4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
38 static struct proc_dir_entry
*f2fs_proc_root
;
39 static struct kmem_cache
*f2fs_inode_cachep
;
40 static struct kset
*f2fs_kset
;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 char *fault_name
[FAULT_MAX
] = {
45 [FAULT_KMALLOC
] = "kmalloc",
46 [FAULT_PAGE_ALLOC
] = "page alloc",
47 [FAULT_ALLOC_NID
] = "alloc nid",
48 [FAULT_ORPHAN
] = "orphan",
49 [FAULT_BLOCK
] = "no more block",
50 [FAULT_DIR_DEPTH
] = "too big dir depth",
51 [FAULT_EVICT_INODE
] = "evict_inode fail",
52 [FAULT_IO
] = "IO error",
53 [FAULT_CHECKPOINT
] = "checkpoint error",
56 static void f2fs_build_fault_attr(struct f2fs_sb_info
*sbi
,
59 struct f2fs_fault_info
*ffi
= &sbi
->fault_info
;
62 atomic_set(&ffi
->inject_ops
, 0);
63 ffi
->inject_rate
= rate
;
64 ffi
->inject_type
= (1 << FAULT_MAX
) - 1;
66 memset(ffi
, 0, sizeof(struct f2fs_fault_info
));
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info
= {
73 .scan_objects
= f2fs_shrink_scan
,
74 .count_objects
= f2fs_shrink_count
,
75 .seeks
= DEFAULT_SEEKS
,
80 Opt_disable_roll_forward
,
90 Opt_disable_ext_identify
,
110 static match_table_t f2fs_tokens
= {
111 {Opt_gc_background
, "background_gc=%s"},
112 {Opt_disable_roll_forward
, "disable_roll_forward"},
113 {Opt_norecovery
, "norecovery"},
114 {Opt_discard
, "discard"},
115 {Opt_nodiscard
, "nodiscard"},
116 {Opt_noheap
, "no_heap"},
117 {Opt_user_xattr
, "user_xattr"},
118 {Opt_nouser_xattr
, "nouser_xattr"},
120 {Opt_noacl
, "noacl"},
121 {Opt_active_logs
, "active_logs=%u"},
122 {Opt_disable_ext_identify
, "disable_ext_identify"},
123 {Opt_inline_xattr
, "inline_xattr"},
124 {Opt_inline_data
, "inline_data"},
125 {Opt_inline_dentry
, "inline_dentry"},
126 {Opt_noinline_dentry
, "noinline_dentry"},
127 {Opt_flush_merge
, "flush_merge"},
128 {Opt_noflush_merge
, "noflush_merge"},
129 {Opt_nobarrier
, "nobarrier"},
130 {Opt_fastboot
, "fastboot"},
131 {Opt_extent_cache
, "extent_cache"},
132 {Opt_noextent_cache
, "noextent_cache"},
133 {Opt_noinline_data
, "noinline_data"},
134 {Opt_data_flush
, "data_flush"},
135 {Opt_mode
, "mode=%s"},
136 {Opt_fault_injection
, "fault_injection=%u"},
137 {Opt_lazytime
, "lazytime"},
138 {Opt_nolazytime
, "nolazytime"},
142 /* Sysfs support for f2fs */
144 GC_THREAD
, /* struct f2fs_gc_thread */
145 SM_INFO
, /* struct f2fs_sm_info */
146 NM_INFO
, /* struct f2fs_nm_info */
147 F2FS_SBI
, /* struct f2fs_sb_info */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149 FAULT_INFO_RATE
, /* struct f2fs_fault_info */
150 FAULT_INFO_TYPE
, /* struct f2fs_fault_info */
155 struct attribute attr
;
156 ssize_t (*show
)(struct f2fs_attr
*, struct f2fs_sb_info
*, char *);
157 ssize_t (*store
)(struct f2fs_attr
*, struct f2fs_sb_info
*,
158 const char *, size_t);
163 static unsigned char *__struct_ptr(struct f2fs_sb_info
*sbi
, int struct_type
)
165 if (struct_type
== GC_THREAD
)
166 return (unsigned char *)sbi
->gc_thread
;
167 else if (struct_type
== SM_INFO
)
168 return (unsigned char *)SM_I(sbi
);
169 else if (struct_type
== NM_INFO
)
170 return (unsigned char *)NM_I(sbi
);
171 else if (struct_type
== F2FS_SBI
)
172 return (unsigned char *)sbi
;
173 #ifdef CONFIG_F2FS_FAULT_INJECTION
174 else if (struct_type
== FAULT_INFO_RATE
||
175 struct_type
== FAULT_INFO_TYPE
)
176 return (unsigned char *)&sbi
->fault_info
;
181 static ssize_t
lifetime_write_kbytes_show(struct f2fs_attr
*a
,
182 struct f2fs_sb_info
*sbi
, char *buf
)
184 struct super_block
*sb
= sbi
->sb
;
186 if (!sb
->s_bdev
->bd_part
)
187 return snprintf(buf
, PAGE_SIZE
, "0\n");
189 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
190 (unsigned long long)(sbi
->kbytes_written
+
191 BD_PART_WRITTEN(sbi
)));
194 static ssize_t
f2fs_sbi_show(struct f2fs_attr
*a
,
195 struct f2fs_sb_info
*sbi
, char *buf
)
197 unsigned char *ptr
= NULL
;
200 ptr
= __struct_ptr(sbi
, a
->struct_type
);
204 ui
= (unsigned int *)(ptr
+ a
->offset
);
206 return snprintf(buf
, PAGE_SIZE
, "%u\n", *ui
);
209 static ssize_t
f2fs_sbi_store(struct f2fs_attr
*a
,
210 struct f2fs_sb_info
*sbi
,
211 const char *buf
, size_t count
)
218 ptr
= __struct_ptr(sbi
, a
->struct_type
);
222 ui
= (unsigned int *)(ptr
+ a
->offset
);
224 ret
= kstrtoul(skip_spaces(buf
), 0, &t
);
227 #ifdef CONFIG_F2FS_FAULT_INJECTION
228 if (a
->struct_type
== FAULT_INFO_TYPE
&& t
>= (1 << FAULT_MAX
))
235 static ssize_t
f2fs_attr_show(struct kobject
*kobj
,
236 struct attribute
*attr
, char *buf
)
238 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
240 struct f2fs_attr
*a
= container_of(attr
, struct f2fs_attr
, attr
);
242 return a
->show
? a
->show(a
, sbi
, buf
) : 0;
245 static ssize_t
f2fs_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
246 const char *buf
, size_t len
)
248 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
250 struct f2fs_attr
*a
= container_of(attr
, struct f2fs_attr
, attr
);
252 return a
->store
? a
->store(a
, sbi
, buf
, len
) : 0;
255 static void f2fs_sb_release(struct kobject
*kobj
)
257 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
259 complete(&sbi
->s_kobj_unregister
);
262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263 static struct f2fs_attr f2fs_attr_##_name = { \
264 .attr = {.name = __stringify(_name), .mode = _mode }, \
267 .struct_type = _struct_type, \
271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
273 f2fs_sbi_show, f2fs_sbi_store, \
274 offsetof(struct struct_name, elname))
276 #define F2FS_GENERAL_RO_ATTR(name) \
277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
279 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_min_sleep_time
, min_sleep_time
);
280 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_max_sleep_time
, max_sleep_time
);
281 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_no_gc_sleep_time
, no_gc_sleep_time
);
282 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_idle
, gc_idle
);
283 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, reclaim_segments
, rec_prefree_segments
);
284 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, max_small_discards
, max_discards
);
285 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, batched_trim_sections
, trim_sections
);
286 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, ipu_policy
, ipu_policy
);
287 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, min_ipu_util
, min_ipu_util
);
288 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, min_fsync_blocks
, min_fsync_blocks
);
289 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, ram_thresh
, ram_thresh
);
290 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, ra_nid_pages
, ra_nid_pages
);
291 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, dirty_nats_ratio
, dirty_nats_ratio
);
292 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, max_victim_search
, max_victim_search
);
293 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, dir_level
, dir_level
);
294 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, cp_interval
, interval_time
[CP_TIME
]);
295 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, idle_interval
, interval_time
[REQ_TIME
]);
296 #ifdef CONFIG_F2FS_FAULT_INJECTION
297 F2FS_RW_ATTR(FAULT_INFO_RATE
, f2fs_fault_info
, inject_rate
, inject_rate
);
298 F2FS_RW_ATTR(FAULT_INFO_TYPE
, f2fs_fault_info
, inject_type
, inject_type
);
300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes
);
302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303 static struct attribute
*f2fs_attrs
[] = {
304 ATTR_LIST(gc_min_sleep_time
),
305 ATTR_LIST(gc_max_sleep_time
),
306 ATTR_LIST(gc_no_gc_sleep_time
),
308 ATTR_LIST(reclaim_segments
),
309 ATTR_LIST(max_small_discards
),
310 ATTR_LIST(batched_trim_sections
),
311 ATTR_LIST(ipu_policy
),
312 ATTR_LIST(min_ipu_util
),
313 ATTR_LIST(min_fsync_blocks
),
314 ATTR_LIST(max_victim_search
),
315 ATTR_LIST(dir_level
),
316 ATTR_LIST(ram_thresh
),
317 ATTR_LIST(ra_nid_pages
),
318 ATTR_LIST(dirty_nats_ratio
),
319 ATTR_LIST(cp_interval
),
320 ATTR_LIST(idle_interval
),
321 #ifdef CONFIG_F2FS_FAULT_INJECTION
322 ATTR_LIST(inject_rate
),
323 ATTR_LIST(inject_type
),
325 ATTR_LIST(lifetime_write_kbytes
),
329 static const struct sysfs_ops f2fs_attr_ops
= {
330 .show
= f2fs_attr_show
,
331 .store
= f2fs_attr_store
,
334 static struct kobj_type f2fs_ktype
= {
335 .default_attrs
= f2fs_attrs
,
336 .sysfs_ops
= &f2fs_attr_ops
,
337 .release
= f2fs_sb_release
,
340 void f2fs_msg(struct super_block
*sb
, const char *level
, const char *fmt
, ...)
