1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
9 #include <asm/paravirt.h>
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
16 * There are no locks covering percpu hardirq/softirq time.
17 * They are only modified in vtime_account, on corresponding CPU
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
21 * race with irq/vtime_account on this CPU. We would either get old
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
26 DEFINE_PER_CPU(struct irqtime
, cpu_irqtime
);
28 static int sched_clock_irqtime
;
30 void enable_sched_clock_irqtime(void)
32 sched_clock_irqtime
= 1;
35 void disable_sched_clock_irqtime(void)
37 sched_clock_irqtime
= 0;
40 static void irqtime_account_delta(struct irqtime
*irqtime
, u64 delta
,
41 enum cpu_usage_stat idx
)
43 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
45 u64_stats_update_begin(&irqtime
->sync
);
46 cpustat
[idx
] += delta
;
47 irqtime
->total
+= delta
;
48 irqtime
->tick_delta
+= delta
;
49 u64_stats_update_end(&irqtime
->sync
);
53 * Called before incrementing preempt_count on {soft,}irq_enter
54 * and before decrementing preempt_count on {soft,}irq_exit.
56 void irqtime_account_irq(struct task_struct
*curr
)
58 struct irqtime
*irqtime
= this_cpu_ptr(&cpu_irqtime
);
62 if (!sched_clock_irqtime
)
65 cpu
= smp_processor_id();
66 delta
= sched_clock_cpu(cpu
) - irqtime
->irq_start_time
;
67 irqtime
->irq_start_time
+= delta
;
70 * We do not account for softirq time from ksoftirqd here.
71 * We want to continue accounting softirq time to ksoftirqd thread
72 * in that case, so as not to confuse scheduler with a special task
73 * that do not consume any time, but still wants to run.
76 irqtime_account_delta(irqtime
, delta
, CPUTIME_IRQ
);
77 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
78 irqtime_account_delta(irqtime
, delta
, CPUTIME_SOFTIRQ
);
80 EXPORT_SYMBOL_GPL(irqtime_account_irq
);
82 static cputime_t
irqtime_tick_accounted(cputime_t maxtime
)
84 struct irqtime
*irqtime
= this_cpu_ptr(&cpu_irqtime
);
87 delta
= nsecs_to_cputime(irqtime
->tick_delta
);
88 delta
= min(delta
, maxtime
);
89 irqtime
->tick_delta
-= cputime_to_nsecs(delta
);
94 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
96 #define sched_clock_irqtime (0)
98 static cputime_t
irqtime_tick_accounted(cputime_t dummy
)
103 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
105 static inline void task_group_account_field(struct task_struct
*p
, int index
,
109 * Since all updates are sure to touch the root cgroup, we
110 * get ourselves ahead and touch it first. If the root cgroup
111 * is the only cgroup, then nothing else should be necessary.
114 __this_cpu_add(kernel_cpustat
.cpustat
[index
], tmp
);
116 cpuacct_account_field(p
, index
, tmp
);
120 * Account user cpu time to a process.
121 * @p: the process that the cpu time gets accounted to
122 * @cputime: the cpu time spent in user space since the last update
123 * @cputime_scaled: cputime scaled by cpu frequency
125 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
126 cputime_t cputime_scaled
)
130 /* Add user time to process. */
132 p
->utimescaled
+= cputime_scaled
;
133 account_group_user_time(p
, cputime
);
135 index
= (task_nice(p
) > 0) ? CPUTIME_NICE
: CPUTIME_USER
;
137 /* Add user time to cpustat. */
138 task_group_account_field(p
, index
, cputime_to_nsecs(cputime
));
140 /* Account for user time used */
141 acct_account_cputime(p
);
145 * Account guest cpu time to a process.
