Linux 4.9.243
[linux/fpc-iii.git] / kernel / sched / core.c
blobc7c7ba8807f83e449f0152714ab28b3366f38c0d
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
99 void update_rq_clock(struct rq *rq)
101 s64 delta;
103 lockdep_assert_held(&rq->lock);
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
116 * Debugging: various feature bits
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
126 #undef SCHED_FEAT
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
135 * period over which we average the RT time consumption, measured
136 * in ms.
138 * default: 1s
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
146 unsigned int sysctl_sched_rt_period = 1000000;
148 __read_mostly int scheduler_running;
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
154 int sysctl_sched_rt_runtime = 950000;
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
160 * this_rq_lock - lock this runqueue and disable interrupts.
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
165 struct rq *rq;
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
171 return rq;
175 * __task_rq_lock - lock the rq @p resides on.
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
180 struct rq *rq;
182 lockdep_assert_held(&p->pi_lock);
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
191 raw_spin_unlock(&rq->lock);
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
205 struct rq *rq;
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
212 * move_queued_task() task_rq_lock()
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
239 #ifdef CONFIG_SCHED_HRTICK
241 * Use HR-timers to deliver accurate preemption points.
244 static void hrtick_clear(struct rq *rq)
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
265 return HRTIMER_NORESTART;
268 #ifdef CONFIG_SMP
270 static void __hrtick_restart(struct rq *rq)
272 struct hrtimer *timer = &rq->hrtick_timer;
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
278 * called from hardirq (IPI) context
280 static void __hrtick_start(void *arg)
282 struct rq *rq = arg;
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq *rq, u64 delay)
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
308 hrtimer_set_expires(timer, time);
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
318 #else
320 * Called to set the hrtick timer state.
322 * called with rq->lock held and irqs disabled
324 void hrtick_start(struct rq *rq, u64 delay)
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
334 #endif /* CONFIG_SMP */
336 static void init_rq_hrtick(struct rq *rq)
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
354 static inline void init_rq_hrtick(struct rq *rq)
357 #endif /* CONFIG_SCHED_HRTICK */
360 * cmpxchg based fetch_or, macro so it works for different integer types
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
374 _old; \
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
383 static bool set_nr_and_not_polling(struct task_struct *p)
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
395 static bool set_nr_if_polling(struct task_struct *p)
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
410 return true;
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
416 set_tsk_need_resched(p);
417 return true;
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
423 return false;
425 #endif
426 #endif
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
430 struct wake_q_node *node = &task->wake_q;
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
443 get_task_struct(task);
446 * The head is context local, there can be no concurrency.
448 *head->lastp = node;
449 head->lastp = &node->next;
452 void wake_up_q(struct wake_q_head *head)
454 struct wake_q_node *node = head->first;
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
469 wake_up_process(task);
470 put_task_struct(task);
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
481 void resched_curr(struct rq *rq)
483 struct task_struct *curr = rq->curr;
484 int cpu;
486 lockdep_assert_held(&rq->lock);
488 if (test_tsk_need_resched(curr))
489 return;
491 cpu = cpu_of(rq);
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
505 void resched_cpu(int cpu)
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
510 raw_spin_lock_irqsave(&rq->lock, flags);
511 if (cpu_online(cpu) || cpu == smp_processor_id())
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
526 int get_nohz_timer_target(void)
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
563 static void wake_up_idle_cpu(int cpu)
565 struct rq *rq = cpu_rq(cpu);
567 if (cpu == smp_processor_id())
568 return;
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
576 static bool wake_up_full_nohz_cpu(int cpu)
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
593 return false;
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
601 void wake_up_nohz_cpu(int cpu)
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
607 static inline bool got_nohz_idle_kick(void)
609 int cpu = smp_processor_id();
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
625 #else /* CONFIG_NO_HZ_COMMON */
627 static inline bool got_nohz_idle_kick(void)
629 return false;
632 #endif /* CONFIG_NO_HZ_COMMON */
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
637 int fifo_nr_running;
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
667 if (rq->nr_running > 1)
668 return false;
670 return true;
672 #endif /* CONFIG_NO_HZ_FULL */
674 void sched_avg_update(struct rq *rq)
676 s64 period = sched_avg_period();
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
690 #endif /* CONFIG_SMP */
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
698 * Caller must hold rcu_lock or sufficient equivalent.
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
703 struct task_group *parent, *child;
704 int ret;
706 parent = from;
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
717 continue;
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
731 int tg_nop(struct task_group *tg, void *data)
733 return 0;
735 #endif
737 static void set_load_weight(struct task_struct *p)
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
743 * SCHED_IDLE tasks get minimal weight:
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
776 enqueue_task(rq, p, flags);
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
784 dequeue_task(rq, p, flags);
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
814 if (irq_delta > delta)
815 irq_delta = delta;
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((&paravirt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
825 if (unlikely(steal > delta))
826 steal = delta;
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
831 #endif
833 rq->clock_task += delta;
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
846 if (stop) {
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
857 stop->sched_class = &stop_sched_class;
860 cpu_rq(cpu)->stop = stop;
862 if (old_stop) {
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
867 old_stop->sched_class = &rt_sched_class;
872 * __normal_prio - return the priority that is based on the static prio
874 static inline int __normal_prio(struct task_struct *p)
876 return p->static_prio;
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
886 static inline int normal_prio(struct task_struct *p)
888 int prio;
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
906 static int effective_prio(struct task_struct *p)
908 p->normal_prio = normal_prio(p);
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
923 * Return: 1 if the task is currently executing. 0 otherwise.
925 inline int task_curr(const struct task_struct *p)
927 return cpu_curr(task_cpu(p)) == p;
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
952 const struct sched_class *class;
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
975 #ifdef CONFIG_SMP
977 * This is how migration works:
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
991 * move_queued_task - move a queued task to new rq.
993 * Returns (locked) new rq. Old rq's lock is released.
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
997 lockdep_assert_held(&rq->lock);
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1004 rq = cpu_rq(new_cpu);
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1012 return rq;
1015 struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1038 rq = move_queued_task(rq, p, dest_cpu);
1040 return rq;
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1048 static int migration_cpu_stop(void *data)
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1058 local_irq_disable();
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1064 sched_ttwu_pending();
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1082 local_irq_enable();
1083 return 0;
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1101 lockdep_assert_held(&p->pi_lock);
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1106 if (queued) {
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1111 lockdep_assert_held(&rq->lock);
1112 dequeue_task(rq, p, DEQUEUE_SAVE);
1114 if (running)
1115 put_prev_task(rq, p);
1117 p->sched_class->set_cpus_allowed(p, new_mask);
1119 if (queued)
1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
1121 if (running)
1122 set_curr_task(rq, p);
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1134 static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138 unsigned int dest_cpu;
1139 struct rq_flags rf;
1140 struct rq *rq;
1141 int ret = 0;
1143 rq = task_rq_lock(p, &rf);
1144 update_rq_clock(rq);
1146 if (p->flags & PF_KTHREAD) {
1148 * Kernel threads are allowed on online && !active CPUs
1150 cpu_valid_mask = cpu_online_mask;
1154 * Must re-check here, to close a race against __kthread_bind(),
1155 * sched_setaffinity() is not guaranteed to observe the flag.
1157 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1158 ret = -EINVAL;
1159 goto out;
1162 if (cpumask_equal(&p->cpus_allowed, new_mask))
1163 goto out;
1165 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1166 if (dest_cpu >= nr_cpu_ids) {
1167 ret = -EINVAL;
1168 goto out;
1171 do_set_cpus_allowed(p, new_mask);
1173 if (p->flags & PF_KTHREAD) {
1175 * For kernel threads that do indeed end up on online &&
1176 * !active we want to ensure they are strict per-cpu threads.
1178 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1179 !cpumask_intersects(new_mask, cpu_active_mask) &&
1180 p->nr_cpus_allowed != 1);
1183 /* Can the task run on the task's current CPU? If so, we're done */
1184 if (cpumask_test_cpu(task_cpu(p), new_mask))
1185 goto out;
1187 if (task_running(rq, p) || p->state == TASK_WAKING) {
1188 struct migration_arg arg = { p, dest_cpu };
1189 /* Need help from migration thread: drop lock and wait. */
1190 task_rq_unlock(rq, p, &rf);
1191 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1192 tlb_migrate_finish(p->mm);
1193 return 0;
1194 } else if (task_on_rq_queued(p)) {
1196 * OK, since we're going to drop the lock immediately
1197 * afterwards anyway.
1199 lockdep_unpin_lock(&rq->lock, rf.cookie);
1200 rq = move_queued_task(rq, p, dest_cpu);
1201 lockdep_repin_lock(&rq->lock, rf.cookie);
1203 out:
1204 task_rq_unlock(rq, p, &rf);
1206 return ret;
1209 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1211 return __set_cpus_allowed_ptr(p, new_mask, false);
1213 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1215 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1217 #ifdef CONFIG_SCHED_DEBUG
1219 * We should never call set_task_cpu() on a blocked task,
1220 * ttwu() will sort out the placement.
1222 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1223 !p->on_rq);
1226 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1227 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1228 * time relying on p->on_rq.
1230 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1231 p->sched_class == &fair_sched_class &&
1232 (p->on_rq && !task_on_rq_migrating(p)));
1234 #ifdef CONFIG_LOCKDEP
1236 * The caller should hold either p->pi_lock or rq->lock, when changing
1237 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1239 * sched_move_task() holds both and thus holding either pins the cgroup,
1240 * see task_group().
1242 * Furthermore, all task_rq users should acquire both locks, see
1243 * task_rq_lock().
1245 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1246 lockdep_is_held(&task_rq(p)->lock)));
1247 #endif
1248 #endif
1250 trace_sched_migrate_task(p, new_cpu);
1252 if (task_cpu(p) != new_cpu) {
1253 if (p->sched_class->migrate_task_rq)
1254 p->sched_class->migrate_task_rq(p);
1255 p->se.nr_migrations++;
1256 perf_event_task_migrate(p);
1259 __set_task_cpu(p, new_cpu);
1262 static void __migrate_swap_task(struct task_struct *p, int cpu)
1264 if (task_on_rq_queued(p)) {
1265 struct rq *src_rq, *dst_rq;
1267 src_rq = task_rq(p);
1268 dst_rq = cpu_rq(cpu);
1270 p->on_rq = TASK_ON_RQ_MIGRATING;
1271 deactivate_task(src_rq, p, 0);
1272 set_task_cpu(p, cpu);
1273 activate_task(dst_rq, p, 0);
1274 p->on_rq = TASK_ON_RQ_QUEUED;
1275 check_preempt_curr(dst_rq, p, 0);
1276 } else {
1278 * Task isn't running anymore; make it appear like we migrated
1279 * it before it went to sleep. This means on wakeup we make the
1280 * previous cpu our target instead of where it really is.
1282 p->wake_cpu = cpu;
1286 struct migration_swap_arg {
1287 struct task_struct *src_task, *dst_task;
1288 int src_cpu, dst_cpu;
1291 static int migrate_swap_stop(void *data)
1293 struct migration_swap_arg *arg = data;
1294 struct rq *src_rq, *dst_rq;
1295 int ret = -EAGAIN;
1297 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1298 return -EAGAIN;
1300 src_rq = cpu_rq(arg->src_cpu);
1301 dst_rq = cpu_rq(arg->dst_cpu);
1303 double_raw_lock(&arg->src_task->pi_lock,
1304 &arg->dst_task->pi_lock);
1305 double_rq_lock(src_rq, dst_rq);
1307 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1308 goto unlock;
1310 if (task_cpu(arg->src_task) != arg->src_cpu)
1311 goto unlock;
1313 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1314 goto unlock;
1316 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1317 goto unlock;
1319 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1320 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1322 ret = 0;
1324 unlock:
1325 double_rq_unlock(src_rq, dst_rq);
1326 raw_spin_unlock(&arg->dst_task->pi_lock);
1327 raw_spin_unlock(&arg->src_task->pi_lock);
1329 return ret;
1333 * Cross migrate two tasks
1335 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1337 struct migration_swap_arg arg;
1338 int ret = -EINVAL;
1340 arg = (struct migration_swap_arg){
1341 .src_task = cur,
1342 .src_cpu = task_cpu(cur),
1343 .dst_task = p,
1344 .dst_cpu = task_cpu(p),
1347 if (arg.src_cpu == arg.dst_cpu)
1348 goto out;
1351 * These three tests are all lockless; this is OK since all of them
1352 * will be re-checked with proper locks held further down the line.
1354 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1355 goto out;
1357 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1358 goto out;
1360 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1361 goto out;
1363 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1364 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1366 out:
1367 return ret;
1371 * wait_task_inactive - wait for a thread to unschedule.
1373 * If @match_state is nonzero, it's the @p->state value just checked and
1374 * not expected to change. If it changes, i.e. @p might have woken up,
1375 * then return zero. When we succeed in waiting for @p to be off its CPU,
1376 * we return a positive number (its total switch count). If a second call
1377 * a short while later returns the same number, the caller can be sure that
1378 * @p has remained unscheduled the whole time.
1380 * The caller must ensure that the task *will* unschedule sometime soon,
1381 * else this function might spin for a *long* time. This function can't
1382 * be called with interrupts off, or it may introduce deadlock with
1383 * smp_call_function() if an IPI is sent by the same process we are
1384 * waiting to become inactive.
1386 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1388 int running, queued;
1389 struct rq_flags rf;
1390 unsigned long ncsw;
1391 struct rq *rq;
1393 for (;;) {
1395 * We do the initial early heuristics without holding
1396 * any task-queue locks at all. We'll only try to get
1397 * the runqueue lock when things look like they will
1398 * work out!
1400 rq = task_rq(p);
1403 * If the task is actively running on another CPU
1404 * still, just relax and busy-wait without holding
1405 * any locks.
1407 * NOTE! Since we don't hold any locks, it's not
1408 * even sure that "rq" stays as the right runqueue!
1409 * But we don't care, since "task_running()" will
1410 * return false if the runqueue has changed and p
1411 * is actually now running somewhere else!
1413 while (task_running(rq, p)) {
1414 if (match_state && unlikely(p->state != match_state))
1415 return 0;
1416 cpu_relax();
1420 * Ok, time to look more closely! We need the rq
1421 * lock now, to be *sure*. If we're wrong, we'll
1422 * just go back and repeat.
1424 rq = task_rq_lock(p, &rf);
1425 trace_sched_wait_task(p);
1426 running = task_running(rq, p);
1427 queued = task_on_rq_queued(p);
1428 ncsw = 0;
1429 if (!match_state || p->state == match_state)
1430 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1431 task_rq_unlock(rq, p, &rf);
1434 * If it changed from the expected state, bail out now.
1436 if (unlikely(!ncsw))
1437 break;
1440 * Was it really running after all now that we
1441 * checked with the proper locks actually held?
1443 * Oops. Go back and try again..
1445 if (unlikely(running)) {
1446 cpu_relax();
1447 continue;
1451 * It's not enough that it's not actively running,
1452 * it must be off the runqueue _entirely_, and not
1453 * preempted!
1455 * So if it was still runnable (but just not actively
1456 * running right now), it's preempted, and we should
1457 * yield - it could be a while.
1459 if (unlikely(queued)) {
1460 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1462 set_current_state(TASK_UNINTERRUPTIBLE);
1463 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1464 continue;
1468 * Ahh, all good. It wasn't running, and it wasn't
1469 * runnable, which means that it will never become
1470 * running in the future either. We're all done!
1472 break;
1475 return ncsw;
1478 /***
1479 * kick_process - kick a running thread to enter/exit the kernel
1480 * @p: the to-be-kicked thread
1482 * Cause a process which is running on another CPU to enter
1483 * kernel-mode, without any delay. (to get signals handled.)
1485 * NOTE: this function doesn't have to take the runqueue lock,
1486 * because all it wants to ensure is that the remote task enters
1487 * the kernel. If the IPI races and the task has been migrated
1488 * to another CPU then no harm is done and the purpose has been
1489 * achieved as well.
1491 void kick_process(struct task_struct *p)
1493 int cpu;
1495 preempt_disable();
1496 cpu = task_cpu(p);
1497 if ((cpu != smp_processor_id()) && task_curr(p))
1498 smp_send_reschedule(cpu);
1499 preempt_enable();
1501 EXPORT_SYMBOL_GPL(kick_process);
1504 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1506 * A few notes on cpu_active vs cpu_online:
1508 * - cpu_active must be a subset of cpu_online
1510 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1511 * see __set_cpus_allowed_ptr(). At this point the newly online
1512 * cpu isn't yet part of the sched domains, and balancing will not
1513 * see it.
1515 * - on cpu-down we clear cpu_active() to mask the sched domains and
1516 * avoid the load balancer to place new tasks on the to be removed
1517 * cpu. Existing tasks will remain running there and will be taken
1518 * off.
1520 * This means that fallback selection must not select !active CPUs.
1521 * And can assume that any active CPU must be online. Conversely
1522 * select_task_rq() below may allow selection of !active CPUs in order
1523 * to satisfy the above rules.
1525 static int select_fallback_rq(int cpu, struct task_struct *p)
1527 int nid = cpu_to_node(cpu);
1528 const struct cpumask *nodemask = NULL;
1529 enum { cpuset, possible, fail } state = cpuset;
1530 int dest_cpu;
1533 * If the node that the cpu is on has been offlined, cpu_to_node()
1534 * will return -1. There is no cpu on the node, and we should
1535 * select the cpu on the other node.
1537 if (nid != -1) {
1538 nodemask = cpumask_of_node(nid);
1540 /* Look for allowed, online CPU in same node. */
1541 for_each_cpu(dest_cpu, nodemask) {
1542 if (!cpu_active(dest_cpu))
1543 continue;
1544 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1545 return dest_cpu;
1549 for (;;) {
1550 /* Any allowed, online CPU? */
1551 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1552 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1553 continue;
1554 if (!cpu_online(dest_cpu))
1555 continue;
1556 goto out;
1559 /* No more Mr. Nice Guy. */
1560 switch (state) {
1561 case cpuset:
1562 if (IS_ENABLED(CONFIG_CPUSETS)) {
1563 cpuset_cpus_allowed_fallback(p);
1564 state = possible;
1565 break;
1567 /* fall-through */
1568 case possible:
1569 do_set_cpus_allowed(p, cpu_possible_mask);
1570 state = fail;
1571 break;
1573 case fail:
1574 BUG();
1575 break;
1579 out:
1580 if (state != cpuset) {
1582 * Don't tell them about moving exiting tasks or
1583 * kernel threads (both mm NULL), since they never
1584 * leave kernel.
1586 if (p->mm && printk_ratelimit()) {
1587 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1588 task_pid_nr(p), p->comm, cpu);
1592 return dest_cpu;
1596 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1598 static inline
1599 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1601 lockdep_assert_held(&p->pi_lock);
1603 if (tsk_nr_cpus_allowed(p) > 1)
1604 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1605 else
1606 cpu = cpumask_any(tsk_cpus_allowed(p));
1609 * In order not to call set_task_cpu() on a blocking task we need
1610 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1611 * cpu.
1613 * Since this is common to all placement strategies, this lives here.
1615 * [ this allows ->select_task() to simply return task_cpu(p) and
1616 * not worry about this generic constraint ]
1618 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1619 !cpu_online(cpu)))
1620 cpu = select_fallback_rq(task_cpu(p), p);
1622 return cpu;
1625 static void update_avg(u64 *avg, u64 sample)
1627 s64 diff = sample - *avg;
1628 *avg += diff >> 3;
1631 #else
1633 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1634 const struct cpumask *new_mask, bool check)
1636 return set_cpus_allowed_ptr(p, new_mask);
1639 #endif /* CONFIG_SMP */
1641 static void
1642 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1644 struct rq *rq;
1646 if (!schedstat_enabled())
1647 return;
1649 rq = this_rq();
1651 #ifdef CONFIG_SMP
1652 if (cpu == rq->cpu) {
1653 schedstat_inc(rq->ttwu_local);
1654 schedstat_inc(p->se.statistics.nr_wakeups_local);
1655 } else {
1656 struct sched_domain *sd;
1658 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1659 rcu_read_lock();
1660 for_each_domain(rq->cpu, sd) {
1661 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1662 schedstat_inc(sd->ttwu_wake_remote);
1663 break;
1666 rcu_read_unlock();
1669 if (wake_flags & WF_MIGRATED)
1670 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1671 #endif /* CONFIG_SMP */
1673 schedstat_inc(rq->ttwu_count);
1674 schedstat_inc(p->se.statistics.nr_wakeups);
1676 if (wake_flags & WF_SYNC)
1677 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1680 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1682 activate_task(rq, p, en_flags);
1683 p->on_rq = TASK_ON_RQ_QUEUED;
1685 /* if a worker is waking up, notify workqueue */
1686 if (p->flags & PF_WQ_WORKER)
1687 wq_worker_waking_up(p, cpu_of(rq));
1691 * Mark the task runnable and perform wakeup-preemption.
1693 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1694 struct pin_cookie cookie)
1696 check_preempt_curr(rq, p, wake_flags);
1697 p->state = TASK_RUNNING;
1698 trace_sched_wakeup(p);
1700 #ifdef CONFIG_SMP
1701 if (p->sched_class->task_woken) {
1703 * Our task @p is fully woken up and running; so its safe to
1704 * drop the rq->lock, hereafter rq is only used for statistics.
1706 lockdep_unpin_lock(&rq->lock, cookie);
1707 p->sched_class->task_woken(rq, p);
1708 lockdep_repin_lock(&rq->lock, cookie);
1711 if (rq->idle_stamp) {
1712 u64 delta = rq_clock(rq) - rq->idle_stamp;
1713 u64 max = 2*rq->max_idle_balance_cost;
1715 update_avg(&rq->avg_idle, delta);
1717 if (rq->avg_idle > max)
1718 rq->avg_idle = max;
1720 rq->idle_stamp = 0;
1722 #endif
1725 static void
1726 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1727 struct pin_cookie cookie)
1729 int en_flags = ENQUEUE_WAKEUP;
1731 lockdep_assert_held(&rq->lock);
1733 #ifdef CONFIG_SMP
1734 if (p->sched_contributes_to_load)
1735 rq->nr_uninterruptible--;
1737 if (wake_flags & WF_MIGRATED)
1738 en_flags |= ENQUEUE_MIGRATED;
1739 #endif
1741 ttwu_activate(rq, p, en_flags);
1742 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1746 * Called in case the task @p isn't fully descheduled from its runqueue,
1747 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1748 * since all we need to do is flip p->state to TASK_RUNNING, since
1749 * the task is still ->on_rq.
1751 static int ttwu_remote(struct task_struct *p, int wake_flags)
1753 struct rq_flags rf;
1754 struct rq *rq;
1755 int ret = 0;
1757 rq = __task_rq_lock(p, &rf);
1758 if (task_on_rq_queued(p)) {
1759 /* check_preempt_curr() may use rq clock */
1760 update_rq_clock(rq);
1761 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1762 ret = 1;
1764 __task_rq_unlock(rq, &rf);
1766 return ret;
1769 #ifdef CONFIG_SMP
1770 void sched_ttwu_pending(void)
1772 struct rq *rq = this_rq();
1773 struct llist_node *llist = llist_del_all(&rq->wake_list);
1774 struct pin_cookie cookie;
1775 struct task_struct *p;
1776 unsigned long flags;
1778 if (!llist)
1779 return;
1781 raw_spin_lock_irqsave(&rq->lock, flags);
1782 cookie = lockdep_pin_lock(&rq->lock);
1784 while (llist) {
1785 int wake_flags = 0;
1787 p = llist_entry(llist, struct task_struct, wake_entry);
1788 llist = llist_next(llist);
1790 if (p->sched_remote_wakeup)
1791 wake_flags = WF_MIGRATED;
1793 ttwu_do_activate(rq, p, wake_flags, cookie);
1796 lockdep_unpin_lock(&rq->lock, cookie);
1797 raw_spin_unlock_irqrestore(&rq->lock, flags);
1800 void scheduler_ipi(void)
1803 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1804 * TIF_NEED_RESCHED remotely (for the first time) will also send
1805 * this IPI.
1807 preempt_fold_need_resched();
1809 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1810 return;
1813 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1814 * traditionally all their work was done from the interrupt return
1815 * path. Now that we actually do some work, we need to make sure
1816 * we do call them.
1818 * Some archs already do call them, luckily irq_enter/exit nest
1819 * properly.
1821 * Arguably we should visit all archs and update all handlers,
1822 * however a fair share of IPIs are still resched only so this would
1823 * somewhat pessimize the simple resched case.
1825 irq_enter();
1826 sched_ttwu_pending();
1829 * Check if someone kicked us for doing the nohz idle load balance.
1831 if (unlikely(got_nohz_idle_kick())) {
1832 this_rq()->idle_balance = 1;
1833 raise_softirq_irqoff(SCHED_SOFTIRQ);
1835 irq_exit();
1838 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1840 struct rq *rq = cpu_rq(cpu);
1842 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1844 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1845 if (!set_nr_if_polling(rq->idle))
1846 smp_send_reschedule(cpu);
1847 else
1848 trace_sched_wake_idle_without_ipi(cpu);
1852 void wake_up_if_idle(int cpu)
1854 struct rq *rq = cpu_rq(cpu);
1855 unsigned long flags;
1857 rcu_read_lock();
1859 if (!is_idle_task(rcu_dereference(rq->curr)))
1860 goto out;
1862 if (set_nr_if_polling(rq->idle)) {
1863 trace_sched_wake_idle_without_ipi(cpu);
1864 } else {
1865 raw_spin_lock_irqsave(&rq->lock, flags);
1866 if (is_idle_task(rq->curr))
1867 smp_send_reschedule(cpu);
1868 /* Else cpu is not in idle, do nothing here */
1869 raw_spin_unlock_irqrestore(&rq->lock, flags);
1872 out:
1873 rcu_read_unlock();
1876 bool cpus_share_cache(int this_cpu, int that_cpu)
1878 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1880 #endif /* CONFIG_SMP */
1882 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1884 struct rq *rq = cpu_rq(cpu);
1885 struct pin_cookie cookie;
1887 #if defined(CONFIG_SMP)
1888 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1889 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1890 ttwu_queue_remote(p, cpu, wake_flags);
1891 return;
1893 #endif
1895 raw_spin_lock(&rq->lock);
1896 cookie = lockdep_pin_lock(&rq->lock);
1897 ttwu_do_activate(rq, p, wake_flags, cookie);
1898 lockdep_unpin_lock(&rq->lock, cookie);
1899 raw_spin_unlock(&rq->lock);
1903 * Notes on Program-Order guarantees on SMP systems.