342 struct va_format vaf
;
348 printk("%sF2FS-fs (%s): %pV\n", level
, sb
->s_id
, &vaf
);
352 static void init_once(void *foo
)
354 struct f2fs_inode_info
*fi
= (struct f2fs_inode_info
*) foo
;
356 inode_init_once(&fi
->vfs_inode
);
359 static int parse_options(struct super_block
*sb
, char *options
)
361 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
362 struct request_queue
*q
;
363 substring_t args
[MAX_OPT_ARGS
];
370 while ((p
= strsep(&options
, ",")) != NULL
) {
375 * Initialize args struct so we know whether arg was
376 * found; some options take optional arguments.
378 args
[0].to
= args
[0].from
= NULL
;
379 token
= match_token(p
, f2fs_tokens
, args
);
382 case Opt_gc_background
:
383 name
= match_strdup(&args
[0]);
387 if (strlen(name
) == 2 && !strncmp(name
, "on", 2)) {
389 clear_opt(sbi
, FORCE_FG_GC
);
390 } else if (strlen(name
) == 3 && !strncmp(name
, "off", 3)) {
391 clear_opt(sbi
, BG_GC
);
392 clear_opt(sbi
, FORCE_FG_GC
);
393 } else if (strlen(name
) == 4 && !strncmp(name
, "sync", 4)) {
395 set_opt(sbi
, FORCE_FG_GC
);
402 case Opt_disable_roll_forward
:
403 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
406 /* this option mounts f2fs with ro */
407 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
408 if (!f2fs_readonly(sb
))
412 q
= bdev_get_queue(sb
->s_bdev
);
413 if (blk_queue_discard(q
)) {
414 set_opt(sbi
, DISCARD
);
416 f2fs_msg(sb
, KERN_WARNING
,
417 "mounting with \"discard\" option, but "
418 "the device does not support discard");
422 clear_opt(sbi
, DISCARD
);
424 set_opt(sbi
, NOHEAP
);
426 #ifdef CONFIG_F2FS_FS_XATTR
428 set_opt(sbi
, XATTR_USER
);
430 case Opt_nouser_xattr
:
431 clear_opt(sbi
, XATTR_USER
);
433 case Opt_inline_xattr
:
434 set_opt(sbi
, INLINE_XATTR
);
438 f2fs_msg(sb
, KERN_INFO
,
439 "user_xattr options not supported");
441 case Opt_nouser_xattr
:
442 f2fs_msg(sb
, KERN_INFO
,
443 "nouser_xattr options not supported");
445 case Opt_inline_xattr
:
446 f2fs_msg(sb
, KERN_INFO
,
447 "inline_xattr options not supported");
450 #ifdef CONFIG_F2FS_FS_POSIX_ACL
452 set_opt(sbi
, POSIX_ACL
);
455 clear_opt(sbi
, POSIX_ACL
);
459 f2fs_msg(sb
, KERN_INFO
, "acl options not supported");
462 f2fs_msg(sb
, KERN_INFO
, "noacl options not supported");
465 case Opt_active_logs
:
466 if (args
->from
&& match_int(args
, &arg
))
468 if (arg
!= 2 && arg
!= 4 && arg
!= NR_CURSEG_TYPE
)
470 sbi
->active_logs
= arg
;
472 case Opt_disable_ext_identify
:
473 set_opt(sbi
, DISABLE_EXT_IDENTIFY
);
475 case Opt_inline_data
:
476 set_opt(sbi
, INLINE_DATA
);
478 case Opt_inline_dentry
:
479 set_opt(sbi
, INLINE_DENTRY
);
481 case Opt_noinline_dentry
:
482 clear_opt(sbi
, INLINE_DENTRY
);
484 case Opt_flush_merge
:
485 set_opt(sbi
, FLUSH_MERGE
);
487 case Opt_noflush_merge
:
488 clear_opt(sbi
, FLUSH_MERGE
);
491 set_opt(sbi
, NOBARRIER
);
494 set_opt(sbi
, FASTBOOT
);
496 case Opt_extent_cache
:
497 set_opt(sbi
, EXTENT_CACHE
);
499 case Opt_noextent_cache
:
500 clear_opt(sbi
, EXTENT_CACHE
);
502 case Opt_noinline_data
:
503 clear_opt(sbi
, INLINE_DATA
);
506 set_opt(sbi
, DATA_FLUSH
);
509 name
= match_strdup(&args
[0]);
513 if (strlen(name
) == 8 &&
514 !strncmp(name
, "adaptive", 8)) {
515 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
516 } else if (strlen(name
) == 3 &&
517 !strncmp(name
, "lfs", 3)) {
518 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
525 case Opt_fault_injection
:
526 if (args
->from
&& match_int(args
, &arg
))
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529 f2fs_build_fault_attr(sbi
, arg
);
531 f2fs_msg(sb
, KERN_INFO
,
532 "FAULT_INJECTION was not selected");
536 sb
->s_flags
|= MS_LAZYTIME
;
539 sb
->s_flags
&= ~MS_LAZYTIME
;
542 f2fs_msg(sb
, KERN_ERR
,
543 "Unrecognized mount option \"%s\" or missing value",
551 static struct inode
*f2fs_alloc_inode(struct super_block
*sb
)
553 struct f2fs_inode_info
*fi
;
555 fi
= kmem_cache_alloc(f2fs_inode_cachep
, GFP_F2FS_ZERO
);
559 init_once((void *) fi
);
561 /* Initialize f2fs-specific inode info */
562 fi
->vfs_inode
.i_version
= 1;
563 atomic_set(&fi
->dirty_pages
, 0);
564 fi
->i_current_depth
= 1;
566 init_rwsem(&fi
->i_sem
);
567 INIT_LIST_HEAD(&fi
->dirty_list
);
568 INIT_LIST_HEAD(&fi
->gdirty_list
);
569 INIT_LIST_HEAD(&fi
->inmem_pages
);
570 mutex_init(&fi
->inmem_lock
);
571 init_rwsem(&fi
->dio_rwsem
[READ
]);
572 init_rwsem(&fi
->dio_rwsem
[WRITE
]);
574 /* Will be used by directory only */
575 fi
->i_dir_level
= F2FS_SB(sb
)->dir_level
;
576 return &fi
->vfs_inode
;
579 static int f2fs_drop_inode(struct inode
*inode
)
582 * This is to avoid a deadlock condition like below.
583 * writeback_single_inode(inode)
584 * - f2fs_write_data_page
585 * - f2fs_gc -> iput -> evict
586 * - inode_wait_for_writeback(inode)
588 if ((!inode_unhashed(inode
) && inode
->i_state
& I_SYNC
)) {
589 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
590 /* to avoid evict_inode call simultaneously */
591 atomic_inc(&inode
->i_count
);
592 spin_unlock(&inode
->i_lock
);
594 /* some remained atomic pages should discarded */
595 if (f2fs_is_atomic_file(inode
))
596 drop_inmem_pages(inode
);
598 /* should remain fi->extent_tree for writepage */
599 f2fs_destroy_extent_node(inode
);
601 sb_start_intwrite(inode
->i_sb
);
602 f2fs_i_size_write(inode
, 0);
604 if (F2FS_HAS_BLOCKS(inode
))
605 f2fs_truncate(inode
);
607 sb_end_intwrite(inode
->i_sb
);
609 fscrypt_put_encryption_info(inode
, NULL
);
610 spin_lock(&inode
->i_lock
);
611 atomic_dec(&inode
->i_count
);
616 return generic_drop_inode(inode
);
619 int f2fs_inode_dirtied(struct inode
*inode
)
621 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
623 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
624 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
625 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
629 set_inode_flag(inode
, FI_DIRTY_INODE
);
630 list_add_tail(&F2FS_I(inode
)->gdirty_list
,
631 &sbi
->inode_list
[DIRTY_META
]);
632 inc_page_count(sbi
, F2FS_DIRTY_IMETA
);
633 stat_inc_dirty_inode(sbi
, DIRTY_META
);
634 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
639 void f2fs_inode_synced(struct inode
*inode
)
641 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
643 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
644 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
645 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
648 list_del_init(&F2FS_I(inode
)->gdirty_list
);
649 clear_inode_flag(inode
, FI_DIRTY_INODE
);
650 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
651 dec_page_count(sbi
, F2FS_DIRTY_IMETA
);
652 stat_dec_dirty_inode(F2FS_I_SB(inode
), DIRTY_META
);
653 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
657 * f2fs_dirty_inode() is called from __mark_inode_dirty()
659 * We should call set_dirty_inode to write the dirty inode through write_inode.