146 * @p: the process that the cpu time gets accounted to
147 * @cputime: the cpu time spent in virtual machine since the last update
148 * @cputime_scaled: cputime scaled by cpu frequency
150 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
151 cputime_t cputime_scaled
)
153 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
155 /* Add guest time to process. */
157 p
->utimescaled
+= cputime_scaled
;
158 account_group_user_time(p
, cputime
);
161 /* Add guest time to cpustat. */
162 if (task_nice(p
) > 0) {
163 cpustat
[CPUTIME_NICE
] += cputime_to_nsecs(cputime
);
164 cpustat
[CPUTIME_GUEST_NICE
] += cputime_to_nsecs(cputime
);
166 cpustat
[CPUTIME_USER
] += cputime_to_nsecs(cputime
);
167 cpustat
[CPUTIME_GUEST
] += cputime_to_nsecs(cputime
);
172 * Account system cpu time to a process and desired cpustat field
173 * @p: the process that the cpu time gets accounted to
174 * @cputime: the cpu time spent in kernel space since the last update
175 * @cputime_scaled: cputime scaled by cpu frequency
176 * @target_cputime64: pointer to cpustat field that has to be updated
179 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
180 cputime_t cputime_scaled
, int index
)
182 /* Add system time to process. */
184 p
->stimescaled
+= cputime_scaled
;
185 account_group_system_time(p
, cputime
);
187 /* Add system time to cpustat. */
188 task_group_account_field(p
, index
, cputime_to_nsecs(cputime
));
190 /* Account for system time used */
191 acct_account_cputime(p
);
195 * Account system cpu time to a process.
196 * @p: the process that the cpu time gets accounted to
197 * @hardirq_offset: the offset to subtract from hardirq_count()
198 * @cputime: the cpu time spent in kernel space since the last update
199 * @cputime_scaled: cputime scaled by cpu frequency
201 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
202 cputime_t cputime
, cputime_t cputime_scaled
)
206 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
207 account_guest_time(p
, cputime
, cputime_scaled
);
211 if (hardirq_count() - hardirq_offset
)
213 else if (in_serving_softirq())
214 index
= CPUTIME_SOFTIRQ
;
216 index
= CPUTIME_SYSTEM
;
218 __account_system_time(p
, cputime
, cputime_scaled
, index
);
222 * Account for involuntary wait time.
223 * @cputime: the cpu time spent in involuntary wait
225 void account_steal_time(cputime_t cputime
)
227 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
229 cpustat
[CPUTIME_STEAL
] += cputime_to_nsecs(cputime
);
233 * Account for idle time.
234 * @cputime: the cpu time spent in idle wait
236 void account_idle_time(cputime_t cputime
)
238 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
239 struct rq
*rq
= this_rq();
241 if (atomic_read(&rq
->nr_iowait
) > 0)
242 cpustat
[CPUTIME_IOWAIT
] += cputime_to_nsecs(cputime
);
244 cpustat
[CPUTIME_IDLE
] += cputime_to_nsecs(cputime
);
248 * When a guest is interrupted for a longer amount of time, missed clock
249 * ticks are not redelivered later. Due to that, this function may on
250 * occasion account more time than the calling functions think elapsed.
252 static __always_inline cputime_t
steal_account_process_time(cputime_t maxtime
)
254 #ifdef CONFIG_PARAVIRT
255 if (static_key_false(¶virt_steal_enabled
)) {
256 cputime_t steal_cputime
;
259 steal
= paravirt_steal_clock(smp_processor_id());
260 steal
-= this_rq()->prev_steal_time
;
262 steal_cputime
= min(nsecs_to_cputime(steal
), maxtime
);
263 account_steal_time(steal_cputime
);
264 this_rq()->prev_steal_time
+= cputime_to_nsecs(steal_cputime
);
266 return steal_cputime
;
273 * Account how much elapsed time was spent in steal, irq, or softirq time.
275 static inline cputime_t
account_other_time(cputime_t max
)
279 /* Shall be converted to a lockdep-enabled lightweight check */
280 WARN_ON_ONCE(!irqs_disabled());
282 accounted
= steal_account_process_time(max
);
285 accounted
+= irqtime_tick_accounted(max
- accounted
);
291 static inline u64
read_sum_exec_runtime(struct task_struct
*t
)
293 return t
->se
.sum_exec_runtime
;
296 static u64
read_sum_exec_runtime(struct task_struct
*t
)
302 rq
= task_rq_lock(t
, &rf
);
303 ns
= t
->se
.sum_exec_runtime
;
304 task_rq_unlock(rq
, t
, &rf
);
311 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
312 * tasks (sum on group iteration) belonging to @tsk's group.
