1189 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1190 int fh_len, int fh_type)
1192 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1193 f2fs_nfs_get_inode);
1196 static const struct export_operations f2fs_export_ops = {
1197 .fh_to_dentry = f2fs_fh_to_dentry,
1198 .fh_to_parent = f2fs_fh_to_parent,
1199 .get_parent = f2fs_get_parent,
1202 static loff_t max_file_blocks(void)
1204 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1205 loff_t leaf_count = ADDRS_PER_BLOCK;
1207 /* two direct node blocks */
1208 result += (leaf_count * 2);
1210 /* two indirect node blocks */
1211 leaf_count *= NIDS_PER_BLOCK;
1212 result += (leaf_count * 2);
1214 /* one double indirect node block */
1215 leaf_count *= NIDS_PER_BLOCK;
1216 result += leaf_count;
1218 return result;
1221 static int __f2fs_commit_super(struct buffer_head *bh,
1222 struct f2fs_super_block *super)
1224 lock_buffer(bh);
1225 if (super)
1226 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1227 set_buffer_uptodate(bh);
1228 set_buffer_dirty(bh);
1229 unlock_buffer(bh);
1231 /* it's rare case, we can do fua all the time */
1232 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1235 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1236 struct buffer_head *bh)
1238 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1239 (bh->b_data + F2FS_SUPER_OFFSET);
1240 struct super_block *sb = sbi->sb;
1241 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1242 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1243 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1244 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1245 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1246 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1247 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1248 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1249 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1250 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1251 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1252 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1253 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1254 u64 main_end_blkaddr = main_blkaddr +
1255 (segment_count_main << log_blocks_per_seg);
1256 u64 seg_end_blkaddr = segment0_blkaddr +
1257 (segment_count << log_blocks_per_seg);
1259 if (segment0_blkaddr != cp_blkaddr) {
1260 f2fs_msg(sb, KERN_INFO,
1261 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1262 segment0_blkaddr, cp_blkaddr);
1263 return true;
1266 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1267 sit_blkaddr) {
1268 f2fs_msg(sb, KERN_INFO,
1269 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1270 cp_blkaddr, sit_blkaddr,
1271 segment_count_ckpt << log_blocks_per_seg);
1272 return true;
1275 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1276 nat_blkaddr) {
1277 f2fs_msg(sb, KERN_INFO,
1278 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1279 sit_blkaddr, nat_blkaddr,
1280 segment_count_sit << log_blocks_per_seg);
1281 return true;
1284 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1285 ssa_blkaddr) {
1286 f2fs_msg(sb, KERN_INFO,
1287 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1288 nat_blkaddr, ssa_blkaddr,
1289 segment_count_nat << log_blocks_per_seg);
1290 return true;
1293 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1294 main_blkaddr) {
1295 f2fs_msg(sb, KERN_INFO,
1296 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1297 ssa_blkaddr, main_blkaddr,
1298 segment_count_ssa << log_blocks_per_seg);
1299 return true;
1302 if (main_end_blkaddr > seg_end_blkaddr) {
1303 f2fs_msg(sb, KERN_INFO,
1304 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1305 main_blkaddr,
1306 segment0_blkaddr +
1307 (segment_count << log_blocks_per_seg),
1308 segment_count_main << log_blocks_per_seg);
1309 return true;
1310 } else if (main_end_blkaddr < seg_end_blkaddr) {
1311 int err = 0;
1312 char *res;
1314 /* fix in-memory information all the time */
1315 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1316 segment0_blkaddr) >> log_blocks_per_seg);
1318 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1319 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1320 res = "internally";
1321 } else {
1322 err = __f2fs_commit_super(bh, NULL);
1323 res = err ? "failed" : "done";
1325 f2fs_msg(sb, KERN_INFO,
1326 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1327 res, main_blkaddr,
1328 segment0_blkaddr +
1329 (segment_count << log_blocks_per_seg),
1330 segment_count_main << log_blocks_per_seg);
1331 if (err)
1332 return true;
1334 return false;
1337 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1338 struct buffer_head *bh)
1340 block_t segment_count, segs_per_sec, secs_per_zone;
1341 block_t total_sections, blocks_per_seg;
1342 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1343 (bh->b_data + F2FS_SUPER_OFFSET);
1344 struct super_block *sb = sbi->sb;
1345 unsigned int blocksize;
1347 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1348 f2fs_msg(sb, KERN_INFO,