661 static void f2fs_dirty_inode(struct inode
*inode
, int flags
)
663 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
665 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
666 inode
->i_ino
== F2FS_META_INO(sbi
))
669 if (flags
== I_DIRTY_TIME
)
672 if (is_inode_flag_set(inode
, FI_AUTO_RECOVER
))
673 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
675 f2fs_inode_dirtied(inode
);
678 static void f2fs_i_callback(struct rcu_head
*head
)
680 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
681 kmem_cache_free(f2fs_inode_cachep
, F2FS_I(inode
));
684 static void f2fs_destroy_inode(struct inode
*inode
)
686 call_rcu(&inode
->i_rcu
, f2fs_i_callback
);
689 static void destroy_percpu_info(struct f2fs_sb_info
*sbi
)
691 percpu_counter_destroy(&sbi
->alloc_valid_block_count
);
692 percpu_counter_destroy(&sbi
->total_valid_inode_count
);
695 static void f2fs_put_super(struct super_block
*sb
)
697 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
700 remove_proc_entry("segment_info", sbi
->s_proc
);
701 remove_proc_entry("segment_bits", sbi
->s_proc
);
702 remove_proc_entry(sb
->s_id
, f2fs_proc_root
);
704 kobject_del(&sbi
->s_kobj
);
708 /* prevent remaining shrinker jobs */
709 mutex_lock(&sbi
->umount_mutex
);
712 * We don't need to do checkpoint when superblock is clean.
713 * But, the previous checkpoint was not done by umount, it needs to do
714 * clean checkpoint again.
716 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
717 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
718 struct cp_control cpc
= {
721 write_checkpoint(sbi
, &cpc
);
724 /* write_checkpoint can update stat informaion */
725 f2fs_destroy_stats(sbi
);
728 * normally superblock is clean, so we need to release this.
729 * In addition, EIO will skip do checkpoint, we need this as well.
731 release_ino_entry(sbi
, true);
732 release_discard_addrs(sbi
);
734 f2fs_leave_shrinker(sbi
);
735 mutex_unlock(&sbi
->umount_mutex
);
737 /* our cp_error case, we can wait for any writeback page */
738 f2fs_flush_merged_bios(sbi
);
740 iput(sbi
->node_inode
);
741 iput(sbi
->meta_inode
);
743 /* destroy f2fs internal modules */
744 destroy_node_manager(sbi
);
745 destroy_segment_manager(sbi
);
748 kobject_put(&sbi
->s_kobj
);
749 wait_for_completion(&sbi
->s_kobj_unregister
);
751 sb
->s_fs_info
= NULL
;
752 if (sbi
->s_chksum_driver
)
753 crypto_free_shash(sbi
->s_chksum_driver
);
754 kfree(sbi
->raw_super
);
756 destroy_percpu_info(sbi
);
760 int f2fs_sync_fs(struct super_block
*sb
, int sync
)
762 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
765 trace_f2fs_sync_fs(sb
, sync
);
768 struct cp_control cpc
;
770 cpc
.reason
= __get_cp_reason(sbi
);
772 mutex_lock(&sbi
->gc_mutex
);
773 err
= write_checkpoint(sbi
, &cpc
);
774 mutex_unlock(&sbi
->gc_mutex
);
776 f2fs_trace_ios(NULL
, 1);
781 static int f2fs_freeze(struct super_block
*sb
)
785 if (f2fs_readonly(sb
))
788 err
= f2fs_sync_fs(sb
, 1);
792 static int f2fs_unfreeze(struct super_block
*sb
)
797 static int f2fs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
799 struct super_block
*sb
= dentry
->d_sb
;
800 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
801 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
802 block_t total_count
, user_block_count
, start_count
, ovp_count
;
804 total_count
= le64_to_cpu(sbi
->raw_super
->block_count
);
805 user_block_count
= sbi
->user_block_count
;
806 start_count
= le32_to_cpu(sbi
->raw_super
->segment0_blkaddr
);
807 ovp_count
= SM_I(sbi
)->ovp_segments
<< sbi
->log_blocks_per_seg
;
808 buf
->f_type
= F2FS_SUPER_MAGIC
;
809 buf
->f_bsize
= sbi
->blocksize
;
811 buf
->f_blocks
= total_count
- start_count
;
812 buf
->f_bfree
= user_block_count
- valid_user_blocks(sbi
) + ovp_count
;
813 buf
->f_bavail
= user_block_count
- valid_user_blocks(sbi
);
815 buf
->f_files
= sbi
->total_node_count
- F2FS_RESERVED_NODE_NUM
;
816 buf
->f_ffree
= buf
->f_files
- valid_inode_count(sbi
);
818 buf
->f_namelen
= F2FS_NAME_LEN
;
819 buf
->f_fsid
.val
[0] = (u32
)id
;
820 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
825 static int f2fs_show_options(struct seq_file
*seq
, struct dentry
*root
)
827 struct f2fs_sb_info
*sbi
= F2FS_SB(root
->d_sb
);
829 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, BG_GC
)) {
830 if (test_opt(sbi
, FORCE_FG_GC
))
831 seq_printf(seq
, ",background_gc=%s", "sync");
833 seq_printf(seq
, ",background_gc=%s", "on");
835 seq_printf(seq
, ",background_gc=%s", "off");
837 if (test_opt(sbi
, DISABLE_ROLL_FORWARD
))
838 seq_puts(seq
, ",disable_roll_forward");
839 if (test_opt(sbi
, DISCARD
))
840 seq_puts(seq
, ",discard");
841 if (test_opt(sbi
, NOHEAP
))
842 seq_puts(seq
, ",no_heap_alloc");
843 #ifdef CONFIG_F2FS_FS_XATTR
844 if (test_opt(sbi
, XATTR_USER
))
845 seq_puts(seq
, ",user_xattr");
847 seq_puts(seq
, ",nouser_xattr");
848 if (test_opt(sbi
, INLINE_XATTR
))
849 seq_puts(seq
, ",inline_xattr");
851 #ifdef CONFIG_F2FS_FS_POSIX_ACL
852 if (test_opt(sbi
, POSIX_ACL
))
853 seq_puts(seq
, ",acl");
855 seq_puts(seq
, ",noacl");
857 if (test_opt(sbi
, DISABLE_EXT_IDENTIFY
))
858 seq_puts(seq
, ",disable_ext_identify");
859 if (test_opt(sbi
, INLINE_DATA
))
860 seq_puts(seq
, ",inline_data");
862 seq_puts(seq
, ",noinline_data");
863 if (test_opt(sbi
, INLINE_DENTRY
))
864 seq_puts(seq
, ",inline_dentry");
866 seq_puts(seq
, ",noinline_dentry");
867 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, FLUSH_MERGE
))
868 seq_puts(seq
, ",flush_merge");
869 if (test_opt(sbi
, NOBARRIER
))
870 seq_puts(seq
, ",nobarrier");
871 if (test_opt(sbi
, FASTBOOT
))
872 seq_puts(seq
, ",fastboot");
873 if (test_opt(sbi
, EXTENT_CACHE
))
874 seq_puts(seq
, ",extent_cache");
876 seq_puts(seq
, ",noextent_cache");
877 if (test_opt(sbi
, DATA_FLUSH
))
878 seq_puts(seq
, ",data_flush");
880 seq_puts(seq
, ",mode=");
881 if (test_opt(sbi
, ADAPTIVE
))
882 seq_puts(seq
, "adaptive");
883 else if (test_opt(sbi
, LFS
))
884 seq_puts(seq
, "lfs");
885 seq_printf(seq
, ",active_logs=%u", sbi
->active_logs
);
890 static int segment_info_seq_show(struct seq_file
*seq
, void *offset
)
892 struct super_block
*sb
= seq
->private;
893 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
894 unsigned int total_segs
=
895 le32_to_cpu(sbi
->raw_super
->segment_count_main
);
898 seq_puts(seq
, "format: segment_type|valid_blocks\n"
899 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
901 for (i
= 0; i
< total_segs
; i
++) {
902 struct seg_entry
*se
= get_seg_entry(sbi
, i
);
905 seq_printf(seq
, "%-10d", i
);
906 seq_printf(seq
, "%d|%-3u", se
->type
,
907 get_valid_blocks(sbi
, i
, 1));
908 if ((i
% 10) == 9 || i
== (total_segs
- 1))
917 static int segment_bits_seq_show(struct seq_file
*seq
, void *offset
)
919 struct super_block
*sb
= seq
->private;
920 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
921 unsigned int total_segs
=
922 le32_to_cpu(sbi
->raw_super
->segment_count_main
);
925 seq_puts(seq
, "format: segment_type|valid_blocks|bitmaps\n"
926 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
928 for (i
= 0; i
< total_segs
; i
++) {
929 struct seg_entry
*se
= get_seg_entry(sbi
, i
);
931 seq_printf(seq
, "%-10d", i
);
932 seq_printf(seq
, "%d|%-3u|", se
->type
,
933 get_valid_blocks(sbi
, i
, 1));
934 for (j
= 0; j
< SIT_VBLOCK_MAP_SIZE
; j
++)
935 seq_printf(seq
, " %.2x", se
->cur_valid_map
[j
]);
941 #define F2FS_PROC_FILE_DEF(_name) \
942 static int _name##_open_fs(struct inode *inode, struct file *file) \
944 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
947 static const struct file_operations f2fs_seq_##_name##_fops = { \
948 .open = _name##_open_fs, \
950 .llseek = seq_lseek, \
951 .release = single_release, \
954 F2FS_PROC_FILE_DEF(segment_info
);
955 F2FS_PROC_FILE_DEF(segment_bits
);
957 static void default_options(struct f2fs_sb_info
*sbi
)
959 /* init some FS parameters */
960 sbi
->active_logs
= NR_CURSEG_TYPE
;
963 set_opt(sbi
, INLINE_DATA
);
964 set_opt(sbi
, INLINE_DENTRY
);
965 set_opt(sbi
, EXTENT_CACHE
);
966 sbi
->sb
->s_flags
|= MS_LAZYTIME
;
967 set_opt(sbi
, FLUSH_MERGE
);
968 if (f2fs_sb_mounted_hmsmr(sbi
->sb
)) {
969 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
970 set_opt(sbi
, DISCARD
);
972 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
975 #ifdef CONFIG_F2FS_FS_XATTR
976 set_opt(sbi
, XATTR_USER
);
978 #ifdef CONFIG_F2FS_FS_POSIX_ACL
979 set_opt(sbi
, POSIX_ACL
);
982 #ifdef CONFIG_F2FS_FAULT_INJECTION
983 f2fs_build_fault_attr(sbi
, 0);
987 static int f2fs_remount(struct super_block
*sb
, int *flags
, char *data
)
989 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
990 struct f2fs_mount_info org_mount_opt
;
991 int err
, active_logs
;
992 bool need_restart_gc
= false;
993 bool need_stop_gc
= false;
994 bool no_extent_cache
= !test_opt(sbi
, EXTENT_CACHE
);
995 #ifdef CONFIG_F2FS_FAULT_INJECTION
996 struct f2fs_fault_info ffi
= sbi
->fault_info
;
1000 * Save the old mount options in case we
1001 * need to restore them.
1003 org_mount_opt
= sbi
->mount_opt
;
1004 active_logs
= sbi
->active_logs
;
1006 /* recover superblocks we couldn't write due to previous RO mount */
1007 if (!(*flags
& MS_RDONLY
) && is_sbi_flag_set(sbi
, SBI_NEED_SB_WRITE
)) {
1008 err
= f2fs_commit_super(sbi
, false);
1009 f2fs_msg(sb
, KERN_INFO
,
1010 "Try to recover all the superblocks, ret: %d", err
);
1012 clear_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1015 sbi
->mount_opt
.opt
= 0;
1016 default_options(sbi
);
1018 /* parse mount options */
1019 err
= parse_options(sb
, data
);
1024 * Previous and new state of filesystem is RO,
1025 * so skip checking GC and FLUSH_MERGE conditions.
1027 if (f2fs_readonly(sb
) && (*flags
& MS_RDONLY
))
1030 /* disallow enable/disable extent_cache dynamically */
1031 if (no_extent_cache
== !!test_opt(sbi
, EXTENT_CACHE
)) {
1033 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1034 "switch extent_cache option is not allowed");
1039 * We stop the GC thread if FS is mounted as RO
1040 * or if background_gc = off is passed in mount
1041 * option. Also sync the filesystem.
1043 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, BG_GC
)) {
1044 if (sbi
->gc_thread
) {
1045 stop_gc_thread(sbi
);
1046 need_restart_gc
= true;
1048 } else if (!sbi
->gc_thread
) {
1049 err
= start_gc_thread(sbi
);
1052 need_stop_gc
= true;
1055 if (*flags
& MS_RDONLY
) {
1056 writeback_inodes_sb(sb
, WB_REASON_SYNC
);
1059 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1060 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
1061 f2fs_sync_fs(sb
, 1);
1062 clear_sbi_flag(sbi
, SBI_IS_CLOSE
);
1066 * We stop issue flush thread if FS is mounted as RO
1067 * or if flush_merge is not passed in mount option.
1069 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, FLUSH_MERGE
)) {
1070 destroy_flush_cmd_control(sbi
);
1071 } else if (!SM_I(sbi
)->cmd_control_info
) {
1072 err
= create_flush_cmd_control(sbi
);
1077 /* Update the POSIXACL Flag */
1078 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
1079 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
1083 if (need_restart_gc
) {
1084 if (start_gc_thread(sbi
))
1085 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1086 "background gc thread has stopped");
1087 } else if (need_stop_gc
) {
1088 stop_gc_thread(sbi
);
1091 sbi
->mount_opt
= org_mount_opt
;
1092 sbi
->active_logs
= active_logs
;
1093 #ifdef CONFIG_F2FS_FAULT_INJECTION
1094 sbi
->fault_info
= ffi
;
1099 static struct super_operations f2fs_sops
= {
1100 .alloc_inode
= f2fs_alloc_inode
,
1101 .drop_inode
= f2fs_drop_inode
,
1102 .destroy_inode
= f2fs_destroy_inode
,
1103 .write_inode
= f2fs_write_inode
,
1104 .dirty_inode
= f2fs_dirty_inode
,
1105 .show_options
= f2fs_show_options
,
1106 .evict_inode
= f2fs_evict_inode
,
1107 .put_super
= f2fs_put_super
,
1108 .sync_fs
= f2fs_sync_fs
,
1109 .freeze_fs
= f2fs_freeze
,
1110 .unfreeze_fs
= f2fs_unfreeze
,
1111 .statfs
= f2fs_statfs
,
1112 .remount_fs
= f2fs_remount
,
1115 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1116 static int f2fs_get_context(struct inode
*inode
, void *ctx
, size_t len
)
1118 return f2fs_getxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1119 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1123 static int f2fs_key_prefix(struct inode
*inode
, u8
**key
)
1125 *key
= F2FS_I_SB(inode
)->key_prefix
;
1126 return F2FS_I_SB(inode
)->key_prefix_size
;
1129 static int f2fs_set_context(struct inode
*inode
, const void *ctx
, size_t len
,
1132 return f2fs_setxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1133 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1134 ctx
, len
, fs_data
, XATTR_CREATE
);
1137 static unsigned f2fs_max_namelen(struct inode
*inode
)
1139 return S_ISLNK(inode
->i_mode
) ?
1140 inode
->i_sb
->s_blocksize
: F2FS_NAME_LEN
;
1143 static struct fscrypt_operations f2fs_cryptops
= {
1144 .get_context
= f2fs_get_context
,
1145 .key_prefix
= f2fs_key_prefix
,
1146 .set_context
= f2fs_set_context
,
1147 .is_encrypted
= f2fs_encrypted_inode
,
1148 .empty_dir
= f2fs_empty_dir
,
1149 .max_namelen
= f2fs_max_namelen
,
1152 static struct fscrypt_operations f2fs_cryptops
= {
1153 .is_encrypted
= f2fs_encrypted_inode
,
1157 static struct inode
*f2fs_nfs_get_inode(struct super_block
*sb
,
1158 u64 ino
, u32 generation
)
1160 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1161 struct inode
*inode
;
1163 if (check_nid_range(sbi
, ino
))
1164 return ERR_PTR(-ESTALE
);
1167 * f2fs_iget isn't quite right if the inode is currently unallocated!
1168 * However f2fs_iget currently does appropriate checks to handle stale
1169 * inodes so everything is OK.
