2 * kernel/locking/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
18 * Also see Documentation/locking/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
42 # undef __mutex_slowpath_needs_to_unlock
43 # define __mutex_slowpath_needs_to_unlock() 0
46 # include <asm/mutex.h>
50 __mutex_init(struct mutex
*lock
, const char *name
, struct lock_class_key
*key
)
52 atomic_set(&lock
->count
, 1);
53 spin_lock_init(&lock
->wait_lock
);
54 INIT_LIST_HEAD(&lock
->wait_list
);
55 mutex_clear_owner(lock
);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 osq_lock_init(&lock
->osq
);
60 debug_mutex_init(lock
, name
, key
);
63 EXPORT_SYMBOL(__mutex_init
);
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
72 __visible
void __sched
__mutex_lock_slowpath(atomic_t
*lock_count
);
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
93 * This function is similar to (but not equivalent to) down().
95 void __sched
mutex_lock(struct mutex
*lock
)
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
102 __mutex_fastpath_lock(&lock
->count
, __mutex_lock_slowpath
);
103 mutex_set_owner(lock
);
106 EXPORT_SYMBOL(mutex_lock
);
109 static __always_inline
void ww_mutex_lock_acquired(struct ww_mutex
*ww
,
110 struct ww_acquire_ctx
*ww_ctx
)
112 #ifdef CONFIG_DEBUG_MUTEXES
114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 * but released with a normal mutex_unlock in this call.
117 * This should never happen, always use ww_mutex_unlock.
119 DEBUG_LOCKS_WARN_ON(ww
->ctx
);
122 * Not quite done after calling ww_acquire_done() ?
124 DEBUG_LOCKS_WARN_ON(ww_ctx
->done_acquire
);
126 if (ww_ctx
->contending_lock
) {
128 * After -EDEADLK you tried to
129 * acquire a different ww_mutex? Bad!
131 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
!= ww
);
134 * You called ww_mutex_lock after receiving -EDEADLK,
135 * but 'forgot' to unlock everything else first?
137 DEBUG_LOCKS_WARN_ON(ww_ctx
->acquired
> 0);
138 ww_ctx
->contending_lock
= NULL
;
142 * Naughty, using a different class will lead to undefined behavior!
144 DEBUG_LOCKS_WARN_ON(ww_ctx
->ww_class
!= ww
->ww_class
);
150 * After acquiring lock with fastpath or when we lost out in contested
151 * slowpath, set ctx and wake up any waiters so they can recheck.
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
156 static __always_inline
void
157 ww_mutex_set_context_fastpath(struct ww_mutex
*lock
,
158 struct ww_acquire_ctx
*ctx
)
161 struct mutex_waiter
*cur
;
163 ww_mutex_lock_acquired(lock
, ctx
);
168 * The lock->ctx update should be visible on all cores before
169 * the atomic read is done, otherwise contended waiters might be
170 * missed. The contended waiters will either see ww_ctx == NULL
171 * and keep spinning, or it will acquire wait_lock, add itself
172 * to waiter list and sleep.
177 * Check if lock is contended, if not there is nobody to wake up
179 if (likely(atomic_read(&lock
->base
.count
) == 0))
183 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 * so they can see the new lock->ctx.
186 spin_lock_mutex(&lock
->base
.wait_lock
, flags
);
187 list_for_each_entry(cur
, &lock
->base
.wait_list
, list
) {
188 debug_mutex_wake_waiter(&lock
->base
, cur
);
189 wake_up_process(cur
->task
);
191 spin_unlock_mutex(&lock
->base
.wait_lock
, flags
);
195 * After acquiring lock in the slowpath set ctx and wake up any
196 * waiters so they can recheck.
198 * Callers must hold the mutex wait_lock.
200 static __always_inline
void
201 ww_mutex_set_context_slowpath(struct ww_mutex
*lock
,
202 struct ww_acquire_ctx
*ctx
)
204 struct mutex_waiter
*cur
;
206 ww_mutex_lock_acquired(lock
, ctx
);
210 * Give any possible sleeping processes the chance to wake up,
211 * so they can recheck if they have to back off.