1349 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1350 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1351 return 1;
1354 /* Currently, support only 4KB page cache size */
1355 if (F2FS_BLKSIZE != PAGE_SIZE) {
1356 f2fs_msg(sb, KERN_INFO,
1357 "Invalid page_cache_size (%lu), supports only 4KB\n",
1358 PAGE_SIZE);
1359 return 1;
1362 /* Currently, support only 4KB block size */
1363 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1364 if (blocksize != F2FS_BLKSIZE) {
1365 f2fs_msg(sb, KERN_INFO,
1366 "Invalid blocksize (%u), supports only 4KB\n",
1367 blocksize);
1368 return 1;
1371 /* check log blocks per segment */
1372 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1373 f2fs_msg(sb, KERN_INFO,
1374 "Invalid log blocks per segment (%u)\n",
1375 le32_to_cpu(raw_super->log_blocks_per_seg));
1376 return 1;
1379 /* Currently, support 512/1024/2048/4096 bytes sector size */
1380 if (le32_to_cpu(raw_super->log_sectorsize) >
1381 F2FS_MAX_LOG_SECTOR_SIZE ||
1382 le32_to_cpu(raw_super->log_sectorsize) <
1383 F2FS_MIN_LOG_SECTOR_SIZE) {
1384 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1385 le32_to_cpu(raw_super->log_sectorsize));
1386 return 1;
1388 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1389 le32_to_cpu(raw_super->log_sectorsize) !=
1390 F2FS_MAX_LOG_SECTOR_SIZE) {
1391 f2fs_msg(sb, KERN_INFO,
1392 "Invalid log sectors per block(%u) log sectorsize(%u)",
1393 le32_to_cpu(raw_super->log_sectors_per_block),
1394 le32_to_cpu(raw_super->log_sectorsize));
1395 return 1;
1398 segment_count = le32_to_cpu(raw_super->segment_count);
1399 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1400 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1401 total_sections = le32_to_cpu(raw_super->section_count);
1403 /* blocks_per_seg should be 512, given the above check */
1404 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
1406 if (segment_count > F2FS_MAX_SEGMENT ||
1407 segment_count < F2FS_MIN_SEGMENTS) {
1408 f2fs_msg(sb, KERN_INFO,
1409 "Invalid segment count (%u)",
1410 segment_count);
1411 return 1;
1414 if (total_sections > segment_count ||
1415 total_sections < F2FS_MIN_SEGMENTS ||
1416 segs_per_sec > segment_count || !segs_per_sec) {
1417 f2fs_msg(sb, KERN_INFO,
1418 "Invalid segment/section count (%u, %u x %u)",
1419 segment_count, total_sections, segs_per_sec);
1420 return 1;
1423 if ((segment_count / segs_per_sec) < total_sections) {
1424 f2fs_msg(sb, KERN_INFO,
1425 "Small segment_count (%u < %u * %u)",
1426 segment_count, segs_per_sec, total_sections);
1427 return 1;
1430 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
1431 f2fs_msg(sb, KERN_INFO,
1432 "Wrong segment_count / block_count (%u > %llu)",
1433 segment_count, le64_to_cpu(raw_super->block_count));
1434 return 1;
1437 if (secs_per_zone > total_sections || !secs_per_zone) {
1438 f2fs_msg(sb, KERN_INFO,
1439 "Wrong secs_per_zone / total_sections (%u, %u)",
1440 secs_per_zone, total_sections);
1441 return 1;
1443 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION) {
1444 f2fs_msg(sb, KERN_INFO,
1445 "Corrupted extension count (%u > %u)",
1446 le32_to_cpu(raw_super->extension_count),
1447 F2FS_MAX_EXTENSION);
1448 return 1;
1451 if (le32_to_cpu(raw_super->cp_payload) >
1452 (blocks_per_seg - F2FS_CP_PACKS)) {
1453 f2fs_msg(sb, KERN_INFO,
1454 "Insane cp_payload (%u > %u)",
1455 le32_to_cpu(raw_super->cp_payload),
1456 blocks_per_seg - F2FS_CP_PACKS);
1457 return 1;
1460 /* check reserved ino info */
1461 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1462 le32_to_cpu(raw_super->meta_ino) != 2 ||
1463 le32_to_cpu(raw_super->root_ino) != 3) {
1464 f2fs_msg(sb, KERN_INFO,
1465 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1466 le32_to_cpu(raw_super->node_ino),
1467 le32_to_cpu(raw_super->meta_ino),
1468 le32_to_cpu(raw_super->root_ino));
1469 return 1;
1472 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1473 if (sanity_check_area_boundary(sbi, bh))
1474 return 1;
1476 return 0;
1479 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1481 unsigned int total, fsmeta;
1482 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1483 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1484 unsigned int ovp_segments, reserved_segments;
1485 unsigned int main_segs, blocks_per_seg;
1486 unsigned int sit_segs, nat_segs;
1487 unsigned int sit_bitmap_size, nat_bitmap_size;
1488 unsigned int log_blocks_per_seg;
1489 unsigned int segment_count_main;
1490 unsigned int cp_pack_start_sum, cp_payload;
1491 block_t user_block_count;
1492 int i, j;
1494 total = le32_to_cpu(raw_super->segment_count);
1495 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1496 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
1497 fsmeta += sit_segs;
1498 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
1499 fsmeta += nat_segs;
1500 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1501 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1503 if (unlikely(fsmeta >= total))
1504 return 1;
1506 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1507 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1509 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1510 ovp_segments == 0 || reserved_segments == 0)) {
1511 f2fs_msg(sbi->sb, KERN_ERR,
1512 "Wrong layout: check mkfs.f2fs version");
1513 return 1;
1516 user_block_count = le64_to_cpu(ckpt->user_block_count);
1517 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1518 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1519 if (!user_block_count || user_block_count >=
1520 segment_count_main << log_blocks_per_seg) {
1521 f2fs_msg(sbi->sb, KERN_ERR,
1522 "Wrong user_block_count: %u", user_block_count);
1523 return 1;
1526 main_segs = le32_to_cpu(raw_super->segment_count_main);
1527 blocks_per_seg = sbi->blocks_per_seg;
1529 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1530 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
1531 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
1532 return 1;
1533 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
1534 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
1535 le32_to_cpu(ckpt->cur_node_segno[j])) {
1536 f2fs_msg(sbi->sb, KERN_ERR,
1537 "Node segment (%u, %u) has the same "
1538 "segno: %u", i, j,
1539 le32_to_cpu(ckpt->cur_node_segno[i]));
1540 return 1;
1544 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1545 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
1546 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
1547 return 1;
1548 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
1549 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
1550 le32_to_cpu(ckpt->cur_data_segno[j])) {
1551 f2fs_msg(sbi->sb, KERN_ERR,
1552 "Data segment (%u, %u) has the same "
1553 "segno: %u", i, j,
1554 le32_to_cpu(ckpt->cur_data_segno[i]));
1555 return 1;
1559 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1560 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
1561 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
1562 le32_to_cpu(ckpt->cur_data_segno[j])) {
1563 f2fs_msg(sbi->sb, KERN_ERR,
1564 "Node segment (%u) and Data segment (%u)"
1565 " has the same segno: %u", i, j,
1566 le32_to_cpu(ckpt->cur_node_segno[i]));
1567 return 1;
1572 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1573 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1575 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
1576 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
1577 f2fs_msg(sbi->sb, KERN_ERR,
1578 "Wrong bitmap size: sit: %u, nat:%u",
1579 sit_bitmap_size, nat_bitmap_size);
1580 return 1;
1583 cp_pack_start_sum = __start_sum_addr(sbi);
1584 cp_payload = __cp_payload(sbi);
1585 if (cp_pack_start_sum < cp_payload + 1 ||
1586 cp_pack_start_sum > blocks_per_seg - 1 -
1587 NR_CURSEG_TYPE) {
1588 f2fs_msg(sbi->sb, KERN_ERR,
1589 "Wrong cp_pack_start_sum: %u",
1590 cp_pack_start_sum);
1591 return 1;
1594 if (unlikely(f2fs_cp_error(sbi))) {
1595 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1596 return 1;
1598 return 0;
1601 static void init_sb_info(struct f2fs_sb_info *sbi)
1603 struct f2fs_super_block *raw_super = sbi->raw_super;
1604 int i;
1606 sbi->log_sectors_per_block =
1607 le32_to_cpu(raw_super->log_sectors_per_block);
1608 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1609 sbi->blocksize = 1 << sbi->log_blocksize;
1610 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1611 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1612 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1613 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1614 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1615 sbi->total_node_count =
1616 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1617 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1618 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1619 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1620 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1621 sbi->cur_victim_sec = NULL_SECNO;
1622 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1624 sbi->dir_level = DEF_DIR_LEVEL;
1625 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1626 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1627 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1629 for (i = 0; i < NR_COUNT_TYPE; i++)
1630 atomic_set(&sbi->nr_pages[i], 0);
1632 INIT_LIST_HEAD(&sbi->s_list);
1633 mutex_init(&sbi->umount_mutex);
1634 mutex_init(&sbi->wio_mutex[NODE]);
1635 mutex_init(&sbi->wio_mutex[DATA]);
1636 spin_lock_init(&sbi->cp_lock);
1638 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1639 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1640 F2FS_KEY_DESC_PREFIX_SIZE);
1641 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1642 #endif
1645 static int init_percpu_info(struct f2fs_sb_info *sbi)
1647 int err;
1649 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1650 if (err)
1651 return err;
1653 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
1654 GFP_KERNEL);
1655 if (err)
1656 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1658 return err;
1662 * Read f2fs raw super block.
1663 * Because we have two copies of super block, so read both of them
1664 * to get the first valid one. If any one of them is broken, we pass
1665 * them recovery flag back to the caller.
1667 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1668 struct f2fs_super_block **raw_super,
1669 int *valid_super_block, int *recovery)
1671 struct super_block *sb = sbi->sb;
1672 int block;
1673 struct buffer_head *bh;
1674 struct f2fs_super_block *super;
1675 int err = 0;
1677 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1678 if (!super)
1679 return -ENOMEM;
1681 for (block = 0; block < 2; block++) {
1682 bh = sb_bread(sb, block);
1683 if (!bh) {
1684 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1685 block + 1);
1686 err = -EIO;
1687 continue;
1690 /* sanity checking of raw super */
1691 if (sanity_check_raw_super(sbi, bh)) {
1692 f2fs_msg(sb, KERN_ERR,
1693 "Can't find valid F2FS filesystem in %dth superblock",
1694 block + 1);
1695 err = -EINVAL;
1696 brelse(bh);
1697 continue;
1700 if (!*raw_super) {
1701 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1702 sizeof(*super));
1703 *valid_super_block = block;
1704 *raw_super = super;
1706 brelse(bh);
1709 /* Fail to read any one of the superblocks*/
1710 if (err < 0)
1711 *recovery = 1;
1713 /* No valid superblock */
1714 if (!*raw_super)
1715 kfree(super);
1716 else
1717 err = 0;
1719 return err;
1722 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1724 struct buffer_head *bh;
1725 int err;
1727 if ((recover && f2fs_readonly(sbi->sb)) ||
1728 bdev_read_only(sbi->sb->s_bdev)) {
1729 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1730 return -EROFS;
1733 /* write back-up superblock first */
1734 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1735 if (!bh)
1736 return -EIO;
1737 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1738 brelse(bh);
1740 /* if we are in recovery path, skip writing valid superblock */
1741 if (recover || err)
1742 return err;
1744 /* write current valid superblock */
1745 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1746 if (!bh)
1747 return -EIO;
1748 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1749 brelse(bh);
1750 return err;
1753 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1755 struct f2fs_sb_info *sbi;
1756 struct f2fs_super_block *raw_super;
1757 struct inode *root;
1758 int err;
1759 bool retry = true, need_fsck = false;
1760 char *options = NULL;
1761 int recovery, i, valid_super_block;
1762 struct curseg_info *seg_i;
1764 try_onemore:
1765 err = -EINVAL;
1766 raw_super = NULL;
1767 valid_super_block = -1;
1768 recovery = 0;
1770 /* allocate memory for f2fs-specific super block info */
1771 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1772 if (!sbi)
1773 return -ENOMEM;
1775 sbi->sb = sb;
1777 /* Load the checksum driver */
1778 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1779 if (IS_ERR(sbi->s_chksum_driver)) {
1780 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1781 err = PTR_ERR(sbi->s_chksum_driver);
1782 sbi->s_chksum_driver = NULL;
1783 goto free_sbi;
1786 /* set a block size */
1787 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1788 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1789 goto free_sbi;
1792 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1793 &recovery);
1794 if (err)
1795 goto free_sbi;
1797 sb->s_fs_info = sbi;
1798 sbi->raw_super = raw_super;
1800 default_options(sbi);
1801 /* parse mount options */
1802 options = kstrdup((const char *)data, GFP_KERNEL);
1803 if (data && !options) {
1804 err = -ENOMEM;