1905 * MIGRATION
1907 * The basic program-order guarantee on SMP systems is that when a task [t]
1908 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1909 * execution on its new cpu [c1].
1911 * For migration (of runnable tasks) this is provided by the following means:
1913 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1914 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1915 * rq(c1)->lock (if not at the same time, then in that order).
1916 * C) LOCK of the rq(c1)->lock scheduling in task
1918 * Transitivity guarantees that B happens after A and C after B.
1919 * Note: we only require RCpc transitivity.
1920 * Note: the cpu doing B need not be c0 or c1
1922 * Example:
1924 * CPU0 CPU1 CPU2
1926 * LOCK rq(0)->lock
1927 * sched-out X
1928 * sched-in Y
1929 * UNLOCK rq(0)->lock
1931 * LOCK rq(0)->lock // orders against CPU0
1932 * dequeue X
1933 * UNLOCK rq(0)->lock
1935 * LOCK rq(1)->lock
1936 * enqueue X
1937 * UNLOCK rq(1)->lock
1939 * LOCK rq(1)->lock // orders against CPU2
1940 * sched-out Z
1941 * sched-in X
1942 * UNLOCK rq(1)->lock
1945 * BLOCKING -- aka. SLEEP + WAKEUP
1947 * For blocking we (obviously) need to provide the same guarantee as for
1948 * migration. However the means are completely different as there is no lock
1949 * chain to provide order. Instead we do:
1951 * 1) smp_store_release(X->on_cpu, 0)
1952 * 2) smp_cond_load_acquire(!X->on_cpu)
1954 * Example:
1956 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1958 * LOCK rq(0)->lock LOCK X->pi_lock
1959 * dequeue X
1960 * sched-out X
1961 * smp_store_release(X->on_cpu, 0);
1963 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1964 * X->state = WAKING
1965 * set_task_cpu(X,2)
1967 * LOCK rq(2)->lock
1968 * enqueue X
1969 * X->state = RUNNING
1970 * UNLOCK rq(2)->lock
1972 * LOCK rq(2)->lock // orders against CPU1
1973 * sched-out Z
1974 * sched-in X
1975 * UNLOCK rq(2)->lock
1977 * UNLOCK X->pi_lock
1978 * UNLOCK rq(0)->lock
1981 * However; for wakeups there is a second guarantee we must provide, namely we
1982 * must observe the state that lead to our wakeup. That is, not only must our
1983 * task observe its own prior state, it must also observe the stores prior to
1984 * its wakeup.
1986 * This means that any means of doing remote wakeups must order the CPU doing
1987 * the wakeup against the CPU the task is going to end up running on. This,
1988 * however, is already required for the regular Program-Order guarantee above,
1989 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1994 * try_to_wake_up - wake up a thread
1995 * @p: the thread to be awakened
1996 * @state: the mask of task states that can be woken
1997 * @wake_flags: wake modifier flags (WF_*)
1999 * Put it on the run-queue if it's not already there. The "current"
2000 * thread is always on the run-queue (except when the actual
2001 * re-schedule is in progress), and as such you're allowed to do
2002 * the simpler "current->state = TASK_RUNNING" to mark yourself
2003 * runnable without the overhead of this.
2005 * Return: %true if @p was woken up, %false if it was already running.
2006 * or @state didn't match @p's state.
2008 static int
2009 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2011 unsigned long flags;
2012 int cpu, success = 0;
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2020 smp_mb__before_spinlock();
2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
2022 if (!(p->state & state))
2023 goto out;
2025 trace_sched_waking(p);
2027 success = 1; /* we're going to change ->state */
2028 cpu = task_cpu(p);
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2051 smp_rmb();
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
2055 #ifdef CONFIG_SMP
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2073 smp_rmb();
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2087 p->state = TASK_WAKING;
2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
2092 set_task_cpu(p, cpu);
2094 #endif /* CONFIG_SMP */
2096 ttwu_queue(p, cpu, wake_flags);
2097 stat:
2098 ttwu_stat(p, cpu, wake_flags);
2099 out:
2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2102 return success;
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
2108 * @cookie: context's cookie for pinning
2110 * Put @p on the run-queue if it's not already there. The caller must
2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2112 * the current task.
2114 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2116 struct rq *rq = task_rq(p);
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2122 lockdep_assert_held(&rq->lock);
2124 if (!raw_spin_trylock(&p->pi_lock)) {
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2131 lockdep_unpin_lock(&rq->lock, cookie);
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
2135 lockdep_repin_lock(&rq->lock, cookie);
2138 if (!(p->state & TASK_NORMAL))
2139 goto out;
2141 trace_sched_waking(p);
2143 if (!task_on_rq_queued(p))
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2146 ttwu_do_wakeup(rq, p, 0, cookie);
2147 ttwu_stat(p, smp_processor_id(), 0);
2148 out:
2149 raw_spin_unlock(&p->pi_lock);
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2156 * Attempt to wake up the nominated process and move it to the set of runnable
2157 * processes.
2159 * Return: 1 if the process was woken up, 0 if it was already running.
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2164 int wake_up_process(struct task_struct *p)
2166 return try_to_wake_up(p, TASK_NORMAL, 0);
2168 EXPORT_SYMBOL(wake_up_process);
2170 int wake_up_state(struct task_struct *p, unsigned int state)
2172 return try_to_wake_up(p, state, 0);
2176 * This function clears the sched_dl_entity static params.
2178 void __dl_clear_params(struct task_struct *p)
2180 struct sched_dl_entity *dl_se = &p->dl;
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
2187 dl_se->dl_density = 0;
2189 dl_se->dl_throttled = 0;
2190 dl_se->dl_yielded = 0;
2194 * Perform scheduler related setup for a newly forked process p.
2195 * p is forked by current.
2197 * __sched_fork() is basic setup used by init_idle() too:
2199 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2201 p->on_rq = 0;
2203 p->se.on_rq = 0;
2204 p->se.exec_start = 0;
2205 p->se.sum_exec_runtime = 0;
2206 p->se.prev_sum_exec_runtime = 0;
2207 p->se.nr_migrations = 0;
2208 p->se.vruntime = 0;
2209 INIT_LIST_HEAD(&p->se.group_node);
2211 #ifdef CONFIG_FAIR_GROUP_SCHED
2212 p->se.cfs_rq = NULL;
2213 #endif
2215 #ifdef CONFIG_SCHEDSTATS
2216 /* Even if schedstat is disabled, there should not be garbage */
2217 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2218 #endif
2220 RB_CLEAR_NODE(&p->dl.rb_node);
2221 init_dl_task_timer(&p->dl);
2222 __dl_clear_params(p);
2224 INIT_LIST_HEAD(&p->rt.run_list);
2225 p->rt.timeout = 0;
2226 p->rt.time_slice = sched_rr_timeslice;
2227 p->rt.on_rq = 0;
2228 p->rt.on_list = 0;
2230 #ifdef CONFIG_PREEMPT_NOTIFIERS
2231 INIT_HLIST_HEAD(&p->preempt_notifiers);
2232 #endif
2234 #ifdef CONFIG_NUMA_BALANCING
2235 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2236 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2237 p->mm->numa_scan_seq = 0;
2240 if (clone_flags & CLONE_VM)
2241 p->numa_preferred_nid = current->numa_preferred_nid;
2242 else
2243 p->numa_preferred_nid = -1;
2245 p->node_stamp = 0ULL;
2246 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2247 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2248 p->numa_work.next = &p->numa_work;
2249 p->numa_faults = NULL;
2250 p->last_task_numa_placement = 0;
2251 p->last_sum_exec_runtime = 0;
2253 p->numa_group = NULL;
2254 #endif /* CONFIG_NUMA_BALANCING */
2257 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2259 #ifdef CONFIG_NUMA_BALANCING
2261 void set_numabalancing_state(bool enabled)
2263 if (enabled)
2264 static_branch_enable(&sched_numa_balancing);
2265 else
2266 static_branch_disable(&sched_numa_balancing);
2269 #ifdef CONFIG_PROC_SYSCTL
2270 int sysctl_numa_balancing(struct ctl_table *table, int write,
2271 void __user *buffer, size_t *lenp, loff_t *ppos)
2273 struct ctl_table t;
2274 int err;
2275 int state = static_branch_likely(&sched_numa_balancing);
2277 if (write && !capable(CAP_SYS_ADMIN))
2278 return -EPERM;
2280 t = *table;
2281 t.data = &state;
2282 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2283 if (err < 0)
2284 return err;
2285 if (write)
2286 set_numabalancing_state(state);
2287 return err;
2289 #endif
2290 #endif
2292 #ifdef CONFIG_SCHEDSTATS
2294 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2295 static bool __initdata __sched_schedstats = false;
2297 static void set_schedstats(bool enabled)
2299 if (enabled)
2300 static_branch_enable(&sched_schedstats);
2301 else
2302 static_branch_disable(&sched_schedstats);
2305 void force_schedstat_enabled(void)
2307 if (!schedstat_enabled()) {
2308 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2309 static_branch_enable(&sched_schedstats);
2313 static int __init setup_schedstats(char *str)
2315 int ret = 0;
2316 if (!str)
2317 goto out;
2320 * This code is called before jump labels have been set up, so we can't
2321 * change the static branch directly just yet. Instead set a temporary
2322 * variable so init_schedstats() can do it later.
2324 if (!strcmp(str, "enable")) {
2325 __sched_schedstats = true;
2326 ret = 1;
2327 } else if (!strcmp(str, "disable")) {
2328 __sched_schedstats = false;
2329 ret = 1;
2331 out:
2332 if (!ret)
2333 pr_warn("Unable to parse schedstats=\n");
2335 return ret;
2337 __setup("schedstats=", setup_schedstats);
2339 static void __init init_schedstats(void)
2341 set_schedstats(__sched_schedstats);
2344 #ifdef CONFIG_PROC_SYSCTL
2345 int sysctl_schedstats(struct ctl_table *table, int write,
2346 void __user *buffer, size_t *lenp, loff_t *ppos)
2348 struct ctl_table t;
2349 int err;
2350 int state = static_branch_likely(&sched_schedstats);
2352 if (write && !capable(CAP_SYS_ADMIN))
2353 return -EPERM;
2355 t = *table;
2356 t.data = &state;
2357 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2358 if (err < 0)
2359 return err;
2360 if (write)
2361 set_schedstats(state);
2362 return err;
2364 #endif /* CONFIG_PROC_SYSCTL */
2365 #else /* !CONFIG_SCHEDSTATS */
2366 static inline void init_schedstats(void) {}
2367 #endif /* CONFIG_SCHEDSTATS */
2370 * fork()/clone()-time setup:
2372 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2374 unsigned long flags;
2375 int cpu = get_cpu();
2377 __sched_fork(clone_flags, p);
2379 * We mark the process as NEW here. This guarantees that
2380 * nobody will actually run it, and a signal or other external
2381 * event cannot wake it up and insert it on the runqueue either.
2383 p->state = TASK_NEW;
2386 * Make sure we do not leak PI boosting priority to the child.
2388 p->prio = current->normal_prio;
2391 * Revert to default priority/policy on fork if requested.
2393 if (unlikely(p->sched_reset_on_fork)) {
2394 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2395 p->policy = SCHED_NORMAL;
2396 p->static_prio = NICE_TO_PRIO(0);
2397 p->rt_priority = 0;
2398 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2399 p->static_prio = NICE_TO_PRIO(0);
2401 p->prio = p->normal_prio = __normal_prio(p);
2402 set_load_weight(p);
2405 * We don't need the reset flag anymore after the fork. It has
2406 * fulfilled its duty:
2408 p->sched_reset_on_fork = 0;
2411 if (dl_prio(p->prio)) {
2412 put_cpu();
2413 return -EAGAIN;
2414 } else if (rt_prio(p->prio)) {
2415 p->sched_class = &rt_sched_class;
2416 } else {
2417 p->sched_class = &fair_sched_class;
2420 init_entity_runnable_average(&p->se);
2423 * The child is not yet in the pid-hash so no cgroup attach races,
2424 * and the cgroup is pinned to this child due to cgroup_fork()
2425 * is ran before sched_fork().
2427 * Silence PROVE_RCU.
2429 raw_spin_lock_irqsave(&p->pi_lock, flags);
2431 * We're setting the cpu for the first time, we don't migrate,
2432 * so use __set_task_cpu().
2434 __set_task_cpu(p, cpu);
2435 if (p->sched_class->task_fork)
2436 p->sched_class->task_fork(p);
2437 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2439 #ifdef CONFIG_SCHED_INFO
2440 if (likely(sched_info_on()))
2441 memset(&p->sched_info, 0, sizeof(p->sched_info));
2442 #endif
2443 #if defined(CONFIG_SMP)
2444 p->on_cpu = 0;
2445 #endif
2446 init_task_preempt_count(p);
2447 #ifdef CONFIG_SMP
2448 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2449 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2450 #endif
2452 put_cpu();
2453 return 0;
2456 unsigned long to_ratio(u64 period, u64 runtime)
2458 if (runtime == RUNTIME_INF)
2459 return 1ULL << 20;
2462 * Doing this here saves a lot of checks in all
2463 * the calling paths, and returning zero seems
2464 * safe for them anyway.
2466 if (period == 0)
2467 return 0;
2469 return div64_u64(runtime << 20, period);
2472 #ifdef CONFIG_SMP
2473 inline struct dl_bw *dl_bw_of(int i)
2475 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2476 "sched RCU must be held");
2477 return &cpu_rq(i)->rd->dl_bw;
2480 static inline int dl_bw_cpus(int i)
2482 struct root_domain *rd = cpu_rq(i)->rd;
2483 int cpus = 0;
2485 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2486 "sched RCU must be held");
2487 for_each_cpu_and(i, rd->span, cpu_active_mask)
2488 cpus++;
2490 return cpus;
2492 #else
2493 inline struct dl_bw *dl_bw_of(int i)
2495 return &cpu_rq(i)->dl.dl_bw;
2498 static inline int dl_bw_cpus(int i)
2500 return 1;
2502 #endif
2505 * We must be sure that accepting a new task (or allowing changing the
2506 * parameters of an existing one) is consistent with the bandwidth
2507 * constraints. If yes, this function also accordingly updates the currently
2508 * allocated bandwidth to reflect the new situation.
2510 * This function is called while holding p's rq->lock.
2512 * XXX we should delay bw change until the task's 0-lag point, see
2513 * __setparam_dl().
2515 static int dl_overflow(struct task_struct *p, int policy,
2516 const struct sched_attr *attr)
2519 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2520 u64 period = attr->sched_period ?: attr->sched_deadline;
2521 u64 runtime = attr->sched_runtime;
2522 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2523 int cpus, err = -1;
2525 /* !deadline task may carry old deadline bandwidth */
2526 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2527 return 0;
2530 * Either if a task, enters, leave, or stays -deadline but changes
2531 * its parameters, we may need to update accordingly the total
2532 * allocated bandwidth of the container.
2534 raw_spin_lock(&dl_b->lock);
2535 cpus = dl_bw_cpus(task_cpu(p));
2536 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2537 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2538 __dl_add(dl_b, new_bw);
2539 err = 0;
2540 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2541 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2542 __dl_clear(dl_b, p->dl.dl_bw);
2543 __dl_add(dl_b, new_bw);
2544 err = 0;
2545 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2546 __dl_clear(dl_b, p->dl.dl_bw);
2547 err = 0;
2549 raw_spin_unlock(&dl_b->lock);
2551 return err;
2554 extern void init_dl_bw(struct dl_bw *dl_b);
2557 * wake_up_new_task - wake up a newly created task for the first time.
2559 * This function will do some initial scheduler statistics housekeeping
2560 * that must be done for every newly created context, then puts the task
2561 * on the runqueue and wakes it.
2563 void wake_up_new_task(struct task_struct *p)
2565 struct rq_flags rf;
2566 struct rq *rq;
2568 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2569 p->state = TASK_RUNNING;
2570 #ifdef CONFIG_SMP
2572 * Fork balancing, do it here and not earlier because:
2573 * - cpus_allowed can change in the fork path
2574 * - any previously selected cpu might disappear through hotplug
2576 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2577 * as we're not fully set-up yet.
2579 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2580 #endif
2581 rq = __task_rq_lock(p, &rf);
2582 post_init_entity_util_avg(&p->se);
2584 activate_task(rq, p, 0);
2585 p->on_rq = TASK_ON_RQ_QUEUED;
2586 trace_sched_wakeup_new(p);
2587 check_preempt_curr(rq, p, WF_FORK);
2588 #ifdef CONFIG_SMP
2589 if (p->sched_class->task_woken) {
2591 * Nothing relies on rq->lock after this, so its fine to
2592 * drop it.
2594 lockdep_unpin_lock(&rq->lock, rf.cookie);
2595 p->sched_class->task_woken(rq, p);
2596 lockdep_repin_lock(&rq->lock, rf.cookie);
2598 #endif
2599 task_rq_unlock(rq, p, &rf);
2602 #ifdef CONFIG_PREEMPT_NOTIFIERS
2604 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2606 void preempt_notifier_inc(void)
2608 static_key_slow_inc(&preempt_notifier_key);
2610 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2612 void preempt_notifier_dec(void)
2614 static_key_slow_dec(&preempt_notifier_key);
2616 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2619 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2620 * @notifier: notifier struct to register
2622 void preempt_notifier_register(struct preempt_notifier *notifier)
2624 if (!static_key_false(&preempt_notifier_key))
2625 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2627 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2629 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2632 * preempt_notifier_unregister - no longer interested in preemption notifications
2633 * @notifier: notifier struct to unregister
2635 * This is *not* safe to call from within a preemption notifier.
2637 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2639 hlist_del(&notifier->link);
2641 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2643 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2645 struct preempt_notifier *notifier;
2647 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2648 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2651 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 if (static_key_false(&preempt_notifier_key))
2654 __fire_sched_in_preempt_notifiers(curr);
2657 static void
2658 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
2661 struct preempt_notifier *notifier;
2663 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2664 notifier->ops->sched_out(notifier, next);
2667 static __always_inline void
2668 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2669 struct task_struct *next)
2671 if (static_key_false(&preempt_notifier_key))
2672 __fire_sched_out_preempt_notifiers(curr, next);
2675 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2677 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2681 static inline void
2682 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2683 struct task_struct *next)
2687 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2690 * prepare_task_switch - prepare to switch tasks
2691 * @rq: the runqueue preparing to switch
2692 * @prev: the current task that is being switched out
2693 * @next: the task we are going to switch to.
2695 * This is called with the rq lock held and interrupts off. It must
2696 * be paired with a subsequent finish_task_switch after the context
2697 * switch.
2699 * prepare_task_switch sets up locking and calls architecture specific
2700 * hooks.
2702 static inline void
2703 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2704 struct task_struct *next)
2706 sched_info_switch(rq, prev, next);
2707 perf_event_task_sched_out(prev, next);
2708 fire_sched_out_preempt_notifiers(prev, next);
2709 prepare_lock_switch(rq, next);
2710 prepare_arch_switch(next);
2714 * finish_task_switch - clean up after a task-switch
2715 * @prev: the thread we just switched away from.
2717 * finish_task_switch must be called after the context switch, paired
2718 * with a prepare_task_switch call before the context switch.
2719 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2720 * and do any other architecture-specific cleanup actions.
2722 * Note that we may have delayed dropping an mm in context_switch(). If
2723 * so, we finish that here outside of the runqueue lock. (Doing it
2724 * with the lock held can cause deadlocks; see schedule() for
2725 * details.)
2727 * The context switch have flipped the stack from under us and restored the
2728 * local variables which were saved when this task called schedule() in the
2729 * past. prev == current is still correct but we need to recalculate this_rq
2730 * because prev may have moved to another CPU.
2732 static struct rq *finish_task_switch(struct task_struct *prev)
2733 __releases(rq->lock)
2735 struct rq *rq = this_rq();
2736 struct mm_struct *mm = rq->prev_mm;
2737 long prev_state;
2740 * The previous task will have left us with a preempt_count of 2
2741 * because it left us after:
2743 * schedule()
2744 * preempt_disable(); // 1
2745 * __schedule()
2746 * raw_spin_lock_irq(&rq->lock) // 2
2748 * Also, see FORK_PREEMPT_COUNT.
2750 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2751 "corrupted preempt_count: %s/%d/0x%x\n",
2752 current->comm, current->pid, preempt_count()))
2753 preempt_count_set(FORK_PREEMPT_COUNT);
2755 rq->prev_mm = NULL;
2758 * A task struct has one reference for the use as "current".
2759 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2760 * schedule one last time. The schedule call will never return, and
2761 * the scheduled task must drop that reference.
2763 * We must observe prev->state before clearing prev->on_cpu (in
2764 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2765 * running on another CPU and we could rave with its RUNNING -> DEAD
2766 * transition, resulting in a double drop.
2768 prev_state = prev->state;
2769 vtime_task_switch(prev);
2770 perf_event_task_sched_in(prev, current);
2771 finish_lock_switch(rq, prev);
2772 finish_arch_post_lock_switch();
2774 fire_sched_in_preempt_notifiers(current);
2775 if (mm)
2776 mmdrop(mm);
2777 if (unlikely(prev_state == TASK_DEAD)) {
2778 if (prev->sched_class->task_dead)
2779 prev->sched_class->task_dead(prev);
2782 * Remove function-return probe instances associated with this
2783 * task and put them back on the free list.
2785 kprobe_flush_task(prev);
2787 /* Task is done with its stack. */
2788 put_task_stack(prev);
2790 put_task_struct(prev);
2793 tick_nohz_task_switch();
2794 return rq;
2797 #ifdef CONFIG_SMP
2799 /* rq->lock is NOT held, but preemption is disabled */
2800 static void __balance_callback(struct rq *rq)
2802 struct callback_head *head, *next;
2803 void (*func)(struct rq *rq);
2804 unsigned long flags;
2806 raw_spin_lock_irqsave(&rq->lock, flags);
2807 head = rq->balance_callback;
2808 rq->balance_callback = NULL;
2809 while (head) {
2810 func = (void (*)(struct rq *))head->func;
2811 next = head->next;
2812 head->next = NULL;
2813 head = next;
2815 func(rq);
2817 raw_spin_unlock_irqrestore(&rq->lock, flags);
2820 static inline void balance_callback(struct rq *rq)
2822 if (unlikely(rq->balance_callback))
2823 __balance_callback(rq);
2826 #else
2828 static inline void balance_callback(struct rq *rq)
2832 #endif
2835 * schedule_tail - first thing a freshly forked thread must call.
2836 * @prev: the thread we just switched away from.
2838 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2839 __releases(rq->lock)
2841 struct rq *rq;
2844 * New tasks start with FORK_PREEMPT_COUNT, see there and
2845 * finish_task_switch() for details.
2847 * finish_task_switch() will drop rq->lock() and lower preempt_count
2848 * and the preempt_enable() will end up enabling preemption (on
2849 * PREEMPT_COUNT kernels).
2852 rq = finish_task_switch(prev);
2853 balance_callback(rq);
2854 preempt_enable();
2856 if (current->set_child_tid)
2857 put_user(task_pid_vnr(current), current->set_child_tid);
2861 * context_switch - switch to the new MM and the new thread's register state.
2863 static __always_inline struct rq *
2864 context_switch(struct rq *rq, struct task_struct *prev,
2865 struct task_struct *next, struct pin_cookie cookie)
2867 struct mm_struct *mm, *oldmm;
2869 prepare_task_switch(rq, prev, next);
2871 mm = next->mm;
2872 oldmm = prev->active_mm;
2874 * For paravirt, this is coupled with an exit in switch_to to
2875 * combine the page table reload and the switch backend into
2876 * one hypercall.
2878 arch_start_context_switch(prev);
2880 if (!mm) {
2881 next->active_mm = oldmm;
2882 atomic_inc(&oldmm->mm_count);
2883 enter_lazy_tlb(oldmm, next);
2884 } else
2885 switch_mm_irqs_off(oldmm, mm, next);
2887 if (!prev->mm) {
2888 prev->active_mm = NULL;
2889 rq->prev_mm = oldmm;
2892 * Since the runqueue lock will be released by the next
2893 * task (which is an invalid locking op but in the case
2894 * of the scheduler it's an obvious special-case), so we
2895 * do an early lockdep release here:
2897 lockdep_unpin_lock(&rq->lock, cookie);
2898 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2900 /* Here we just switch the register state and the stack. */
2901 switch_to(prev, next, prev);
2902 barrier();
2904 return finish_task_switch(prev);
2908 * nr_running and nr_context_switches:
2910 * externally visible scheduler statistics: current number of runnable
2911 * threads, total number of context switches performed since bootup.
2913 unsigned long nr_running(void)
2915 unsigned long i, sum = 0;
2917 for_each_online_cpu(i)
2918 sum += cpu_rq(i)->nr_running;
2920 return sum;
2924 * Check if only the current task is running on the cpu.
2926 * Caution: this function does not check that the caller has disabled
2927 * preemption, thus the result might have a time-of-check-to-time-of-use
2928 * race. The caller is responsible to use it correctly, for example:
2930 * - from a non-preemptable section (of course)
2932 * - from a thread that is bound to a single CPU
2934 * - in a loop with very short iterations (e.g. a polling loop)
2936 bool single_task_running(void)
2938 return raw_rq()->nr_running == 1;
2940 EXPORT_SYMBOL(single_task_running);
2942 unsigned long long nr_context_switches(void)
2944 int i;
2945 unsigned long long sum = 0;
2947 for_each_possible_cpu(i)
2948 sum += cpu_rq(i)->nr_switches;
2950 return sum;
2953 unsigned long nr_iowait(void)
2955 unsigned long i, sum = 0;
2957 for_each_possible_cpu(i)
2958 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2960 return sum;
2963 unsigned long nr_iowait_cpu(int cpu)
2965 struct rq *this = cpu_rq(cpu);
2966 return atomic_read(&this->nr_iowait);
2969 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2971 struct rq *rq = this_rq();
2972 *nr_waiters = atomic_read(&rq->nr_iowait);
2973 *load = rq->load.weight;
2976 #ifdef CONFIG_SMP
2979 * sched_exec - execve() is a valuable balancing opportunity, because at
2980 * this point the task has the smallest effective memory and cache footprint.
2982 void sched_exec(void)
2984 struct task_struct *p = current;
2985 unsigned long flags;
2986 int dest_cpu;
2988 raw_spin_lock_irqsave(&p->pi_lock, flags);
2989 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2990 if (dest_cpu == smp_processor_id())
2991 goto unlock;
2993 if (likely(cpu_active(dest_cpu))) {
2994 struct migration_arg arg = { p, dest_cpu };
2996 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2997 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2998 return;
3000 unlock:
3001 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3004 #endif
3006 DEFINE_PER_CPU(struct kernel_stat, kstat);
3007 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3009 EXPORT_PER_CPU_SYMBOL(kstat);
3010 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3013 * The function fair_sched_class.update_curr accesses the struct curr
3014 * and its field curr->exec_start; when called from task_sched_runtime(),
3015 * we observe a high rate of cache misses in practice.
3016 * Prefetching this data results in improved performance.
3018 static inline void prefetch_curr_exec_start(struct task_struct *p)
3020 #ifdef CONFIG_FAIR_GROUP_SCHED
3021 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3022 #else
3023 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3024 #endif
3025 prefetch(curr);
3026 prefetch(&curr->exec_start);
3030 * Return accounted runtime for the task.
3031 * In case the task is currently running, return the runtime plus current's
3032 * pending runtime that have not been accounted yet.
3034 unsigned long long task_sched_runtime(struct task_struct *p)
3036 struct rq_flags rf;
3037 struct rq *rq;
3038 u64 ns;
3040 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3042 * 64-bit doesn't need locks to atomically read a 64bit value.
3043 * So we have a optimization chance when the task's delta_exec is 0.
3044 * Reading ->on_cpu is racy, but this is ok.
3046 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3047 * If we race with it entering cpu, unaccounted time is 0. This is
3048 * indistinguishable from the read occurring a few cycles earlier.
3049 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3050 * been accounted, so we're correct here as well.
3052 if (!p->on_cpu || !task_on_rq_queued(p))
3053 return p->se.sum_exec_runtime;
3054 #endif
3056 rq = task_rq_lock(p, &rf);
3058 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3059 * project cycles that may never be accounted to this
3060 * thread, breaking clock_gettime().
3062 if (task_current(rq, p) && task_on_rq_queued(p)) {
3063 prefetch_curr_exec_start(p);
3064 update_rq_clock(rq);
3065 p->sched_class->update_curr(rq);
3067 ns = p->se.sum_exec_runtime;
3068 task_rq_unlock(rq, p, &rf);
3070 return ns;
3074 * This function gets called by the timer code, with HZ frequency.
3075 * We call it with interrupts disabled.
3077 void scheduler_tick(void)
3079 int cpu = smp_processor_id();
3080 struct rq *rq = cpu_rq(cpu);
3081 struct task_struct *curr = rq->curr;
3083 sched_clock_tick();
3085 raw_spin_lock(&rq->lock);
3086 update_rq_clock(rq);
3087 curr->sched_class->task_tick(rq, curr, 0);
3088 cpu_load_update_active(rq);
3089 calc_global_load_tick(rq);
3090 raw_spin_unlock(&rq->lock);
3092 perf_event_task_tick();
3094 #ifdef CONFIG_SMP
3095 rq->idle_balance = idle_cpu(cpu);
3096 trigger_load_balance(rq);
3097 #endif
3098 rq_last_tick_reset(rq);
3101 #ifdef CONFIG_NO_HZ_FULL
3103 * scheduler_tick_max_deferment
3105 * Keep at least one tick per second when a single
3106 * active task is running because the scheduler doesn't
3107 * yet completely support full dynticks environment.
3109 * This makes sure that uptime, CFS vruntime, load
3110 * balancing, etc... continue to move forward, even
3111 * with a very low granularity.
3113 * Return: Maximum deferment in nanoseconds.
3115 u64 scheduler_tick_max_deferment(void)
3117 struct rq *rq = this_rq();
3118 unsigned long next, now = READ_ONCE(jiffies);
3120 next = rq->last_sched_tick + HZ;
3122 if (time_before_eq(next, now))
3123 return 0;
3125 return jiffies_to_nsecs(next - now);
3127 #endif
3129 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3130 defined(CONFIG_PREEMPT_TRACER))
3132 * If the value passed in is equal to the current preempt count
3133 * then we just disabled preemption. Start timing the latency.
3135 static inline void preempt_latency_start(int val)
3137 if (preempt_count() == val) {
3138 unsigned long ip = get_lock_parent_ip();
3139 #ifdef CONFIG_DEBUG_PREEMPT
3140 current->preempt_disable_ip = ip;
3141 #endif
3142 trace_preempt_off(CALLER_ADDR0, ip);
3146 void preempt_count_add(int val)
3148 #ifdef CONFIG_DEBUG_PREEMPT
3150 * Underflow?
3152 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3153 return;
3154 #endif
3155 __preempt_count_add(val);
3156 #ifdef CONFIG_DEBUG_PREEMPT
3158 * Spinlock count overflowing soon?
3160 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3161 PREEMPT_MASK - 10);
3162 #endif
3163 preempt_latency_start(val);
3165 EXPORT_SYMBOL(preempt_count_add);
3166 NOKPROBE_SYMBOL(preempt_count_add);
3169 * If the value passed in equals to the current preempt count
3170 * then we just enabled preemption. Stop timing the latency.
3172 static inline void preempt_latency_stop(int val)
3174 if (preempt_count() == val)
3175 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3178 void preempt_count_sub(int val)
3180 #ifdef CONFIG_DEBUG_PREEMPT
3182 * Underflow?
3184 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3185 return;
3187 * Is the spinlock portion underflowing?
3189 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3190 !(preempt_count() & PREEMPT_MASK)))
3191 return;
3192 #endif
3194 preempt_latency_stop(val);
3195 __preempt_count_sub(val);
3197 EXPORT_SYMBOL(preempt_count_sub);
3198 NOKPROBE_SYMBOL(preempt_count_sub);
3200 #else
3201 static inline void preempt_latency_start(int val) { }
3202 static inline void preempt_latency_stop(int val) { }
3203 #endif
3206 * Print scheduling while atomic bug:
3208 static noinline void __schedule_bug(struct task_struct *prev)
3210 /* Save this before calling printk(), since that will clobber it */
3211 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3213 if (oops_in_progress)
3214 return;
3216 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3217 prev->comm, prev->pid, preempt_count());
3219 debug_show_held_locks(prev);
3220 print_modules();
3221 if (irqs_disabled())
3222 print_irqtrace_events(prev);
3223 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3224 && in_atomic_preempt_off()) {
3225 pr_err("Preemption disabled at:");
3226 print_ip_sym(preempt_disable_ip);
3227 pr_cont("\n");
3229 if (panic_on_warn)
3230 panic("scheduling while atomic\n");
3232 dump_stack();
3233 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3237 * Various schedule()-time debugging checks and statistics:
3239 static inline void schedule_debug(struct task_struct *prev)
3241 #ifdef CONFIG_SCHED_STACK_END_CHECK
3242 if (task_stack_end_corrupted(prev))
3243 panic("corrupted stack end detected inside scheduler\n");
3244 #endif
3246 if (unlikely(in_atomic_preempt_off())) {
3247 __schedule_bug(prev);
3248 preempt_count_set(PREEMPT_DISABLED);
3250 rcu_sleep_check();
3252 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3254 schedstat_inc(this_rq()->sched_count);
3258 * Pick up the highest-prio task:
3260 static inline struct task_struct *
3261 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3263 const struct sched_class *class = &fair_sched_class;
3264 struct task_struct *p;
3267 * Optimization: we know that if all tasks are in
3268 * the fair class we can call that function directly:
3270 if (likely(prev->sched_class == class &&
3271 rq->nr_running == rq->cfs.h_nr_running)) {
3272 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3273 if (unlikely(p == RETRY_TASK))
3274 goto again;
3276 /* assumes fair_sched_class->next == idle_sched_class */
3277 if (unlikely(!p))
3278 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3280 return p;
3283 again:
3284 for_each_class(class) {
3285 p = class->pick_next_task(rq, prev, cookie);
3286 if (p) {
3287 if (unlikely(p == RETRY_TASK))
3288 goto again;
3289 return p;
3293 BUG(); /* the idle class will always have a runnable task */
3297 * __schedule() is the main scheduler function.
3299 * The main means of driving the scheduler and thus entering this function are:
3301 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3303 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3304 * paths. For example, see arch/x86/entry_64.S.
3306 * To drive preemption between tasks, the scheduler sets the flag in timer
3307 * interrupt handler scheduler_tick().
3309 * 3. Wakeups don't really cause entry into schedule(). They add a
3310 * task to the run-queue and that's it.
3312 * Now, if the new task added to the run-queue preempts the current
3313 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3314 * called on the nearest possible occasion:
3316 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3318 * - in syscall or exception context, at the next outmost
3319 * preempt_enable(). (this might be as soon as the wake_up()'s
3320 * spin_unlock()!)
3322 * - in IRQ context, return from interrupt-handler to
3323 * preemptible context
3325 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3326 * then at the next:
3328 * - cond_resched() call
3329 * - explicit schedule() call
3330 * - return from syscall or exception to user-space
3331 * - return from interrupt-handler to user-space
3333 * WARNING: must be called with preemption disabled!
3335 static void __sched notrace __schedule(bool preempt)
3337 struct task_struct *prev, *next;
3338 unsigned long *switch_count;
3339 struct pin_cookie cookie;
3340 struct rq *rq;
3341 int cpu;
3343 cpu = smp_processor_id();
3344 rq = cpu_rq(cpu);
3345 prev = rq->curr;
3347 schedule_debug(prev);
3349 if (sched_feat(HRTICK))
3350 hrtick_clear(rq);
3352 local_irq_disable();
3353 rcu_note_context_switch();
3356 * Make sure that signal_pending_state()->signal_pending() below
3357 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3358 * done by the caller to avoid the race with signal_wake_up().
3360 smp_mb__before_spinlock();
3361 raw_spin_lock(&rq->lock);
3362 cookie = lockdep_pin_lock(&rq->lock);
3364 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3366 switch_count = &prev->nivcsw;
3367 if (!preempt && prev->state) {
3368 if (unlikely(signal_pending_state(prev->state, prev))) {
3369 prev->state = TASK_RUNNING;
3370 } else {
3371 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3372 prev->on_rq = 0;
3375 * If a worker went to sleep, notify and ask workqueue
3376 * whether it wants to wake up a task to maintain
3377 * concurrency.
3379 if (prev->flags & PF_WQ_WORKER) {
3380 struct task_struct *to_wakeup;
3382 to_wakeup = wq_worker_sleeping(prev);
3383 if (to_wakeup)
3384 try_to_wake_up_local(to_wakeup, cookie);
3387 switch_count = &prev->nvcsw;
3390 if (task_on_rq_queued(prev))
3391 update_rq_clock(rq);
3393 next = pick_next_task(rq, prev, cookie);
3394 clear_tsk_need_resched(prev);
3395 clear_preempt_need_resched();
3396 rq->clock_skip_update = 0;
3398 if (likely(prev != next)) {
3399 rq->nr_switches++;
3400 rq->curr = next;
3401 ++*switch_count;
3403 trace_sched_switch(preempt, prev, next);
3404 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3405 } else {
3406 lockdep_unpin_lock(&rq->lock, cookie);
3407 raw_spin_unlock_irq(&rq->lock);
3410 balance_callback(rq);
3413 void __noreturn do_task_dead(void)
3416 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3417 * when the following two conditions become true.
3418 * - There is race condition of mmap_sem (It is acquired by
3419 * exit_mm()), and
3420 * - SMI occurs before setting TASK_RUNINNG.
3421 * (or hypervisor of virtual machine switches to other guest)
3422 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3424 * To avoid it, we have to wait for releasing tsk->pi_lock which
3425 * is held by try_to_wake_up()
3427 smp_mb();
3428 raw_spin_unlock_wait(&current->pi_lock);
3430 /* causes final put_task_struct in finish_task_switch(). */
3431 __set_current_state(TASK_DEAD);
3432 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3433 __schedule(false);
3434 BUG();
3435 /* Avoid "noreturn function does return". */
3436 for (;;)
3437 cpu_relax(); /* For when BUG is null */
3440 static inline void sched_submit_work(struct task_struct *tsk)
3442 if (!tsk->state || tsk_is_pi_blocked(tsk))
3443 return;
3445 * If we are going to sleep and we have plugged IO queued,
3446 * make sure to submit it to avoid deadlocks.
3448 if (blk_needs_flush_plug(tsk))
3449 blk_schedule_flush_plug(tsk);
3452 asmlinkage __visible void __sched schedule(void)
3454 struct task_struct *tsk = current;
3456 sched_submit_work(tsk);
3457 do {
3458 preempt_disable();
3459 __schedule(false);
3460 sched_preempt_enable_no_resched();
3461 } while (need_resched());
3463 EXPORT_SYMBOL(schedule);
3465 #ifdef CONFIG_CONTEXT_TRACKING
3466 asmlinkage __visible void __sched schedule_user(void)
3469 * If we come here after a random call to set_need_resched(),
3470 * or we have been woken up remotely but the IPI has not yet arrived,
3471 * we haven't yet exited the RCU idle mode. Do it here manually until
3472 * we find a better solution.
3474 * NB: There are buggy callers of this function. Ideally we
3475 * should warn if prev_state != CONTEXT_USER, but that will trigger
3476 * too frequently to make sense yet.
3478 enum ctx_state prev_state = exception_enter();
3479 schedule();
3480 exception_exit(prev_state);
3482 #endif
3485 * schedule_preempt_disabled - called with preemption disabled
3487 * Returns with preemption disabled. Note: preempt_count must be 1
3489 void __sched schedule_preempt_disabled(void)
3491 sched_preempt_enable_no_resched();
3492 schedule();
3493 preempt_disable();
3496 static void __sched notrace preempt_schedule_common(void)
3498 do {
3500 * Because the function tracer can trace preempt_count_sub()
3501 * and it also uses preempt_enable/disable_notrace(), if
3502 * NEED_RESCHED is set, the preempt_enable_notrace() called
3503 * by the function tracer will call this function again and
3504 * cause infinite recursion.
3506 * Preemption must be disabled here before the function
3507 * tracer can trace. Break up preempt_disable() into two
3508 * calls. One to disable preemption without fear of being
3509 * traced. The other to still record the preemption latency,
3510 * which can also be traced by the function tracer.
3512 preempt_disable_notrace();
3513 preempt_latency_start(1);
3514 __schedule(true);
3515 preempt_latency_stop(1);
3516 preempt_enable_no_resched_notrace();
3519 * Check again in case we missed a preemption opportunity
3520 * between schedule and now.
3522 } while (need_resched());
3525 #ifdef CONFIG_PREEMPT
3527 * this is the entry point to schedule() from in-kernel preemption
3528 * off of preempt_enable. Kernel preemptions off return from interrupt
3529 * occur there and call schedule directly.
3531 asmlinkage __visible void __sched notrace preempt_schedule(void)
3534 * If there is a non-zero preempt_count or interrupts are disabled,
3535 * we do not want to preempt the current task. Just return..
3537 if (likely(!preemptible()))
3538 return;
3540 preempt_schedule_common();
3542 NOKPROBE_SYMBOL(preempt_schedule);
3543 EXPORT_SYMBOL(preempt_schedule);
3546 * preempt_schedule_notrace - preempt_schedule called by tracing
3548 * The tracing infrastructure uses preempt_enable_notrace to prevent
3549 * recursion and tracing preempt enabling caused by the tracing
3550 * infrastructure itself. But as tracing can happen in areas coming
3551 * from userspace or just about to enter userspace, a preempt enable
3552 * can occur before user_exit() is called. This will cause the scheduler
3553 * to be called when the system is still in usermode.
3555 * To prevent this, the preempt_enable_notrace will use this function
3556 * instead of preempt_schedule() to exit user context if needed before
3557 * calling the scheduler.
3559 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3561 enum ctx_state prev_ctx;
3563 if (likely(!preemptible()))
3564 return;
3566 do {
3568 * Because the function tracer can trace preempt_count_sub()
3569 * and it also uses preempt_enable/disable_notrace(), if
3570 * NEED_RESCHED is set, the preempt_enable_notrace() called
3571 * by the function tracer will call this function again and
3572 * cause infinite recursion.
3574 * Preemption must be disabled here before the function
3575 * tracer can trace. Break up preempt_disable() into two
3576 * calls. One to disable preemption without fear of being
3577 * traced. The other to still record the preemption latency,
3578 * which can also be traced by the function tracer.
3580 preempt_disable_notrace();
3581 preempt_latency_start(1);
3583 * Needs preempt disabled in case user_exit() is traced
3584 * and the tracer calls preempt_enable_notrace() causing
3585 * an infinite recursion.
3587 prev_ctx = exception_enter();
3588 __schedule(true);
3589 exception_exit(prev_ctx);
3591 preempt_latency_stop(1);
3592 preempt_enable_no_resched_notrace();
3593 } while (need_resched());
3595 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3597 #endif /* CONFIG_PREEMPT */
3600 * this is the entry point to schedule() from kernel preemption
3601 * off of irq context.
3602 * Note, that this is called and return with irqs disabled. This will
3603 * protect us against recursive calling from irq.
3605 asmlinkage __visible void __sched preempt_schedule_irq(void)
3607 enum ctx_state prev_state;
3609 /* Catch callers which need to be fixed */
3610 BUG_ON(preempt_count() || !irqs_disabled());
3612 prev_state = exception_enter();
3614 do {
3615 preempt_disable();
3616 local_irq_enable();
3617 __schedule(true);
3618 local_irq_disable();
3619 sched_preempt_enable_no_resched();
3620 } while (need_resched());
3622 exception_exit(prev_state);
3625 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3626 void *key)
3628 return try_to_wake_up(curr->private, mode, wake_flags);
3630 EXPORT_SYMBOL(default_wake_function);
3632 #ifdef CONFIG_RT_MUTEXES
3635 * rt_mutex_setprio - set the current priority of a task
3636 * @p: task
3637 * @prio: prio value (kernel-internal form)
3639 * This function changes the 'effective' priority of a task. It does
3640 * not touch ->normal_prio like __setscheduler().
3642 * Used by the rt_mutex code to implement priority inheritance
3643 * logic. Call site only calls if the priority of the task changed.
3645 void rt_mutex_setprio(struct task_struct *p, int prio)
3647 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3648 const struct sched_class *prev_class;
3649 struct rq_flags rf;
3650 struct rq *rq;
3652 BUG_ON(prio > MAX_PRIO);
3654 rq = __task_rq_lock(p, &rf);
3657 * Idle task boosting is a nono in general. There is one
3658 * exception, when PREEMPT_RT and NOHZ is active:
3660 * The idle task calls get_next_timer_interrupt() and holds
3661 * the timer wheel base->lock on the CPU and another CPU wants
3662 * to access the timer (probably to cancel it). We can safely
3663 * ignore the boosting request, as the idle CPU runs this code
3664 * with interrupts disabled and will complete the lock
3665 * protected section without being interrupted. So there is no
3666 * real need to boost.
3668 if (unlikely(p == rq->idle)) {
3669 WARN_ON(p != rq->curr);
3670 WARN_ON(p->pi_blocked_on);
3671 goto out_unlock;
3674 trace_sched_pi_setprio(p, prio);
3675 oldprio = p->prio;
3677 if (oldprio == prio)
3678 queue_flag &= ~DEQUEUE_MOVE;
3680 prev_class = p->sched_class;
3681 queued = task_on_rq_queued(p);
3682 running = task_current(rq, p);
3683 if (queued)
3684 dequeue_task(rq, p, queue_flag);
3685 if (running)
3686 put_prev_task(rq, p);
3689 * Boosting condition are:
3690 * 1. -rt task is running and holds mutex A
3691 * --> -dl task blocks on mutex A
3693 * 2. -dl task is running and holds mutex A
3694 * --> -dl task blocks on mutex A and could preempt the
3695 * running task
3697 if (dl_prio(prio)) {
3698 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3699 if (!dl_prio(p->normal_prio) ||
3700 (pi_task && dl_prio(pi_task->prio) &&
3701 dl_entity_preempt(&pi_task->dl, &p->dl))) {
3702 p->dl.dl_boosted = 1;
3703 queue_flag |= ENQUEUE_REPLENISH;
3704 } else
3705 p->dl.dl_boosted = 0;
3706 p->sched_class = &dl_sched_class;
3707 } else if (rt_prio(prio)) {
3708 if (dl_prio(oldprio))
3709 p->dl.dl_boosted = 0;
3710 if (oldprio < prio)
3711 queue_flag |= ENQUEUE_HEAD;
3712 p->sched_class = &rt_sched_class;
3713 } else {
3714 if (dl_prio(oldprio))
3715 p->dl.dl_boosted = 0;
3716 if (rt_prio(oldprio))
3717 p->rt.timeout = 0;
3718 p->sched_class = &fair_sched_class;
3721 p->prio = prio;
3723 if (queued)
3724 enqueue_task(rq, p, queue_flag);
3725 if (running)
3726 set_curr_task(rq, p);
3728 check_class_changed(rq, p, prev_class, oldprio);
3729 out_unlock:
3730 preempt_disable(); /* avoid rq from going away on us */
3731 __task_rq_unlock(rq, &rf);
3733 balance_callback(rq);
3734 preempt_enable();
3736 #endif
3738 void set_user_nice(struct task_struct *p, long nice)
3740 bool queued, running;
3741 int old_prio, delta;
3742 struct rq_flags rf;
3743 struct rq *rq;
3745 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3746 return;
3748 * We have to be careful, if called from sys_setpriority(),
3749 * the task might be in the middle of scheduling on another CPU.
3751 rq = task_rq_lock(p, &rf);
3753 * The RT priorities are set via sched_setscheduler(), but we still
3754 * allow the 'normal' nice value to be set - but as expected
3755 * it wont have any effect on scheduling until the task is
3756 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3758 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3759 p->static_prio = NICE_TO_PRIO(nice);
3760 goto out_unlock;
3762 queued = task_on_rq_queued(p);
3763 running = task_current(rq, p);
3764 if (queued)
3765 dequeue_task(rq, p, DEQUEUE_SAVE);
3766 if (running)
3767 put_prev_task(rq, p);
3769 p->static_prio = NICE_TO_PRIO(nice);
3770 set_load_weight(p);
3771 old_prio = p->prio;
3772 p->prio = effective_prio(p);
3773 delta = p->prio - old_prio;
3775 if (queued) {
3776 enqueue_task(rq, p, ENQUEUE_RESTORE);
3778 * If the task increased its priority or is running and
3779 * lowered its priority, then reschedule its CPU:
3781 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3782 resched_curr(rq);
3784 if (running)
3785 set_curr_task(rq, p);
3786 out_unlock:
3787 task_rq_unlock(rq, p, &rf);
3789 EXPORT_SYMBOL(set_user_nice);
3792 * can_nice - check if a task can reduce its nice value
3793 * @p: task
3794 * @nice: nice value
3796 int can_nice(const struct task_struct *p, const int nice)
3798 /* convert nice value [19,-20] to rlimit style value [1,40] */
3799 int nice_rlim = nice_to_rlimit(nice);
3801 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3802 capable(CAP_SYS_NICE));
3805 #ifdef __ARCH_WANT_SYS_NICE
3808 * sys_nice - change the priority of the current process.
3809 * @increment: priority increment
3811 * sys_setpriority is a more generic, but much slower function that
3812 * does similar things.
3814 SYSCALL_DEFINE1(nice, int, increment)
3816 long nice, retval;
3819 * Setpriority might change our priority at the same moment.
3820 * We don't have to worry. Conceptually one call occurs first
3821 * and we have a single winner.
3823 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3824 nice = task_nice(current) + increment;
3826 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3827 if (increment < 0 && !can_nice(current, nice))
3828 return -EPERM;
3830 retval = security_task_setnice(current, nice);
3831 if (retval)
3832 return retval;
3834 set_user_nice(current, nice);
3835 return 0;
3838 #endif
3841 * task_prio - return the priority value of a given task.
3842 * @p: the task in question.
3844 * Return: The priority value as seen by users in /proc.
3845 * RT tasks are offset by -200. Normal tasks are centered
3846 * around 0, value goes from -16 to +15.
3848 int task_prio(const struct task_struct *p)
3850 return p->prio - MAX_RT_PRIO;
3854 * idle_cpu - is a given cpu idle currently?
3855 * @cpu: the processor in question.
3857 * Return: 1 if the CPU is currently idle. 0 otherwise.
3859 int idle_cpu(int cpu)
3861 struct rq *rq = cpu_rq(cpu);
3863 if (rq->curr != rq->idle)
3864 return 0;
3866 if (rq->nr_running)
3867 return 0;
3869 #ifdef CONFIG_SMP
3870 if (!llist_empty(&rq->wake_list))
3871 return 0;
3872 #endif
3874 return 1;
3878 * idle_task - return the idle task for a given cpu.
3879 * @cpu: the processor in question.
3881 * Return: The idle task for the cpu @cpu.
3883 struct task_struct *idle_task(int cpu)
3885 return cpu_rq(cpu)->idle;
3889 * find_process_by_pid - find a process with a matching PID value.
3890 * @pid: the pid in question.
3892 * The task of @pid, if found. %NULL otherwise.
3894 static struct task_struct *find_process_by_pid(pid_t pid)
3896 return pid ? find_task_by_vpid(pid) : current;
3900 * This function initializes the sched_dl_entity of a newly becoming
3901 * SCHED_DEADLINE task.
3903 * Only the static values are considered here, the actual runtime and the
3904 * absolute deadline will be properly calculated when the task is enqueued
3905 * for the first time with its new policy.
3907 static void
3908 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3910 struct sched_dl_entity *dl_se = &p->dl;
3912 dl_se->dl_runtime = attr->sched_runtime;
3913 dl_se->dl_deadline = attr->sched_deadline;
3914 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3915 dl_se->flags = attr->sched_flags;
3916 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3917 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3920 * Changing the parameters of a task is 'tricky' and we're not doing
3921 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3923 * What we SHOULD do is delay the bandwidth release until the 0-lag
3924 * point. This would include retaining the task_struct until that time
3925 * and change dl_overflow() to not immediately decrement the current
3926 * amount.
3928 * Instead we retain the current runtime/deadline and let the new
3929 * parameters take effect after the current reservation period lapses.
3930 * This is safe (albeit pessimistic) because the 0-lag point is always
3931 * before the current scheduling deadline.
3933 * We can still have temporary overloads because we do not delay the
3934 * change in bandwidth until that time; so admission control is
3935 * not on the safe side. It does however guarantee tasks will never
3936 * consume more than promised.
3941 * sched_setparam() passes in -1 for its policy, to let the functions
3942 * it calls know not to change it.
3944 #define SETPARAM_POLICY -1
3946 static void __setscheduler_params(struct task_struct *p,
3947 const struct sched_attr *attr)
3949 int policy = attr->sched_policy;
3951 if (policy == SETPARAM_POLICY)
3952 policy = p->policy;
3954 p->policy = policy;
3956 if (dl_policy(policy))
3957 __setparam_dl(p, attr);
3958 else if (fair_policy(policy))
3959 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3962 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3963 * !rt_policy. Always setting this ensures that things like
3964 * getparam()/getattr() don't report silly values for !rt tasks.
3966 p->rt_priority = attr->sched_priority;
3967 p->normal_prio = normal_prio(p);
3968 set_load_weight(p);
3971 /* Actually do priority change: must hold pi & rq lock. */
3972 static void __setscheduler(struct rq *rq, struct task_struct *p,
3973 const struct sched_attr *attr, bool keep_boost)
3975 __setscheduler_params(p, attr);
3978 * Keep a potential priority boosting if called from
3979 * sched_setscheduler().
3981 if (keep_boost)
3982 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3983 else
3984 p->prio = normal_prio(p);
3986 if (dl_prio(p->prio))
3987 p->sched_class = &dl_sched_class;
3988 else if (rt_prio(p->prio))
3989 p->sched_class = &rt_sched_class;
3990 else
3991 p->sched_class = &fair_sched_class;
3994 static void
3995 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3997 struct sched_dl_entity *dl_se = &p->dl;
3999 attr->sched_priority = p->rt_priority;
4000 attr->sched_runtime = dl_se->dl_runtime;
4001 attr->sched_deadline = dl_se->dl_deadline;
4002 attr->sched_period = dl_se->dl_period;
4003 attr->sched_flags = dl_se->flags;
4007 * This function validates the new parameters of a -deadline task.
4008 * We ask for the deadline not being zero, and greater or equal
4009 * than the runtime, as well as the period of being zero or
4010 * greater than deadline. Furthermore, we have to be sure that
4011 * user parameters are above the internal resolution of 1us (we
4012 * check sched_runtime only since it is always the smaller one) and
4013 * below 2^63 ns (we have to check both sched_deadline and
4014 * sched_period, as the latter can be zero).
4016 static bool
4017 __checkparam_dl(const struct sched_attr *attr)
4019 /* deadline != 0 */
4020 if (attr->sched_deadline == 0)
4021 return false;
4024 * Since we truncate DL_SCALE bits, make sure we're at least
4025 * that big.
4027 if (attr->sched_runtime < (1ULL << DL_SCALE))
4028 return false;
4031 * Since we use the MSB for wrap-around and sign issues, make
4032 * sure it's not set (mind that period can be equal to zero).
4034 if (attr->sched_deadline & (1ULL << 63) ||
4035 attr->sched_period & (1ULL << 63))
4036 return false;
4038 /* runtime <= deadline <= period (if period != 0) */
4039 if ((attr->sched_period != 0 &&
4040 attr->sched_period < attr->sched_deadline) ||
4041 attr->sched_deadline < attr->sched_runtime)
4042 return false;
4044 return true;
4048 * check the target process has a UID that matches the current process's
4050 static bool check_same_owner(struct task_struct *p)
4052 const struct cred *cred = current_cred(), *pcred;
4053 bool match;
4055 rcu_read_lock();
4056 pcred = __task_cred(p);
4057 match = (uid_eq(cred->euid, pcred->euid) ||
4058 uid_eq(cred->euid, pcred->uid));
4059 rcu_read_unlock();
4060 return match;
4063 static bool dl_param_changed(struct task_struct *p,
4064 const struct sched_attr *attr)
4066 struct sched_dl_entity *dl_se = &p->dl;
4068 if (dl_se->dl_runtime != attr->sched_runtime ||
4069 dl_se->dl_deadline != attr->sched_deadline ||
4070 dl_se->dl_period != attr->sched_period ||
4071 dl_se->flags != attr->sched_flags)
4072 return true;
4074 return false;
4077 static int __sched_setscheduler(struct task_struct *p,
4078 const struct sched_attr *attr,
4079 bool user, bool pi)
4081 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4082 MAX_RT_PRIO - 1 - attr->sched_priority;
4083 int retval, oldprio, oldpolicy = -1, queued, running;
4084 int new_effective_prio, policy = attr->sched_policy;
4085 const struct sched_class *prev_class;
4086 struct rq_flags rf;
4087 int reset_on_fork;
4088 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4089 struct rq *rq;
4091 /* The pi code expects interrupts enabled */
4092 BUG_ON(pi && in_interrupt());
4093 recheck:
4094 /* double check policy once rq lock held */
4095 if (policy < 0) {
4096 reset_on_fork = p->sched_reset_on_fork;
4097 policy = oldpolicy = p->policy;
4098 } else {
4099 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4101 if (!valid_policy(policy))
4102 return -EINVAL;
4105 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4106 return -EINVAL;
4109 * Valid priorities for SCHED_FIFO and SCHED_RR are
4110 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4111 * SCHED_BATCH and SCHED_IDLE is 0.
4113 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4114 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4115 return -EINVAL;
4116 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4117 (rt_policy(policy) != (attr->sched_priority != 0)))
4118 return -EINVAL;
4121 * Allow unprivileged RT tasks to decrease priority:
4123 if (user && !capable(CAP_SYS_NICE)) {
4124 if (fair_policy(policy)) {
4125 if (attr->sched_nice < task_nice(p) &&
4126 !can_nice(p, attr->sched_nice))
4127 return -EPERM;
4130 if (rt_policy(policy)) {
4131 unsigned long rlim_rtprio =
4132 task_rlimit(p, RLIMIT_RTPRIO);
4134 /* can't set/change the rt policy */
4135 if (policy != p->policy && !rlim_rtprio)
4136 return -EPERM;
4138 /* can't increase priority */
4139 if (attr->sched_priority > p->rt_priority &&
4140 attr->sched_priority > rlim_rtprio)
4141 return -EPERM;
4145 * Can't set/change SCHED_DEADLINE policy at all for now
4146 * (safest behavior); in the future we would like to allow
4147 * unprivileged DL tasks to increase their relative deadline
4148 * or reduce their runtime (both ways reducing utilization)
4150 if (dl_policy(policy))
4151 return -EPERM;
4154 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4155 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4157 if (idle_policy(p->policy) && !idle_policy(policy)) {
4158 if (!can_nice(p, task_nice(p)))
4159 return -EPERM;
4162 /* can't change other user's priorities */
4163 if (!check_same_owner(p))
4164 return -EPERM;
4166 /* Normal users shall not reset the sched_reset_on_fork flag */
4167 if (p->sched_reset_on_fork && !reset_on_fork)
4168 return -EPERM;
4171 if (user) {
4172 retval = security_task_setscheduler(p);
4173 if (retval)
4174 return retval;
4178 * make sure no PI-waiters arrive (or leave) while we are
4179 * changing the priority of the task:
4181 * To be able to change p->policy safely, the appropriate
4182 * runqueue lock must be held.
4184 rq = task_rq_lock(p, &rf);
4187 * Changing the policy of the stop threads its a very bad idea
4189 if (p == rq->stop) {
4190 task_rq_unlock(rq, p, &rf);
4191 return -EINVAL;
4195 * If not changing anything there's no need to proceed further,
4196 * but store a possible modification of reset_on_fork.
4198 if (unlikely(policy == p->policy)) {
4199 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4200 goto change;
4201 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4202 goto change;
4203 if (dl_policy(policy) && dl_param_changed(p, attr))
4204 goto change;
4206 p->sched_reset_on_fork = reset_on_fork;
4207 task_rq_unlock(rq, p, &rf);
4208 return 0;
4210 change:
4212 if (user) {
4213 #ifdef CONFIG_RT_GROUP_SCHED
4215 * Do not allow realtime tasks into groups that have no runtime
4216 * assigned.
4218 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4219 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4220 !task_group_is_autogroup(task_group(p))) {
4221 task_rq_unlock(rq, p, &rf);
4222 return -EPERM;
4224 #endif
4225 #ifdef CONFIG_SMP
4226 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4227 cpumask_t *span = rq->rd->span;
4230 * Don't allow tasks with an affinity mask smaller than
4231 * the entire root_domain to become SCHED_DEADLINE. We
4232 * will also fail if there's no bandwidth available.
4234 if (!cpumask_subset(span, &p->cpus_allowed) ||
4235 rq->rd->dl_bw.bw == 0) {
4236 task_rq_unlock(rq, p, &rf);
4237 return -EPERM;
4240 #endif
4243 /* recheck policy now with rq lock held */
4244 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4245 policy = oldpolicy = -1;
4246 task_rq_unlock(rq, p, &rf);
4247 goto recheck;
4251 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4252 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4253 * is available.
4255 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4256 task_rq_unlock(rq, p, &rf);
4257 return -EBUSY;
4260 p->sched_reset_on_fork = reset_on_fork;
4261 oldprio = p->prio;
4263 if (pi) {
4265 * Take priority boosted tasks into account. If the new
4266 * effective priority is unchanged, we just store the new
4267 * normal parameters and do not touch the scheduler class and
4268 * the runqueue. This will be done when the task deboost
4269 * itself.
4271 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4272 if (new_effective_prio == oldprio)
4273 queue_flags &= ~DEQUEUE_MOVE;
4276 queued = task_on_rq_queued(p);
4277 running = task_current(rq, p);
4278 if (queued)
4279 dequeue_task(rq, p, queue_flags);
4280 if (running)
4281 put_prev_task(rq, p);
4283 prev_class = p->sched_class;
4284 __setscheduler(rq, p, attr, pi);
4286 if (queued) {
4288 * We enqueue to tail when the priority of a task is
4289 * increased (user space view).
4291 if (oldprio < p->prio)
4292 queue_flags |= ENQUEUE_HEAD;
4294 enqueue_task(rq, p, queue_flags);
4296 if (running)
4297 set_curr_task(rq, p);
4299 check_class_changed(rq, p, prev_class, oldprio);
4300 preempt_disable(); /* avoid rq from going away on us */
4301 task_rq_unlock(rq, p, &rf);
4303 if (pi)
4304 rt_mutex_adjust_pi(p);
4307 * Run balance callbacks after we've adjusted the PI chain.
4309 balance_callback(rq);
4310 preempt_enable();
4312 return 0;
4315 static int _sched_setscheduler(struct task_struct *p, int policy,
4316 const struct sched_param *param, bool check)
4318 struct sched_attr attr = {
4319 .sched_policy = policy,
4320 .sched_priority = param->sched_priority,
4321 .sched_nice = PRIO_TO_NICE(p->static_prio),
4324 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4325 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4326 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4327 policy &= ~SCHED_RESET_ON_FORK;
4328 attr.sched_policy = policy;
4331 return __sched_setscheduler(p, &attr, check, true);
4334 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4335 * @p: the task in question.
4336 * @policy: new policy.
4337 * @param: structure containing the new RT priority.
4339 * Return: 0 on success. An error code otherwise.
4341 * NOTE that the task may be already dead.
4343 int sched_setscheduler(struct task_struct *p, int policy,
4344 const struct sched_param *param)
4346 return _sched_setscheduler(p, policy, param, true);
4348 EXPORT_SYMBOL_GPL(sched_setscheduler);
4350 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4352 return __sched_setscheduler(p, attr, true, true);
4354 EXPORT_SYMBOL_GPL(sched_setattr);
4357 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4358 * @p: the task in question.
4359 * @policy: new policy.
4360 * @param: structure containing the new RT priority.
4362 * Just like sched_setscheduler, only don't bother checking if the
4363 * current context has permission. For example, this is needed in
4364 * stop_machine(): we create temporary high priority worker threads,
4365 * but our caller might not have that capability.
4367 * Return: 0 on success. An error code otherwise.
4369 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4370 const struct sched_param *param)
4372 return _sched_setscheduler(p, policy, param, false);
4374 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4376 static int
4377 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4379 struct sched_param lparam;
4380 struct task_struct *p;
4381 int retval;
4383 if (!param || pid < 0)
4384 return -EINVAL;
4385 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4386 return -EFAULT;
4388 rcu_read_lock();
4389 retval = -ESRCH;
4390 p = find_process_by_pid(pid);
4391 if (p != NULL)
4392 retval = sched_setscheduler(p, policy, &lparam);
4393 rcu_read_unlock();
4395 return retval;
4399 * Mimics kernel/events/core.c perf_copy_attr().
4401 static int sched_copy_attr(struct sched_attr __user *uattr,
4402 struct sched_attr *attr)
4404 u32 size;
4405 int ret;
4407 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4408 return -EFAULT;
4411 * zero the full structure, so that a short copy will be nice.
4413 memset(attr, 0, sizeof(*attr));
4415 ret = get_user(size, &uattr->size);
4416 if (ret)
4417 return ret;
4419 if (size > PAGE_SIZE) /* silly large */
4420 goto err_size;
4422 if (!size) /* abi compat */
4423 size = SCHED_ATTR_SIZE_VER0;
4425 if (size < SCHED_ATTR_SIZE_VER0)
4426 goto err_size;
4429 * If we're handed a bigger struct than we know of,
4430 * ensure all the unknown bits are 0 - i.e. new
4431 * user-space does not rely on any kernel feature
4432 * extensions we dont know about yet.
4434 if (size > sizeof(*attr)) {
4435 unsigned char __user *addr;
4436 unsigned char __user *end;
4437 unsigned char val;
4439 addr = (void __user *)uattr + sizeof(*attr);
4440 end = (void __user *)uattr + size;
4442 for (; addr < end; addr++) {
4443 ret = get_user(val, addr);
4444 if (ret)
4445 return ret;
4446 if (val)
4447 goto err_size;
4449 size = sizeof(*attr);
4452 ret = copy_from_user(attr, uattr, size);
4453 if (ret)
4454 return -EFAULT;
4457 * XXX: do we want to be lenient like existing syscalls; or do we want
4458 * to be strict and return an error on out-of-bounds values?
4460 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4462 return 0;
4464 err_size:
4465 put_user(sizeof(*attr), &uattr->size);
4466 return -E2BIG;
4470 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4471 * @pid: the pid in question.
4472 * @policy: new policy.
4473 * @param: structure containing the new RT priority.
4475 * Return: 0 on success. An error code otherwise.
4477 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4478 struct sched_param __user *, param)
4480 /* negative values for policy are not valid */
4481 if (policy < 0)
4482 return -EINVAL;
4484 return do_sched_setscheduler(pid, policy, param);
4488 * sys_sched_setparam - set/change the RT priority of a thread
4489 * @pid: the pid in question.
4490 * @param: structure containing the new RT priority.
4492 * Return: 0 on success. An error code otherwise.
4494 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4496 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4500 * sys_sched_setattr - same as above, but with extended sched_attr
4501 * @pid: the pid in question.
4502 * @uattr: structure containing the extended parameters.
4503 * @flags: for future extension.
4505 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4506 unsigned int, flags)
4508 struct sched_attr attr;
4509 struct task_struct *p;
4510 int retval;
4512 if (!uattr || pid < 0 || flags)
4513 return -EINVAL;
4515 retval = sched_copy_attr(uattr, &attr);
4516 if (retval)
4517 return retval;
4519 if ((int)attr.sched_policy < 0)
4520 return -EINVAL;
4522 rcu_read_lock();
4523 retval = -ESRCH;
4524 p = find_process_by_pid(pid);
4525 if (p != NULL)
4526 retval = sched_setattr(p, &attr);
4527 rcu_read_unlock();
4529 return retval;
4533 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4534 * @pid: the pid in question.
4536 * Return: On success, the policy of the thread. Otherwise, a negative error
4537 * code.
4539 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4541 struct task_struct *p;
4542 int retval;
4544 if (pid < 0)
4545 return -EINVAL;
4547 retval = -ESRCH;
4548 rcu_read_lock();
4549 p = find_process_by_pid(pid);
4550 if (p) {
4551 retval = security_task_getscheduler(p);
4552 if (!retval)
4553 retval = p->policy
4554 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4556 rcu_read_unlock();
4557 return retval;
4561 * sys_sched_getparam - get the RT priority of a thread
4562 * @pid: the pid in question.
4563 * @param: structure containing the RT priority.
4565 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4566 * code.
4568 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4570 struct sched_param lp = { .sched_priority = 0 };
4571 struct task_struct *p;
4572 int retval;
4574 if (!param || pid < 0)
4575 return -EINVAL;
4577 rcu_read_lock();
4578 p = find_process_by_pid(pid);
4579 retval = -ESRCH;
4580 if (!p)
4581 goto out_unlock;
4583 retval = security_task_getscheduler(p);
4584 if (retval)
4585 goto out_unlock;
4587 if (task_has_rt_policy(p))
4588 lp.sched_priority = p->rt_priority;
4589 rcu_read_unlock();
4592 * This one might sleep, we cannot do it with a spinlock held ...
4594 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4596 return retval;
4598 out_unlock:
4599 rcu_read_unlock();
4600 return retval;
4603 static int sched_read_attr(struct sched_attr __user *uattr,
4604 struct sched_attr *attr,
4605 unsigned int usize)
4607 int ret;
4609 if (!access_ok(VERIFY_WRITE, uattr, usize))
4610 return -EFAULT;
4613 * If we're handed a smaller struct than we know of,
4614 * ensure all the unknown bits are 0 - i.e. old
4615 * user-space does not get uncomplete information.
4617 if (usize < sizeof(*attr)) {
4618 unsigned char *addr;
4619 unsigned char *end;
4621 addr = (void *)attr + usize;
4622 end = (void *)attr + sizeof(*attr);
4624 for (; addr < end; addr++) {
4625 if (*addr)
4626 return -EFBIG;
4629 attr->size = usize;
4632 ret = copy_to_user(uattr, attr, attr->size);
4633 if (ret)
4634 return -EFAULT;
4636 return 0;
4640 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4641 * @pid: the pid in question.
4642 * @uattr: structure containing the extended parameters.
4643 * @size: sizeof(attr) for fwd/bwd comp.
4644 * @flags: for future extension.
4646 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4647 unsigned int, size, unsigned int, flags)
4649 struct sched_attr attr = {
4650 .size = sizeof(struct sched_attr),
4652 struct task_struct *p;
4653 int retval;
4655 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4656 size < SCHED_ATTR_SIZE_VER0 || flags)
4657 return -EINVAL;
4659 rcu_read_lock();
4660 p = find_process_by_pid(pid);
4661 retval = -ESRCH;
4662 if (!p)
4663 goto out_unlock;
4665 retval = security_task_getscheduler(p);
4666 if (retval)
4667 goto out_unlock;
4669 attr.sched_policy = p->policy;
4670 if (p->sched_reset_on_fork)
4671 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4672 if (task_has_dl_policy(p))
4673 __getparam_dl(p, &attr);
4674 else if (task_has_rt_policy(p))
4675 attr.sched_priority = p->rt_priority;
4676 else
4677 attr.sched_nice = task_nice(p);
4679 rcu_read_unlock();
4681 retval = sched_read_attr(uattr, &attr, size);
4682 return retval;
4684 out_unlock:
4685 rcu_read_unlock();
4686 return retval;
4689 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4691 cpumask_var_t cpus_allowed, new_mask;
4692 struct task_struct *p;
4693 int retval;
4695 rcu_read_lock();
4697 p = find_process_by_pid(pid);
4698 if (!p) {
4699 rcu_read_unlock();
4700 return -ESRCH;
4703 /* Prevent p going away */
4704 get_task_struct(p);
4705 rcu_read_unlock();
4707 if (p->flags & PF_NO_SETAFFINITY) {
4708 retval = -EINVAL;
4709 goto out_put_task;
4711 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4712 retval = -ENOMEM;
4713 goto out_put_task;
4715 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4716 retval = -ENOMEM;
4717 goto out_free_cpus_allowed;
4719 retval = -EPERM;
4720 if (!check_same_owner(p)) {
4721 rcu_read_lock();
4722 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4723 rcu_read_unlock();
4724 goto out_free_new_mask;
4726 rcu_read_unlock();
4729 retval = security_task_setscheduler(p);
4730 if (retval)
4731 goto out_free_new_mask;
4734 cpuset_cpus_allowed(p, cpus_allowed);
4735 cpumask_and(new_mask, in_mask, cpus_allowed);
4738 * Since bandwidth control happens on root_domain basis,
4739 * if admission test is enabled, we only admit -deadline
4740 * tasks allowed to run on all the CPUs in the task's
4741 * root_domain.
4743 #ifdef CONFIG_SMP
4744 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4745 rcu_read_lock();
4746 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4747 retval = -EBUSY;
4748 rcu_read_unlock();
4749 goto out_free_new_mask;
4751 rcu_read_unlock();
4753 #endif
4754 again:
4755 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4757 if (!retval) {
4758 cpuset_cpus_allowed(p, cpus_allowed);
4759 if (!cpumask_subset(new_mask, cpus_allowed)) {
4761 * We must have raced with a concurrent cpuset
4762 * update. Just reset the cpus_allowed to the
4763 * cpuset's cpus_allowed
4765 cpumask_copy(new_mask, cpus_allowed);
4766 goto again;
4769 out_free_new_mask:
4770 free_cpumask_var(new_mask);
4771 out_free_cpus_allowed:
4772 free_cpumask_var(cpus_allowed);
4773 out_put_task:
4774 put_task_struct(p);
4775 return retval;
4778 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4779 struct cpumask *new_mask)
4781 if (len < cpumask_size())
4782 cpumask_clear(new_mask);
4783 else if (len > cpumask_size())
4784 len = cpumask_size();
4786 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4790 * sys_sched_setaffinity - set the cpu affinity of a process
4791 * @pid: pid of the process
4792 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4793 * @user_mask_ptr: user-space pointer to the new cpu mask
4795 * Return: 0 on success. An error code otherwise.
4797 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4798 unsigned long __user *, user_mask_ptr)
4800 cpumask_var_t new_mask;
4801 int retval;
4803 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4804 return -ENOMEM;
4806 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4807 if (retval == 0)
4808 retval = sched_setaffinity(pid, new_mask);
4809 free_cpumask_var(new_mask);
4810 return retval;
4813 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4815 struct task_struct *p;
4816 unsigned long flags;
4817 int retval;
4819 rcu_read_lock();
4821 retval = -ESRCH;
4822 p = find_process_by_pid(pid);
4823 if (!p)
4824 goto out_unlock;
4826 retval = security_task_getscheduler(p);
4827 if (retval)
4828 goto out_unlock;
4830 raw_spin_lock_irqsave(&p->pi_lock, flags);
4831 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4832 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4834 out_unlock:
4835 rcu_read_unlock();
4837 return retval;
4841 * sys_sched_getaffinity - get the cpu affinity of a process
4842 * @pid: pid of the process
4843 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4844 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4846 * Return: size of CPU mask copied to user_mask_ptr on success. An
4847 * error code otherwise.
4849 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4850 unsigned long __user *, user_mask_ptr)
4852 int ret;
4853 cpumask_var_t mask;
4855 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4856 return -EINVAL;
4857 if (len & (sizeof(unsigned long)-1))
4858 return -EINVAL;
4860 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4861 return -ENOMEM;
4863 ret = sched_getaffinity(pid, mask);
4864 if (ret == 0) {
4865 size_t retlen = min_t(size_t, len, cpumask_size());
4867 if (copy_to_user(user_mask_ptr, mask, retlen))
4868 ret = -EFAULT;
4869 else
4870 ret = retlen;
4872 free_cpumask_var(mask);
4874 return ret;
4878 * sys_sched_yield - yield the current processor to other threads.
4880 * This function yields the current CPU to other tasks. If there are no
4881 * other threads running on this CPU then this function will return.
4883 * Return: 0.
4885 SYSCALL_DEFINE0(sched_yield)
4887 struct rq *rq = this_rq_lock();
4889 schedstat_inc(rq->yld_count);
4890 current->sched_class->yield_task(rq);
4893 * Since we are going to call schedule() anyway, there's
4894 * no need to preempt or enable interrupts:
4896 __release(rq->lock);
4897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4898 do_raw_spin_unlock(&rq->lock);
4899 sched_preempt_enable_no_resched();
4901 schedule();
4903 return 0;
4906 #ifndef CONFIG_PREEMPT
4907 int __sched _cond_resched(void)
4909 if (should_resched(0)) {
4910 preempt_schedule_common();
4911 return 1;
4913 return 0;
4915 EXPORT_SYMBOL(_cond_resched);
4916 #endif
4919 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4920 * call schedule, and on return reacquire the lock.
4922 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4923 * operations here to prevent schedule() from being called twice (once via
4924 * spin_unlock(), once by hand).
4926 int __cond_resched_lock(spinlock_t *lock)
4928 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4929 int ret = 0;
4931 lockdep_assert_held(lock);
4933 if (spin_needbreak(lock) || resched) {
4934 spin_unlock(lock);
4935 if (resched)
4936 preempt_schedule_common();
4937 else
4938 cpu_relax();
4939 ret = 1;
4940 spin_lock(lock);
4942 return ret;
4944 EXPORT_SYMBOL(__cond_resched_lock);
4946 int __sched __cond_resched_softirq(void)
4948 BUG_ON(!in_softirq());
4950 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4951 local_bh_enable();
4952 preempt_schedule_common();
4953 local_bh_disable();
4954 return 1;
4956 return 0;
4958 EXPORT_SYMBOL(__cond_resched_softirq);
4961 * yield - yield the current processor to other threads.
4963 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4965 * The scheduler is at all times free to pick the calling task as the most
4966 * eligible task to run, if removing the yield() call from your code breaks
4967 * it, its already broken.
4969 * Typical broken usage is:
4971 * while (!event)
4972 * yield();
4974 * where one assumes that yield() will let 'the other' process run that will
4975 * make event true. If the current task is a SCHED_FIFO task that will never
4976 * happen. Never use yield() as a progress guarantee!!
4978 * If you want to use yield() to wait for something, use wait_event().
4979 * If you want to use yield() to be 'nice' for others, use cond_resched().
4980 * If you still want to use yield(), do not!
4982 void __sched yield(void)
4984 set_current_state(TASK_RUNNING);
4985 sys_sched_yield();
4987 EXPORT_SYMBOL(yield);
4990 * yield_to - yield the current processor to another thread in
4991 * your thread group, or accelerate that thread toward the
4992 * processor it's on.
4993 * @p: target task
4994 * @preempt: whether task preemption is allowed or not
4996 * It's the caller's job to ensure that the target task struct
4997 * can't go away on us before we can do any checks.
4999 * Return:
5000 * true (>0) if we indeed boosted the target task.
5001 * false (0) if we failed to boost the target.
5002 * -ESRCH if there's no task to yield to.
5004 int __sched yield_to(struct task_struct *p, bool preempt)
5006 struct task_struct *curr = current;
5007 struct rq *rq, *p_rq;
5008 unsigned long flags;
5009 int yielded = 0;
5011 local_irq_save(flags);
5012 rq = this_rq();
5014 again:
5015 p_rq = task_rq(p);
5017 * If we're the only runnable task on the rq and target rq also
5018 * has only one task, there's absolutely no point in yielding.
5020 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5021 yielded = -ESRCH;
5022 goto out_irq;
5025 double_rq_lock(rq, p_rq);
5026 if (task_rq(p) != p_rq) {
5027 double_rq_unlock(rq, p_rq);
5028 goto again;
5031 if (!curr->sched_class->yield_to_task)
5032 goto out_unlock;
5034 if (curr->sched_class != p->sched_class)
5035 goto out_unlock;
5037 if (task_running(p_rq, p) || p->state)
5038 goto out_unlock;
5040 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5041 if (yielded) {
5042 schedstat_inc(rq->yld_count);
5044 * Make p's CPU reschedule; pick_next_entity takes care of
5045 * fairness.
5047 if (preempt && rq != p_rq)
5048 resched_curr(p_rq);
5051 out_unlock:
5052 double_rq_unlock(rq, p_rq);
5053 out_irq:
5054 local_irq_restore(flags);
5056 if (yielded > 0)
5057 schedule();
5059 return yielded;
5061 EXPORT_SYMBOL_GPL(yield_to);
5064 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5065 * that process accounting knows that this is a task in IO wait state.
5067 long __sched io_schedule_timeout(long timeout)
5069 int old_iowait = current->in_iowait;
5070 struct rq *rq;
5071 long ret;
5073 current->in_iowait = 1;
5074 blk_schedule_flush_plug(current);
5076 delayacct_blkio_start();
5077 rq = raw_rq();
5078 atomic_inc(&rq->nr_iowait);
5079 ret = schedule_timeout(timeout);
5080 current->in_iowait = old_iowait;
5081 atomic_dec(&rq->nr_iowait);
5082 delayacct_blkio_end();
5084 return ret;
5086 EXPORT_SYMBOL(io_schedule_timeout);
5089 * sys_sched_get_priority_max - return maximum RT priority.
5090 * @policy: scheduling class.
5092 * Return: On success, this syscall returns the maximum
5093 * rt_priority that can be used by a given scheduling class.
5094 * On failure, a negative error code is returned.
5096 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5098 int ret = -EINVAL;
5100 switch (policy) {
5101 case SCHED_FIFO:
5102 case SCHED_RR:
5103 ret = MAX_USER_RT_PRIO-1;
5104 break;
5105 case SCHED_DEADLINE:
5106 case SCHED_NORMAL:
5107 case SCHED_BATCH:
5108 case SCHED_IDLE:
5109 ret = 0;
5110 break;
5112 return ret;
5116 * sys_sched_get_priority_min - return minimum RT priority.
5117 * @policy: scheduling class.
5119 * Return: On success, this syscall returns the minimum
5120 * rt_priority that can be used by a given scheduling class.
5121 * On failure, a negative error code is returned.
5123 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5125 int ret = -EINVAL;
5127 switch (policy) {
5128 case SCHED_FIFO:
5129 case SCHED_RR:
5130 ret = 1;
5131 break;
5132 case SCHED_DEADLINE:
5133 case SCHED_NORMAL:
5134 case SCHED_BATCH:
5135 case SCHED_IDLE:
5136 ret = 0;
5138 return ret;
5142 * sys_sched_rr_get_interval - return the default timeslice of a process.
5143 * @pid: pid of the process.
5144 * @interval: userspace pointer to the timeslice value.
5146 * this syscall writes the default timeslice value of a given process
5147 * into the user-space timespec buffer. A value of '0' means infinity.
5149 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5150 * an error code.
5152 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5153 struct timespec __user *, interval)
5155 struct task_struct *p;
5156 unsigned int time_slice;
5157 struct rq_flags rf;
5158 struct timespec t;
5159 struct rq *rq;
5160 int retval;
5162 if (pid < 0)
5163 return -EINVAL;
5165 retval = -ESRCH;
5166 rcu_read_lock();
5167 p = find_process_by_pid(pid);
5168 if (!p)
5169 goto out_unlock;
5171 retval = security_task_getscheduler(p);
5172 if (retval)
5173 goto out_unlock;
5175 rq = task_rq_lock(p, &rf);
5176 time_slice = 0;
5177 if (p->sched_class->get_rr_interval)
5178 time_slice = p->sched_class->get_rr_interval(rq, p);
5179 task_rq_unlock(rq, p, &rf);
5181 rcu_read_unlock();
5182 jiffies_to_timespec(time_slice, &t);
5183 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5184 return retval;
5186 out_unlock:
5187 rcu_read_unlock();
5188 return retval;
5191 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5193 void sched_show_task(struct task_struct *p)
5195 unsigned long free = 0;
5196 int ppid;
5197 unsigned long state = p->state;
5199 if (!try_get_task_stack(p))
5200 return;
5201 if (state)
5202 state = __ffs(state) + 1;
5203 printk(KERN_INFO "%-15.15s %c", p->comm,
5204 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5205 if (state == TASK_RUNNING)
5206 printk(KERN_CONT " running task ");
5207 #ifdef CONFIG_DEBUG_STACK_USAGE
5208 free = stack_not_used(p);
5209 #endif
5210 ppid = 0;
5211 rcu_read_lock();
5212 if (pid_alive(p))
5213 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5214 rcu_read_unlock();
5215 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5216 task_pid_nr(p), ppid,
5217 (unsigned long)task_thread_info(p)->flags);
5219 print_worker_info(KERN_INFO, p);
5220 show_stack(p, NULL);
5221 put_task_stack(p);
5224 void show_state_filter(unsigned long state_filter)
5226 struct task_struct *g, *p;
5228 #if BITS_PER_LONG == 32
5229 printk(KERN_INFO
5230 " task PC stack pid father\n");
5231 #else
5232 printk(KERN_INFO
5233 " task PC stack pid father\n");
5234 #endif
5235 rcu_read_lock();
5236 for_each_process_thread(g, p) {
5238 * reset the NMI-timeout, listing all files on a slow
5239 * console might take a lot of time:
5240 * Also, reset softlockup watchdogs on all CPUs, because
5241 * another CPU might be blocked waiting for us to process
5242 * an IPI.
5244 touch_nmi_watchdog();
5245 touch_all_softlockup_watchdogs();
5246 if (!state_filter || (p->state & state_filter))
5247 sched_show_task(p);
5250 #ifdef CONFIG_SCHED_DEBUG
5251 if (!state_filter)
5252 sysrq_sched_debug_show();
5253 #endif
5254 rcu_read_unlock();
5256 * Only show locks if all tasks are dumped:
5258 if (!state_filter)
5259 debug_show_all_locks();
5262 void init_idle_bootup_task(struct task_struct *idle)
5264 idle->sched_class = &idle_sched_class;
5268 * init_idle - set up an idle thread for a given CPU
5269 * @idle: task in question
5270 * @cpu: cpu the idle task belongs to
5272 * NOTE: this function does not set the idle thread's NEED_RESCHED
5273 * flag, to make booting more robust.
5275 void init_idle(struct task_struct *idle, int cpu)
5277 struct rq *rq = cpu_rq(cpu);
5278 unsigned long flags;
5280 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5281 raw_spin_lock(&rq->lock);
5283 __sched_fork(0, idle);
5284 idle->state = TASK_RUNNING;
5285 idle->se.exec_start = sched_clock();
5287 kasan_unpoison_task_stack(idle);
5289 #ifdef CONFIG_SMP
5291 * Its possible that init_idle() gets called multiple times on a task,
5292 * in that case do_set_cpus_allowed() will not do the right thing.
5294 * And since this is boot we can forgo the serialization.
5296 set_cpus_allowed_common(idle, cpumask_of(cpu));
5297 #endif
5299 * We're having a chicken and egg problem, even though we are
5300 * holding rq->lock, the cpu isn't yet set to this cpu so the
5301 * lockdep check in task_group() will fail.
5303 * Similar case to sched_fork(). / Alternatively we could
5304 * use task_rq_lock() here and obtain the other rq->lock.
5306 * Silence PROVE_RCU
5308 rcu_read_lock();
5309 __set_task_cpu(idle, cpu);
5310 rcu_read_unlock();
5312 rq->curr = rq->idle = idle;
5313 idle->on_rq = TASK_ON_RQ_QUEUED;
5314 #ifdef CONFIG_SMP
5315 idle->on_cpu = 1;
5316 #endif
5317 raw_spin_unlock(&rq->lock);
5318 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5320 /* Set the preempt count _outside_ the spinlocks! */
5321 init_idle_preempt_count(idle, cpu);
5324 * The idle tasks have their own, simple scheduling class:
5326 idle->sched_class = &idle_sched_class;
5327 ftrace_graph_init_idle_task(idle, cpu);
5328 vtime_init_idle(idle, cpu);
5329 #ifdef CONFIG_SMP
5330 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5331 #endif
5334 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5335 const struct cpumask *trial)
5337 int ret = 1, trial_cpus;
5338 struct dl_bw *cur_dl_b;
5339 unsigned long flags;
5341 if (!cpumask_weight(cur))
5342 return ret;
5344 rcu_read_lock_sched();
5345 cur_dl_b = dl_bw_of(cpumask_any(cur));
5346 trial_cpus = cpumask_weight(trial);
5348 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5349 if (cur_dl_b->bw != -1 &&
5350 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5351 ret = 0;
5352 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5353 rcu_read_unlock_sched();
5355 return ret;
5358 int task_can_attach(struct task_struct *p,
5359 const struct cpumask *cs_cpus_allowed)
5361 int ret = 0;
5364 * Kthreads which disallow setaffinity shouldn't be moved
5365 * to a new cpuset; we don't want to change their cpu
5366 * affinity and isolating such threads by their set of
5367 * allowed nodes is unnecessary. Thus, cpusets are not
5368 * applicable for such threads. This prevents checking for
5369 * success of set_cpus_allowed_ptr() on all attached tasks
5370 * before cpus_allowed may be changed.
5372 if (p->flags & PF_NO_SETAFFINITY) {
5373 ret = -EINVAL;
5374 goto out;
5377 #ifdef CONFIG_SMP
5378 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5379 cs_cpus_allowed)) {
5380 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5381 cs_cpus_allowed);
5382 struct dl_bw *dl_b;
5383 bool overflow;
5384 int cpus;
5385 unsigned long flags;
5387 rcu_read_lock_sched();
5388 dl_b = dl_bw_of(dest_cpu);
5389 raw_spin_lock_irqsave(&dl_b->lock, flags);
5390 cpus = dl_bw_cpus(dest_cpu);
5391 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5392 if (overflow)
5393 ret = -EBUSY;
5394 else {
5396 * We reserve space for this task in the destination
5397 * root_domain, as we can't fail after this point.
5398 * We will free resources in the source root_domain
5399 * later on (see set_cpus_allowed_dl()).
5401 __dl_add(dl_b, p->dl.dl_bw);
5403 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5404 rcu_read_unlock_sched();
5407 #endif
5408 out:
5409 return ret;
5412 #ifdef CONFIG_SMP
5414 static bool sched_smp_initialized __read_mostly;
5416 #ifdef CONFIG_NUMA_BALANCING
5417 /* Migrate current task p to target_cpu */
5418 int migrate_task_to(struct task_struct *p, int target_cpu)
5420 struct migration_arg arg = { p, target_cpu };
5421 int curr_cpu = task_cpu(p);
5423 if (curr_cpu == target_cpu)
5424 return 0;
5426 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5427 return -EINVAL;
5429 /* TODO: This is not properly updating schedstats */
5431 trace_sched_move_numa(p, curr_cpu, target_cpu);
5432 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5436 * Requeue a task on a given node and accurately track the number of NUMA
5437 * tasks on the runqueues
5439 void sched_setnuma(struct task_struct *p, int nid)
5441 bool queued, running;
5442 struct rq_flags rf;
5443 struct rq *rq;
5445 rq = task_rq_lock(p, &rf);
5446 queued = task_on_rq_queued(p);
5447 running = task_current(rq, p);
5449 if (queued)
5450 dequeue_task(rq, p, DEQUEUE_SAVE);
5451 if (running)
5452 put_prev_task(rq, p);
5454 p->numa_preferred_nid = nid;
5456 if (queued)
5457 enqueue_task(rq, p, ENQUEUE_RESTORE);
5458 if (running)
5459 set_curr_task(rq, p);
5460 task_rq_unlock(rq, p, &rf);
5462 #endif /* CONFIG_NUMA_BALANCING */
5464 #ifdef CONFIG_HOTPLUG_CPU
5466 * Ensures that the idle task is using init_mm right before its cpu goes
5467 * offline.
5469 void idle_task_exit(void)
5471 struct mm_struct *mm = current->active_mm;
5473 BUG_ON(cpu_online(smp_processor_id()));
5475 if (mm != &init_mm) {
5476 switch_mm(mm, &init_mm, current);
5477 finish_arch_post_lock_switch();
5479 mmdrop(mm);
5483 * Since this CPU is going 'away' for a while, fold any nr_active delta
5484 * we might have. Assumes we're called after migrate_tasks() so that the
5485 * nr_active count is stable. We need to take the teardown thread which
5486 * is calling this into account, so we hand in adjust = 1 to the load
5487 * calculation.
5489 * Also see the comment "Global load-average calculations".
5491 static void calc_load_migrate(struct rq *rq)
5493 long delta = calc_load_fold_active(rq, 1);
5494 if (delta)
5495 atomic_long_add(delta, &calc_load_tasks);
5498 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5502 static const struct sched_class fake_sched_class = {
5503 .put_prev_task = put_prev_task_fake,
5506 static struct task_struct fake_task = {
5508 * Avoid pull_{rt,dl}_task()
5510 .prio = MAX_PRIO + 1,
5511 .sched_class = &fake_sched_class,
5515 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5516 * try_to_wake_up()->select_task_rq().
5518 * Called with rq->lock held even though we'er in stop_machine() and
5519 * there's no concurrency possible, we hold the required locks anyway
5520 * because of lock validation efforts.
5522 static void migrate_tasks(struct rq *dead_rq)
5524 struct rq *rq = dead_rq;
5525 struct task_struct *next, *stop = rq->stop;
5526 struct pin_cookie cookie;
5527 int dest_cpu;
5530 * Fudge the rq selection such that the below task selection loop
5531 * doesn't get stuck on the currently eligible stop task.
5533 * We're currently inside stop_machine() and the rq is either stuck
5534 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5535 * either way we should never end up calling schedule() until we're
5536 * done here.
5538 rq->stop = NULL;
5541 * put_prev_task() and pick_next_task() sched
5542 * class method both need to have an up-to-date
5543 * value of rq->clock[_task]
5545 update_rq_clock(rq);
5547 for (;;) {
5549 * There's this thread running, bail when that's the only
5550 * remaining thread.
5552 if (rq->nr_running == 1)
5553 break;
5556 * pick_next_task assumes pinned rq->lock.
5558 cookie = lockdep_pin_lock(&rq->lock);
5559 next = pick_next_task(rq, &fake_task, cookie);
5560 BUG_ON(!next);
5561 next->sched_class->put_prev_task(rq, next);
5564 * Rules for changing task_struct::cpus_allowed are holding
5565 * both pi_lock and rq->lock, such that holding either
5566 * stabilizes the mask.
5568 * Drop rq->lock is not quite as disastrous as it usually is
5569 * because !cpu_active at this point, which means load-balance
5570 * will not interfere. Also, stop-machine.
5572 lockdep_unpin_lock(&rq->lock, cookie);
5573 raw_spin_unlock(&rq->lock);
5574 raw_spin_lock(&next->pi_lock);
5575 raw_spin_lock(&rq->lock);
5578 * Since we're inside stop-machine, _nothing_ should have
5579 * changed the task, WARN if weird stuff happened, because in
5580 * that case the above rq->lock drop is a fail too.
5582 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5583 raw_spin_unlock(&next->pi_lock);
5584 continue;
5587 /* Find suitable destination for @next, with force if needed. */
5588 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5590 rq = __migrate_task(rq, next, dest_cpu);
5591 if (rq != dead_rq) {
5592 raw_spin_unlock(&rq->lock);
5593 rq = dead_rq;
5594 raw_spin_lock(&rq->lock);
5596 raw_spin_unlock(&next->pi_lock);
5599 rq->stop = stop;
5601 #endif /* CONFIG_HOTPLUG_CPU */
5603 static void set_rq_online(struct rq *rq)
5605 if (!rq->online) {
5606 const struct sched_class *class;
5608 cpumask_set_cpu(rq->cpu, rq->rd->online);
5609 rq->online = 1;
5611 for_each_class(class) {
5612 if (class->rq_online)
5613 class->rq_online(rq);
5618 static void set_rq_offline(struct rq *rq)
5620 if (rq->online) {
5621 const struct sched_class *class;
5623 for_each_class(class) {
5624 if (class->rq_offline)
5625 class->rq_offline(rq);
5628 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5629 rq->online = 0;
5633 static void set_cpu_rq_start_time(unsigned int cpu)
5635 struct rq *rq = cpu_rq(cpu);
5637 rq->age_stamp = sched_clock_cpu(cpu);
5640 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5642 #ifdef CONFIG_SCHED_DEBUG
5644 static __read_mostly int sched_debug_enabled;
5646 static int __init sched_debug_setup(char *str)
5648 sched_debug_enabled = 1;
5650 return 0;
5652 early_param("sched_debug", sched_debug_setup);
5654 static inline bool sched_debug(void)
5656 return sched_debug_enabled;
5659 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5660 struct cpumask *groupmask)
5662 struct sched_group *group = sd->groups;
5664 cpumask_clear(groupmask);
5666 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5668 if (!(sd->flags & SD_LOAD_BALANCE)) {
5669 printk("does not load-balance\n");
5670 if (sd->parent)
5671 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5672 " has parent");
5673 return -1;
5676 printk(KERN_CONT "span %*pbl level %s\n",
5677 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5679 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5680 printk(KERN_ERR "ERROR: domain->span does not contain "
5681 "CPU%d\n", cpu);
5683 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5684 printk(KERN_ERR "ERROR: domain->groups does not contain"
5685 " CPU%d\n", cpu);
5688 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5689 do {
5690 if (!group) {
5691 printk("\n");
5692 printk(KERN_ERR "ERROR: group is NULL\n");
5693 break;
5696 if (!cpumask_weight(sched_group_cpus(group))) {
5697 printk(KERN_CONT "\n");
5698 printk(KERN_ERR "ERROR: empty group\n");
5699 break;
5702 if (!(sd->flags & SD_OVERLAP) &&
5703 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5704 printk(KERN_CONT "\n");
5705 printk(KERN_ERR "ERROR: repeated CPUs\n");
5706 break;
5709 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5711 printk(KERN_CONT " %*pbl",
5712 cpumask_pr_args(sched_group_cpus(group)));
5713 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5714 printk(KERN_CONT " (cpu_capacity = %d)",
5715 group->sgc->capacity);
5718 group = group->next;
5719 } while (group != sd->groups);
5720 printk(KERN_CONT "\n");
5722 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5723 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5725 if (sd->parent &&
5726 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5727 printk(KERN_ERR "ERROR: parent span is not a superset "
5728 "of domain->span\n");
5729 return 0;
5732 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5734 int level = 0;
5736 if (!sched_debug_enabled)
5737 return;
5739 if (!sd) {
5740 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5741 return;
5744 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5746 for (;;) {
5747 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5748 break;
5749 level++;
5750 sd = sd->parent;
5751 if (!sd)
5752 break;
5755 #else /* !CONFIG_SCHED_DEBUG */
5757 # define sched_debug_enabled 0
5758 # define sched_domain_debug(sd, cpu) do { } while (0)
5759 static inline bool sched_debug(void)
5761 return false;
5763 #endif /* CONFIG_SCHED_DEBUG */
5765 static int sd_degenerate(struct sched_domain *sd)
5767 if (cpumask_weight(sched_domain_span(sd)) == 1)
5768 return 1;
5770 /* Following flags need at least 2 groups */
5771 if (sd->flags & (SD_LOAD_BALANCE |
5772 SD_BALANCE_NEWIDLE |
5773 SD_BALANCE_FORK |
5774 SD_BALANCE_EXEC |
5775 SD_SHARE_CPUCAPACITY |
5776 SD_ASYM_CPUCAPACITY |
5777 SD_SHARE_PKG_RESOURCES |
5778 SD_SHARE_POWERDOMAIN)) {
5779 if (sd->groups != sd->groups->next)
5780 return 0;
5783 /* Following flags don't use groups */
5784 if (sd->flags & (SD_WAKE_AFFINE))
5785 return 0;
5787 return 1;
5790 static int
5791 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5793 unsigned long cflags = sd->flags, pflags = parent->flags;
5795 if (sd_degenerate(parent))
5796 return 1;
5798 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5799 return 0;
5801 /* Flags needing groups don't count if only 1 group in parent */
5802 if (parent->groups == parent->groups->next) {
5803 pflags &= ~(SD_LOAD_BALANCE |
5804 SD_BALANCE_NEWIDLE |
5805 SD_BALANCE_FORK |
5806 SD_BALANCE_EXEC |
5807 SD_ASYM_CPUCAPACITY |
5808 SD_SHARE_CPUCAPACITY |
5809 SD_SHARE_PKG_RESOURCES |
5810 SD_PREFER_SIBLING |
5811 SD_SHARE_POWERDOMAIN);
5812 if (nr_node_ids == 1)
5813 pflags &= ~SD_SERIALIZE;
5815 if (~cflags & pflags)
5816 return 0;
5818 return 1;
5821 static void free_rootdomain(struct rcu_head *rcu)
5823 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5825 cpupri_cleanup(&rd->cpupri);
5826 cpudl_cleanup(&rd->cpudl);
5827 free_cpumask_var(rd->dlo_mask);
5828 free_cpumask_var(rd->rto_mask);
5829 free_cpumask_var(rd->online);
5830 free_cpumask_var(rd->span);
5831 kfree(rd);
5834 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5836 struct root_domain *old_rd = NULL;
5837 unsigned long flags;
5839 raw_spin_lock_irqsave(&rq->lock, flags);
5841 if (rq->rd) {
5842 old_rd = rq->rd;
5844 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5845 set_rq_offline(rq);
5847 cpumask_clear_cpu(rq->cpu, old_rd->span);
5850 * If we dont want to free the old_rd yet then
5851 * set old_rd to NULL to skip the freeing later
5852 * in this function:
5854 if (!atomic_dec_and_test(&old_rd->refcount))
5855 old_rd = NULL;
5858 atomic_inc(&rd->refcount);
5859 rq->rd = rd;
5861 cpumask_set_cpu(rq->cpu, rd->span);
5862 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5863 set_rq_online(rq);
5865 raw_spin_unlock_irqrestore(&rq->lock, flags);
5867 if (old_rd)
5868 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5871 void sched_get_rd(struct root_domain *rd)
5873 atomic_inc(&rd->refcount);
5876 void sched_put_rd(struct root_domain *rd)
5878 if (!atomic_dec_and_test(&rd->refcount))
5879 return;
5881 call_rcu_sched(&rd->rcu, free_rootdomain);
5884 static int init_rootdomain(struct root_domain *rd)
5886 memset(rd, 0, sizeof(*rd));
5888 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5889 goto out;
5890 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5891 goto free_span;
5892 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5893 goto free_online;
5894 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5895 goto free_dlo_mask;
5897 #ifdef HAVE_RT_PUSH_IPI
5898 rd->rto_cpu = -1;
5899 raw_spin_lock_init(&rd->rto_lock);
5900 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
5901 #endif
5903 init_dl_bw(&rd->dl_bw);
5904 if (cpudl_init(&rd->cpudl) != 0)
5905 goto free_dlo_mask;
5907 if (cpupri_init(&rd->cpupri) != 0)
5908 goto free_rto_mask;
5909 return 0;
5911 free_rto_mask:
5912 free_cpumask_var(rd->rto_mask);
5913 free_dlo_mask:
5914 free_cpumask_var(rd->dlo_mask);
5915 free_online:
5916 free_cpumask_var(rd->online);
5917 free_span:
5918 free_cpumask_var(rd->span);
5919 out:
5920 return -ENOMEM;
5924 * By default the system creates a single root-domain with all cpus as
5925 * members (mimicking the global state we have today).
5927 struct root_domain def_root_domain;
5929 static void init_defrootdomain(void)
5931 init_rootdomain(&def_root_domain);
5933 atomic_set(&def_root_domain.refcount, 1);
5936 static struct root_domain *alloc_rootdomain(void)
5938 struct root_domain *rd;
5940 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5941 if (!rd)
5942 return NULL;
5944 if (init_rootdomain(rd) != 0) {
5945 kfree(rd);
5946 return NULL;
5949 return rd;
5952 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5954 struct sched_group *tmp, *first;
5956 if (!sg)
5957 return;
5959 first = sg;
5960 do {
5961 tmp = sg->next;
5963 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5964 kfree(sg->sgc);
5966 kfree(sg);
5967 sg = tmp;
5968 } while (sg != first);
5971 static void destroy_sched_domain(struct sched_domain *sd)
5974 * If its an overlapping domain it has private groups, iterate and
5975 * nuke them all.
5977 if (sd->flags & SD_OVERLAP) {
5978 free_sched_groups(sd->groups, 1);
5979 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5980 kfree(sd->groups->sgc);
5981 kfree(sd->groups);
5983 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5984 kfree(sd->shared);
5985 kfree(sd);
5988 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5990 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5992 while (sd) {
5993 struct sched_domain *parent = sd->parent;
5994 destroy_sched_domain(sd);
5995 sd = parent;
5999 static void destroy_sched_domains(struct sched_domain *sd)
6001 if (sd)
6002 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
6006 * Keep a special pointer to the highest sched_domain that has
6007 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6008 * allows us to avoid some pointer chasing select_idle_sibling().
6010 * Also keep a unique ID per domain (we use the first cpu number in
6011 * the cpumask of the domain), this allows us to quickly tell if
6012 * two cpus are in the same cache domain, see cpus_share_cache().
6014 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6015 DEFINE_PER_CPU(int, sd_llc_size);
6016 DEFINE_PER_CPU(int, sd_llc_id);
6017 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6018 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6019 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6021 static void update_top_cache_domain(int cpu)
6023 struct sched_domain_shared *sds = NULL;
6024 struct sched_domain *sd;
6025 int id = cpu;
6026 int size = 1;
6028 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6029 if (sd) {
6030 id = cpumask_first(sched_domain_span(sd));
6031 size = cpumask_weight(sched_domain_span(sd));
6032 sds = sd->shared;
6035 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6036 per_cpu(sd_llc_size, cpu) = size;
6037 per_cpu(sd_llc_id, cpu) = id;
6038 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6040 sd = lowest_flag_domain(cpu, SD_NUMA);
6041 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6043 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6044 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6048 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6049 * hold the hotplug lock.
6051 static void
6052 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6054 struct rq *rq = cpu_rq(cpu);
6055 struct sched_domain *tmp;
6057 /* Remove the sched domains which do not contribute to scheduling. */
6058 for (tmp = sd; tmp; ) {
6059 struct sched_domain *parent = tmp->parent;
6060 if (!parent)
6061 break;
6063 if (sd_parent_degenerate(tmp, parent)) {
6064 tmp->parent = parent->parent;
6065 if (parent->parent)
6066 parent->parent->child = tmp;
6068 * Transfer SD_PREFER_SIBLING down in case of a
6069 * degenerate parent; the spans match for this
6070 * so the property transfers.
6072 if (parent->flags & SD_PREFER_SIBLING)
6073 tmp->flags |= SD_PREFER_SIBLING;
6074 destroy_sched_domain(parent);
6075 } else
6076 tmp = tmp->parent;
6079 if (sd && sd_degenerate(sd)) {
6080 tmp = sd;
6081 sd = sd->parent;
6082 destroy_sched_domain(tmp);
6083 if (sd)
6084 sd->child = NULL;
6087 sched_domain_debug(sd, cpu);
6089 rq_attach_root(rq, rd);
6090 tmp = rq->sd;
6091 rcu_assign_pointer(rq->sd, sd);
6092 destroy_sched_domains(tmp);
6094 update_top_cache_domain(cpu);
6097 /* Setup the mask of cpus configured for isolated domains */
6098 static int __init isolated_cpu_setup(char *str)
6100 int ret;
6102 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6103 ret = cpulist_parse(str, cpu_isolated_map);
6104 if (ret) {
6105 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6106 return 0;
6108 return 1;
6110 __setup("isolcpus=", isolated_cpu_setup);
6112 struct s_data {
6113 struct sched_domain ** __percpu sd;
6114 struct root_domain *rd;
6117 enum s_alloc {
6118 sa_rootdomain,
6119 sa_sd,
6120 sa_sd_storage,
6121 sa_none,
6125 * Build an iteration mask that can exclude certain CPUs from the upwards
6126 * domain traversal.
6128 * Only CPUs that can arrive at this group should be considered to continue
6129 * balancing.
6131 * Asymmetric node setups can result in situations where the domain tree is of
6132 * unequal depth, make sure to skip domains that already cover the entire
6133 * range.
6135 * In that case build_sched_domains() will have terminated the iteration early
6136 * and our sibling sd spans will be empty. Domains should always include the
6137 * cpu they're built on, so check that.
6140 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6142 const struct cpumask *sg_span = sched_group_cpus(sg);
6143 struct sd_data *sdd = sd->private;
6144 struct sched_domain *sibling;
6145 int i;
6147 for_each_cpu(i, sg_span) {
6148 sibling = *per_cpu_ptr(sdd->sd, i);
6151 * Can happen in the asymmetric case, where these siblings are
6152 * unused. The mask will not be empty because those CPUs that
6153 * do have the top domain _should_ span the domain.
6155 if (!sibling->child)
6156 continue;
6158 /* If we would not end up here, we can't continue from here */
6159 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
6160 continue;
6162 cpumask_set_cpu(i, sched_group_mask(sg));
6165 /* We must not have empty masks here */
6166 WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
6170 * Return the canonical balance cpu for this group, this is the first cpu
6171 * of this group that's also in the iteration mask.
6173 int group_balance_cpu(struct sched_group *sg)
6175 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6178 static int
6179 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6181 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6182 const struct cpumask *span = sched_domain_span(sd);
6183 struct cpumask *covered = sched_domains_tmpmask;
6184 struct sd_data *sdd = sd->private;
6185 struct sched_domain *sibling;
6186 int i;
6188 cpumask_clear(covered);
6190 for_each_cpu_wrap(i, span, cpu) {
6191 struct cpumask *sg_span;
6193 if (cpumask_test_cpu(i, covered))
6194 continue;
6196 sibling = *per_cpu_ptr(sdd->sd, i);
6198 /* See the comment near build_group_mask(). */
6199 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6200 continue;
6202 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6203 GFP_KERNEL, cpu_to_node(cpu));
6205 if (!sg)
6206 goto fail;
6208 sg_span = sched_group_cpus(sg);
6209 if (sibling->child)
6210 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6211 else
6212 cpumask_set_cpu(i, sg_span);
6214 cpumask_or(covered, covered, sg_span);
6216 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6217 if (atomic_inc_return(&sg->sgc->ref) == 1)
6218 build_group_mask(sd, sg);
6221 * Initialize sgc->capacity such that even if we mess up the
6222 * domains and no possible iteration will get us here, we won't
6223 * die on a /0 trap.
6225 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6228 * Make sure the first group of this domain contains the
6229 * canonical balance cpu. Otherwise the sched_domain iteration
6230 * breaks. See update_sg_lb_stats().
6232 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6233 group_balance_cpu(sg) == cpu)
6234 groups = sg;
6236 if (!first)
6237 first = sg;
6238 if (last)
6239 last->next = sg;
6240 last = sg;
6241 last->next = first;
6243 sd->groups = groups;
6245 return 0;
6247 fail:
6248 free_sched_groups(first, 0);
6250 return -ENOMEM;
6253 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6255 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6256 struct sched_domain *child = sd->child;
6258 if (child)
6259 cpu = cpumask_first(sched_domain_span(child));
6261 if (sg) {
6262 *sg = *per_cpu_ptr(sdd->sg, cpu);
6263 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6264 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6267 return cpu;
6271 * build_sched_groups will build a circular linked list of the groups
6272 * covered by the given span, and will set each group's ->cpumask correctly,
6273 * and ->cpu_capacity to 0.
6275 * Assumes the sched_domain tree is fully constructed
6277 static int
6278 build_sched_groups(struct sched_domain *sd, int cpu)
6280 struct sched_group *first = NULL, *last = NULL;
6281 struct sd_data *sdd = sd->private;
6282 const struct cpumask *span = sched_domain_span(sd);
6283 struct cpumask *covered;
6284 int i;
6286 get_group(cpu, sdd, &sd->groups);
6287 atomic_inc(&sd->groups->ref);
6289 if (cpu != cpumask_first(span))
6290 return 0;
6292 lockdep_assert_held(&sched_domains_mutex);
6293 covered = sched_domains_tmpmask;
6295 cpumask_clear(covered);
6297 for_each_cpu(i, span) {
6298 struct sched_group *sg;
6299 int group, j;
6301 if (cpumask_test_cpu(i, covered))
6302 continue;
6304 group = get_group(i, sdd, &sg);
6305 cpumask_setall(sched_group_mask(sg));
6307 for_each_cpu(j, span) {
6308 if (get_group(j, sdd, NULL) != group)
6309 continue;
6311 cpumask_set_cpu(j, covered);
6312 cpumask_set_cpu(j, sched_group_cpus(sg));
6315 if (!first)
6316 first = sg;
6317 if (last)
6318 last->next = sg;
6319 last = sg;
6321 last->next = first;
6323 return 0;
6327 * Initialize sched groups cpu_capacity.
6329 * cpu_capacity indicates the capacity of sched group, which is used while
6330 * distributing the load between different sched groups in a sched domain.
6331 * Typically cpu_capacity for all the groups in a sched domain will be same
6332 * unless there are asymmetries in the topology. If there are asymmetries,
6333 * group having more cpu_capacity will pickup more load compared to the
6334 * group having less cpu_capacity.
6336 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6338 struct sched_group *sg = sd->groups;
6340 WARN_ON(!sg);
6342 do {
6343 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6344 sg = sg->next;
6345 } while (sg != sd->groups);
6347 if (cpu != group_balance_cpu(sg))
6348 return;
6350 update_group_capacity(sd, cpu);
6354 * Initializers for schedule domains
6355 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6358 static int default_relax_domain_level = -1;
6359 int sched_domain_level_max;
6361 static int __init setup_relax_domain_level(char *str)
6363 if (kstrtoint(str, 0, &default_relax_domain_level))
6364 pr_warn("Unable to set relax_domain_level\n");
6366 return 1;
6368 __setup("relax_domain_level=", setup_relax_domain_level);
6370 static void set_domain_attribute(struct sched_domain *sd,
6371 struct sched_domain_attr *attr)
6373 int request;
6375 if (!attr || attr->relax_domain_level < 0) {
6376 if (default_relax_domain_level < 0)
6377 return;
6378 else
6379 request = default_relax_domain_level;
6380 } else
6381 request = attr->relax_domain_level;
6382 if (request < sd->level) {
6383 /* turn off idle balance on this domain */
6384 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6385 } else {
6386 /* turn on idle balance on this domain */
6387 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6391 static void __sdt_free(const struct cpumask *cpu_map);
6392 static int __sdt_alloc(const struct cpumask *cpu_map);
6394 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6395 const struct cpumask *cpu_map)
6397 switch (what) {
6398 case sa_rootdomain:
6399 if (!atomic_read(&d->rd->refcount))
6400 free_rootdomain(&d->rd->rcu); /* fall through */
6401 case sa_sd:
6402 free_percpu(d->sd); /* fall through */
6403 case sa_sd_storage:
6404 __sdt_free(cpu_map); /* fall through */
6405 case sa_none:
6406 break;
6410 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6411 const struct cpumask *cpu_map)
6413 memset(d, 0, sizeof(*d));
6415 if (__sdt_alloc(cpu_map))
6416 return sa_sd_storage;
6417 d->sd = alloc_percpu(struct sched_domain *);
6418 if (!d->sd)
6419 return sa_sd_storage;
6420 d->rd = alloc_rootdomain();
6421 if (!d->rd)
6422 return sa_sd;
6423 return sa_rootdomain;
6427 * NULL the sd_data elements we've used to build the sched_domain and
6428 * sched_group structure so that the subsequent __free_domain_allocs()
6429 * will not free the data we're using.
6431 static void claim_allocations(int cpu, struct sched_domain *sd)
6433 struct sd_data *sdd = sd->private;
6435 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6436 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6438 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6439 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6441 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6442 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6444 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6445 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6448 #ifdef CONFIG_NUMA
6449 static int sched_domains_numa_levels;
6450 enum numa_topology_type sched_numa_topology_type;
6451 static int *sched_domains_numa_distance;
6452 int sched_max_numa_distance;
6453 static struct cpumask ***sched_domains_numa_masks;
6454 static int sched_domains_curr_level;
6455 #endif
6458 * SD_flags allowed in topology descriptions.
6460 * These flags are purely descriptive of the topology and do not prescribe
6461 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6462 * function:
6464 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6465 * SD_SHARE_PKG_RESOURCES - describes shared caches
6466 * SD_NUMA - describes NUMA topologies
6467 * SD_SHARE_POWERDOMAIN - describes shared power domain
6468 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6470 * Odd one out, which beside describing the topology has a quirk also
6471 * prescribes the desired behaviour that goes along with it:
6473 * SD_ASYM_PACKING - describes SMT quirks
6475 #define TOPOLOGY_SD_FLAGS \
6476 (SD_SHARE_CPUCAPACITY | \
6477 SD_SHARE_PKG_RESOURCES | \
6478 SD_NUMA | \
6479 SD_ASYM_PACKING | \
6480 SD_ASYM_CPUCAPACITY | \
6481 SD_SHARE_POWERDOMAIN)
6483 static struct sched_domain *
6484 sd_init(struct sched_domain_topology_level *tl,
6485 const struct cpumask *cpu_map,
6486 struct sched_domain *child, int cpu)
6488 struct sd_data *sdd = &tl->data;
6489 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6490 int sd_id, sd_weight, sd_flags = 0;
6492 #ifdef CONFIG_NUMA
6494 * Ugly hack to pass state to sd_numa_mask()...
6496 sched_domains_curr_level = tl->numa_level;
6497 #endif
6499 sd_weight = cpumask_weight(tl->mask(cpu));
6501 if (tl->sd_flags)
6502 sd_flags = (*tl->sd_flags)();
6503 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6504 "wrong sd_flags in topology description\n"))
6505 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6507 *sd = (struct sched_domain){
6508 .min_interval = sd_weight,
6509 .max_interval = 2*sd_weight,
6510 .busy_factor = 32,
6511 .imbalance_pct = 125,
6513 .cache_nice_tries = 0,
6514 .busy_idx = 0,
6515 .idle_idx = 0,
6516 .newidle_idx = 0,
6517 .wake_idx = 0,
6518 .forkexec_idx = 0,
6520 .flags = 1*SD_LOAD_BALANCE
6521 | 1*SD_BALANCE_NEWIDLE
6522 | 1*SD_BALANCE_EXEC
6523 | 1*SD_BALANCE_FORK
6524 | 0*SD_BALANCE_WAKE
6525 | 1*SD_WAKE_AFFINE
6526 | 0*SD_SHARE_CPUCAPACITY
6527 | 0*SD_SHARE_PKG_RESOURCES
6528 | 0*SD_SERIALIZE
6529 | 0*SD_PREFER_SIBLING
6530 | 0*SD_NUMA
6531 | sd_flags
6534 .last_balance = jiffies,
6535 .balance_interval = sd_weight,
6536 .smt_gain = 0,
6537 .max_newidle_lb_cost = 0,
6538 .next_decay_max_lb_cost = jiffies,
6539 .child = child,
6540 #ifdef CONFIG_SCHED_DEBUG
6541 .name = tl->name,
6542 #endif
6545 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6546 sd_id = cpumask_first(sched_domain_span(sd));
6549 * Convert topological properties into behaviour.
6552 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6553 struct sched_domain *t = sd;
6555 for_each_lower_domain(t)
6556 t->flags |= SD_BALANCE_WAKE;
6559 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6560 sd->flags |= SD_PREFER_SIBLING;
6561 sd->imbalance_pct = 110;
6562 sd->smt_gain = 1178; /* ~15% */
6564 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6565 sd->imbalance_pct = 117;
6566 sd->cache_nice_tries = 1;
6567 sd->busy_idx = 2;
6569 #ifdef CONFIG_NUMA
6570 } else if (sd->flags & SD_NUMA) {
6571 sd->cache_nice_tries = 2;
6572 sd->busy_idx = 3;
6573 sd->idle_idx = 2;
6575 sd->flags |= SD_SERIALIZE;
6576 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6577 sd->flags &= ~(SD_BALANCE_EXEC |
6578 SD_BALANCE_FORK |
6579 SD_WAKE_AFFINE);
6582 #endif
6583 } else {
6584 sd->flags |= SD_PREFER_SIBLING;
6585 sd->cache_nice_tries = 1;
6586 sd->busy_idx = 2;
6587 sd->idle_idx = 1;
6591 * For all levels sharing cache; connect a sched_domain_shared
6592 * instance.
6594 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6595 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6596 atomic_inc(&sd->shared->ref);
6597 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6600 sd->private = sdd;
6602 return sd;
6606 * Topology list, bottom-up.
6608 static struct sched_domain_topology_level default_topology[] = {
6609 #ifdef CONFIG_SCHED_SMT
6610 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6611 #endif
6612 #ifdef CONFIG_SCHED_MC
6613 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6614 #endif
6615 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6616 { NULL, },
6619 static struct sched_domain_topology_level *sched_domain_topology =
6620 default_topology;
6622 #define for_each_sd_topology(tl) \
6623 for (tl = sched_domain_topology; tl->mask; tl++)
6625 void set_sched_topology(struct sched_domain_topology_level *tl)
6627 if (WARN_ON_ONCE(sched_smp_initialized))
6628 return;
6630 sched_domain_topology = tl;
6633 #ifdef CONFIG_NUMA
6635 static const struct cpumask *sd_numa_mask(int cpu)
6637 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6640 static void sched_numa_warn(const char *str)
6642 static int done = false;
6643 int i,j;
6645 if (done)
6646 return;
6648 done = true;
6650 printk(KERN_WARNING "ERROR: %s\n\n", str);
6652 for (i = 0; i < nr_node_ids; i++) {
6653 printk(KERN_WARNING " ");
6654 for (j = 0; j < nr_node_ids; j++)
6655 printk(KERN_CONT "%02d ", node_distance(i,j));
6656 printk(KERN_CONT "\n");
6658 printk(KERN_WARNING "\n");
6661 bool find_numa_distance(int distance)
6663 int i;
6665 if (distance == node_distance(0, 0))
6666 return true;
6668 for (i = 0; i < sched_domains_numa_levels; i++) {
6669 if (sched_domains_numa_distance[i] == distance)
6670 return true;
6673 return false;
6677 * A system can have three types of NUMA topology:
6678 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6679 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6680 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6682 * The difference between a glueless mesh topology and a backplane
6683 * topology lies in whether communication between not directly
6684 * connected nodes goes through intermediary nodes (where programs
6685 * could run), or through backplane controllers. This affects
6686 * placement of programs.
6688 * The type of topology can be discerned with the following tests:
6689 * - If the maximum distance between any nodes is 1 hop, the system
6690 * is directly connected.
6691 * - If for two nodes A and B, located N > 1 hops away from each other,
6692 * there is an intermediary node C, which is < N hops away from both
6693 * nodes A and B, the system is a glueless mesh.
6695 static void init_numa_topology_type(void)
6697 int a, b, c, n;
6699 n = sched_max_numa_distance;
6701 if (sched_domains_numa_levels <= 1) {
6702 sched_numa_topology_type = NUMA_DIRECT;
6703 return;
6706 for_each_online_node(a) {
6707 for_each_online_node(b) {
6708 /* Find two nodes furthest removed from each other. */
6709 if (node_distance(a, b) < n)
6710 continue;
6712 /* Is there an intermediary node between a and b? */
6713 for_each_online_node(c) {
6714 if (node_distance(a, c) < n &&
6715 node_distance(b, c) < n) {
6716 sched_numa_topology_type =
6717 NUMA_GLUELESS_MESH;
6718 return;
6722 sched_numa_topology_type = NUMA_BACKPLANE;
6723 return;
6728 static void sched_init_numa(void)
6730 int next_distance, curr_distance = node_distance(0, 0);
6731 struct sched_domain_topology_level *tl;
6732 int level = 0;
6733 int i, j, k;
6735 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6736 if (!sched_domains_numa_distance)
6737 return;
6740 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6741 * unique distances in the node_distance() table.
6743 * Assumes node_distance(0,j) includes all distances in
6744 * node_distance(i,j) in order to avoid cubic time.
6746 next_distance = curr_distance;
6747 for (i = 0; i < nr_node_ids; i++) {
6748 for (j = 0; j < nr_node_ids; j++) {
6749 for (k = 0; k < nr_node_ids; k++) {
6750 int distance = node_distance(i, k);
6752 if (distance > curr_distance &&
6753 (distance < next_distance ||
6754 next_distance == curr_distance))
6755 next_distance = distance;
6758 * While not a strong assumption it would be nice to know
6759 * about cases where if node A is connected to B, B is not
6760 * equally connected to A.
6762 if (sched_debug() && node_distance(k, i) != distance)
6763 sched_numa_warn("Node-distance not symmetric");
6765 if (sched_debug() && i && !find_numa_distance(distance))
6766 sched_numa_warn("Node-0 not representative");
6768 if (next_distance != curr_distance) {
6769 sched_domains_numa_distance[level++] = next_distance;
6770 sched_domains_numa_levels = level;
6771 curr_distance = next_distance;
6772 } else break;
6776 * In case of sched_debug() we verify the above assumption.
6778 if (!sched_debug())
6779 break;
6782 if (!level)
6783 return;
6786 * 'level' contains the number of unique distances, excluding the
6787 * identity distance node_distance(i,i).
6789 * The sched_domains_numa_distance[] array includes the actual distance
6790 * numbers.
6794 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6795 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6796 * the array will contain less then 'level' members. This could be
6797 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6798 * in other functions.
6800 * We reset it to 'level' at the end of this function.
6802 sched_domains_numa_levels = 0;
6804 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6805 if (!sched_domains_numa_masks)
6806 return;
6809 * Now for each level, construct a mask per node which contains all
6810 * cpus of nodes that are that many hops away from us.
6812 for (i = 0; i < level; i++) {
6813 sched_domains_numa_masks[i] =
6814 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6815 if (!sched_domains_numa_masks[i])
6816 return;
6818 for (j = 0; j < nr_node_ids; j++) {
6819 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6820 if (!mask)
6821 return;
6823 sched_domains_numa_masks[i][j] = mask;
6825 for_each_node(k) {
6826 if (node_distance(j, k) > sched_domains_numa_distance[i])
6827 continue;
6829 cpumask_or(mask, mask, cpumask_of_node(k));
6834 /* Compute default topology size */
6835 for (i = 0; sched_domain_topology[i].mask; i++);
6837 tl = kzalloc((i + level + 1) *
6838 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6839 if (!tl)
6840 return;
6843 * Copy the default topology bits..
6845 for (i = 0; sched_domain_topology[i].mask; i++)
6846 tl[i] = sched_domain_topology[i];
6849 * .. and append 'j' levels of NUMA goodness.
6851 for (j = 0; j < level; i++, j++) {
6852 tl[i] = (struct sched_domain_topology_level){
6853 .mask = sd_numa_mask,
6854 .sd_flags = cpu_numa_flags,
6855 .flags = SDTL_OVERLAP,
6856 .numa_level = j,
6857 SD_INIT_NAME(NUMA)
6861 sched_domain_topology = tl;
6863 sched_domains_numa_levels = level;
6864 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6866 init_numa_topology_type();
6869 static void sched_domains_numa_masks_set(unsigned int cpu)
6871 int node = cpu_to_node(cpu);
6872 int i, j;
6874 for (i = 0; i < sched_domains_numa_levels; i++) {
6875 for (j = 0; j < nr_node_ids; j++) {
6876 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6877 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6882 static void sched_domains_numa_masks_clear(unsigned int cpu)
6884 int i, j;
6886 for (i = 0; i < sched_domains_numa_levels; i++) {
6887 for (j = 0; j < nr_node_ids; j++)
6888 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6892 #else
6893 static inline void sched_init_numa(void) { }
6894 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6895 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6896 #endif /* CONFIG_NUMA */
6898 static int __sdt_alloc(const struct cpumask *cpu_map)
6900 struct sched_domain_topology_level *tl;
6901 int j;
6903 for_each_sd_topology(tl) {
6904 struct sd_data *sdd = &tl->data;
6906 sdd->sd = alloc_percpu(struct sched_domain *);
6907 if (!sdd->sd)
6908 return -ENOMEM;
6910 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6911 if (!sdd->sds)
6912 return -ENOMEM;
6914 sdd->sg = alloc_percpu(struct sched_group *);
6915 if (!sdd->sg)
6916 return -ENOMEM;
6918 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6919 if (!sdd->sgc)
6920 return -ENOMEM;
6922 for_each_cpu(j, cpu_map) {
6923 struct sched_domain *sd;
6924 struct sched_domain_shared *sds;
6925 struct sched_group *sg;
6926 struct sched_group_capacity *sgc;
6928 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6929 GFP_KERNEL, cpu_to_node(j));
6930 if (!sd)
6931 return -ENOMEM;
6933 *per_cpu_ptr(sdd->sd, j) = sd;
6935 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6936 GFP_KERNEL, cpu_to_node(j));
6937 if (!sds)
6938 return -ENOMEM;
6940 *per_cpu_ptr(sdd->sds, j) = sds;
6942 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6943 GFP_KERNEL, cpu_to_node(j));
6944 if (!sg)
6945 return -ENOMEM;
6947 sg->next = sg;
6949 *per_cpu_ptr(sdd->sg, j) = sg;
6951 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6952 GFP_KERNEL, cpu_to_node(j));
6953 if (!sgc)
6954 return -ENOMEM;
6956 *per_cpu_ptr(sdd->sgc, j) = sgc;
6960 return 0;
6963 static void __sdt_free(const struct cpumask *cpu_map)
6965 struct sched_domain_topology_level *tl;
6966 int j;
6968 for_each_sd_topology(tl) {
6969 struct sd_data *sdd = &tl->data;
6971 for_each_cpu(j, cpu_map) {
6972 struct sched_domain *sd;
6974 if (sdd->sd) {
6975 sd = *per_cpu_ptr(sdd->sd, j);
6976 if (sd && (sd->flags & SD_OVERLAP))
6977 free_sched_groups(sd->groups, 0);
6978 kfree(*per_cpu_ptr(sdd->sd, j));
6981 if (sdd->sds)
6982 kfree(*per_cpu_ptr(sdd->sds, j));
6983 if (sdd->sg)
6984 kfree(*per_cpu_ptr(sdd->sg, j));
6985 if (sdd->sgc)
6986 kfree(*per_cpu_ptr(sdd->sgc, j));
6988 free_percpu(sdd->sd);
6989 sdd->sd = NULL;
6990 free_percpu(sdd->sds);
6991 sdd->sds = NULL;
6992 free_percpu(sdd->sg);
6993 sdd->sg = NULL;
6994 free_percpu(sdd->sgc);
6995 sdd->sgc = NULL;
6999 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7000 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7001 struct sched_domain *child, int cpu)
7003 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
7005 if (child) {
7006 sd->level = child->level + 1;
7007 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7008 child->parent = sd;
7010 if (!cpumask_subset(sched_domain_span(child),
7011 sched_domain_span(sd))) {
7012 pr_err("BUG: arch topology borken\n");
7013 #ifdef CONFIG_SCHED_DEBUG
7014 pr_err(" the %s domain not a subset of the %s domain\n",
7015 child->name, sd->name);
7016 #endif
7017 /* Fixup, ensure @sd has at least @child cpus. */
7018 cpumask_or(sched_domain_span(sd),
7019 sched_domain_span(sd),
7020 sched_domain_span(child));
7024 set_domain_attribute(sd, attr);
7026 return sd;
7030 * Build sched domains for a given set of cpus and attach the sched domains
7031 * to the individual cpus
7033 static int build_sched_domains(const struct cpumask *cpu_map,
7034 struct sched_domain_attr *attr)
7036 enum s_alloc alloc_state;
7037 struct sched_domain *sd;
7038 struct s_data d;
7039 struct rq *rq = NULL;
7040 int i, ret = -ENOMEM;
7042 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7043 if (alloc_state != sa_rootdomain)
7044 goto error;
7046 /* Set up domains for cpus specified by the cpu_map. */
7047 for_each_cpu(i, cpu_map) {
7048 struct sched_domain_topology_level *tl;
7050 sd = NULL;
7051 for_each_sd_topology(tl) {
7052 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7053 if (tl == sched_domain_topology)
7054 *per_cpu_ptr(d.sd, i) = sd;
7055 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7056 sd->flags |= SD_OVERLAP;
7057 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7058 break;
7062 /* Build the groups for the domains */
7063 for_each_cpu(i, cpu_map) {
7064 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7065 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7066 if (sd->flags & SD_OVERLAP) {
7067 if (build_overlap_sched_groups(sd, i))
7068 goto error;
7069 } else {
7070 if (build_sched_groups(sd, i))
7071 goto error;
7076 /* Calculate CPU capacity for physical packages and nodes */
7077 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7078 if (!cpumask_test_cpu(i, cpu_map))
7079 continue;
7081 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7082 claim_allocations(i, sd);
7083 init_sched_groups_capacity(i, sd);
7087 /* Attach the domains */
7088 rcu_read_lock();
7089 for_each_cpu(i, cpu_map) {
7090 rq = cpu_rq(i);
7091 sd = *per_cpu_ptr(d.sd, i);
7093 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7094 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7095 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7097 cpu_attach_domain(sd, d.rd, i);
7099 rcu_read_unlock();
7101 if (rq && sched_debug_enabled) {
7102 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7103 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7106 ret = 0;
7107 error:
7108 __free_domain_allocs(&d, alloc_state, cpu_map);
7109 return ret;
7112 static cpumask_var_t *doms_cur; /* current sched domains */
7113 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7114 static struct sched_domain_attr *dattr_cur;
7115 /* attribues of custom domains in 'doms_cur' */
7118 * Special case: If a kmalloc of a doms_cur partition (array of
7119 * cpumask) fails, then fallback to a single sched domain,
7120 * as determined by the single cpumask fallback_doms.
7122 static cpumask_var_t fallback_doms;
7125 * arch_update_cpu_topology lets virtualized architectures update the
7126 * cpu core maps. It is supposed to return 1 if the topology changed
7127 * or 0 if it stayed the same.
7129 int __weak arch_update_cpu_topology(void)
7131 return 0;
7134 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7136 int i;
7137 cpumask_var_t *doms;
7139 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7140 if (!doms)
7141 return NULL;
7142 for (i = 0; i < ndoms; i++) {
7143 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7144 free_sched_domains(doms, i);
7145 return NULL;
7148 return doms;
7151 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7153 unsigned int i;
7154 for (i = 0; i < ndoms; i++)
7155 free_cpumask_var(doms[i]);
7156 kfree(doms);
7160 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7161 * For now this just excludes isolated cpus, but could be used to
7162 * exclude other special cases in the future.
7164 static int init_sched_domains(const struct cpumask *cpu_map)
7166 int err;
7168 arch_update_cpu_topology();
7169 ndoms_cur = 1;
7170 doms_cur = alloc_sched_domains(ndoms_cur);
7171 if (!doms_cur)
7172 doms_cur = &fallback_doms;
7173 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7174 err = build_sched_domains(doms_cur[0], NULL);
7175 register_sched_domain_sysctl();
7177 return err;
7181 * Detach sched domains from a group of cpus specified in cpu_map
7182 * These cpus will now be attached to the NULL domain
7184 static void detach_destroy_domains(const struct cpumask *cpu_map)
7186 int i;
7188 rcu_read_lock();
7189 for_each_cpu(i, cpu_map)
7190 cpu_attach_domain(NULL, &def_root_domain, i);
7191 rcu_read_unlock();
7194 /* handle null as "default" */
7195 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7196 struct sched_domain_attr *new, int idx_new)
7198 struct sched_domain_attr tmp;
7200 /* fast path */
7201 if (!new && !cur)
7202 return 1;
7204 tmp = SD_ATTR_INIT;
7205 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7206 new ? (new + idx_new) : &tmp,
7207 sizeof(struct sched_domain_attr));
7211 * Partition sched domains as specified by the 'ndoms_new'
7212 * cpumasks in the array doms_new[] of cpumasks. This compares
7213 * doms_new[] to the current sched domain partitioning, doms_cur[].
7214 * It destroys each deleted domain and builds each new domain.
7216 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7217 * The masks don't intersect (don't overlap.) We should setup one
7218 * sched domain for each mask. CPUs not in any of the cpumasks will
7219 * not be load balanced. If the same cpumask appears both in the
7220 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7221 * it as it is.
7223 * The passed in 'doms_new' should be allocated using
7224 * alloc_sched_domains. This routine takes ownership of it and will
7225 * free_sched_domains it when done with it. If the caller failed the
7226 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7227 * and partition_sched_domains() will fallback to the single partition
7228 * 'fallback_doms', it also forces the domains to be rebuilt.
7230 * If doms_new == NULL it will be replaced with cpu_online_mask.
7231 * ndoms_new == 0 is a special case for destroying existing domains,
7232 * and it will not create the default domain.
7234 * Call with hotplug lock held
7236 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7237 struct sched_domain_attr *dattr_new)
7239 int i, j, n;
7240 int new_topology;
7242 mutex_lock(&sched_domains_mutex);
7244 /* always unregister in case we don't destroy any domains */
7245 unregister_sched_domain_sysctl();
7247 /* Let architecture update cpu core mappings. */
7248 new_topology = arch_update_cpu_topology();
7250 n = doms_new ? ndoms_new : 0;
7252 /* Destroy deleted domains */
7253 for (i = 0; i < ndoms_cur; i++) {
7254 for (j = 0; j < n && !new_topology; j++) {
7255 if (cpumask_equal(doms_cur[i], doms_new[j])
7256 && dattrs_equal(dattr_cur, i, dattr_new, j))
7257 goto match1;
7259 /* no match - a current sched domain not in new doms_new[] */
7260 detach_destroy_domains(doms_cur[i]);
7261 match1:
7265 n = ndoms_cur;
7266 if (doms_new == NULL) {
7267 n = 0;
7268 doms_new = &fallback_doms;
7269 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7270 WARN_ON_ONCE(dattr_new);
7273 /* Build new domains */
7274 for (i = 0; i < ndoms_new; i++) {
7275 for (j = 0; j < n && !new_topology; j++) {
7276 if (cpumask_equal(doms_new[i], doms_cur[j])
7277 && dattrs_equal(dattr_new, i, dattr_cur, j))
7278 goto match2;
7280 /* no match - add a new doms_new */
7281 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7282 match2:
7286 /* Remember the new sched domains */
7287 if (doms_cur != &fallback_doms)
7288 free_sched_domains(doms_cur, ndoms_cur);
7289 kfree(dattr_cur); /* kfree(NULL) is safe */
7290 doms_cur = doms_new;
7291 dattr_cur = dattr_new;
7292 ndoms_cur = ndoms_new;
7294 register_sched_domain_sysctl();
7296 mutex_unlock(&sched_domains_mutex);
7299 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7302 * Update cpusets according to cpu_active mask. If cpusets are
7303 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7304 * around partition_sched_domains().
7306 * If we come here as part of a suspend/resume, don't touch cpusets because we
7307 * want to restore it back to its original state upon resume anyway.
7309 static void cpuset_cpu_active(void)
7311 if (cpuhp_tasks_frozen) {
7313 * num_cpus_frozen tracks how many CPUs are involved in suspend
7314 * resume sequence. As long as this is not the last online
7315 * operation in the resume sequence, just build a single sched
7316 * domain, ignoring cpusets.
7318 partition_sched_domains(1, NULL, NULL);
7319 if (--num_cpus_frozen)
7320 return;
7322 * This is the last CPU online operation. So fall through and
7323 * restore the original sched domains by considering the
7324 * cpuset configurations.
7326 cpuset_force_rebuild();
7328 cpuset_update_active_cpus(true);
7331 static int cpuset_cpu_inactive(unsigned int cpu)
7333 unsigned long flags;
7334 struct dl_bw *dl_b;
7335 bool overflow;
7336 int cpus;
7338 if (!cpuhp_tasks_frozen) {
7339 rcu_read_lock_sched();
7340 dl_b = dl_bw_of(cpu);
7342 raw_spin_lock_irqsave(&dl_b->lock, flags);
7343 cpus = dl_bw_cpus(cpu);
7344 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7345 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7347 rcu_read_unlock_sched();
7349 if (overflow)
7350 return -EBUSY;
7351 cpuset_update_active_cpus(false);
7352 } else {
7353 num_cpus_frozen++;
7354 partition_sched_domains(1, NULL, NULL);
7356 return 0;
7359 #ifdef CONFIG_SCHED_SMT
7360 atomic_t sched_smt_present = ATOMIC_INIT(0);
7361 #endif
7363 int sched_cpu_activate(unsigned int cpu)
7365 struct rq *rq = cpu_rq(cpu);
7366 unsigned long flags;
7368 #ifdef CONFIG_SCHED_SMT
7370 * When going up, increment the number of cores with SMT present.
7372 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7373 atomic_inc(&sched_smt_present);
7374 #endif
7375 set_cpu_active(cpu, true);
7377 if (sched_smp_initialized) {
7378 sched_domains_numa_masks_set(cpu);
7379 cpuset_cpu_active();
7383 * Put the rq online, if not already. This happens:
7385 * 1) In the early boot process, because we build the real domains
7386 * after all cpus have been brought up.
7388 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7389 * domains.
7391 raw_spin_lock_irqsave(&rq->lock, flags);
7392 if (rq->rd) {
7393 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7394 set_rq_online(rq);
7396 raw_spin_unlock_irqrestore(&rq->lock, flags);
7398 update_max_interval();
7400 return 0;
7403 int sched_cpu_deactivate(unsigned int cpu)
7405 int ret;
7407 set_cpu_active(cpu, false);
7409 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7410 * users of this state to go away such that all new such users will
7411 * observe it.
7413 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7414 * not imply sync_sched(), so wait for both.
7416 * Do sync before park smpboot threads to take care the rcu boost case.
7418 if (IS_ENABLED(CONFIG_PREEMPT))
7419 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7420 else
7421 synchronize_rcu();
7423 #ifdef CONFIG_SCHED_SMT
7425 * When going down, decrement the number of cores with SMT present.
7427 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7428 atomic_dec(&sched_smt_present);
7429 #endif
7431 if (!sched_smp_initialized)
7432 return 0;
7434 ret = cpuset_cpu_inactive(cpu);
7435 if (ret) {
7436 set_cpu_active(cpu, true);
7437 return ret;
7439 sched_domains_numa_masks_clear(cpu);
7440 return 0;
7443 static void sched_rq_cpu_starting(unsigned int cpu)
7445 struct rq *rq = cpu_rq(cpu);
7447 rq->calc_load_update = calc_load_update;
7448 update_max_interval();
7451 int sched_cpu_starting(unsigned int cpu)
7453 set_cpu_rq_start_time(cpu);
7454 sched_rq_cpu_starting(cpu);
7455 return 0;
7458 #ifdef CONFIG_HOTPLUG_CPU
7459 int sched_cpu_dying(unsigned int cpu)
7461 struct rq *rq = cpu_rq(cpu);
7462 unsigned long flags;
7464 /* Handle pending wakeups and then migrate everything off */
7465 sched_ttwu_pending();
7466 raw_spin_lock_irqsave(&rq->lock, flags);
7467 if (rq->rd) {
7468 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7469 set_rq_offline(rq);
7471 migrate_tasks(rq);
7472 BUG_ON(rq->nr_running != 1);
7473 raw_spin_unlock_irqrestore(&rq->lock, flags);
7474 calc_load_migrate(rq);
7475 update_max_interval();
7476 nohz_balance_exit_idle(cpu);
7477 hrtick_clear(rq);
7478 return 0;
7480 #endif
7482 void __init sched_init_smp(void)
7484 cpumask_var_t non_isolated_cpus;
7486 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7487 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7489 sched_init_numa();
7492 * There's no userspace yet to cause hotplug operations; hence all the
7493 * cpu masks are stable and all blatant races in the below code cannot
7494 * happen.
7496 mutex_lock(&sched_domains_mutex);
7497 init_sched_domains(cpu_active_mask);
7498 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7499 if (cpumask_empty(non_isolated_cpus))
7500 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7501 mutex_unlock(&sched_domains_mutex);
7503 /* Move init over to a non-isolated CPU */
7504 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7505 BUG();
7506 sched_init_granularity();
7507 free_cpumask_var(non_isolated_cpus);
7509 init_sched_rt_class();
7510 init_sched_dl_class();
7511 sched_smp_initialized = true;
7514 static int __init migration_init(void)
7516 sched_rq_cpu_starting(smp_processor_id());
7517 return 0;
7519 early_initcall(migration_init);
7521 #else
7522 void __init sched_init_smp(void)
7524 sched_init_granularity();
7526 #endif /* CONFIG_SMP */
7528 int in_sched_functions(unsigned long addr)
7530 return in_lock_functions(addr) ||
7531 (addr >= (unsigned long)__sched_text_start
7532 && addr < (unsigned long)__sched_text_end);
7535 #ifdef CONFIG_CGROUP_SCHED
7537 * Default task group.
7538 * Every task in system belongs to this group at bootup.
7540 struct task_group root_task_group;
7541 LIST_HEAD(task_groups);
7543 /* Cacheline aligned slab cache for task_group */
7544 static struct kmem_cache *task_group_cache __read_mostly;
7545 #endif
7547 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7548 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7550 #define WAIT_TABLE_BITS 8
7551 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7552 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7554 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7556 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7557 unsigned long val = (unsigned long)word << shift | bit;
7559 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7561 EXPORT_SYMBOL(bit_waitqueue);
7563 void __init sched_init(void)
7565 int i, j;
7566 unsigned long alloc_size = 0, ptr;
7568 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7569 init_waitqueue_head(bit_wait_table + i);
7571 #ifdef CONFIG_FAIR_GROUP_SCHED
7572 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7573 #endif
7574 #ifdef CONFIG_RT_GROUP_SCHED
7575 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7576 #endif
7577 if (alloc_size) {
7578 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7580 #ifdef CONFIG_FAIR_GROUP_SCHED
7581 root_task_group.se = (struct sched_entity **)ptr;
7582 ptr += nr_cpu_ids * sizeof(void **);
7584 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7585 ptr += nr_cpu_ids * sizeof(void **);
7587 #endif /* CONFIG_FAIR_GROUP_SCHED */
7588 #ifdef CONFIG_RT_GROUP_SCHED
7589 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7590 ptr += nr_cpu_ids * sizeof(void **);
7592 root_task_group.rt_rq = (struct rt_rq **)ptr;
7593 ptr += nr_cpu_ids * sizeof(void **);
7595 #endif /* CONFIG_RT_GROUP_SCHED */
7597 #ifdef CONFIG_CPUMASK_OFFSTACK
7598 for_each_possible_cpu(i) {
7599 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7600 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7601 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7602 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7604 #endif /* CONFIG_CPUMASK_OFFSTACK */
7606 init_rt_bandwidth(&def_rt_bandwidth,
7607 global_rt_period(), global_rt_runtime());
7608 init_dl_bandwidth(&def_dl_bandwidth,
7609 global_rt_period(), global_rt_runtime());
7611 #ifdef CONFIG_SMP
7612 init_defrootdomain();
7613 #endif
7615 #ifdef CONFIG_RT_GROUP_SCHED
7616 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7617 global_rt_period(), global_rt_runtime());
7618 #endif /* CONFIG_RT_GROUP_SCHED */
7620 #ifdef CONFIG_CGROUP_SCHED
7621 task_group_cache = KMEM_CACHE(task_group, 0);
7623 list_add(&root_task_group.list, &task_groups);
7624 INIT_LIST_HEAD(&root_task_group.children);
7625 INIT_LIST_HEAD(&root_task_group.siblings);
7626 autogroup_init(&init_task);
7627 #endif /* CONFIG_CGROUP_SCHED */
7629 for_each_possible_cpu(i) {
7630 struct rq *rq;
7632 rq = cpu_rq(i);
7633 raw_spin_lock_init(&rq->lock);
7634 rq->nr_running = 0;
7635 rq->calc_load_active = 0;
7636 rq->calc_load_update = jiffies + LOAD_FREQ;
7637 init_cfs_rq(&rq->cfs);
7638 init_rt_rq(&rq->rt);
7639 init_dl_rq(&rq->dl);
7640 #ifdef CONFIG_FAIR_GROUP_SCHED
7641 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7642 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7644 * How much cpu bandwidth does root_task_group get?
7646 * In case of task-groups formed thr' the cgroup filesystem, it
7647 * gets 100% of the cpu resources in the system. This overall
7648 * system cpu resource is divided among the tasks of
7649 * root_task_group and its child task-groups in a fair manner,
7650 * based on each entity's (task or task-group's) weight
7651 * (se->load.weight).
7653 * In other words, if root_task_group has 10 tasks of weight
7654 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7655 * then A0's share of the cpu resource is:
7657 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7659 * We achieve this by letting root_task_group's tasks sit
7660 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7662 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7663 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7664 #endif /* CONFIG_FAIR_GROUP_SCHED */
7666 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7667 #ifdef CONFIG_RT_GROUP_SCHED
7668 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7669 #endif
7671 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7672 rq->cpu_load[j] = 0;
7674 #ifdef CONFIG_SMP
7675 rq->sd = NULL;
7676 rq->rd = NULL;
7677 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7678 rq->balance_callback = NULL;
7679 rq->active_balance = 0;
7680 rq->next_balance = jiffies;
7681 rq->push_cpu = 0;
7682 rq->cpu = i;
7683 rq->online = 0;
7684 rq->idle_stamp = 0;
7685 rq->avg_idle = 2*sysctl_sched_migration_cost;
7686 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7688 INIT_LIST_HEAD(&rq->cfs_tasks);
7690 rq_attach_root(rq, &def_root_domain);
7691 #ifdef CONFIG_NO_HZ_COMMON
7692 rq->last_load_update_tick = jiffies;
7693 rq->nohz_flags = 0;
7694 #endif
7695 #ifdef CONFIG_NO_HZ_FULL
7696 rq->last_sched_tick = 0;
7697 #endif
7698 #endif /* CONFIG_SMP */
7699 init_rq_hrtick(rq);
7700 atomic_set(&rq->nr_iowait, 0);
7703 set_load_weight(&init_task);
7706 * The boot idle thread does lazy MMU switching as well:
7708 atomic_inc(&init_mm.mm_count);
7709 enter_lazy_tlb(&init_mm, current);
7712 * Make us the idle thread. Technically, schedule() should not be
7713 * called from this thread, however somewhere below it might be,
7714 * but because we are the idle thread, we just pick up running again
7715 * when this runqueue becomes "idle".
7717 init_idle(current, smp_processor_id());
7719 calc_load_update = jiffies + LOAD_FREQ;
7721 #ifdef CONFIG_SMP
7722 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7723 /* May be allocated at isolcpus cmdline parse time */
7724 if (cpu_isolated_map == NULL)
7725 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7726 idle_thread_set_boot_cpu();
7727 set_cpu_rq_start_time(smp_processor_id());
7728 #endif
7729 init_sched_fair_class();
7731 init_schedstats();
7733 scheduler_running = 1;
7736 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7737 static inline int preempt_count_equals(int preempt_offset)
7739 int nested = preempt_count() + rcu_preempt_depth();
7741 return (nested == preempt_offset);
7744 void __might_sleep(const char *file, int line, int preempt_offset)
7747 * Blocking primitives will set (and therefore destroy) current->state,
7748 * since we will exit with TASK_RUNNING make sure we enter with it,
7749 * otherwise we will destroy state.
7751 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7752 "do not call blocking ops when !TASK_RUNNING; "
7753 "state=%lx set at [<%p>] %pS\n",
7754 current->state,
7755 (void *)current->task_state_change,
7756 (void *)current->task_state_change);
7758 ___might_sleep(file, line, preempt_offset);
7760 EXPORT_SYMBOL(__might_sleep);
7762 void ___might_sleep(const char *file, int line, int preempt_offset)
7764 static unsigned long prev_jiffy; /* ratelimiting */
7765 unsigned long preempt_disable_ip;
7767 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7768 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7769 !is_idle_task(current)) ||
7770 system_state != SYSTEM_RUNNING || oops_in_progress)
7771 return;
7772 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7773 return;
7774 prev_jiffy = jiffies;
7776 /* Save this before calling printk(), since that will clobber it */
7777 preempt_disable_ip = get_preempt_disable_ip(current);
7779 printk(KERN_ERR
7780 "BUG: sleeping function called from invalid context at %s:%d\n",
7781 file, line);
7782 printk(KERN_ERR
7783 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7784 in_atomic(), irqs_disabled(),
7785 current->pid, current->comm);
7787 if (task_stack_end_corrupted(current))
7788 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7790 debug_show_held_locks(current);
7791 if (irqs_disabled())
7792 print_irqtrace_events(current);
7793 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7794 && !preempt_count_equals(preempt_offset)) {
7795 pr_err("Preemption disabled at:");
7796 print_ip_sym(preempt_disable_ip);
7797 pr_cont("\n");
7799 dump_stack();
7800 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7802 EXPORT_SYMBOL(___might_sleep);
7803 #endif
7805 #ifdef CONFIG_MAGIC_SYSRQ
7806 void normalize_rt_tasks(void)
7808 struct task_struct *g, *p;
7809 struct sched_attr attr = {
7810 .sched_policy = SCHED_NORMAL,
7813 read_lock(&tasklist_lock);
7814 for_each_process_thread(g, p) {
7816 * Only normalize user tasks:
7818 if (p->flags & PF_KTHREAD)
7819 continue;
7821 p->se.exec_start = 0;
7822 schedstat_set(p->se.statistics.wait_start, 0);
7823 schedstat_set(p->se.statistics.sleep_start, 0);
7824 schedstat_set(p->se.statistics.block_start, 0);
7826 if (!dl_task(p) && !rt_task(p)) {
7828 * Renice negative nice level userspace
7829 * tasks back to 0:
7831 if (task_nice(p) < 0)
7832 set_user_nice(p, 0);
7833 continue;
7836 __sched_setscheduler(p, &attr, false, false);
7838 read_unlock(&tasklist_lock);
7841 #endif /* CONFIG_MAGIC_SYSRQ */
7843 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7845 * These functions are only useful for the IA64 MCA handling, or kdb.
7847 * They can only be called when the whole system has been
7848 * stopped - every CPU needs to be quiescent, and no scheduling
7849 * activity can take place. Using them for anything else would
7850 * be a serious bug, and as a result, they aren't even visible
7851 * under any other configuration.
7855 * curr_task - return the current task for a given cpu.
7856 * @cpu: the processor in question.
7858 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7860 * Return: The current task for @cpu.
7862 struct task_struct *curr_task(int cpu)
7864 return cpu_curr(cpu);
7867 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7869 #ifdef CONFIG_IA64
7871 * set_curr_task - set the current task for a given cpu.
7872 * @cpu: the processor in question.
7873 * @p: the task pointer to set.
7875 * Description: This function must only be used when non-maskable interrupts
7876 * are serviced on a separate stack. It allows the architecture to switch the
7877 * notion of the current task on a cpu in a non-blocking manner. This function
7878 * must be called with all CPU's synchronized, and interrupts disabled, the
7879 * and caller must save the original value of the current task (see
7880 * curr_task() above) and restore that value before reenabling interrupts and
7881 * re-starting the system.
7883 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7885 void ia64_set_curr_task(int cpu, struct task_struct *p)
7887 cpu_curr(cpu) = p;
7890 #endif
7892 #ifdef CONFIG_CGROUP_SCHED
7893 /* task_group_lock serializes the addition/removal of task groups */
7894 static DEFINE_SPINLOCK(task_group_lock);
7896 static void sched_free_group(struct task_group *tg)
7898 free_fair_sched_group(tg);
7899 free_rt_sched_group(tg);
7900 autogroup_free(tg);
7901 kmem_cache_free(task_group_cache, tg);
7904 /* allocate runqueue etc for a new task group */
7905 struct task_group *sched_create_group(struct task_group *parent)
7907 struct task_group *tg;
7909 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7910 if (!tg)
7911 return ERR_PTR(-ENOMEM);
7913 if (!alloc_fair_sched_group(tg, parent))
7914 goto err;
7916 if (!alloc_rt_sched_group(tg, parent))
7917 goto err;
7919 return tg;
7921 err:
7922 sched_free_group(tg);
7923 return ERR_PTR(-ENOMEM);
7926 void sched_online_group(struct task_group *tg, struct task_group *parent)
7928 unsigned long flags;
7930 spin_lock_irqsave(&task_group_lock, flags);
7931 list_add_rcu(&tg->list, &task_groups);
7933 WARN_ON(!parent); /* root should already exist */
7935 tg->parent = parent;
7936 INIT_LIST_HEAD(&tg->children);
7937 list_add_rcu(&tg->siblings, &parent->children);
7938 spin_unlock_irqrestore(&task_group_lock, flags);
7940 online_fair_sched_group(tg);
7943 /* rcu callback to free various structures associated with a task group */
7944 static void sched_free_group_rcu(struct rcu_head *rhp)
7946 /* now it should be safe to free those cfs_rqs */
7947 sched_free_group(container_of(rhp, struct task_group, rcu));
7950 void sched_destroy_group(struct task_group *tg)
7952 /* wait for possible concurrent references to cfs_rqs complete */
7953 call_rcu(&tg->rcu, sched_free_group_rcu);
7956 void sched_offline_group(struct task_group *tg)
7958 unsigned long flags;
7960 /* end participation in shares distribution */
7961 unregister_fair_sched_group(tg);
7963 spin_lock_irqsave(&task_group_lock, flags);
7964 list_del_rcu(&tg->list);
7965 list_del_rcu(&tg->siblings);
7966 spin_unlock_irqrestore(&task_group_lock, flags);
7969 static void sched_change_group(struct task_struct *tsk, int type)
7971 struct task_group *tg;
7974 * All callers are synchronized by task_rq_lock(); we do not use RCU
7975 * which is pointless here. Thus, we pass "true" to task_css_check()
7976 * to prevent lockdep warnings.
7978 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7979 struct task_group, css);
7980 tg = autogroup_task_group(tsk, tg);
7981 tsk->sched_task_group = tg;
7983 #ifdef CONFIG_FAIR_GROUP_SCHED
7984 if (tsk->sched_class->task_change_group)
7985 tsk->sched_class->task_change_group(tsk, type);
7986 else
7987 #endif
7988 set_task_rq(tsk, task_cpu(tsk));
7992 * Change task's runqueue when it moves between groups.
7994 * The caller of this function should have put the task in its new group by
7995 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7996 * its new group.
7998 void sched_move_task(struct task_struct *tsk)
8000 int queued, running;
8001 struct rq_flags rf;
8002 struct rq *rq;
8004 rq = task_rq_lock(tsk, &rf);
8005 update_rq_clock(rq);
8007 running = task_current(rq, tsk);
8008 queued = task_on_rq_queued(tsk);
8010 if (queued)
8011 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
8012 if (unlikely(running))
8013 put_prev_task(rq, tsk);
8015 sched_change_group(tsk, TASK_MOVE_GROUP);
8017 if (queued)
8018 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
8019 if (unlikely(running))
8020 set_curr_task(rq, tsk);
8022 task_rq_unlock(rq, tsk, &rf);
8024 #endif /* CONFIG_CGROUP_SCHED */
8026 #ifdef CONFIG_RT_GROUP_SCHED
8028 * Ensure that the real time constraints are schedulable.
8030 static DEFINE_MUTEX(rt_constraints_mutex);
8032 /* Must be called with tasklist_lock held */
8033 static inline int tg_has_rt_tasks(struct task_group *tg)
8035 struct task_struct *g, *p;
8038 * Autogroups do not have RT tasks; see autogroup_create().
8040 if (task_group_is_autogroup(tg))
8041 return 0;
8043 for_each_process_thread(g, p) {
8044 if (rt_task(p) && task_group(p) == tg)
8045 return 1;
8048 return 0;
8051 struct rt_schedulable_data {
8052 struct task_group *tg;
8053 u64 rt_period;
8054 u64 rt_runtime;
8057 static int tg_rt_schedulable(struct task_group *tg, void *data)
8059 struct rt_schedulable_data *d = data;
8060 struct task_group *child;
8061 unsigned long total, sum = 0;
8062 u64 period, runtime;
8064 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8065 runtime = tg->rt_bandwidth.rt_runtime;
8067 if (tg == d->tg) {
8068 period = d->rt_period;
8069 runtime = d->rt_runtime;
8073 * Cannot have more runtime than the period.
8075 if (runtime > period && runtime != RUNTIME_INF)
8076 return -EINVAL;
8079 * Ensure we don't starve existing RT tasks.
8081 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8082 return -EBUSY;
8084 total = to_ratio(period, runtime);
8087 * Nobody can have more than the global setting allows.
8089 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8090 return -EINVAL;
8093 * The sum of our children's runtime should not exceed our own.
8095 list_for_each_entry_rcu(child, &tg->children, siblings) {
8096 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8097 runtime = child->rt_bandwidth.rt_runtime;
8099 if (child == d->tg) {
8100 period = d->rt_period;
8101 runtime = d->rt_runtime;
8104 sum += to_ratio(period, runtime);
8107 if (sum > total)
8108 return -EINVAL;
8110 return 0;
8113 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8115 int ret;
8117 struct rt_schedulable_data data = {
8118 .tg = tg,
8119 .rt_period = period,
8120 .rt_runtime = runtime,
8123 rcu_read_lock();
8124 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8125 rcu_read_unlock();
8127 return ret;
8130 static int tg_set_rt_bandwidth(struct task_group *tg,
8131 u64 rt_period, u64 rt_runtime)
8133 int i, err = 0;
8136 * Disallowing the root group RT runtime is BAD, it would disallow the
8137 * kernel creating (and or operating) RT threads.
8139 if (tg == &root_task_group && rt_runtime == 0)
8140 return -EINVAL;
8142 /* No period doesn't make any sense. */
8143 if (rt_period == 0)
8144 return -EINVAL;
8146 mutex_lock(&rt_constraints_mutex);
8147 read_lock(&tasklist_lock);
8148 err = __rt_schedulable(tg, rt_period, rt_runtime);
8149 if (err)
8150 goto unlock;
8152 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8153 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8154 tg->rt_bandwidth.rt_runtime = rt_runtime;
8156 for_each_possible_cpu(i) {
8157 struct rt_rq *rt_rq = tg->rt_rq[i];
8159 raw_spin_lock(&rt_rq->rt_runtime_lock);
8160 rt_rq->rt_runtime = rt_runtime;
8161 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8163 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8164 unlock:
8165 read_unlock(&tasklist_lock);
8166 mutex_unlock(&rt_constraints_mutex);
8168 return err;
8171 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8173 u64 rt_runtime, rt_period;
8175 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8176 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8177 if (rt_runtime_us < 0)
8178 rt_runtime = RUNTIME_INF;
8180 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8183 static long sched_group_rt_runtime(struct task_group *tg)
8185 u64 rt_runtime_us;
8187 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8188 return -1;
8190 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8191 do_div(rt_runtime_us, NSEC_PER_USEC);
8192 return rt_runtime_us;
8195 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8197 u64 rt_runtime, rt_period;
8199 rt_period = rt_period_us * NSEC_PER_USEC;
8200 rt_runtime = tg->rt_bandwidth.rt_runtime;
8202 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8205 static long sched_group_rt_period(struct task_group *tg)
8207 u64 rt_period_us;
8209 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8210 do_div(rt_period_us, NSEC_PER_USEC);
8211 return rt_period_us;
8213 #endif /* CONFIG_RT_GROUP_SCHED */
8215 #ifdef CONFIG_RT_GROUP_SCHED
8216 static int sched_rt_global_constraints(void)
8218 int ret = 0;
8220 mutex_lock(&rt_constraints_mutex);
8221 read_lock(&tasklist_lock);
8222 ret = __rt_schedulable(NULL, 0, 0);
8223 read_unlock(&tasklist_lock);
8224 mutex_unlock(&rt_constraints_mutex);
8226 return ret;
8229 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8231 /* Don't accept realtime tasks when there is no way for them to run */
8232 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8233 return 0;
8235 return 1;
8238 #else /* !CONFIG_RT_GROUP_SCHED */
8239 static int sched_rt_global_constraints(void)
8241 unsigned long flags;
8242 int i;
8244 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8245 for_each_possible_cpu(i) {
8246 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8248 raw_spin_lock(&rt_rq->rt_runtime_lock);
8249 rt_rq->rt_runtime = global_rt_runtime();
8250 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8252 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8254 return 0;
8256 #endif /* CONFIG_RT_GROUP_SCHED */
8258 static int sched_dl_global_validate(void)
8260 u64 runtime = global_rt_runtime();
8261 u64 period = global_rt_period();
8262 u64 new_bw = to_ratio(period, runtime);
8263 struct dl_bw *dl_b;
8264 int cpu, ret = 0;
8265 unsigned long flags;
8268 * Here we want to check the bandwidth not being set to some
8269 * value smaller than the currently allocated bandwidth in
8270 * any of the root_domains.
8272 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8273 * cycling on root_domains... Discussion on different/better
8274 * solutions is welcome!
8276 for_each_possible_cpu(cpu) {
8277 rcu_read_lock_sched();
8278 dl_b = dl_bw_of(cpu);
8280 raw_spin_lock_irqsave(&dl_b->lock, flags);
8281 if (new_bw < dl_b->total_bw)
8282 ret = -EBUSY;
8283 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8285 rcu_read_unlock_sched();
8287 if (ret)
8288 break;
8291 return ret;
8294 static void sched_dl_do_global(void)
8296 u64 new_bw = -1;
8297 struct dl_bw *dl_b;
8298 int cpu;
8299 unsigned long flags;
8301 def_dl_bandwidth.dl_period = global_rt_period();
8302 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8304 if (global_rt_runtime() != RUNTIME_INF)
8305 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8308 * FIXME: As above...
8310 for_each_possible_cpu(cpu) {
8311 rcu_read_lock_sched();
8312 dl_b = dl_bw_of(cpu);
8314 raw_spin_lock_irqsave(&dl_b->lock, flags);
8315 dl_b->bw = new_bw;
8316 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8318 rcu_read_unlock_sched();
8322 static int sched_rt_global_validate(void)
8324 if (sysctl_sched_rt_period <= 0)
8325 return -EINVAL;
8327 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8328 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8329 return -EINVAL;
8331 return 0;
8334 static void sched_rt_do_global(void)
8336 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8337 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8340 int sched_rt_handler(struct ctl_table *table, int write,
8341 void __user *buffer, size_t *lenp,
8342 loff_t *ppos)
8344 int old_period, old_runtime;
8345 static DEFINE_MUTEX(mutex);
8346 int ret;
8348 mutex_lock(&mutex);
8349 old_period = sysctl_sched_rt_period;
8350 old_runtime = sysctl_sched_rt_runtime;
8352 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8354 if (!ret && write) {
8355 ret = sched_rt_global_validate();
8356 if (ret)
8357 goto undo;
8359 ret = sched_dl_global_validate();
8360 if (ret)
8361 goto undo;
8363 ret = sched_rt_global_constraints();
8364 if (ret)
8365 goto undo;
8367 sched_rt_do_global();
8368 sched_dl_do_global();
8370 if (0) {
8371 undo:
8372 sysctl_sched_rt_period = old_period;
8373 sysctl_sched_rt_runtime = old_runtime;
8375 mutex_unlock(&mutex);
8377 return ret;
8380 int sched_rr_handler(struct ctl_table *table, int write,
8381 void __user *buffer, size_t *lenp,
8382 loff_t *ppos)
8384 int ret;
8385 static DEFINE_MUTEX(mutex);
8387 mutex_lock(&mutex);
8388 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8389 /* make sure that internally we keep jiffies */
8390 /* also, writing zero resets timeslice to default */
8391 if (!ret && write) {
8392 sched_rr_timeslice =
8393 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
8394 msecs_to_jiffies(sysctl_sched_rr_timeslice);
8396 mutex_unlock(&mutex);
8397 return ret;
8400 #ifdef CONFIG_CGROUP_SCHED
8402 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8404 return css ? container_of(css, struct task_group, css) : NULL;
8407 static struct cgroup_subsys_state *
8408 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8410 struct task_group *parent = css_tg(parent_css);
8411 struct task_group *tg;
8413 if (!parent) {
8414 /* This is early initialization for the top cgroup */
8415 return &root_task_group.css;
8418 tg = sched_create_group(parent);
8419 if (IS_ERR(tg))
8420 return ERR_PTR(-ENOMEM);
8422 return &tg->css;
8425 /* Expose task group only after completing cgroup initialization */
8426 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8428 struct task_group *tg = css_tg(css);
8429 struct task_group *parent = css_tg(css->parent);
8431 if (parent)
8432 sched_online_group(tg, parent);
8433 return 0;
8436 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8438 struct task_group *tg = css_tg(css);
8440 sched_offline_group(tg);
8443 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8445 struct task_group *tg = css_tg(css);
8448 * Relies on the RCU grace period between css_released() and this.
8450 sched_free_group(tg);
8454 * This is called before wake_up_new_task(), therefore we really only
8455 * have to set its group bits, all the other stuff does not apply.
8457 static void cpu_cgroup_fork(struct task_struct *task)
8459 struct rq_flags rf;
8460 struct rq *rq;
8462 rq = task_rq_lock(task, &rf);
8464 sched_change_group(task, TASK_SET_GROUP);
8466 task_rq_unlock(rq, task, &rf);
8469 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8471 struct task_struct *task;
8472 struct cgroup_subsys_state *css;
8473 int ret = 0;
8475 cgroup_taskset_for_each(task, css, tset) {
8476 #ifdef CONFIG_RT_GROUP_SCHED
8477 if (!sched_rt_can_attach(css_tg(css), task))
8478 return -EINVAL;
8479 #endif
8481 * Serialize against wake_up_new_task() such that if its
8482 * running, we're sure to observe its full state.
8484 raw_spin_lock_irq(&task->pi_lock);
8486 * Avoid calling sched_move_task() before wake_up_new_task()
8487 * has happened. This would lead to problems with PELT, due to
8488 * move wanting to detach+attach while we're not attached yet.
8490 if (task->state == TASK_NEW)
8491 ret = -EINVAL;
8492 raw_spin_unlock_irq(&task->pi_lock);
8494 if (ret)
8495 break;
8497 return ret;
8500 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8502 struct task_struct *task;
8503 struct cgroup_subsys_state *css;
8505 cgroup_taskset_for_each(task, css, tset)
8506 sched_move_task(task);
8509 #ifdef CONFIG_FAIR_GROUP_SCHED
8510 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8511 struct cftype *cftype, u64 shareval)
8513 if (shareval > scale_load_down(ULONG_MAX))
8514 shareval = MAX_SHARES;
8515 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8518 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8519 struct cftype *cft)
8521 struct task_group *tg = css_tg(css);
8523 return (u64) scale_load_down(tg->shares);
8526 #ifdef CONFIG_CFS_BANDWIDTH
8527 static DEFINE_MUTEX(cfs_constraints_mutex);
8529 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8530 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8532 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8534 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8536 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8537 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8539 if (tg == &root_task_group)
8540 return -EINVAL;
8543 * Ensure we have at some amount of bandwidth every period. This is
8544 * to prevent reaching a state of large arrears when throttled via
8545 * entity_tick() resulting in prolonged exit starvation.
8547 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8548 return -EINVAL;
8551 * Likewise, bound things on the otherside by preventing insane quota
8552 * periods. This also allows us to normalize in computing quota
8553 * feasibility.
8555 if (period > max_cfs_quota_period)
8556 return -EINVAL;
8559 * Prevent race between setting of cfs_rq->runtime_enabled and
8560 * unthrottle_offline_cfs_rqs().
8562 get_online_cpus();
8563 mutex_lock(&cfs_constraints_mutex);
8564 ret = __cfs_schedulable(tg, period, quota);
8565 if (ret)
8566 goto out_unlock;
8568 runtime_enabled = quota != RUNTIME_INF;
8569 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8571 * If we need to toggle cfs_bandwidth_used, off->on must occur
8572 * before making related changes, and on->off must occur afterwards
8574 if (runtime_enabled && !runtime_was_enabled)
8575 cfs_bandwidth_usage_inc();
8576 raw_spin_lock_irq(&cfs_b->lock);
8577 cfs_b->period = ns_to_ktime(period);
8578 cfs_b->quota = quota;
8580 __refill_cfs_bandwidth_runtime(cfs_b);
8581 /* restart the period timer (if active) to handle new period expiry */
8582 if (runtime_enabled)
8583 start_cfs_bandwidth(cfs_b);
8584 raw_spin_unlock_irq(&cfs_b->lock);
8586 for_each_online_cpu(i) {
8587 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8588 struct rq *rq = cfs_rq->rq;
8590 raw_spin_lock_irq(&rq->lock);
8591 cfs_rq->runtime_enabled = runtime_enabled;
8592 cfs_rq->runtime_remaining = 0;
8594 if (cfs_rq->throttled)
8595 unthrottle_cfs_rq(cfs_rq);
8596 raw_spin_unlock_irq(&rq->lock);
8598 if (runtime_was_enabled && !runtime_enabled)
8599 cfs_bandwidth_usage_dec();
8600 out_unlock:
8601 mutex_unlock(&cfs_constraints_mutex);
8602 put_online_cpus();
8604 return ret;
8607 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8609 u64 quota, period;
8611 period = ktime_to_ns(tg->cfs_bandwidth.period);
8612 if (cfs_quota_us < 0)
8613 quota = RUNTIME_INF;
8614 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8615 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8616 else
8617 return -EINVAL;
8619 return tg_set_cfs_bandwidth(tg, period, quota);
8622 long tg_get_cfs_quota(struct task_group *tg)
8624 u64 quota_us;
8626 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8627 return -1;
8629 quota_us = tg->cfs_bandwidth.quota;
8630 do_div(quota_us, NSEC_PER_USEC);
8632 return quota_us;
8635 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8637 u64 quota, period;
8639 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8640 return -EINVAL;
8642 period = (u64)cfs_period_us * NSEC_PER_USEC;
8643 quota = tg->cfs_bandwidth.quota;
8645 return tg_set_cfs_bandwidth(tg, period, quota);
8648 long tg_get_cfs_period(struct task_group *tg)
8650 u64 cfs_period_us;
8652 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8653 do_div(cfs_period_us, NSEC_PER_USEC);
8655 return cfs_period_us;
8658 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8659 struct cftype *cft)
8661 return tg_get_cfs_quota(css_tg(css));
8664 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8665 struct cftype *cftype, s64 cfs_quota_us)
8667 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8670 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8671 struct cftype *cft)
8673 return tg_get_cfs_period(css_tg(css));
8676 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8677 struct cftype *cftype, u64 cfs_period_us)
8679 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8682 struct cfs_schedulable_data {
8683 struct task_group *tg;
8684 u64 period, quota;
8688 * normalize group quota/period to be quota/max_period
8689 * note: units are usecs
8691 static u64 normalize_cfs_quota(struct task_group *tg,
8692 struct cfs_schedulable_data *d)
8694 u64 quota, period;
8696 if (tg == d->tg) {
8697 period = d->period;
8698 quota = d->quota;
8699 } else {
8700 period = tg_get_cfs_period(tg);
8701 quota = tg_get_cfs_quota(tg);
8704 /* note: these should typically be equivalent */
8705 if (quota == RUNTIME_INF || quota == -1)
8706 return RUNTIME_INF;
8708 return to_ratio(period, quota);
8711 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8713 struct cfs_schedulable_data *d = data;
8714 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8715 s64 quota = 0, parent_quota = -1;
8717 if (!tg->parent) {
8718 quota = RUNTIME_INF;
8719 } else {
8720 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8722 quota = normalize_cfs_quota(tg, d);
8723 parent_quota = parent_b->hierarchical_quota;
8726 * ensure max(child_quota) <= parent_quota, inherit when no
8727 * limit is set
8729 if (quota == RUNTIME_INF)
8730 quota = parent_quota;
8731 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8732 return -EINVAL;
8734 cfs_b->hierarchical_quota = quota;
8736 return 0;
8739 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8741 int ret;
8742 struct cfs_schedulable_data data = {
8743 .tg = tg,
8744 .period = period,
8745 .quota = quota,
8748 if (quota != RUNTIME_INF) {
8749 do_div(data.period, NSEC_PER_USEC);
8750 do_div(data.quota, NSEC_PER_USEC);
8753 rcu_read_lock();
8754 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8755 rcu_read_unlock();
8757 return ret;
8760 static int cpu_stats_show(struct seq_file *sf, void *v)
8762 struct task_group *tg = css_tg(seq_css(sf));
8763 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8765 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8766 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8767 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8769 return 0;
8771 #endif /* CONFIG_CFS_BANDWIDTH */
8772 #endif /* CONFIG_FAIR_GROUP_SCHED */
8774 #ifdef CONFIG_RT_GROUP_SCHED
8775 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8776 struct cftype *cft, s64 val)
8778 return sched_group_set_rt_runtime(css_tg(css), val);
8781 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8782 struct cftype *cft)
8784 return sched_group_rt_runtime(css_tg(css));
8787 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8788 struct cftype *cftype, u64 rt_period_us)
8790 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8793 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8794 struct cftype *cft)
8796 return sched_group_rt_period(css_tg(css));
8798 #endif /* CONFIG_RT_GROUP_SCHED */
8800 static struct cftype cpu_files[] = {
8801 #ifdef CONFIG_FAIR_GROUP_SCHED
8803 .name = "shares",
8804 .read_u64 = cpu_shares_read_u64,
8805 .write_u64 = cpu_shares_write_u64,
8807 #endif
8808 #ifdef CONFIG_CFS_BANDWIDTH
8810 .name = "cfs_quota_us",
8811 .read_s64 = cpu_cfs_quota_read_s64,
8812 .write_s64 = cpu_cfs_quota_write_s64,
8815 .name = "cfs_period_us",
8816 .read_u64 = cpu_cfs_period_read_u64,
8817 .write_u64 = cpu_cfs_period_write_u64,
8820 .name = "stat",
8821 .seq_show = cpu_stats_show,
8823 #endif
8824 #ifdef CONFIG_RT_GROUP_SCHED
8826 .name = "rt_runtime_us",
8827 .read_s64 = cpu_rt_runtime_read,
8828 .write_s64 = cpu_rt_runtime_write,
8831 .name = "rt_period_us",
8832 .read_u64 = cpu_rt_period_read_uint,
8833 .write_u64 = cpu_rt_period_write_uint,
8835 #endif
8836 { } /* terminate */
8839 struct cgroup_subsys cpu_cgrp_subsys = {
8840 .css_alloc = cpu_cgroup_css_alloc,
8841 .css_online = cpu_cgroup_css_online,
8842 .css_released = cpu_cgroup_css_released,
8843 .css_free = cpu_cgroup_css_free,
8844 .fork = cpu_cgroup_fork,
8845 .can_attach = cpu_cgroup_can_attach,
8846 .attach = cpu_cgroup_attach,
8847 .legacy_cftypes = cpu_files,
8848 .early_init = true,
8851 #endif /* CONFIG_CGROUP_SCHED */
8853 void dump_cpu_task(int cpu)
8855 pr_info("Task dump for CPU %d:\n", cpu);
8856 sched_show_task(cpu_curr(cpu));
8860 * Nice levels are multiplicative, with a gentle 10% change for every
8861 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8862 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8863 * that remained on nice 0.
8865 * The "10% effect" is relative and cumulative: from _any_ nice level,
8866 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8867 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8868 * If a task goes up by ~10% and another task goes down by ~10% then
8869 * the relative distance between them is ~25%.)
8871 const int sched_prio_to_weight[40] = {
8872 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8873 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8874 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8875 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8876 /* 0 */ 1024, 820, 655, 526, 423,
8877 /* 5 */ 335, 272, 215, 172, 137,
8878 /* 10 */ 110, 87, 70, 56, 45,
8879 /* 15 */ 36, 29, 23, 18, 15,
8883 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8885 * In cases where the weight does not change often, we can use the
8886 * precalculated inverse to speed up arithmetics by turning divisions
8887 * into multiplications:
8889 const u32 sched_prio_to_wmult[40] = {
8890 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8891 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8892 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8893 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8894 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8895 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8896 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8897 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,