1171 inode
= f2fs_iget(sb
, ino
);
1173 return ERR_CAST(inode
);
1174 if (unlikely(generation
&& inode
->i_generation
!= generation
)) {
1175 /* we didn't find the right inode.. */
1177 return ERR_PTR(-ESTALE
);
1182 static struct dentry
*f2fs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
1183 int fh_len
, int fh_type
)
1185 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
1186 f2fs_nfs_get_inode
);
1189 static struct dentry
*f2fs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
1190 int fh_len
, int fh_type
)
1192 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
1193 f2fs_nfs_get_inode
);
1196 static const struct export_operations f2fs_export_ops
= {
1197 .fh_to_dentry
= f2fs_fh_to_dentry
,
1198 .fh_to_parent
= f2fs_fh_to_parent
,
1199 .get_parent
= f2fs_get_parent
,
1202 static loff_t
max_file_blocks(void)
1204 loff_t result
= (DEF_ADDRS_PER_INODE
- F2FS_INLINE_XATTR_ADDRS
);
1205 loff_t leaf_count
= ADDRS_PER_BLOCK
;
1207 /* two direct node blocks */
1208 result
+= (leaf_count
* 2);
1210 /* two indirect node blocks */
1211 leaf_count
*= NIDS_PER_BLOCK
;
1212 result
+= (leaf_count
* 2);
1214 /* one double indirect node block */
1215 leaf_count
*= NIDS_PER_BLOCK
;
1216 result
+= leaf_count
;
1221 static int __f2fs_commit_super(struct buffer_head
*bh
,
1222 struct f2fs_super_block
*super
)
1226 memcpy(bh
->b_data
+ F2FS_SUPER_OFFSET
, super
, sizeof(*super
));
1227 set_buffer_uptodate(bh
);
1228 set_buffer_dirty(bh
);
1231 /* it's rare case, we can do fua all the time */
1232 return __sync_dirty_buffer(bh
, WRITE_FLUSH_FUA
);
1235 static inline bool sanity_check_area_boundary(struct f2fs_sb_info
*sbi
,
1236 struct buffer_head
*bh
)
1238 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1239 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1240 struct super_block
*sb
= sbi
->sb
;
1241 u32 segment0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
1242 u32 cp_blkaddr
= le32_to_cpu(raw_super
->cp_blkaddr
);
1243 u32 sit_blkaddr
= le32_to_cpu(raw_super
->sit_blkaddr
);
1244 u32 nat_blkaddr
= le32_to_cpu(raw_super
->nat_blkaddr
);
1245 u32 ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
1246 u32 main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
1247 u32 segment_count_ckpt
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1248 u32 segment_count_sit
= le32_to_cpu(raw_super
->segment_count_sit
);
1249 u32 segment_count_nat
= le32_to_cpu(raw_super
->segment_count_nat
);
1250 u32 segment_count_ssa
= le32_to_cpu(raw_super
->segment_count_ssa
);
1251 u32 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
1252 u32 segment_count
= le32_to_cpu(raw_super
->segment_count
);
1253 u32 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1254 u64 main_end_blkaddr
= main_blkaddr
+
1255 (segment_count_main
<< log_blocks_per_seg
);
1256 u64 seg_end_blkaddr
= segment0_blkaddr
+
1257 (segment_count
<< log_blocks_per_seg
);
1259 if (segment0_blkaddr
!= cp_blkaddr
) {
1260 f2fs_msg(sb
, KERN_INFO
,
1261 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1262 segment0_blkaddr
, cp_blkaddr
);
1266 if (cp_blkaddr
+ (segment_count_ckpt
<< log_blocks_per_seg
) !=
1268 f2fs_msg(sb
, KERN_INFO
,
1269 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1270 cp_blkaddr
, sit_blkaddr
,
1271 segment_count_ckpt
<< log_blocks_per_seg
);
1275 if (sit_blkaddr
+ (segment_count_sit
<< log_blocks_per_seg
) !=
1277 f2fs_msg(sb
, KERN_INFO
,
1278 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1279 sit_blkaddr
, nat_blkaddr
,
1280 segment_count_sit
<< log_blocks_per_seg
);
1284 if (nat_blkaddr
+ (segment_count_nat
<< log_blocks_per_seg
) !=
1286 f2fs_msg(sb
, KERN_INFO
,
1287 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1288 nat_blkaddr
, ssa_blkaddr
,
1289 segment_count_nat
<< log_blocks_per_seg
);
1293 if (ssa_blkaddr
+ (segment_count_ssa
<< log_blocks_per_seg
) !=
1295 f2fs_msg(sb
, KERN_INFO
,
1296 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1297 ssa_blkaddr
, main_blkaddr
,
1298 segment_count_ssa
<< log_blocks_per_seg
);
1302 if (main_end_blkaddr
> seg_end_blkaddr
) {
1303 f2fs_msg(sb
, KERN_INFO
,
1304 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1307 (segment_count
<< log_blocks_per_seg
),
1308 segment_count_main
<< log_blocks_per_seg
);
1310 } else if (main_end_blkaddr
< seg_end_blkaddr
) {
1314 /* fix in-memory information all the time */
1315 raw_super
->segment_count
= cpu_to_le32((main_end_blkaddr
-
1316 segment0_blkaddr
) >> log_blocks_per_seg
);
1318 if (f2fs_readonly(sb
) || bdev_read_only(sb
->s_bdev
)) {
1319 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1322 err
= __f2fs_commit_super(bh
, NULL
);
1323 res
= err
? "failed" : "done";
1325 f2fs_msg(sb
, KERN_INFO
,
1326 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1329 (segment_count
<< log_blocks_per_seg
),
1330 segment_count_main
<< log_blocks_per_seg
);
1337 static int sanity_check_raw_super(struct f2fs_sb_info
*sbi
,
1338 struct buffer_head
*bh
)
1340 block_t segment_count
, segs_per_sec
, secs_per_zone
;
1341 block_t total_sections
, blocks_per_seg
;
1342 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1343 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1344 struct super_block
*sb
= sbi
->sb
;
1345 unsigned int blocksize
;
1347 if (F2FS_SUPER_MAGIC
!= le32_to_cpu(raw_super
->magic
)) {
1348 f2fs_msg(sb
, KERN_INFO
,
1349 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1350 F2FS_SUPER_MAGIC
, le32_to_cpu(raw_super
->magic
));
1354 /* Currently, support only 4KB page cache size */
1355 if (F2FS_BLKSIZE
!= PAGE_SIZE
) {
1356 f2fs_msg(sb
, KERN_INFO
,
1357 "Invalid page_cache_size (%lu), supports only 4KB\n",
1362 /* Currently, support only 4KB block size */
1363 blocksize
= 1 << le32_to_cpu(raw_super
->log_blocksize
);
1364 if (blocksize
!= F2FS_BLKSIZE
) {
1365 f2fs_msg(sb
, KERN_INFO
,
1366 "Invalid blocksize (%u), supports only 4KB\n",
1371 /* check log blocks per segment */
1372 if (le32_to_cpu(raw_super
->log_blocks_per_seg
) != 9) {
1373 f2fs_msg(sb
, KERN_INFO
,
1374 "Invalid log blocks per segment (%u)\n",
1375 le32_to_cpu(raw_super
->log_blocks_per_seg
));
1379 /* Currently, support 512/1024/2048/4096 bytes sector size */
1380 if (le32_to_cpu(raw_super
->log_sectorsize
) >
1381 F2FS_MAX_LOG_SECTOR_SIZE
||
1382 le32_to_cpu(raw_super
->log_sectorsize
) <
1383 F2FS_MIN_LOG_SECTOR_SIZE
) {
1384 f2fs_msg(sb
, KERN_INFO
, "Invalid log sectorsize (%u)",
1385 le32_to_cpu(raw_super
->log_sectorsize
));
1388 if (le32_to_cpu(raw_super
->log_sectors_per_block
) +
1389 le32_to_cpu(raw_super
->log_sectorsize
) !=
1390 F2FS_MAX_LOG_SECTOR_SIZE
) {
1391 f2fs_msg(sb
, KERN_INFO
,
1392 "Invalid log sectors per block(%u) log sectorsize(%u)",
1393 le32_to_cpu(raw_super
->log_sectors_per_block
),
1394 le32_to_cpu(raw_super
->log_sectorsize
));
1398 segment_count
= le32_to_cpu(raw_super
->segment_count
);
1399 segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
1400 secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
1401 total_sections
= le32_to_cpu(raw_super
->section_count
);
1403 /* blocks_per_seg should be 512, given the above check */
1404 blocks_per_seg
= 1 << le32_to_cpu(raw_super
->log_blocks_per_seg
);
1406 if (segment_count
> F2FS_MAX_SEGMENT
||
1407 segment_count
< F2FS_MIN_SEGMENTS
) {
1408 f2fs_msg(sb
, KERN_INFO
,
1409 "Invalid segment count (%u)",
1414 if (total_sections
> segment_count
||
1415 total_sections
< F2FS_MIN_SEGMENTS
||
1416 segs_per_sec
> segment_count
|| !segs_per_sec
) {
1417 f2fs_msg(sb
, KERN_INFO
,
1418 "Invalid segment/section count (%u, %u x %u)",
1419 segment_count
, total_sections
, segs_per_sec
);
1423 if ((segment_count
/ segs_per_sec
) < total_sections
) {
1424 f2fs_msg(sb
, KERN_INFO
,
1425 "Small segment_count (%u < %u * %u)",
1426 segment_count
, segs_per_sec
, total_sections
);
1430 if (segment_count
> (le64_to_cpu(raw_super
->block_count
) >> 9)) {
1431 f2fs_msg(sb
, KERN_INFO
,
1432 "Wrong segment_count / block_count (%u > %llu)",
1433 segment_count
, le64_to_cpu(raw_super
->block_count
));
1437 if (secs_per_zone
> total_sections
|| !secs_per_zone
) {
1438 f2fs_msg(sb
, KERN_INFO
,
1439 "Wrong secs_per_zone / total_sections (%u, %u)",
1440 secs_per_zone
, total_sections
);
1443 if (le32_to_cpu(raw_super
->extension_count
) > F2FS_MAX_EXTENSION
) {
1444 f2fs_msg(sb
, KERN_INFO
,
1445 "Corrupted extension count (%u > %u)",
1446 le32_to_cpu(raw_super
->extension_count
),
1447 F2FS_MAX_EXTENSION
);
1451 if (le32_to_cpu(raw_super
->cp_payload
) >
1452 (blocks_per_seg
- F2FS_CP_PACKS
)) {
1453 f2fs_msg(sb
, KERN_INFO
,
1454 "Insane cp_payload (%u > %u)",
1455 le32_to_cpu(raw_super
->cp_payload
),
1456 blocks_per_seg
- F2FS_CP_PACKS
);
1460 /* check reserved ino info */
1461 if (le32_to_cpu(raw_super
->node_ino
) != 1 ||
1462 le32_to_cpu(raw_super
->meta_ino
) != 2 ||
1463 le32_to_cpu(raw_super
->root_ino
) != 3) {
1464 f2fs_msg(sb
, KERN_INFO
,
1465 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1466 le32_to_cpu(raw_super
->node_ino
),
1467 le32_to_cpu(raw_super
->meta_ino
),
1468 le32_to_cpu(raw_super
->root_ino
));
1472 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1473 if (sanity_check_area_boundary(sbi
, bh
))
1479 int sanity_check_ckpt(struct f2fs_sb_info
*sbi
)
1481 unsigned int total
, fsmeta
;
1482 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1483 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1484 unsigned int ovp_segments
, reserved_segments
;
1485 unsigned int main_segs
, blocks_per_seg
;
1486 unsigned int sit_segs
, nat_segs
;
1487 unsigned int sit_bitmap_size
, nat_bitmap_size
;
1488 unsigned int log_blocks_per_seg
;
1489 unsigned int segment_count_main
;
1490 unsigned int cp_pack_start_sum
, cp_payload
;
1491 block_t user_block_count
;
1494 total
= le32_to_cpu(raw_super
->segment_count
);
1495 fsmeta
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1496 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
);
1498 nat_segs
= le32_to_cpu(raw_super
->segment_count_nat
);
1500 fsmeta
+= le32_to_cpu(ckpt
->rsvd_segment_count
);
1501 fsmeta
+= le32_to_cpu(raw_super
->segment_count_ssa
);
1503 if (unlikely(fsmeta
>= total
))
1506 ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
1507 reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
1509 if (unlikely(fsmeta
< F2FS_MIN_SEGMENTS
||
1510 ovp_segments
== 0 || reserved_segments
== 0)) {
1511 f2fs_msg(sbi
->sb
, KERN_ERR
,
1512 "Wrong layout: check mkfs.f2fs version");
1516 user_block_count
= le64_to_cpu(ckpt
->user_block_count
);
1517 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
1518 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1519 if (!user_block_count
|| user_block_count
>=
1520 segment_count_main
<< log_blocks_per_seg
) {
1521 f2fs_msg(sbi
->sb
, KERN_ERR
,
1522 "Wrong user_block_count: %u", user_block_count
);
1526 main_segs
= le32_to_cpu(raw_super
->segment_count_main
);
1527 blocks_per_seg
= sbi
->blocks_per_seg
;
1529 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1530 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) >= main_segs
||
1531 le16_to_cpu(ckpt
->cur_node_blkoff
[i
]) >= blocks_per_seg
)
1533 for (j
= i
+ 1; j
< NR_CURSEG_NODE_TYPE
; j
++) {
1534 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) ==
1535 le32_to_cpu(ckpt
->cur_node_segno
[j
])) {
1536 f2fs_msg(sbi
->sb
, KERN_ERR
,
1537 "Node segment (%u, %u) has the same "
1539 le32_to_cpu(ckpt
->cur_node_segno
[i
]));
1544 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1545 if (le32_to_cpu(ckpt
->cur_data_segno
[i
]) >= main_segs
||
1546 le16_to_cpu(ckpt
->cur_data_blkoff
[i
]) >= blocks_per_seg
)
1548 for (j
= i
+ 1; j
< NR_CURSEG_DATA_TYPE
; j
++) {
1549 if (le32_to_cpu(ckpt
->cur_data_segno
[i
]) ==
1550 le32_to_cpu(ckpt
->cur_data_segno
[j
])) {
1551 f2fs_msg(sbi
->sb
, KERN_ERR
,
1552 "Data segment (%u, %u) has the same "
1554 le32_to_cpu(ckpt
->cur_data_segno
[i
]));
1559 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1560 for (j
= 0; j
< NR_CURSEG_DATA_TYPE
; j
++) {
1561 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) ==
1562 le32_to_cpu(ckpt
->cur_data_segno
[j
])) {
1563 f2fs_msg(sbi
->sb
, KERN_ERR
,
1564 "Node segment (%u) and Data segment (%u)"
1565 " has the same segno: %u", i
, j
,
1566 le32_to_cpu(ckpt
->cur_node_segno
[i
]));
1572 sit_bitmap_size
= le32_to_cpu(ckpt
->sit_ver_bitmap_bytesize
);
1573 nat_bitmap_size
= le32_to_cpu(ckpt
->nat_ver_bitmap_bytesize
);
1575 if (sit_bitmap_size
!= ((sit_segs
/ 2) << log_blocks_per_seg
) / 8 ||
1576 nat_bitmap_size
!= ((nat_segs
/ 2) << log_blocks_per_seg
) / 8) {
1577 f2fs_msg(sbi
->sb
, KERN_ERR
,
1578 "Wrong bitmap size: sit: %u, nat:%u",
1579 sit_bitmap_size
, nat_bitmap_size
);
1583 cp_pack_start_sum
= __start_sum_addr(sbi
);
1584 cp_payload
= __cp_payload(sbi
);
1585 if (cp_pack_start_sum
< cp_payload
+ 1 ||
1586 cp_pack_start_sum
> blocks_per_seg
- 1 -
1588 f2fs_msg(sbi
->sb
, KERN_ERR
,
1589 "Wrong cp_pack_start_sum: %u",
1594 if (unlikely(f2fs_cp_error(sbi
))) {
1595 f2fs_msg(sbi
->sb
, KERN_ERR
, "A bug case: need to run fsck");
1601 static void init_sb_info(struct f2fs_sb_info
*sbi
)
1603 struct f2fs_super_block
*raw_super
= sbi
->raw_super
;
1606 sbi
->log_sectors_per_block
=
1607 le32_to_cpu(raw_super
->log_sectors_per_block
);
1608 sbi
->log_blocksize
= le32_to_cpu(raw_super
->log_blocksize
);
1609 sbi
->blocksize
= 1 << sbi
->log_blocksize
;
1610 sbi
->log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1611 sbi
->blocks_per_seg
= 1 << sbi
->log_blocks_per_seg
;
1612 sbi
->segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
1613 sbi
->secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
1614 sbi
->total_sections
= le32_to_cpu(raw_super
->section_count
);
1615 sbi
->total_node_count
=
1616 (le32_to_cpu(raw_super
->segment_count_nat
) / 2)
1617 * sbi
->blocks_per_seg
* NAT_ENTRY_PER_BLOCK
;
1618 sbi
->root_ino_num
= le32_to_cpu(raw_super
->root_ino
);
1619 sbi
->node_ino_num
= le32_to_cpu(raw_super
->node_ino
);
1620 sbi
->meta_ino_num
= le32_to_cpu(raw_super
->meta_ino
);
1621 sbi
->cur_victim_sec
= NULL_SECNO
;
1622 sbi
->max_victim_search
= DEF_MAX_VICTIM_SEARCH
;
1624 sbi
->dir_level
= DEF_DIR_LEVEL
;
1625 sbi
->interval_time
[CP_TIME
] = DEF_CP_INTERVAL
;
1626 sbi
->interval_time
[REQ_TIME
] = DEF_IDLE_INTERVAL
;
1627 clear_sbi_flag(sbi
, SBI_NEED_FSCK
);
1629 for (i
= 0; i
< NR_COUNT_TYPE
; i
++)
1630 atomic_set(&sbi
->nr_pages
[i
], 0);
1632 INIT_LIST_HEAD(&sbi
->s_list
);
1633 mutex_init(&sbi
->umount_mutex
);
1634 mutex_init(&sbi
->wio_mutex
[NODE
]);
1635 mutex_init(&sbi
->wio_mutex
[DATA
]);
1636 spin_lock_init(&sbi
->cp_lock
);
1638 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1639 memcpy(sbi
->key_prefix
, F2FS_KEY_DESC_PREFIX
,
1640 F2FS_KEY_DESC_PREFIX_SIZE
);
1641 sbi
->key_prefix_size
= F2FS_KEY_DESC_PREFIX_SIZE
;
1645 static int init_percpu_info(struct f2fs_sb_info
*sbi
)
1649 err
= percpu_counter_init(&sbi
->alloc_valid_block_count
, 0, GFP_KERNEL
);
1653 err
= percpu_counter_init(&sbi
->total_valid_inode_count
, 0,
1656 percpu_counter_destroy(&sbi
->alloc_valid_block_count
);
1662 * Read f2fs raw super block.