314 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
316 struct signal_struct
*sig
= tsk
->signal
;
317 cputime_t utime
, stime
;
318 struct task_struct
*t
;
319 unsigned int seq
, nextseq
;
323 * Update current task runtime to account pending time since last
324 * scheduler action or thread_group_cputime() call. This thread group
325 * might have other running tasks on different CPUs, but updating
326 * their runtime can affect syscall performance, so we skip account
327 * those pending times and rely only on values updated on tick or
328 * other scheduler action.
330 if (same_thread_group(current
, tsk
))
331 (void) task_sched_runtime(current
);
334 /* Attempt a lockless read on the first round. */
338 flags
= read_seqbegin_or_lock_irqsave(&sig
->stats_lock
, &seq
);
339 times
->utime
= sig
->utime
;
340 times
->stime
= sig
->stime
;
341 times
->sum_exec_runtime
= sig
->sum_sched_runtime
;
343 for_each_thread(tsk
, t
) {
344 task_cputime(t
, &utime
, &stime
);
345 times
->utime
+= utime
;
346 times
->stime
+= stime
;
347 times
->sum_exec_runtime
+= read_sum_exec_runtime(t
);
349 /* If lockless access failed, take the lock. */
351 } while (need_seqretry(&sig
->stats_lock
, seq
));
352 done_seqretry_irqrestore(&sig
->stats_lock
, seq
, flags
);
356 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
358 * Account a tick to a process and cpustat
359 * @p: the process that the cpu time gets accounted to
360 * @user_tick: is the tick from userspace
361 * @rq: the pointer to rq
363 * Tick demultiplexing follows the order
364 * - pending hardirq update
365 * - pending softirq update
369 * - check for guest_time
370 * - else account as system_time
372 * Check for hardirq is done both for system and user time as there is
373 * no timer going off while we are on hardirq and hence we may never get an
374 * opportunity to update it solely in system time.
375 * p->stime and friends are only updated on system time and not on irq
376 * softirq as those do not count in task exec_runtime any more.
378 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
379 struct rq
*rq
, int ticks
)
381 u64 cputime
= (__force u64
) cputime_one_jiffy
* ticks
;
382 cputime_t scaled
, other
;
385 * When returning from idle, many ticks can get accounted at
386 * once, including some ticks of steal, irq, and softirq time.
387 * Subtract those ticks from the amount of time accounted to
388 * idle, or potentially user or system time. Due to rounding,
389 * other time can exceed ticks occasionally.
391 other
= account_other_time(ULONG_MAX
);
392 if (other
>= cputime
)
395 scaled
= cputime_to_scaled(cputime
);
397 if (this_cpu_ksoftirqd() == p
) {
399 * ksoftirqd time do not get accounted in cpu_softirq_time.
400 * So, we have to handle it separately here.
401 * Also, p->stime needs to be updated for ksoftirqd.
403 __account_system_time(p
, cputime
, scaled
, CPUTIME_SOFTIRQ
);
404 } else if (user_tick
) {
405 account_user_time(p
, cputime
, scaled
);
406 } else if (p
== rq
->idle
) {
407 account_idle_time(cputime
);
408 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
409 account_guest_time(p
, cputime
, scaled
);
411 __account_system_time(p
, cputime
, scaled
, CPUTIME_SYSTEM
);
415 static void irqtime_account_idle_ticks(int ticks
)
417 struct rq
*rq
= this_rq();
419 irqtime_account_process_tick(current
, 0, rq
, ticks
);
421 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
422 static inline void irqtime_account_idle_ticks(int ticks
) {}
423 static inline void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
424 struct rq
*rq
, int nr_ticks
) {}
425 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
428 * Use precise platform statistics if available:
430 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
432 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
433 void vtime_common_task_switch(struct task_struct
*prev
)
435 if (is_idle_task(prev
))
436 vtime_account_idle(prev
);
438 vtime_account_system(prev
);
440 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
441 vtime_account_user(prev
);
443 arch_vtime_task_switch(prev
);
447 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
450 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 * Archs that account the whole time spent in the idle task
453 * (outside irq) as idle time can rely on this and just implement
454 * vtime_account_system() and vtime_account_idle(). Archs that
455 * have other meaning of the idle time (s390 only includes the
456 * time spent by the CPU when it's in low power mode) must override
459 #ifndef __ARCH_HAS_VTIME_ACCOUNT
460 void vtime_account_irq_enter(struct task_struct
*tsk
)
462 if (!in_interrupt() && is_idle_task(tsk
))
463 vtime_account_idle(tsk
);
465 vtime_account_system(tsk
);
467 EXPORT_SYMBOL_GPL(vtime_account_irq_enter
);
468 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
470 void task_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
475 EXPORT_SYMBOL_GPL(task_cputime_adjusted
);
477 void thread_group_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
479 struct task_cputime cputime
;
481 thread_group_cputime(p
, &cputime
);
486 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
488 * Account a single tick of cpu time.