213 list_for_each_entry(cur
, &lock
->base
.wait_list
, list
) {
214 debug_mutex_wake_waiter(&lock
->base
, cur
);
215 wake_up_process(cur
->task
);
219 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
221 * Look out! "owner" is an entirely speculative pointer
222 * access and not reliable.
225 bool mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
230 while (lock
->owner
== owner
) {
232 * Ensure we emit the owner->on_cpu, dereference _after_
233 * checking lock->owner still matches owner. If that fails,
234 * owner might point to freed memory. If it still matches,
235 * the rcu_read_lock() ensures the memory stays valid.
239 if (!owner
->on_cpu
|| need_resched()) {
244 cpu_relax_lowlatency();
252 * Initial check for entering the mutex spinning loop
254 static inline int mutex_can_spin_on_owner(struct mutex
*lock
)
256 struct task_struct
*owner
;
263 owner
= READ_ONCE(lock
->owner
);
265 retval
= owner
->on_cpu
;
268 * if lock->owner is not set, the mutex owner may have just acquired
269 * it and not set the owner yet or the mutex has been released.
275 * Atomically try to take the lock when it is available
277 static inline bool mutex_try_to_acquire(struct mutex
*lock
)
279 return !mutex_is_locked(lock
) &&
280 (atomic_cmpxchg_acquire(&lock
->count
, 1, 0) == 1);
284 * Optimistic spinning.
286 * We try to spin for acquisition when we find that the lock owner
287 * is currently running on a (different) CPU and while we don't
288 * need to reschedule. The rationale is that if the lock owner is
289 * running, it is likely to release the lock soon.
291 * Since this needs the lock owner, and this mutex implementation
292 * doesn't track the owner atomically in the lock field, we need to
293 * track it non-atomically.
295 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
296 * to serialize everything.
298 * The mutex spinners are queued up using MCS lock so that only one
299 * spinner can compete for the mutex. However, if mutex spinning isn't
300 * going to happen, there is no point in going through the lock/unlock
303 * Returns true when the lock was taken, otherwise false, indicating
304 * that we need to jump to the slowpath and sleep.
306 static bool mutex_optimistic_spin(struct mutex
*lock
,
307 struct ww_acquire_ctx
*ww_ctx
, const bool use_ww_ctx
)
309 struct task_struct
*task
= current
;
311 if (!mutex_can_spin_on_owner(lock
))
315 * In order to avoid a stampede of mutex spinners trying to
316 * acquire the mutex all at once, the spinners need to take a
317 * MCS (queued) lock first before spinning on the owner field.
319 if (!osq_lock(&lock
->osq
))
323 struct task_struct
*owner
;
325 if (use_ww_ctx
&& ww_ctx
->acquired
> 0) {
328 ww
= container_of(lock
, struct ww_mutex
, base
);
330 * If ww->ctx is set the contents are undefined, only
331 * by acquiring wait_lock there is a guarantee that
332 * they are not invalid when reading.
334 * As such, when deadlock detection needs to be
335 * performed the optimistic spinning cannot be done.
337 if (READ_ONCE(ww
->ctx
))
342 * If there's an owner, wait for it to either
343 * release the lock or go to sleep.
345 owner
= READ_ONCE(lock
->owner
);
346 if (owner
&& !mutex_spin_on_owner(lock
, owner
))
349 /* Try to acquire the mutex if it is unlocked. */
350 if (mutex_try_to_acquire(lock
)) {
351 lock_acquired(&lock
->dep_map
, ip
);
355 ww
= container_of(lock
, struct ww_mutex
, base
);
357 ww_mutex_set_context_fastpath(ww
, ww_ctx
);
360 mutex_set_owner(lock
);
361 osq_unlock(&lock
->osq
);
366 * When there's no owner, we might have preempted between the
367 * owner acquiring the lock and setting the owner field. If
368 * we're an RT task that will live-lock because we won't let
369 * the owner complete.
371 if (!owner
&& (need_resched() || rt_task(task
)))
375 * The cpu_relax() call is a compiler barrier which forces
376 * everything in this loop to be re-loaded. We don't need
377 * memory barriers as we'll eventually observe the right
378 * values at the cost of a few extra spins.
380 cpu_relax_lowlatency();
383 osq_unlock(&lock
->osq
);
386 * If we fell out of the spin path because of need_resched(),
387 * reschedule now, before we try-lock the mutex. This avoids getting
388 * scheduled out right after we obtained the mutex.
390 if (need_resched()) {
392 * We _should_ have TASK_RUNNING here, but just in case
393 * we do not, make it so, otherwise we might get stuck.
395 __set_current_state(TASK_RUNNING
);
396 schedule_preempt_disabled();
402 static bool mutex_optimistic_spin(struct mutex
*lock
,
403 struct ww_acquire_ctx
*ww_ctx
, const bool use_ww_ctx
)
409 __visible __used noinline
410 void __sched
__mutex_unlock_slowpath(atomic_t
*lock_count
);
413 * mutex_unlock - release the mutex
414 * @lock: the mutex to be released
416 * Unlock a mutex that has been locked by this task previously.
418 * This function must not be used in interrupt context. Unlocking
419 * of a not locked mutex is not allowed.
421 * This function is similar to (but not equivalent to) up().
423 void __sched
mutex_unlock(struct mutex
*lock
)
426 * The unlocking fastpath is the 0->1 transition from 'locked'
427 * into 'unlocked' state:
429 #ifndef CONFIG_DEBUG_MUTEXES
431 * When debugging is enabled we must not clear the owner before time,
432 * the slow path will always be taken, and that clears the owner field
433 * after verifying that it was indeed current.
435 mutex_clear_owner(lock
);
437 __mutex_fastpath_unlock(&lock
->count
, __mutex_unlock_slowpath
);
440 EXPORT_SYMBOL(mutex_unlock
);
443 * ww_mutex_unlock - release the w/w mutex
444 * @lock: the mutex to be released
446 * Unlock a mutex that has been locked by this task previously with any of the
447 * ww_mutex_lock* functions (with or without an acquire context). It is
448 * forbidden to release the locks after releasing the acquire context.
450 * This function must not be used in interrupt context. Unlocking
451 * of a unlocked mutex is not allowed.
453 void __sched
ww_mutex_unlock(struct ww_mutex
*lock
)
456 * The unlocking fastpath is the 0->1 transition from 'locked'
457 * into 'unlocked' state:
460 #ifdef CONFIG_DEBUG_MUTEXES
461 DEBUG_LOCKS_WARN_ON(!lock
->ctx
->acquired
);
463 if (lock
->ctx
->acquired
> 0)
464 lock
->ctx
->acquired
--;
468 #ifndef CONFIG_DEBUG_MUTEXES
470 * When debugging is enabled we must not clear the owner before time,
471 * the slow path will always be taken, and that clears the owner field
472 * after verifying that it was indeed current.
474 mutex_clear_owner(&lock
->base
);
476 __mutex_fastpath_unlock(&lock
->base
.count
, __mutex_unlock_slowpath
);
478 EXPORT_SYMBOL(ww_mutex_unlock
);
480 static inline int __sched
481 __ww_mutex_lock_check_stamp(struct mutex
*lock
, struct ww_acquire_ctx
*ctx
)
483 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
484 struct ww_acquire_ctx
*hold_ctx
= READ_ONCE(ww
->ctx
);
489 if (ctx
->stamp
- hold_ctx
->stamp
<= LONG_MAX
&&
490 (ctx
->stamp
!= hold_ctx
->stamp
|| ctx
> hold_ctx
)) {
491 #ifdef CONFIG_DEBUG_MUTEXES
492 DEBUG_LOCKS_WARN_ON(ctx
->contending_lock
);
493 ctx
->contending_lock
= ww
;
502 * Lock a mutex (possibly interruptible), slowpath:
504 static __always_inline
int __sched
505 __mutex_lock_common(struct mutex
*lock
, long state
, unsigned int subclass
,
506 struct lockdep_map
*nest_lock
, unsigned long ip
,
507 struct ww_acquire_ctx
*ww_ctx
, const bool use_ww_ctx
)
509 struct task_struct
*task
= current
;
510 struct mutex_waiter waiter
;
515 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
516 if (unlikely(ww_ctx
== READ_ONCE(ww
->ctx
)))
521 mutex_acquire_nest(&lock
->dep_map
, subclass
, 0, nest_lock
, ip
);
523 if (mutex_optimistic_spin(lock
, ww_ctx
, use_ww_ctx
)) {
524 /* got the lock, yay! */
529 spin_lock_mutex(&lock
->wait_lock
, flags
);
532 * Once more, try to acquire the lock. Only try-lock the mutex if
533 * it is unlocked to reduce unnecessary xchg() operations.
535 if (!mutex_is_locked(lock
) &&
536 (atomic_xchg_acquire(&lock
->count
, 0) == 1))
539 debug_mutex_lock_common(lock
, &waiter
);
540 debug_mutex_add_waiter(lock
, &waiter
, task
);
542 /* add waiting tasks to the end of the waitqueue (FIFO): */
543 list_add_tail(&waiter
.list
, &lock
->wait_list
);
546 lock_contended(&lock
->dep_map
, ip
);
550 * Lets try to take the lock again - this is needed even if
551 * we get here for the first time (shortly after failing to
552 * acquire the lock), to make sure that we get a wakeup once
553 * it's unlocked. Later on, if we sleep, this is the
554 * operation that gives us the lock. We xchg it to -1, so
555 * that when we release the lock, we properly wake up the
556 * other waiters. We only attempt the xchg if the count is
557 * non-negative in order to avoid unnecessary xchg operations:
559 if (atomic_read(&lock
->count
) >= 0 &&
560 (atomic_xchg_acquire(&lock
->count
, -1) == 1))
564 * got a signal? (This code gets eliminated in the
565 * TASK_UNINTERRUPTIBLE case.)
567 if (unlikely(signal_pending_state(state
, task
))) {
572 if (use_ww_ctx
&& ww_ctx
->acquired
> 0) {
573 ret
= __ww_mutex_lock_check_stamp(lock
, ww_ctx
);
578 __set_task_state(task
, state
);
580 /* didn't get the lock, go to sleep: */
581 spin_unlock_mutex(&lock
->wait_lock
, flags
);
582 schedule_preempt_disabled();
583 spin_lock_mutex(&lock
->wait_lock
, flags
);
585 __set_task_state(task
, TASK_RUNNING
);
587 mutex_remove_waiter(lock
, &waiter
, task
);
588 /* set it to 0 if there are no waiters left: */
589 if (likely(list_empty(&lock
->wait_list
)))
590 atomic_set(&lock
->count
, 0);
591 debug_mutex_free_waiter(&waiter
);
594 /* got the lock - cleanup and rejoice! */
595 lock_acquired(&lock
->dep_map
, ip
);
596 mutex_set_owner(lock
);
599 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
600 ww_mutex_set_context_slowpath(ww
, ww_ctx
);
603 spin_unlock_mutex(&lock
->wait_lock
, flags
);
608 mutex_remove_waiter(lock
, &waiter
, task
);
609 spin_unlock_mutex(&lock
->wait_lock
, flags
);
610 debug_mutex_free_waiter(&waiter
);
611 mutex_release(&lock
->dep_map
, 1, ip
);
616 #ifdef CONFIG_DEBUG_LOCK_ALLOC
618 mutex_lock_nested(struct mutex
*lock
, unsigned int subclass
)
621 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
622 subclass
, NULL
, _RET_IP_
, NULL
, 0);
625 EXPORT_SYMBOL_GPL(mutex_lock_nested
);
628 _mutex_lock_nest_lock(struct mutex
*lock
, struct lockdep_map
*nest
)
631 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
632 0, nest
, _RET_IP_
, NULL
, 0);
635 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock
);
638 mutex_lock_killable_nested(struct mutex
*lock
, unsigned int subclass
)
641 return __mutex_lock_common(lock
, TASK_KILLABLE
,
642 subclass
, NULL
, _RET_IP_
, NULL
, 0);
644 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested
);
647 mutex_lock_interruptible_nested(struct mutex
*lock
, unsigned int subclass
)
650 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
,
651 subclass
, NULL
, _RET_IP_
, NULL
, 0);
654 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested
);
657 ww_mutex_deadlock_injection(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
659 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
662 if (ctx
->deadlock_inject_countdown
-- == 0) {
663 tmp
= ctx
->deadlock_inject_interval
;
664 if (tmp
> UINT_MAX
/4)
667 tmp
= tmp
*2 + tmp
+ tmp
/2;
669 ctx
->deadlock_inject_interval
= tmp
;
670 ctx
->deadlock_inject_countdown
= tmp
;
671 ctx
->contending_lock
= lock
;
673 ww_mutex_unlock(lock
);
683 __ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
688 ret
= __mutex_lock_common(&lock
->base
, TASK_UNINTERRUPTIBLE
,
689 0, &ctx
->dep_map
, _RET_IP_
, ctx
, 1);
690 if (!ret
&& ctx
->acquired
> 1)
691 return ww_mutex_deadlock_injection(lock
, ctx
);
695 EXPORT_SYMBOL_GPL(__ww_mutex_lock
);
698 __ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
703 ret
= __mutex_lock_common(&lock
->base
, TASK_INTERRUPTIBLE
,
704 0, &ctx
->dep_map
, _RET_IP_
, ctx
, 1);
706 if (!ret
&& ctx
->acquired
> 1)
707 return ww_mutex_deadlock_injection(lock
, ctx
);
711 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible
);
716 * Release the lock, slowpath:
719 __mutex_unlock_common_slowpath(struct mutex
*lock
, int nested
)
725 * As a performance measurement, release the lock before doing other
726 * wakeup related duties to follow. This allows other tasks to acquire
727 * the lock sooner, while still handling cleanups in past unlock calls.
728 * This can be done as we do not enforce strict equivalence between the
729 * mutex counter and wait_list.
732 * Some architectures leave the lock unlocked in the fastpath failure
733 * case, others need to leave it locked. In the later case we have to
734 * unlock it here - as the lock counter is currently 0 or negative.
736 if (__mutex_slowpath_needs_to_unlock())
737 atomic_set(&lock
->count
, 1);
739 spin_lock_mutex(&lock
->wait_lock
, flags
);
740 mutex_release(&lock
->dep_map
, nested
, _RET_IP_
);
741 debug_mutex_unlock(lock
);
743 if (!list_empty(&lock
->wait_list
)) {
744 /* get the first entry from the wait-list: */
745 struct mutex_waiter
*waiter
=
746 list_entry(lock
->wait_list
.next
,
747 struct mutex_waiter
, list
);
749 debug_mutex_wake_waiter(lock
, waiter
);
750 wake_q_add(&wake_q
, waiter
->task
);
753 spin_unlock_mutex(&lock
->wait_lock
, flags
);
758 * Release the lock, slowpath:
761 __mutex_unlock_slowpath(atomic_t
*lock_count
)
763 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
765 __mutex_unlock_common_slowpath(lock
, 1);
768 #ifndef CONFIG_DEBUG_LOCK_ALLOC
770 * Here come the less common (and hence less performance-critical) APIs:
771 * mutex_lock_interruptible() and mutex_trylock().
773 static noinline
int __sched
774 __mutex_lock_killable_slowpath(struct mutex
*lock
);
776 static noinline
int __sched
777 __mutex_lock_interruptible_slowpath(struct mutex
*lock
);
780 * mutex_lock_interruptible - acquire the mutex, interruptible
781 * @lock: the mutex to be acquired
783 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
784 * been acquired or sleep until the mutex becomes available. If a
785 * signal arrives while waiting for the lock then this function
788 * This function is similar to (but not equivalent to) down_interruptible().
790 int __sched
mutex_lock_interruptible(struct mutex
*lock
)
795 ret
= __mutex_fastpath_lock_retval(&lock
->count
);
797 mutex_set_owner(lock
);
800 return __mutex_lock_interruptible_slowpath(lock
);
803 EXPORT_SYMBOL(mutex_lock_interruptible
);
805 int __sched
mutex_lock_killable(struct mutex
*lock
)
810 ret
= __mutex_fastpath_lock_retval(&lock
->count
);
812 mutex_set_owner(lock
);
815 return __mutex_lock_killable_slowpath(lock
);
817 EXPORT_SYMBOL(mutex_lock_killable
);
819 __visible
void __sched
820 __mutex_lock_slowpath(atomic_t
*lock_count
)
822 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
824 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
, 0,
825 NULL
, _RET_IP_
, NULL
, 0);
828 static noinline
int __sched
829 __mutex_lock_killable_slowpath(struct mutex
*lock
)
831 return __mutex_lock_common(lock
, TASK_KILLABLE
, 0,
832 NULL
, _RET_IP_
, NULL
, 0);
835 static noinline
int __sched
836 __mutex_lock_interruptible_slowpath(struct mutex
*lock
)
838 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
, 0,
839 NULL
, _RET_IP_
, NULL
, 0);
842 static noinline
int __sched
843 __ww_mutex_lock_slowpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
845 return __mutex_lock_common(&lock
->base
, TASK_UNINTERRUPTIBLE
, 0,
846 NULL
, _RET_IP_
, ctx
, 1);
849 static noinline
int __sched
850 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex
*lock
,
851 struct ww_acquire_ctx
*ctx
)
853 return __mutex_lock_common(&lock
->base
, TASK_INTERRUPTIBLE
, 0,
854 NULL
, _RET_IP_
, ctx
, 1);
860 * Spinlock based trylock, we take the spinlock and check whether we
863 static inline int __mutex_trylock_slowpath(atomic_t
*lock_count
)
865 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
869 /* No need to trylock if the mutex is locked. */
870 if (mutex_is_locked(lock
))
873 spin_lock_mutex(&lock
->wait_lock
, flags
);
875 prev
= atomic_xchg_acquire(&lock
->count
, -1);
876 if (likely(prev
== 1)) {
877 mutex_set_owner(lock
);
878 mutex_acquire(&lock
->dep_map
, 0, 1, _RET_IP_
);
881 /* Set it back to 0 if there are no waiters: */
882 if (likely(list_empty(&lock
->wait_list
)))
883 atomic_set(&lock
->count
, 0);
885 spin_unlock_mutex(&lock
->wait_lock
, flags
);
891 * mutex_trylock - try to acquire the mutex, without waiting
892 * @lock: the mutex to be acquired
894 * Try to acquire the mutex atomically. Returns 1 if the mutex
895 * has been acquired successfully, and 0 on contention.
897 * NOTE: this function follows the spin_trylock() convention, so
898 * it is negated from the down_trylock() return values! Be careful
899 * about this when converting semaphore users to mutexes.
901 * This function must not be used in interrupt context. The
902 * mutex must be released by the same task that acquired it.
904 int __sched
mutex_trylock(struct mutex
*lock
)
908 ret
= __mutex_fastpath_trylock(&lock
->count
, __mutex_trylock_slowpath
);
910 mutex_set_owner(lock
);
914 EXPORT_SYMBOL(mutex_trylock
);
916 #ifndef CONFIG_DEBUG_LOCK_ALLOC
918 __ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
924 ret
= __mutex_fastpath_lock_retval(&lock
->base
.count
);
927 ww_mutex_set_context_fastpath(lock
, ctx
);
928 mutex_set_owner(&lock
->base
);
930 ret
= __ww_mutex_lock_slowpath(lock
, ctx
);
933 EXPORT_SYMBOL(__ww_mutex_lock
);
936 __ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
942 ret
= __mutex_fastpath_lock_retval(&lock
->base
.count
);
945 ww_mutex_set_context_fastpath(lock
, ctx
);
946 mutex_set_owner(&lock
->base
);
948 ret
= __ww_mutex_lock_interruptible_slowpath(lock
, ctx
);
951 EXPORT_SYMBOL(__ww_mutex_lock_interruptible
);
956 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
957 * @cnt: the atomic which we are to dec
958 * @lock: the mutex to return holding if we dec to 0
960 * return true and hold lock if we dec to 0, return false otherwise
962 int atomic_dec_and_mutex_lock(atomic_t
*cnt
, struct mutex
*lock
)
964 /* dec if we can't possibly hit 0 */
965 if (atomic_add_unless(cnt
, -1, 1))
967 /* we might hit 0, so take the lock */
969 if (!atomic_dec_and_test(cnt
)) {
970 /* when we actually did the dec, we didn't hit 0 */
974 /* we hit 0, and we hold the lock */
977 EXPORT_SYMBOL(atomic_dec_and_mutex_lock
);