Linux 4.9.243
[linux/fpc-iii.git] / kernel / kmod.c
blob3f3bbae4cec335d3ce8ae182e9570bdb2569c311
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/fs_struct.h>
32 #include <linux/workqueue.h>
33 #include <linux/security.h>
34 #include <linux/mount.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/resource.h>
38 #include <linux/notifier.h>
39 #include <linux/suspend.h>
40 #include <linux/rwsem.h>
41 #include <linux/ptrace.h>
42 #include <linux/async.h>
43 #include <asm/uaccess.h>
45 #include <trace/events/module.h>
47 extern int max_threads;
49 #define CAP_BSET (void *)1
50 #define CAP_PI (void *)2
52 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
53 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
54 static DEFINE_SPINLOCK(umh_sysctl_lock);
55 static DECLARE_RWSEM(umhelper_sem);
57 #ifdef CONFIG_MODULES
60 modprobe_path is set via /proc/sys.
62 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
64 static void free_modprobe_argv(struct subprocess_info *info)
66 kfree(info->argv[3]); /* check call_modprobe() */
67 kfree(info->argv);
70 static int call_modprobe(char *module_name, int wait)
72 struct subprocess_info *info;
73 static char *envp[] = {
74 "HOME=/",
75 "TERM=linux",
76 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
77 NULL
80 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
81 if (!argv)
82 goto out;
84 module_name = kstrdup(module_name, GFP_KERNEL);
85 if (!module_name)
86 goto free_argv;
88 argv[0] = modprobe_path;
89 argv[1] = "-q";
90 argv[2] = "--";
91 argv[3] = module_name; /* check free_modprobe_argv() */
92 argv[4] = NULL;
94 info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
95 NULL, free_modprobe_argv, NULL);
96 if (!info)
97 goto free_module_name;
99 return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
101 free_module_name:
102 kfree(module_name);
103 free_argv:
104 kfree(argv);
105 out:
106 return -ENOMEM;
110 * __request_module - try to load a kernel module
111 * @wait: wait (or not) for the operation to complete
112 * @fmt: printf style format string for the name of the module
113 * @...: arguments as specified in the format string
115 * Load a module using the user mode module loader. The function returns
116 * zero on success or a negative errno code or positive exit code from
117 * "modprobe" on failure. Note that a successful module load does not mean
118 * the module did not then unload and exit on an error of its own. Callers
119 * must check that the service they requested is now available not blindly
120 * invoke it.
122 * If module auto-loading support is disabled then this function
123 * simply returns -ENOENT.
125 int __request_module(bool wait, const char *fmt, ...)
127 va_list args;
128 char module_name[MODULE_NAME_LEN];
129 unsigned int max_modprobes;
130 int ret;
131 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
132 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
133 static int kmod_loop_msg;
136 * We don't allow synchronous module loading from async. Module
137 * init may invoke async_synchronize_full() which will end up
138 * waiting for this task which already is waiting for the module
139 * loading to complete, leading to a deadlock.
141 WARN_ON_ONCE(wait && current_is_async());
143 if (!modprobe_path[0])
144 return -ENOENT;
146 va_start(args, fmt);
147 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
148 va_end(args);
149 if (ret >= MODULE_NAME_LEN)
150 return -ENAMETOOLONG;
152 ret = security_kernel_module_request(module_name);
153 if (ret)
154 return ret;
156 /* If modprobe needs a service that is in a module, we get a recursive
157 * loop. Limit the number of running kmod threads to max_threads/2 or
158 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
159 * would be to run the parents of this process, counting how many times
160 * kmod was invoked. That would mean accessing the internals of the
161 * process tables to get the command line, proc_pid_cmdline is static
162 * and it is not worth changing the proc code just to handle this case.
163 * KAO.
165 * "trace the ppid" is simple, but will fail if someone's
166 * parent exits. I think this is as good as it gets. --RR
168 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
169 atomic_inc(&kmod_concurrent);
170 if (atomic_read(&kmod_concurrent) > max_modprobes) {
171 /* We may be blaming an innocent here, but unlikely */
172 if (kmod_loop_msg < 5) {
173 printk(KERN_ERR
174 "request_module: runaway loop modprobe %s\n",
175 module_name);
176 kmod_loop_msg++;
178 atomic_dec(&kmod_concurrent);
179 return -ENOMEM;
182 trace_module_request(module_name, wait, _RET_IP_);
184 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
186 atomic_dec(&kmod_concurrent);
187 return ret;
189 EXPORT_SYMBOL(__request_module);
190 #endif /* CONFIG_MODULES */
192 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
194 if (info->cleanup)
195 (*info->cleanup)(info);
196 kfree(info);
199 static void umh_complete(struct subprocess_info *sub_info)
201 struct completion *comp = xchg(&sub_info->complete, NULL);
203 * See call_usermodehelper_exec(). If xchg() returns NULL
204 * we own sub_info, the UMH_KILLABLE caller has gone away
205 * or the caller used UMH_NO_WAIT.