489 * @p: the process that the cpu time gets accounted to
490 * @user_tick: indicates if the tick is a user or a system tick
492 void account_process_tick(struct task_struct
*p
, int user_tick
)
494 cputime_t cputime
, scaled
, steal
;
495 struct rq
*rq
= this_rq();
497 if (vtime_accounting_cpu_enabled())
500 if (sched_clock_irqtime
) {
501 irqtime_account_process_tick(p
, user_tick
, rq
, 1);
505 cputime
= cputime_one_jiffy
;
506 steal
= steal_account_process_time(ULONG_MAX
);
508 if (steal
>= cputime
)
512 scaled
= cputime_to_scaled(cputime
);
515 account_user_time(p
, cputime
, scaled
);
516 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
517 account_system_time(p
, HARDIRQ_OFFSET
, cputime
, scaled
);
519 account_idle_time(cputime
);
523 * Account multiple ticks of idle time.
524 * @ticks: number of stolen ticks
526 void account_idle_ticks(unsigned long ticks
)
528 cputime_t cputime
, steal
;
530 if (sched_clock_irqtime
) {
531 irqtime_account_idle_ticks(ticks
);
535 cputime
= jiffies_to_cputime(ticks
);
536 steal
= steal_account_process_time(ULONG_MAX
);
538 if (steal
>= cputime
)
542 account_idle_time(cputime
);
546 * Perform (stime * rtime) / total, but avoid multiplication overflow by
547 * loosing precision when the numbers are big.
549 static cputime_t
scale_stime(u64 stime
, u64 rtime
, u64 total
)
554 /* Make sure "rtime" is the bigger of stime/rtime */
558 /* Make sure 'total' fits in 32 bits */
562 /* Does rtime (and thus stime) fit in 32 bits? */
566 /* Can we just balance rtime/stime rather than dropping bits? */
570 /* We can grow stime and shrink rtime and try to make them both fit */
576 /* We drop from rtime, it has more bits than stime */
582 * Make sure gcc understands that this is a 32x32->64 multiply,
583 * followed by a 64/32->64 divide.
585 scaled
= div_u64((u64
) (u32
) stime
* (u64
) (u32
) rtime
, (u32
)total
);
586 return (__force cputime_t
) scaled
;
590 * Adjust tick based cputime random precision against scheduler runtime
593 * Tick based cputime accounting depend on random scheduling timeslices of a
594 * task to be interrupted or not by the timer. Depending on these
595 * circumstances, the number of these interrupts may be over or
596 * under-optimistic, matching the real user and system cputime with a variable
599 * Fix this by scaling these tick based values against the total runtime
600 * accounted by the CFS scheduler.
602 * This code provides the following guarantees:
604 * stime + utime == rtime
605 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
607 * Assuming that rtime_i+1 >= rtime_i.
609 static void cputime_adjust(struct task_cputime
*curr
,
610 struct prev_cputime
*prev
,
611 cputime_t
*ut
, cputime_t
*st
)
613 cputime_t rtime
, stime
, utime
;
616 /* Serialize concurrent callers such that we can honour our guarantees */
617 raw_spin_lock_irqsave(&prev
->lock
, flags
);
618 rtime
= nsecs_to_cputime(curr
->sum_exec_runtime
);
621 * This is possible under two circumstances:
622 * - rtime isn't monotonic after all (a bug);
623 * - we got reordered by the lock.
625 * In both cases this acts as a filter such that the rest of the code
626 * can assume it is monotonic regardless of anything else.
628 if (prev
->stime
+ prev
->utime
>= rtime
)
635 * If either stime or both stime and utime are 0, assume all runtime is
636 * userspace. Once a task gets some ticks, the monotonicy code at
637 * 'update' will ensure things converge to the observed ratio.