1805 goto free_sb_buf;
1808 err = parse_options(sb, options);
1809 if (err)
1810 goto free_options;
1812 sbi->max_file_blocks = max_file_blocks();
1813 sb->s_maxbytes = sbi->max_file_blocks <<
1814 le32_to_cpu(raw_super->log_blocksize);
1815 sb->s_max_links = F2FS_LINK_MAX;
1816 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1818 sb->s_op = &f2fs_sops;
1819 sb->s_cop = &f2fs_cryptops;
1820 sb->s_xattr = f2fs_xattr_handlers;
1821 sb->s_export_op = &f2fs_export_ops;
1822 sb->s_magic = F2FS_SUPER_MAGIC;
1823 sb->s_time_gran = 1;
1824 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1825 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1826 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1828 /* init f2fs-specific super block info */
1829 sbi->valid_super_block = valid_super_block;
1830 mutex_init(&sbi->gc_mutex);
1831 mutex_init(&sbi->cp_mutex);
1832 init_rwsem(&sbi->node_write);
1834 /* disallow all the data/node/meta page writes */
1835 set_sbi_flag(sbi, SBI_POR_DOING);
1836 spin_lock_init(&sbi->stat_lock);
1838 init_rwsem(&sbi->read_io.io_rwsem);
1839 sbi->read_io.sbi = sbi;
1840 sbi->read_io.bio = NULL;
1841 for (i = 0; i < NR_PAGE_TYPE; i++) {
1842 init_rwsem(&sbi->write_io[i].io_rwsem);
1843 sbi->write_io[i].sbi = sbi;
1844 sbi->write_io[i].bio = NULL;
1847 init_rwsem(&sbi->cp_rwsem);
1848 init_waitqueue_head(&sbi->cp_wait);
1849 init_sb_info(sbi);
1851 err = init_percpu_info(sbi);
1852 if (err)
1853 goto free_options;
1855 /* get an inode for meta space */
1856 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1857 if (IS_ERR(sbi->meta_inode)) {
1858 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1859 err = PTR_ERR(sbi->meta_inode);
1860 goto free_options;
1863 err = get_valid_checkpoint(sbi);
1864 if (err) {
1865 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1866 goto free_meta_inode;
1869 sbi->total_valid_node_count =
1870 le32_to_cpu(sbi->ckpt->valid_node_count);
1871 percpu_counter_set(&sbi->total_valid_inode_count,
1872 le32_to_cpu(sbi->ckpt->valid_inode_count));
1873 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1874 sbi->total_valid_block_count =
1875 le64_to_cpu(sbi->ckpt->valid_block_count);
1876 sbi->last_valid_block_count = sbi->total_valid_block_count;
1878 for (i = 0; i < NR_INODE_TYPE; i++) {
1879 INIT_LIST_HEAD(&sbi->inode_list[i]);
1880 spin_lock_init(&sbi->inode_lock[i]);
1883 init_extent_cache_info(sbi);
1885 init_ino_entry_info(sbi);
1887 /* setup f2fs internal modules */
1888 err = build_segment_manager(sbi);
1889 if (err) {
1890 f2fs_msg(sb, KERN_ERR,
1891 "Failed to initialize F2FS segment manager");
1892 goto free_sm;
1894 err = build_node_manager(sbi);
1895 if (err) {
1896 f2fs_msg(sb, KERN_ERR,
1897 "Failed to initialize F2FS node manager");
1898 goto free_nm;
1901 /* For write statistics */
1902 if (sb->s_bdev->bd_part)
1903 sbi->sectors_written_start =
1904 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1906 /* Read accumulated write IO statistics if exists */
1907 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1908 if (__exist_node_summaries(sbi))
1909 sbi->kbytes_written =
1910 le64_to_cpu(seg_i->journal->info.kbytes_written);
1912 build_gc_manager(sbi);
1914 /* get an inode for node space */
1915 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1916 if (IS_ERR(sbi->node_inode)) {
1917 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1918 err = PTR_ERR(sbi->node_inode);
1919 goto free_nm;
1922 f2fs_join_shrinker(sbi);
1924 /* if there are nt orphan nodes free them */
1925 err = recover_orphan_inodes(sbi);
1926 if (err)
1927 goto free_node_inode;
1929 /* read root inode and dentry */
1930 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1931 if (IS_ERR(root)) {
1932 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1933 err = PTR_ERR(root);
1934 goto free_node_inode;
1936 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1937 iput(root);
1938 err = -EINVAL;
1939 goto free_node_inode;
1942 sb->s_root = d_make_root(root); /* allocate root dentry */
1943 if (!sb->s_root) {
1944 err = -ENOMEM;
1945 goto free_root_inode;
1948 err = f2fs_build_stats(sbi);
1949 if (err)
1950 goto free_root_inode;
1952 if (f2fs_proc_root)
1953 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1955 if (sbi->s_proc) {
1956 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1957 &f2fs_seq_segment_info_fops, sb);
1958 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1959 &f2fs_seq_segment_bits_fops, sb);
1962 sbi->s_kobj.kset = f2fs_kset;
1963 init_completion(&sbi->s_kobj_unregister);
1964 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1965 "%s", sb->s_id);
1966 if (err)
1967 goto free_proc;
1969 /* recover fsynced data */
1970 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1972 * mount should be failed, when device has readonly mode, and
1973 * previous checkpoint was not done by clean system shutdown.
1975 if (bdev_read_only(sb->s_bdev) &&
1976 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1977 err = -EROFS;
1978 goto free_kobj;
1981 if (need_fsck)
1982 set_sbi_flag(sbi, SBI_NEED_FSCK);
1984 if (!retry)
1985 goto skip_recovery;
1987 err = recover_fsync_data(sbi, false);
1988 if (err < 0) {
1989 need_fsck = true;
1990 f2fs_msg(sb, KERN_ERR,
1991 "Cannot recover all fsync data errno=%d", err);
1992 goto free_kobj;
1994 } else {
1995 err = recover_fsync_data(sbi, true);
1997 if (!f2fs_readonly(sb) && err > 0) {
1998 err = -EINVAL;
1999 f2fs_msg(sb, KERN_ERR,
2000 "Need to recover fsync data");
2001 goto free_kobj;
2004 skip_recovery:
2005 /* recover_fsync_data() cleared this already */
2006 clear_sbi_flag(sbi, SBI_POR_DOING);
2009 * If filesystem is not mounted as read-only then
2010 * do start the gc_thread.
2012 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2013 /* After POR, we can run background GC thread.*/
2014 err = start_gc_thread(sbi);
2015 if (err)
2016 goto free_kobj;
2018 kfree(options);
2020 /* recover broken superblock */
2021 if (recovery) {
2022 err = f2fs_commit_super(sbi, true);
2023 f2fs_msg(sb, KERN_INFO,
2024 "Try to recover %dth superblock, ret: %d",
2025 sbi->valid_super_block ? 1 : 2, err);
2028 f2fs_update_time(sbi, CP_TIME);
2029 f2fs_update_time(sbi, REQ_TIME);
2030 return 0;
2032 free_kobj:
2033 f2fs_sync_inode_meta(sbi);
2034 kobject_del(&sbi->s_kobj);
2035 kobject_put(&sbi->s_kobj);
2036 wait_for_completion(&sbi->s_kobj_unregister);
2037 free_proc:
2038 if (sbi->s_proc) {
2039 remove_proc_entry("segment_info", sbi->s_proc);
2040 remove_proc_entry("segment_bits", sbi->s_proc);
2041 remove_proc_entry(sb->s_id, f2fs_proc_root);
2043 f2fs_destroy_stats(sbi);
2044 free_root_inode:
2045 dput(sb->s_root);
2046 sb->s_root = NULL;
2047 free_node_inode:
2048 truncate_inode_pages_final(NODE_MAPPING(sbi));
2049 mutex_lock(&sbi->umount_mutex);
2050 release_ino_entry(sbi, true);
2051 f2fs_leave_shrinker(sbi);
2052 iput(sbi->node_inode);
2053 mutex_unlock(&sbi->umount_mutex);
2054 free_nm:
2055 destroy_node_manager(sbi);
2056 free_sm:
2057 destroy_segment_manager(sbi);
2058 kfree(sbi->ckpt);
2059 free_meta_inode:
2060 make_bad_inode(sbi->meta_inode);
2061 iput(sbi->meta_inode);
2062 free_options:
2063 destroy_percpu_info(sbi);
2064 kfree(options);
2065 free_sb_buf:
2066 kfree(raw_super);
2067 free_sbi:
2068 if (sbi->s_chksum_driver)
2069 crypto_free_shash(sbi->s_chksum_driver);
2070 kfree(sbi);
2072 /* give only one another chance */
2073 if (retry) {
2074 retry = false;
2075 shrink_dcache_sb(sb);
2076 goto try_onemore;
2078 return err;
2081 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2082 const char *dev_name, void *data)
2084 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2087 static void kill_f2fs_super(struct super_block *sb)
2089 if (sb->s_root)
2090 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2091 kill_block_super(sb);
2094 static struct file_system_type f2fs_fs_type = {
2095 .owner = THIS_MODULE,
2096 .name = "f2fs",
2097 .mount = f2fs_mount,
2098 .kill_sb = kill_f2fs_super,
2099 .fs_flags = FS_REQUIRES_DEV,
2101 MODULE_ALIAS_FS("f2fs");
2103 static int __init init_inodecache(void)
2105 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2106 sizeof(struct f2fs_inode_info), 0,
2107 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2108 if (!f2fs_inode_cachep)
2109 return -ENOMEM;
2110 return 0;
2113 static void destroy_inodecache(void)
2116 * Make sure all delayed rcu free inodes are flushed before we
2117 * destroy cache.
2119 rcu_barrier();
2120 kmem_cache_destroy(f2fs_inode_cachep);
2123 static int __init init_f2fs_fs(void)
2125 int err;
2127 if (PAGE_SIZE != F2FS_BLKSIZE) {
2128 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
2129 PAGE_SIZE, F2FS_BLKSIZE);
2130 return -EINVAL;
2133 f2fs_build_trace_ios();
2135 err = init_inodecache();
2136 if (err)
2137 goto fail;
2138 err = create_node_manager_caches();
2139 if (err)
2140 goto free_inodecache;
2141 err = create_segment_manager_caches();
2142 if (err)
2143 goto free_node_manager_caches;
2144 err = create_checkpoint_caches();
2145 if (err)
2146 goto free_segment_manager_caches;
2147 err = create_extent_cache();
2148 if (err)
2149 goto free_checkpoint_caches;
2150 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2151 if (!f2fs_kset) {
2152 err = -ENOMEM;
2153 goto free_extent_cache;
2155 err = register_shrinker(&f2fs_shrinker_info);
2156 if (err)
2157 goto free_kset;
2159 err = register_filesystem(&f2fs_fs_type);
2160 if (err)
2161 goto free_shrinker;
2162 err = f2fs_create_root_stats();
2163 if (err)
2164 goto free_filesystem;
2165 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2166 return 0;
2168 free_filesystem:
2169 unregister_filesystem(&f2fs_fs_type);
2170 free_shrinker:
2171 unregister_shrinker(&f2fs_shrinker_info);
2172 free_kset:
2173 kset_unregister(f2fs_kset);
2174 free_extent_cache:
2175 destroy_extent_cache();
2176 free_checkpoint_caches:
2177 destroy_checkpoint_caches();
2178 free_segment_manager_caches:
2179 destroy_segment_manager_caches();
2180 free_node_manager_caches:
2181 destroy_node_manager_caches();
2182 free_inodecache:
2183 destroy_inodecache();
2184 fail:
2185 return err;
2188 static void __exit exit_f2fs_fs(void)
2190 remove_proc_entry("fs/f2fs", NULL);
2191 f2fs_destroy_root_stats();
2192 unregister_filesystem(&f2fs_fs_type);
2193 unregister_shrinker(&f2fs_shrinker_info);
2194 kset_unregister(f2fs_kset);
2195 destroy_extent_cache();
2196 destroy_checkpoint_caches();
2197 destroy_segment_manager_caches();
2198 destroy_node_manager_caches();
2199 destroy_inodecache();
2200 f2fs_destroy_trace_ios();
2203 module_init(init_f2fs_fs)
2204 module_exit(exit_f2fs_fs)
2206 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2207 MODULE_DESCRIPTION("Flash Friendly File System");
2208 MODULE_LICENSE("GPL");