Linux 4.9.243
[linux/fpc-iii.git] / kernel / locking / rwsem-xadd.c
blob0cdbb636e3163878122dffdc76215a1c3ef9af90
1 /* rwsem.c: R/W semaphores: contention handling functions
3 * Written by David Howells (dhowells@redhat.com).
4 * Derived from arch/i386/kernel/semaphore.c
6 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
7 * and Michel Lespinasse <walken@google.com>
9 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
10 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12 #include <linux/rwsem.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/sched/rt.h>
17 #include <linux/osq_lock.h>
19 #include "rwsem.h"
22 * Guide to the rw_semaphore's count field for common values.
23 * (32-bit case illustrated, similar for 64-bit)
25 * 0x0000000X (1) X readers active or attempting lock, no writer waiting
26 * X = #active_readers + #readers attempting to lock
27 * (X*ACTIVE_BIAS)
29 * 0x00000000 rwsem is unlocked, and no one is waiting for the lock or
30 * attempting to read lock or write lock.
32 * 0xffff000X (1) X readers active or attempting lock, with waiters for lock
33 * X = #active readers + # readers attempting lock
34 * (X*ACTIVE_BIAS + WAITING_BIAS)
35 * (2) 1 writer attempting lock, no waiters for lock
36 * X-1 = #active readers + #readers attempting lock
37 * ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
38 * (3) 1 writer active, no waiters for lock
39 * X-1 = #active readers + #readers attempting lock
40 * ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
42 * 0xffff0001 (1) 1 reader active or attempting lock, waiters for lock
43 * (WAITING_BIAS + ACTIVE_BIAS)
44 * (2) 1 writer active or attempting lock, no waiters for lock
45 * (ACTIVE_WRITE_BIAS)
47 * 0xffff0000 (1) There are writers or readers queued but none active
48 * or in the process of attempting lock.
49 * (WAITING_BIAS)
50 * Note: writer can attempt to steal lock for this count by adding
51 * ACTIVE_WRITE_BIAS in cmpxchg and checking the old count
53 * 0xfffe0001 (1) 1 writer active, or attempting lock. Waiters on queue.
54 * (ACTIVE_WRITE_BIAS + WAITING_BIAS)
56 * Note: Readers attempt to lock by adding ACTIVE_BIAS in down_read and checking
57 * the count becomes more than 0 for successful lock acquisition,
58 * i.e. the case where there are only readers or nobody has lock.
59 * (1st and 2nd case above).
61 * Writers attempt to lock by adding ACTIVE_WRITE_BIAS in down_write and
62 * checking the count becomes ACTIVE_WRITE_BIAS for successful lock
63 * acquisition (i.e. nobody else has lock or attempts lock). If
64 * unsuccessful, in rwsem_down_write_failed, we'll check to see if there
65 * are only waiters but none active (5th case above), and attempt to
66 * steal the lock.
71 * Initialize an rwsem:
73 void __init_rwsem(struct rw_semaphore *sem, const char *name,
74 struct lock_class_key *key)
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
78 * Make sure we are not reinitializing a held semaphore:
80 debug_check_no_locks_freed((void *)sem, sizeof(*sem));
81 lockdep_init_map(&sem->dep_map, name, key, 0);
82 #endif
83 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
84 raw_spin_lock_init(&sem->wait_lock);
85 INIT_LIST_HEAD(&sem->wait_list);
86 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
87 sem->owner = NULL;
88 osq_lock_init(&sem->osq);
89 #endif
92 EXPORT_SYMBOL(__init_rwsem);
94 enum rwsem_waiter_type {
95 RWSEM_WAITING_FOR_WRITE,
96 RWSEM_WAITING_FOR_READ
99 struct rwsem_waiter {
100 struct list_head list;
101 struct task_struct *task;
102 enum rwsem_waiter_type type;
105 enum rwsem_wake_type {
106 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */
107 RWSEM_WAKE_READERS, /* Wake readers only */
108 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */
112 * handle the lock release when processes blocked on it that can now run
113 * - if we come here from up_xxxx(), then:
114 * - the 'active part' of count (&0x0000ffff) reached 0 (but may have changed)
115 * - the 'waiting part' of count (&0xffff0000) is -ve (and will still be so)
116 * - there must be someone on the queue
117 * - the wait_lock must be held by the caller
118 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
119 * to actually wakeup the blocked task(s) and drop the reference count,
120 * preferably when the wait_lock is released
121 * - woken process blocks are discarded from the list after having task zeroed
122 * - writers are only marked woken if downgrading is false
124 static void __rwsem_mark_wake(struct rw_semaphore *sem,
125 enum rwsem_wake_type wake_type,
126 struct wake_q_head *wake_q)
128 struct rwsem_waiter *waiter, *tmp;
129 long oldcount, woken = 0, adjustment = 0;
130 struct list_head wlist;
133 * Take a peek at the queue head waiter such that we can determine
134 * the wakeup(s) to perform.
136 waiter = list_first_entry(&sem->wait_list, struct rwsem_waiter, list);
138 if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
139 if (wake_type == RWSEM_WAKE_ANY) {
141 * Mark writer at the front of the queue for wakeup.
142 * Until the task is actually later awoken later by
143 * the caller, other writers are able to steal it.
144 * Readers, on the other hand, will block as they
145 * will notice the queued writer.
147 wake_q_add(wake_q, waiter->task);
150 return;
154 * Writers might steal the lock before we grant it to the next reader.
155 * We prefer to do the first reader grant before counting readers
156 * so we can bail out early if a writer stole the lock.
158 if (wake_type != RWSEM_WAKE_READ_OWNED) {
159 adjustment = RWSEM_ACTIVE_READ_BIAS;
160 try_reader_grant:
161 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
162 if (unlikely(oldcount < RWSEM_WAITING_BIAS)) {
164 * If the count is still less than RWSEM_WAITING_BIAS
165 * after removing the adjustment, it is assumed that
166 * a writer has stolen the lock. We have to undo our
167 * reader grant.
169 if (atomic_long_add_return(-adjustment, &sem->count) <
170 RWSEM_WAITING_BIAS)
171 return;
173 /* Last active locker left. Retry waking readers. */
174 goto try_reader_grant;
177 * It is not really necessary to set it to reader-owned here,
178 * but it gives the spinners an early indication that the
179 * readers now have the lock.
181 rwsem_set_reader_owned(sem);
185 * Grant an infinite number of read locks to the readers at the front
186 * of the queue. We know that woken will be at least 1 as we accounted
187 * for above. Note we increment the 'active part' of the count by the
188 * number of readers before waking any processes up.
190 * We have to do wakeup in 2 passes to prevent the possibility that
191 * the reader count may be decremented before it is incremented. It
192 * is because the to-be-woken waiter may not have slept yet. So it
193 * may see waiter->task got cleared, finish its critical section and
194 * do an unlock before the reader count increment.
196 * 1) Collect the read-waiters in a separate list, count them and
197 * fully increment the reader count in rwsem.
198 * 2) For each waiters in the new list, clear waiter->task and
199 * put them into wake_q to be woken up later.
201 list_for_each_entry(waiter, &sem->wait_list, list) {
202 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
203 break;
205 woken++;
207 list_cut_before(&wlist, &sem->wait_list, &waiter->list);
209 adjustment = woken * RWSEM_ACTIVE_READ_BIAS - adjustment;
210 if (list_empty(&sem->wait_list)) {
211 /* hit end of list above */
212 adjustment -= RWSEM_WAITING_BIAS;
215 if (adjustment)
216 atomic_long_add(adjustment, &sem->count);
218 /* 2nd pass */
219 list_for_each_entry_safe(waiter, tmp, &wlist, list) {
220 struct task_struct *tsk;
222 tsk = waiter->task;
223 get_task_struct(tsk);
226 * Ensure calling get_task_struct() before setting the reader
227 * waiter to nil such that rwsem_down_read_failed() cannot
228 * race with do_exit() by always holding a reference count
229 * to the task to wakeup.
231 smp_store_release(&waiter->task, NULL);
233 * Ensure issuing the wakeup (either by us or someone else)
234 * after setting the reader waiter to nil.
236 wake_q_add(wake_q, tsk);
237 /* wake_q_add() already take the task ref */
238 put_task_struct(tsk);
243 * Wait for the read lock to be granted
245 __visible
246 struct rw_semaphore __sched *rwsem_down_read_failed(struct rw_semaphore *sem)
248 long count, adjustment = -RWSEM_ACTIVE_READ_BIAS;
249 struct rwsem_waiter waiter;
250 struct task_struct *tsk = current;
251 WAKE_Q(wake_q);
253 waiter.task = tsk;
254 waiter.type = RWSEM_WAITING_FOR_READ;
256 raw_spin_lock_irq(&sem->wait_lock);
257 if (list_empty(&sem->wait_list))
258 adjustment += RWSEM_WAITING_BIAS;
259 list_add_tail(&waiter.list, &sem->wait_list);
261 /* we're now waiting on the lock, but no longer actively locking */
262 count = atomic_long_add_return(adjustment, &sem->count);
265 * If there are no active locks, wake the front queued process(es).
267 * If there are no writers and we are first in the queue,
268 * wake our own waiter to join the existing active readers !
270 if (count == RWSEM_WAITING_BIAS ||
271 (count > RWSEM_WAITING_BIAS &&
272 adjustment != -RWSEM_ACTIVE_READ_BIAS))
273 __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
275 raw_spin_unlock_irq(&sem->wait_lock);
276 wake_up_q(&wake_q);
278 /* wait to be given the lock */
279 while (true) {
280 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
281 if (!waiter.task)
282 break;
283 schedule();
286 __set_task_state(tsk, TASK_RUNNING);
287 return sem;
289 EXPORT_SYMBOL(rwsem_down_read_failed);
292 * This function must be called with the sem->wait_lock held to prevent
293 * race conditions between checking the rwsem wait list and setting the
294 * sem->count accordingly.
296 static inline bool rwsem_try_write_lock(long count, struct rw_semaphore *sem)
299 * Avoid trying to acquire write lock if count isn't RWSEM_WAITING_BIAS.
301 if (count != RWSEM_WAITING_BIAS)
302 return false;
305 * Acquire the lock by trying to set it to ACTIVE_WRITE_BIAS. If there
306 * are other tasks on the wait list, we need to add on WAITING_BIAS.
308 count = list_is_singular(&sem->wait_list) ?
309 RWSEM_ACTIVE_WRITE_BIAS :
310 RWSEM_ACTIVE_WRITE_BIAS + RWSEM_WAITING_BIAS;
312 if (atomic_long_cmpxchg_acquire(&sem->count, RWSEM_WAITING_BIAS, count)
313 == RWSEM_WAITING_BIAS) {
314 rwsem_set_owner(sem);
315 return true;
318 return false;
321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
323 * Try to acquire write lock before the writer has been put on wait queue.
325 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
327 long old, count = atomic_long_read(&sem->count);
329 while (true) {
330 if (!(count == 0 || count == RWSEM_WAITING_BIAS))
331 return false;
333 old = atomic_long_cmpxchg_acquire(&sem->count, count,
334 count + RWSEM_ACTIVE_WRITE_BIAS);
335 if (old == count) {
336 rwsem_set_owner(sem);
337 return true;
340 count = old;
344 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
346 struct task_struct *owner;
347 bool ret = true;
349 if (need_resched())
350 return false;
352 rcu_read_lock();
353 owner = READ_ONCE(sem->owner);
354 if (!rwsem_owner_is_writer(owner)) {
356 * Don't spin if the rwsem is readers owned.
358 ret = !rwsem_owner_is_reader(owner);
359 goto done;
362 ret = owner->on_cpu;
363 done:
364 rcu_read_unlock();
365 return ret;
369 * Return true only if we can still spin on the owner field of the rwsem.
371 static noinline bool rwsem_spin_on_owner(struct rw_semaphore *sem)
373 struct task_struct *owner = READ_ONCE(sem->owner);
375 if (!rwsem_owner_is_writer(owner))
376 goto out;
378 rcu_read_lock();
379 while (sem->owner == owner) {
381 * Ensure we emit the owner->on_cpu, dereference _after_
382 * checking sem->owner still matches owner, if that fails,
383 * owner might point to free()d memory, if it still matches,
384 * the rcu_read_lock() ensures the memory stays valid.
386 barrier();
388 /* abort spinning when need_resched or owner is not running */
389 if (!owner->on_cpu || need_resched()) {
390 rcu_read_unlock();
391 return false;
394 cpu_relax_lowlatency();
396 rcu_read_unlock();
397 out:
399 * If there is a new owner or the owner is not set, we continue
400 * spinning.
402 return !rwsem_owner_is_reader(READ_ONCE(sem->owner));
405 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
407 bool taken = false;
409 preempt_disable();
411 /* sem->wait_lock should not be held when doing optimistic spinning */
412 if (!rwsem_can_spin_on_owner(sem))
413 goto done;
415 if (!osq_lock(&sem->osq))
416 goto done;
419 * Optimistically spin on the owner field and attempt to acquire the
420 * lock whenever the owner changes. Spinning will be stopped when:
421 * 1) the owning writer isn't running; or
422 * 2) readers own the lock as we can't determine if they are
423 * actively running or not.
425 while (rwsem_spin_on_owner(sem)) {
427 * Try to acquire the lock
429 if (rwsem_try_write_lock_unqueued(sem)) {
430 taken = true;
431 break;
435 * When there's no owner, we might have preempted between the
436 * owner acquiring the lock and setting the owner field. If
437 * we're an RT task that will live-lock because we won't let
438 * the owner complete.
440 if (!sem->owner && (need_resched() || rt_task(current)))
441 break;
444 * The cpu_relax() call is a compiler barrier which forces
445 * everything in this loop to be re-loaded. We don't need
446 * memory barriers as we'll eventually observe the right
447 * values at the cost of a few extra spins.
449 cpu_relax_lowlatency();
451 osq_unlock(&sem->osq);
452 done:
453 preempt_enable();
454 return taken;
458 * Return true if the rwsem has active spinner
460 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
462 return osq_is_locked(&sem->osq);
465 #else
466 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
468 return false;
471 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
473 return false;
475 #endif
478 * Wait until we successfully acquire the write lock
480 static inline struct rw_semaphore *
481 __rwsem_down_write_failed_common(struct rw_semaphore *sem, int state)
483 long count;
484 bool waiting = true; /* any queued threads before us */
485 struct rwsem_waiter waiter;
486 struct rw_semaphore *ret = sem;
487 WAKE_Q(wake_q);
489 /* undo write bias from down_write operation, stop active locking */
490 count = atomic_long_sub_return(RWSEM_ACTIVE_WRITE_BIAS, &sem->count);
492 /* do optimistic spinning and steal lock if possible */
493 if (rwsem_optimistic_spin(sem))
494 return sem;
497 * Optimistic spinning failed, proceed to the slowpath
498 * and block until we can acquire the sem.
500 waiter.task = current;
501 waiter.type = RWSEM_WAITING_FOR_WRITE;
503 raw_spin_lock_irq(&sem->wait_lock);
505 /* account for this before adding a new element to the list */
506 if (list_empty(&sem->wait_list))
507 waiting = false;
509 list_add_tail(&waiter.list, &sem->wait_list);
511 /* we're now waiting on the lock, but no longer actively locking */
512 if (waiting) {
513 count = atomic_long_read(&sem->count);
516 * If there were already threads queued before us and there are
517 * no active writers, the lock must be read owned; so we try to
518 * wake any read locks that were queued ahead of us.
520 if (count > RWSEM_WAITING_BIAS) {
521 WAKE_Q(wake_q);
523 __rwsem_mark_wake(sem, RWSEM_WAKE_READERS, &wake_q);
525 * The wakeup is normally called _after_ the wait_lock
526 * is released, but given that we are proactively waking
527 * readers we can deal with the wake_q overhead as it is
528 * similar to releasing and taking the wait_lock again
529 * for attempting rwsem_try_write_lock().
531 wake_up_q(&wake_q);
534 } else
535 count = atomic_long_add_return(RWSEM_WAITING_BIAS, &sem->count);
537 /* wait until we successfully acquire the lock */
538 set_current_state(state);
539 while (true) {
540 if (rwsem_try_write_lock(count, sem))
541 break;
542 raw_spin_unlock_irq(&sem->wait_lock);
544 /* Block until there are no active lockers. */
545 do {
546 if (signal_pending_state(state, current))
547 goto out_nolock;
549 schedule();
550 set_current_state(state);
551 } while ((count = atomic_long_read(&sem->count)) & RWSEM_ACTIVE_MASK);
553 raw_spin_lock_irq(&sem->wait_lock);
555 __set_current_state(TASK_RUNNING);
556 list_del(&waiter.list);
557 raw_spin_unlock_irq(&sem->wait_lock);
559 return ret;
561 out_nolock:
562 __set_current_state(TASK_RUNNING);
563 raw_spin_lock_irq(&sem->wait_lock);
564 list_del(&waiter.list);
565 if (list_empty(&sem->wait_list))
566 atomic_long_add(-RWSEM_WAITING_BIAS, &sem->count);
567 else
568 __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
569 raw_spin_unlock_irq(&sem->wait_lock);
570 wake_up_q(&wake_q);
572 return ERR_PTR(-EINTR);
575 __visible struct rw_semaphore * __sched
576 rwsem_down_write_failed(struct rw_semaphore *sem)
578 return __rwsem_down_write_failed_common(sem, TASK_UNINTERRUPTIBLE);
580 EXPORT_SYMBOL(rwsem_down_write_failed);
582 __visible struct rw_semaphore * __sched
583 rwsem_down_write_failed_killable(struct rw_semaphore *sem)
585 return __rwsem_down_write_failed_common(sem, TASK_KILLABLE);
587 EXPORT_SYMBOL(rwsem_down_write_failed_killable);
590 * handle waking up a waiter on the semaphore
591 * - up_read/up_write has decremented the active part of count if we come here
593 __visible
594 struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
596 unsigned long flags;
597 WAKE_Q(wake_q);
600 * __rwsem_down_write_failed_common(sem)
601 * rwsem_optimistic_spin(sem)
602 * osq_unlock(sem->osq)
603 * ...
604 * atomic_long_add_return(&sem->count)
606 * - VS -
608 * __up_write()
609 * if (atomic_long_sub_return_release(&sem->count) < 0)
610 * rwsem_wake(sem)
611 * osq_is_locked(&sem->osq)
613 * And __up_write() must observe !osq_is_locked() when it observes the
614 * atomic_long_add_return() in order to not miss a wakeup.
616 * This boils down to:
618 * [S.rel] X = 1 [RmW] r0 = (Y += 0)
619 * MB RMB
620 * [RmW] Y += 1 [L] r1 = X
622 * exists (r0=1 /\ r1=0)
624 smp_rmb();
627 * If a spinner is present, it is not necessary to do the wakeup.
628 * Try to do wakeup only if the trylock succeeds to minimize
629 * spinlock contention which may introduce too much delay in the
630 * unlock operation.
632 * spinning writer up_write/up_read caller
633 * --------------- -----------------------
634 * [S] osq_unlock() [L] osq
635 * MB RMB
636 * [RmW] rwsem_try_write_lock() [RmW] spin_trylock(wait_lock)
638 * Here, it is important to make sure that there won't be a missed
639 * wakeup while the rwsem is free and the only spinning writer goes
640 * to sleep without taking the rwsem. Even when the spinning writer
641 * is just going to break out of the waiting loop, it will still do
642 * a trylock in rwsem_down_write_failed() before sleeping. IOW, if
643 * rwsem_has_spinner() is true, it will guarantee at least one
644 * trylock attempt on the rwsem later on.
646 if (rwsem_has_spinner(sem)) {
648 * The smp_rmb() here is to make sure that the spinner
649 * state is consulted before reading the wait_lock.
651 smp_rmb();
652 if (!raw_spin_trylock_irqsave(&sem->wait_lock, flags))
653 return sem;
654 goto locked;
656 raw_spin_lock_irqsave(&sem->wait_lock, flags);
657 locked:
659 if (!list_empty(&sem->wait_list))
660 __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
662 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
663 wake_up_q(&wake_q);
665 return sem;
667 EXPORT_SYMBOL(rwsem_wake);
670 * downgrade a write lock into a read lock
671 * - caller incremented waiting part of count and discovered it still negative
672 * - just wake up any readers at the front of the queue
674 __visible
675 struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
677 unsigned long flags;
678 WAKE_Q(wake_q);
680 raw_spin_lock_irqsave(&sem->wait_lock, flags);
682 if (!list_empty(&sem->wait_list))
683 __rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
685 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
686 wake_up_q(&wake_q);
688 return sem;
690 EXPORT_SYMBOL(rwsem_downgrade_wake);