649 stime
= scale_stime((__force u64
)stime
, (__force u64
)rtime
,
650 (__force u64
)(stime
+ utime
));
654 * Make sure stime doesn't go backwards; this preserves monotonicity
655 * for utime because rtime is monotonic.
657 * utime_i+1 = rtime_i+1 - stime_i
658 * = rtime_i+1 - (rtime_i - utime_i)
659 * = (rtime_i+1 - rtime_i) + utime_i
662 if (stime
< prev
->stime
)
664 utime
= rtime
- stime
;
667 * Make sure utime doesn't go backwards; this still preserves
668 * monotonicity for stime, analogous argument to above.
670 if (utime
< prev
->utime
) {
672 stime
= rtime
- utime
;
680 raw_spin_unlock_irqrestore(&prev
->lock
, flags
);
683 void task_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
685 struct task_cputime cputime
= {
686 .sum_exec_runtime
= p
->se
.sum_exec_runtime
,
689 task_cputime(p
, &cputime
.utime
, &cputime
.stime
);
690 cputime_adjust(&cputime
, &p
->prev_cputime
, ut
, st
);
692 EXPORT_SYMBOL_GPL(task_cputime_adjusted
);
694 void thread_group_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
696 struct task_cputime cputime
;
698 thread_group_cputime(p
, &cputime
);
699 cputime_adjust(&cputime
, &p
->signal
->prev_cputime
, ut
, st
);
701 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
703 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
704 static cputime_t
vtime_delta(struct task_struct
*tsk
)
706 unsigned long now
= READ_ONCE(jiffies
);
708 if (time_before(now
, (unsigned long)tsk
->vtime_snap
))
711 return jiffies_to_cputime(now
- tsk
->vtime_snap
);
714 static cputime_t
get_vtime_delta(struct task_struct
*tsk
)
716 unsigned long now
= READ_ONCE(jiffies
);
717 cputime_t delta
, other
;
720 * Unlike tick based timing, vtime based timing never has lost
721 * ticks, and no need for steal time accounting to make up for
722 * lost ticks. Vtime accounts a rounded version of actual
723 * elapsed time. Limit account_other_time to prevent rounding
724 * errors from causing elapsed vtime to go negative.
726 delta
= jiffies_to_cputime(now
- tsk
->vtime_snap
);
727 other
= account_other_time(delta
);
728 WARN_ON_ONCE(tsk
->vtime_snap_whence
== VTIME_INACTIVE
);
729 tsk
->vtime_snap
= now
;
731 return delta
- other
;
734 static void __vtime_account_system(struct task_struct
*tsk
)
736 cputime_t delta_cpu
= get_vtime_delta(tsk
);
738 account_system_time(tsk
, irq_count(), delta_cpu
, cputime_to_scaled(delta_cpu
));
741 void vtime_account_system(struct task_struct
*tsk
)
743 if (!vtime_delta(tsk
))
746 write_seqcount_begin(&tsk
->vtime_seqcount
);
747 __vtime_account_system(tsk
);
748 write_seqcount_end(&tsk
->vtime_seqcount
);
751 void vtime_account_user(struct task_struct
*tsk
)
755 write_seqcount_begin(&tsk
->vtime_seqcount
);
756 tsk
->vtime_snap_whence
= VTIME_SYS
;
757 if (vtime_delta(tsk
)) {
758 delta_cpu
= get_vtime_delta(tsk
);
759 account_user_time(tsk
, delta_cpu
, cputime_to_scaled(delta_cpu
));
761 write_seqcount_end(&tsk
->vtime_seqcount
);
764 void vtime_user_enter(struct task_struct
*tsk
)
766 write_seqcount_begin(&tsk
->vtime_seqcount
);
767 if (vtime_delta(tsk
))
768 __vtime_account_system(tsk
);
769 tsk
->vtime_snap_whence
= VTIME_USER
;
770 write_seqcount_end(&tsk
->vtime_seqcount
);
773 void vtime_guest_enter(struct task_struct
*tsk
)
776 * The flags must be updated under the lock with
777 * the vtime_snap flush and update.
778 * That enforces a right ordering and update sequence
779 * synchronization against the reader (task_gtime())
780 * that can thus safely catch up with a tickless delta.