1663 * Because we have two copies of super block, so read both of them
1664 * to get the first valid one. If any one of them is broken, we pass
1665 * them recovery flag back to the caller.
1667 static int read_raw_super_block(struct f2fs_sb_info
*sbi
,
1668 struct f2fs_super_block
**raw_super
,
1669 int *valid_super_block
, int *recovery
)
1671 struct super_block
*sb
= sbi
->sb
;
1673 struct buffer_head
*bh
;
1674 struct f2fs_super_block
*super
;
1677 super
= kzalloc(sizeof(struct f2fs_super_block
), GFP_KERNEL
);
1681 for (block
= 0; block
< 2; block
++) {
1682 bh
= sb_bread(sb
, block
);
1684 f2fs_msg(sb
, KERN_ERR
, "Unable to read %dth superblock",
1690 /* sanity checking of raw super */
1691 if (sanity_check_raw_super(sbi
, bh
)) {
1692 f2fs_msg(sb
, KERN_ERR
,
1693 "Can't find valid F2FS filesystem in %dth superblock",
1701 memcpy(super
, bh
->b_data
+ F2FS_SUPER_OFFSET
,
1703 *valid_super_block
= block
;
1709 /* Fail to read any one of the superblocks*/
1713 /* No valid superblock */
1722 int f2fs_commit_super(struct f2fs_sb_info
*sbi
, bool recover
)
1724 struct buffer_head
*bh
;
1727 if ((recover
&& f2fs_readonly(sbi
->sb
)) ||
1728 bdev_read_only(sbi
->sb
->s_bdev
)) {
1729 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1733 /* write back-up superblock first */
1734 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
? 0: 1);
1737 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
1740 /* if we are in recovery path, skip writing valid superblock */
1744 /* write current valid superblock */
1745 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
);
1748 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
1753 static int f2fs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1755 struct f2fs_sb_info
*sbi
;
1756 struct f2fs_super_block
*raw_super
;
1759 bool retry
= true, need_fsck
= false;
1760 char *options
= NULL
;
1761 int recovery
, i
, valid_super_block
;
1762 struct curseg_info
*seg_i
;
1767 valid_super_block
= -1;
1770 /* allocate memory for f2fs-specific super block info */
1771 sbi
= kzalloc(sizeof(struct f2fs_sb_info
), GFP_KERNEL
);
1777 /* Load the checksum driver */
1778 sbi
->s_chksum_driver
= crypto_alloc_shash("crc32", 0, 0);
1779 if (IS_ERR(sbi
->s_chksum_driver
)) {
1780 f2fs_msg(sb
, KERN_ERR
, "Cannot load crc32 driver.");
1781 err
= PTR_ERR(sbi
->s_chksum_driver
);
1782 sbi
->s_chksum_driver
= NULL
;
1786 /* set a block size */
1787 if (unlikely(!sb_set_blocksize(sb
, F2FS_BLKSIZE
))) {
1788 f2fs_msg(sb
, KERN_ERR
, "unable to set blocksize");
1792 err
= read_raw_super_block(sbi
, &raw_super
, &valid_super_block
,
1797 sb
->s_fs_info
= sbi
;
1798 sbi
->raw_super
= raw_super
;
1800 default_options(sbi
);
1801 /* parse mount options */
1802 options
= kstrdup((const char *)data
, GFP_KERNEL
);
1803 if (data
&& !options
) {
1808 err
= parse_options(sb
, options
);
1812 sbi
->max_file_blocks
= max_file_blocks();
1813 sb
->s_maxbytes
= sbi
->max_file_blocks
<<
1814 le32_to_cpu(raw_super
->log_blocksize
);
1815 sb
->s_max_links
= F2FS_LINK_MAX
;
1816 get_random_bytes(&sbi
->s_next_generation
, sizeof(u32
));
1818 sb
->s_op
= &f2fs_sops
;
1819 sb
->s_cop
= &f2fs_cryptops
;
1820 sb
->s_xattr
= f2fs_xattr_handlers
;
1821 sb
->s_export_op
= &f2fs_export_ops
;
1822 sb
->s_magic
= F2FS_SUPER_MAGIC
;
1823 sb
->s_time_gran
= 1;
1824 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
1825 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
1826 memcpy(sb
->s_uuid
, raw_super
->uuid
, sizeof(raw_super
->uuid
));
1828 /* init f2fs-specific super block info */
1829 sbi
->valid_super_block
= valid_super_block
;
1830 mutex_init(&sbi
->gc_mutex
);
1831 mutex_init(&sbi
->cp_mutex
);
1832 init_rwsem(&sbi
->node_write
);
1834 /* disallow all the data/node/meta page writes */
1835 set_sbi_flag(sbi
, SBI_POR_DOING
);
1836 spin_lock_init(&sbi
->stat_lock
);
1838 init_rwsem(&sbi
->read_io
.io_rwsem
);
1839 sbi
->read_io
.sbi
= sbi
;
1840 sbi
->read_io
.bio
= NULL
;
1841 for (i
= 0; i
< NR_PAGE_TYPE
; i
++) {
1842 init_rwsem(&sbi
->write_io
[i
].io_rwsem
);
1843 sbi
->write_io
[i
].sbi
= sbi
;
1844 sbi
->write_io
[i
].bio
= NULL
;
1847 init_rwsem(&sbi
->cp_rwsem
);
1848 init_waitqueue_head(&sbi
->cp_wait
);
1851 err
= init_percpu_info(sbi
);
1855 /* get an inode for meta space */
1856 sbi
->meta_inode
= f2fs_iget(sb
, F2FS_META_INO(sbi
));
1857 if (IS_ERR(sbi
->meta_inode
)) {
1858 f2fs_msg(sb
, KERN_ERR
, "Failed to read F2FS meta data inode");
1859 err
= PTR_ERR(sbi
->meta_inode
);
1863 err
= get_valid_checkpoint(sbi
);
1865 f2fs_msg(sb
, KERN_ERR
, "Failed to get valid F2FS checkpoint");
1866 goto free_meta_inode
;
1869 sbi
->total_valid_node_count
=
1870 le32_to_cpu(sbi
->ckpt
->valid_node_count
);
1871 percpu_counter_set(&sbi
->total_valid_inode_count
,
1872 le32_to_cpu(sbi
->ckpt
->valid_inode_count
));
1873 sbi
->user_block_count
= le64_to_cpu(sbi
->ckpt
->user_block_count
);
1874 sbi
->total_valid_block_count
=
1875 le64_to_cpu(sbi
->ckpt
->valid_block_count
);
1876 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1878 for (i
= 0; i
< NR_INODE_TYPE
; i
++) {
1879 INIT_LIST_HEAD(&sbi
->inode_list
[i
]);
1880 spin_lock_init(&sbi
->inode_lock
[i
]);
1883 init_extent_cache_info(sbi
);
1885 init_ino_entry_info(sbi
);
1887 /* setup f2fs internal modules */
1888 err
= build_segment_manager(sbi
);
1890 f2fs_msg(sb
, KERN_ERR
,
1891 "Failed to initialize F2FS segment manager");
1894 err
= build_node_manager(sbi
);
1896 f2fs_msg(sb
, KERN_ERR
,
1897 "Failed to initialize F2FS node manager");
1901 /* For write statistics */
1902 if (sb
->s_bdev
->bd_part
)
1903 sbi
->sectors_written_start
=
1904 (u64
)part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]);
1906 /* Read accumulated write IO statistics if exists */
1907 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1908 if (__exist_node_summaries(sbi
))
1909 sbi
->kbytes_written
=
1910 le64_to_cpu(seg_i
->journal
->info
.kbytes_written
);
1912 build_gc_manager(sbi
);
1914 /* get an inode for node space */
1915 sbi
->node_inode
= f2fs_iget(sb
, F2FS_NODE_INO(sbi
));
1916 if (IS_ERR(sbi
->node_inode
)) {
1917 f2fs_msg(sb
, KERN_ERR
, "Failed to read node inode");
1918 err
= PTR_ERR(sbi
->node_inode
);
1922 f2fs_join_shrinker(sbi
);
1924 /* if there are nt orphan nodes free them */
1925 err
= recover_orphan_inodes(sbi
);
1927 goto free_node_inode
;
1929 /* read root inode and dentry */
1930 root
= f2fs_iget(sb
, F2FS_ROOT_INO(sbi
));
1932 f2fs_msg(sb
, KERN_ERR
, "Failed to read root inode");
1933 err
= PTR_ERR(root
);
1934 goto free_node_inode
;
1936 if (!S_ISDIR(root
->i_mode
) || !root
->i_blocks
|| !root
->i_size
) {
1939 goto free_node_inode
;
1942 sb
->s_root
= d_make_root(root
); /* allocate root dentry */
1945 goto free_root_inode
;
1948 err
= f2fs_build_stats(sbi
);
1950 goto free_root_inode
;
1953 sbi
->s_proc
= proc_mkdir(sb
->s_id
, f2fs_proc_root
);
1956 proc_create_data("segment_info", S_IRUGO
, sbi
->s_proc
,
1957 &f2fs_seq_segment_info_fops
, sb
);
1958 proc_create_data("segment_bits", S_IRUGO
, sbi
->s_proc
,
1959 &f2fs_seq_segment_bits_fops
, sb
);
1962 sbi
->s_kobj
.kset
= f2fs_kset
;
1963 init_completion(&sbi
->s_kobj_unregister
);
1964 err
= kobject_init_and_add(&sbi
->s_kobj
, &f2fs_ktype
, NULL
,
1969 /* recover fsynced data */
1970 if (!test_opt(sbi
, DISABLE_ROLL_FORWARD
)) {
1972 * mount should be failed, when device has readonly mode, and
1973 * previous checkpoint was not done by clean system shutdown.
1975 if (bdev_read_only(sb
->s_bdev
) &&
1976 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
1982 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
1987 err
= recover_fsync_data(sbi
, false);
1990 f2fs_msg(sb
, KERN_ERR
,
1991 "Cannot recover all fsync data errno=%d", err
);
1995 err
= recover_fsync_data(sbi
, true);
1997 if (!f2fs_readonly(sb
) && err
> 0) {
1999 f2fs_msg(sb
, KERN_ERR
,
2000 "Need to recover fsync data");
2005 /* recover_fsync_data() cleared this already */
2006 clear_sbi_flag(sbi
, SBI_POR_DOING
);
2009 * If filesystem is not mounted as read-only then
2010 * do start the gc_thread.
2012 if (test_opt(sbi
, BG_GC
) && !f2fs_readonly(sb
)) {
2013 /* After POR, we can run background GC thread.*/
2014 err
= start_gc_thread(sbi
);
2020 /* recover broken superblock */
2022 err
= f2fs_commit_super(sbi
, true);
2023 f2fs_msg(sb
, KERN_INFO
,
2024 "Try to recover %dth superblock, ret: %d",
2025 sbi
->valid_super_block
? 1 : 2, err
);
2028 f2fs_update_time(sbi
, CP_TIME
);
2029 f2fs_update_time(sbi
, REQ_TIME
);
2033 f2fs_sync_inode_meta(sbi
);
2034 kobject_del(&sbi
->s_kobj
);
2035 kobject_put(&sbi
->s_kobj
);
2036 wait_for_completion(&sbi
->s_kobj_unregister
);
2039 remove_proc_entry("segment_info", sbi
->s_proc
);
2040 remove_proc_entry("segment_bits", sbi
->s_proc
);
2041 remove_proc_entry(sb
->s_id
, f2fs_proc_root
);
2043 f2fs_destroy_stats(sbi
);
2048 truncate_inode_pages_final(NODE_MAPPING(sbi
));
2049 mutex_lock(&sbi
->umount_mutex
);
2050 release_ino_entry(sbi
, true);
2051 f2fs_leave_shrinker(sbi
);
2052 iput(sbi
->node_inode
);
2053 mutex_unlock(&sbi
->umount_mutex
);
2055 destroy_node_manager(sbi
);
2057 destroy_segment_manager(sbi
);
2060 make_bad_inode(sbi
->meta_inode
);
2061 iput(sbi
->meta_inode
);
2063 destroy_percpu_info(sbi
);
2068 if (sbi
->s_chksum_driver
)
2069 crypto_free_shash(sbi
->s_chksum_driver
);
2072 /* give only one another chance */
2075 shrink_dcache_sb(sb
);
2081 static struct dentry
*f2fs_mount(struct file_system_type
*fs_type
, int flags
,
2082 const char *dev_name
, void *data
)
2084 return mount_bdev(fs_type
, flags
, dev_name
, data
, f2fs_fill_super
);
2087 static void kill_f2fs_super(struct super_block
*sb
)
2090 set_sbi_flag(F2FS_SB(sb
), SBI_IS_CLOSE
);
2091 kill_block_super(sb
);
2094 static struct file_system_type f2fs_fs_type
= {
2095 .owner
= THIS_MODULE
,
2097 .mount
= f2fs_mount
,
2098 .kill_sb
= kill_f2fs_super
,
2099 .fs_flags
= FS_REQUIRES_DEV
,
2101 MODULE_ALIAS_FS("f2fs");
2103 static int __init
init_inodecache(void)
2105 f2fs_inode_cachep
= kmem_cache_create("f2fs_inode_cache",
2106 sizeof(struct f2fs_inode_info
), 0,
2107 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
, NULL
);
2108 if (!f2fs_inode_cachep
)
2113 static void destroy_inodecache(void)
2116 * Make sure all delayed rcu free inodes are flushed before we
2120 kmem_cache_destroy(f2fs_inode_cachep
);
2123 static int __init
init_f2fs_fs(void)
2127 if (PAGE_SIZE
!= F2FS_BLKSIZE
) {
2128 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
2129 PAGE_SIZE
, F2FS_BLKSIZE
);
2133 f2fs_build_trace_ios();
2135 err
= init_inodecache();
2138 err
= create_node_manager_caches();
2140 goto free_inodecache
;
2141 err
= create_segment_manager_caches();
2143 goto free_node_manager_caches
;
2144 err
= create_checkpoint_caches();
2146 goto free_segment_manager_caches
;
2147 err
= create_extent_cache();
2149 goto free_checkpoint_caches
;
2150 f2fs_kset
= kset_create_and_add("f2fs", NULL
, fs_kobj
);
2153 goto free_extent_cache
;
2155 err
= register_shrinker(&f2fs_shrinker_info
);
2159 err
= register_filesystem(&f2fs_fs_type
);
2162 err
= f2fs_create_root_stats();
2164 goto free_filesystem
;
2165 f2fs_proc_root
= proc_mkdir("fs/f2fs", NULL
);
2169 unregister_filesystem(&f2fs_fs_type
);
2171 unregister_shrinker(&f2fs_shrinker_info
);
2173 kset_unregister(f2fs_kset
);
2175 destroy_extent_cache();
2176 free_checkpoint_caches
:
2177 destroy_checkpoint_caches();
2178 free_segment_manager_caches
:
2179 destroy_segment_manager_caches();
2180 free_node_manager_caches
:
2181 destroy_node_manager_caches();
2183 destroy_inodecache();
2188 static void __exit
exit_f2fs_fs(void)
2190 remove_proc_entry("fs/f2fs", NULL
);
2191 f2fs_destroy_root_stats();
2192 unregister_filesystem(&f2fs_fs_type
);
2193 unregister_shrinker(&f2fs_shrinker_info
);
2194 kset_unregister(f2fs_kset
);
2195 destroy_extent_cache();
2196 destroy_checkpoint_caches();
2197 destroy_segment_manager_caches();
2198 destroy_node_manager_caches();
2199 destroy_inodecache();
2200 f2fs_destroy_trace_ios();
2203 module_init(init_f2fs_fs
)
2204 module_exit(exit_f2fs_fs
)
2206 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2207 MODULE_DESCRIPTION("Flash Friendly File System");
2208 MODULE_LICENSE("GPL");