207 if (comp)
208 complete(comp);
209 else
210 call_usermodehelper_freeinfo(sub_info);
214 * This is the task which runs the usermode application
216 static int call_usermodehelper_exec_async(void *data)
218 struct subprocess_info *sub_info = data;
219 struct cred *new;
220 int retval;
222 spin_lock_irq(&current->sighand->siglock);
223 flush_signal_handlers(current, 1);
224 spin_unlock_irq(&current->sighand->siglock);
227 * Initial kernel threads share ther FS with init, in order to
228 * get the init root directory. But we've now created a new
229 * thread that is going to execve a user process and has its own
230 * 'struct fs_struct'. Reset umask to the default.
232 current->fs->umask = 0022;
235 * Our parent (unbound workqueue) runs with elevated scheduling
236 * priority. Avoid propagating that into the userspace child.
238 set_user_nice(current, 0);
240 retval = -ENOMEM;
241 new = prepare_kernel_cred(current);
242 if (!new)
243 goto out;
245 spin_lock(&umh_sysctl_lock);
246 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
247 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
248 new->cap_inheritable);
249 spin_unlock(&umh_sysctl_lock);
251 if (sub_info->init) {
252 retval = sub_info->init(sub_info, new);
253 if (retval) {
254 abort_creds(new);
255 goto out;
259 commit_creds(new);
261 retval = do_execve(getname_kernel(sub_info->path),
262 (const char __user *const __user *)sub_info->argv,
263 (const char __user *const __user *)sub_info->envp);
264 out:
265 sub_info->retval = retval;
267 * call_usermodehelper_exec_sync() will call umh_complete
268 * if UHM_WAIT_PROC.
270 if (!(sub_info->wait & UMH_WAIT_PROC))
271 umh_complete(sub_info);
272 if (!retval)
273 return 0;
274 do_exit(0);
277 /* Handles UMH_WAIT_PROC. */
278 static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
280 pid_t pid;
282 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
283 kernel_sigaction(SIGCHLD, SIG_DFL);
284 pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
285 if (pid < 0) {
286 sub_info->retval = pid;
287 } else {
288 int ret = -ECHILD;
290 * Normally it is bogus to call wait4() from in-kernel because
291 * wait4() wants to write the exit code to a userspace address.
292 * But call_usermodehelper_exec_sync() always runs as kernel
293 * thread (workqueue) and put_user() to a kernel address works
294 * OK for kernel threads, due to their having an mm_segment_t
295 * which spans the entire address space.
297 * Thus the __user pointer cast is valid here.
299 sys_wait4(pid, (int __user *)&ret, 0, NULL);
302 * If ret is 0, either call_usermodehelper_exec_async failed and
303 * the real error code is already in sub_info->retval or
304 * sub_info->retval is 0 anyway, so don't mess with it then.
306 if (ret)
307 sub_info->retval = ret;
310 /* Restore default kernel sig handler */
311 kernel_sigaction(SIGCHLD, SIG_IGN);
313 umh_complete(sub_info);
317 * We need to create the usermodehelper kernel thread from a task that is affine
318 * to an optimized set of CPUs (or nohz housekeeping ones) such that they
319 * inherit a widest affinity irrespective of call_usermodehelper() callers with
320 * possibly reduced affinity (eg: per-cpu workqueues). We don't want
321 * usermodehelper targets to contend a busy CPU.
323 * Unbound workqueues provide such wide affinity and allow to block on
324 * UMH_WAIT_PROC requests without blocking pending request (up to some limit).
326 * Besides, workqueues provide the privilege level that caller might not have
327 * to perform the usermodehelper request.
330 static void call_usermodehelper_exec_work(struct work_struct *work)
332 struct subprocess_info *sub_info =
333 container_of(work, struct subprocess_info, work);
335 if (sub_info->wait & UMH_WAIT_PROC) {
336 call_usermodehelper_exec_sync(sub_info);
337 } else {
338 pid_t pid;
340 * Use CLONE_PARENT to reparent it to kthreadd; we do not
341 * want to pollute current->children, and we need a parent
342 * that always ignores SIGCHLD to ensure auto-reaping.
344 pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
345 CLONE_PARENT | SIGCHLD);
346 if (pid < 0) {
347 sub_info->retval = pid;
348 umh_complete(sub_info);
354 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
355 * (used for preventing user land processes from being created after the user
356 * land has been frozen during a system-wide hibernation or suspend operation).
357 * Should always be manipulated under umhelper_sem acquired for write.
359 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
361 /* Number of helpers running */
362 static atomic_t running_helpers = ATOMIC_INIT(0);
365 * Wait queue head used by usermodehelper_disable() to wait for all running
366 * helpers to finish.
368 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
371 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
372 * to become 'false'.
374 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
377 * Time to wait for running_helpers to become zero before the setting of
378 * usermodehelper_disabled in usermodehelper_disable() fails
380 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
382 int usermodehelper_read_trylock(void)
384 DEFINE_WAIT(wait);
385 int ret = 0;
387 down_read(&umhelper_sem);
388 for (;;) {
389 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
390 TASK_INTERRUPTIBLE);
391 if (!usermodehelper_disabled)
392 break;
394 if (usermodehelper_disabled == UMH_DISABLED)
395 ret = -EAGAIN;
397 up_read(&umhelper_sem);
399 if (ret)
400 break;
402 schedule();
403 try_to_freeze();
405 down_read(&umhelper_sem);
407 finish_wait(&usermodehelper_disabled_waitq, &wait);
408 return ret;
410 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
412 long usermodehelper_read_lock_wait(long timeout)
414 DEFINE_WAIT(wait);
416 if (timeout < 0)
417 return -EINVAL;
419 down_read(&umhelper_sem);
420 for (;;) {
421 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
422 TASK_UNINTERRUPTIBLE);
423 if (!usermodehelper_disabled)
424 break;
426 up_read(&umhelper_sem);
428 timeout = schedule_timeout(timeout);
429 if (!timeout)
430 break;
432 down_read(&umhelper_sem);
434 finish_wait(&usermodehelper_disabled_waitq, &wait);
435 return timeout;
437 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
439 void usermodehelper_read_unlock(void)
441 up_read(&umhelper_sem);
443 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
446 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
447 * @depth: New value to assign to usermodehelper_disabled.
449 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
450 * writing) and wakeup tasks waiting for it to change.
452 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
454 down_write(&umhelper_sem);
455 usermodehelper_disabled = depth;
456 wake_up(&usermodehelper_disabled_waitq);
457 up_write(&umhelper_sem);
461 * __usermodehelper_disable - Prevent new helpers from being started.
462 * @depth: New value to assign to usermodehelper_disabled.
464 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
466 int __usermodehelper_disable(enum umh_disable_depth depth)
468 long retval;
470 if (!depth)
471 return -EINVAL;
473 down_write(&umhelper_sem);
474 usermodehelper_disabled = depth;
475 up_write(&umhelper_sem);
478 * From now on call_usermodehelper_exec() won't start any new
479 * helpers, so it is sufficient if running_helpers turns out to
480 * be zero at one point (it may be increased later, but that
481 * doesn't matter).
483 retval = wait_event_timeout(running_helpers_waitq,
484 atomic_read(&running_helpers) == 0,
485 RUNNING_HELPERS_TIMEOUT);
486 if (retval)
487 return 0;
489 __usermodehelper_set_disable_depth(UMH_ENABLED);
490 return -EAGAIN;
493 static void helper_lock(void)
495 atomic_inc(&running_helpers);
496 smp_mb__after_atomic();
499 static void helper_unlock(void)
501 if (atomic_dec_and_test(&running_helpers))
502 wake_up(&running_helpers_waitq);
506 * call_usermodehelper_setup - prepare to call a usermode helper
507 * @path: path to usermode executable
508 * @argv: arg vector for process
509 * @envp: environment for process
510 * @gfp_mask: gfp mask for memory allocation
511 * @cleanup: a cleanup function
512 * @init: an init function
513 * @data: arbitrary context sensitive data
515 * Returns either %NULL on allocation failure, or a subprocess_info
516 * structure. This should be passed to call_usermodehelper_exec to
517 * exec the process and free the structure.
519 * The init function is used to customize the helper process prior to
520 * exec. A non-zero return code causes the process to error out, exit,
521 * and return the failure to the calling process
523 * The cleanup function is just before ethe subprocess_info is about to
524 * be freed. This can be used for freeing the argv and envp. The
525 * Function must be runnable in either a process context or the
526 * context in which call_usermodehelper_exec is called.
528 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
529 char **envp, gfp_t gfp_mask,
530 int (*init)(struct subprocess_info *info, struct cred *new),
531 void (*cleanup)(struct subprocess_info *info),
532 void *data)
534 struct subprocess_info *sub_info;
535 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
536 if (!sub_info)
537 goto out;
539 INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
540 sub_info->path = path;
541 sub_info->argv = argv;
542 sub_info->envp = envp;
544 sub_info->cleanup = cleanup;
545 sub_info->init = init;
546 sub_info->data = data;
547 out:
548 return sub_info;
550 EXPORT_SYMBOL(call_usermodehelper_setup);
553 * call_usermodehelper_exec - start a usermode application
554 * @sub_info: information about the subprocessa
555 * @wait: wait for the application to finish and return status.
556 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
557 * when the program couldn't be exec'ed. This makes it safe to call
558 * from interrupt context.
560 * Runs a user-space application. The application is started
561 * asynchronously if wait is not set, and runs as a child of system workqueues.
562 * (ie. it runs with full root capabilities and optimized affinity).
564 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
566 DECLARE_COMPLETION_ONSTACK(done);
567 int retval = 0;
569 if (!sub_info->path) {
570 call_usermodehelper_freeinfo(sub_info);
571 return -EINVAL;
573 helper_lock();
574 if (usermodehelper_disabled) {
575 retval = -EBUSY;
576 goto out;
579 * Set the completion pointer only if there is a waiter.
580 * This makes it possible to use umh_complete to free
581 * the data structure in case of UMH_NO_WAIT.
583 sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
584 sub_info->wait = wait;
586 queue_work(system_unbound_wq, &sub_info->work);
587 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
588 goto unlock;
590 if (wait & UMH_KILLABLE) {
591 retval = wait_for_completion_killable(&done);
592 if (!retval)
593 goto wait_done;
595 /* umh_complete() will see NULL and free sub_info */
596 if (xchg(&sub_info->complete, NULL))
597 goto unlock;
598 /* fallthrough, umh_complete() was already called */
601 wait_for_completion(&done);
602 wait_done:
603 retval = sub_info->retval;
604 out:
605 call_usermodehelper_freeinfo(sub_info);
606 unlock:
607 helper_unlock();
608 return retval;
610 EXPORT_SYMBOL(call_usermodehelper_exec);
613 * call_usermodehelper() - prepare and start a usermode application
614 * @path: path to usermode executable
615 * @argv: arg vector for process
616 * @envp: environment for process
617 * @wait: wait for the application to finish and return status.
618 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
619 * when the program couldn't be exec'ed. This makes it safe to call
620 * from interrupt context.
622 * This function is the equivalent to use call_usermodehelper_setup() and
623 * call_usermodehelper_exec().
625 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
627 struct subprocess_info *info;
628 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
630 info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
631 NULL, NULL, NULL);
632 if (info == NULL)
633 return -ENOMEM;
635 return call_usermodehelper_exec(info, wait);
637 EXPORT_SYMBOL(call_usermodehelper);
639 static int proc_cap_handler(struct ctl_table *table, int write,
640 void __user *buffer, size_t *lenp, loff_t *ppos)
642 struct ctl_table t;
643 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
644 kernel_cap_t new_cap;
645 int err, i;
647 if (write && (!capable(CAP_SETPCAP) ||
648 !capable(CAP_SYS_MODULE)))
649 return -EPERM;
652 * convert from the global kernel_cap_t to the ulong array to print to
653 * userspace if this is a read.
655 spin_lock(&umh_sysctl_lock);
656 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
657 if (table->data == CAP_BSET)
658 cap_array[i] = usermodehelper_bset.cap[i];
659 else if (table->data == CAP_PI)
660 cap_array[i] = usermodehelper_inheritable.cap[i];
661 else
662 BUG();
664 spin_unlock(&umh_sysctl_lock);
666 t = *table;
667 t.data = &cap_array;
670 * actually read or write and array of ulongs from userspace. Remember
671 * these are least significant 32 bits first
673 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
674 if (err < 0)
675 return err;
678 * convert from the sysctl array of ulongs to the kernel_cap_t
679 * internal representation
681 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
682 new_cap.cap[i] = cap_array[i];
685 * Drop everything not in the new_cap (but don't add things)
687 spin_lock(&umh_sysctl_lock);
688 if (write) {
689 if (table->data == CAP_BSET)
690 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
691 if (table->data == CAP_PI)
692 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
694 spin_unlock(&umh_sysctl_lock);
696 return 0;
699 struct ctl_table usermodehelper_table[] = {
701 .procname = "bset",
702 .data = CAP_BSET,
703 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
704 .mode = 0600,
705 .proc_handler = proc_cap_handler,
708 .procname = "inheritable",
709 .data = CAP_PI,
710 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
711 .mode = 0600,
712 .proc_handler = proc_cap_handler,