782 write_seqcount_begin(&tsk
->vtime_seqcount
);
783 if (vtime_delta(tsk
))
784 __vtime_account_system(tsk
);
785 current
->flags
|= PF_VCPU
;
786 write_seqcount_end(&tsk
->vtime_seqcount
);
788 EXPORT_SYMBOL_GPL(vtime_guest_enter
);
790 void vtime_guest_exit(struct task_struct
*tsk
)
792 write_seqcount_begin(&tsk
->vtime_seqcount
);
793 __vtime_account_system(tsk
);
794 current
->flags
&= ~PF_VCPU
;
795 write_seqcount_end(&tsk
->vtime_seqcount
);
797 EXPORT_SYMBOL_GPL(vtime_guest_exit
);
799 void vtime_account_idle(struct task_struct
*tsk
)
801 cputime_t delta_cpu
= get_vtime_delta(tsk
);
803 account_idle_time(delta_cpu
);
806 void arch_vtime_task_switch(struct task_struct
*prev
)
808 write_seqcount_begin(&prev
->vtime_seqcount
);
809 prev
->vtime_snap_whence
= VTIME_INACTIVE
;
810 write_seqcount_end(&prev
->vtime_seqcount
);
812 write_seqcount_begin(¤t
->vtime_seqcount
);
813 current
->vtime_snap_whence
= VTIME_SYS
;
814 current
->vtime_snap
= jiffies
;
815 write_seqcount_end(¤t
->vtime_seqcount
);
818 void vtime_init_idle(struct task_struct
*t
, int cpu
)
822 local_irq_save(flags
);
823 write_seqcount_begin(&t
->vtime_seqcount
);
824 t
->vtime_snap_whence
= VTIME_SYS
;
825 t
->vtime_snap
= jiffies
;
826 write_seqcount_end(&t
->vtime_seqcount
);
827 local_irq_restore(flags
);
830 cputime_t
task_gtime(struct task_struct
*t
)
835 if (!vtime_accounting_enabled())
839 seq
= read_seqcount_begin(&t
->vtime_seqcount
);
842 if (t
->vtime_snap_whence
== VTIME_SYS
&& t
->flags
& PF_VCPU
)
843 gtime
+= vtime_delta(t
);
845 } while (read_seqcount_retry(&t
->vtime_seqcount
, seq
));
851 * Fetch cputime raw values from fields of task_struct and
852 * add up the pending nohz execution time since the last
856 fetch_task_cputime(struct task_struct
*t
,
857 cputime_t
*u_dst
, cputime_t
*s_dst
,
858 cputime_t
*u_src
, cputime_t
*s_src
,
859 cputime_t
*udelta
, cputime_t
*sdelta
)
862 unsigned long long delta
;
868 seq
= read_seqcount_begin(&t
->vtime_seqcount
);
875 /* Task is sleeping, nothing to add */
876 if (t
->vtime_snap_whence
== VTIME_INACTIVE
||
880 delta
= vtime_delta(t
);
883 * Task runs either in user or kernel space, add pending nohz time to
886 if (t
->vtime_snap_whence
== VTIME_USER
|| t
->flags
& PF_VCPU
) {
889 if (t
->vtime_snap_whence
== VTIME_SYS
)
892 } while (read_seqcount_retry(&t
->vtime_seqcount
, seq
));
896 void task_cputime(struct task_struct
*t
, cputime_t
*utime
, cputime_t
*stime
)
898 cputime_t udelta
, sdelta
;
900 if (!vtime_accounting_enabled()) {
908 fetch_task_cputime(t
, utime
, stime
, &t
->utime
,
909 &t
->stime
, &udelta
, &sdelta
);
916 void task_cputime_scaled(struct task_struct
*t
,
917 cputime_t
*utimescaled
, cputime_t
*stimescaled
)
919 cputime_t udelta
, sdelta
;
921 if (!vtime_accounting_enabled()) {
923 *utimescaled
= t
->utimescaled
;
925 *stimescaled
= t
->stimescaled
;
929 fetch_task_cputime(t
, utimescaled
, stimescaled
,
930 &t
->utimescaled
, &t
->stimescaled
, &udelta
, &sdelta
);
932 *utimescaled
+= cputime_to_scaled(udelta
);
934 *stimescaled
+= cputime_to_scaled(sdelta
);
936 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */