2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
48 struct sched_dl_entity
*dl_se
= &p
->dl
;
50 return dl_rq
->rb_leftmost
== &dl_se
->rb_node
;
53 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
55 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
56 dl_b
->dl_period
= period
;
57 dl_b
->dl_runtime
= runtime
;
60 void init_dl_bw(struct dl_bw
*dl_b
)
62 raw_spin_lock_init(&dl_b
->lock
);
63 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
64 if (global_rt_runtime() == RUNTIME_INF
)
67 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
72 void init_dl_rq(struct dl_rq
*dl_rq
)
74 dl_rq
->rb_root
= RB_ROOT
;
77 /* zero means no -deadline tasks */
78 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
80 dl_rq
->dl_nr_migratory
= 0;
81 dl_rq
->overloaded
= 0;
82 dl_rq
->pushable_dl_tasks_root
= RB_ROOT
;
84 init_dl_bw(&dl_rq
->dl_bw
);
90 static inline int dl_overloaded(struct rq
*rq
)
92 return atomic_read(&rq
->rd
->dlo_count
);
95 static inline void dl_set_overload(struct rq
*rq
)
100 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
108 atomic_inc(&rq
->rd
->dlo_count
);
111 static inline void dl_clear_overload(struct rq
*rq
)
116 atomic_dec(&rq
->rd
->dlo_count
);
117 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
120 static void update_dl_migration(struct dl_rq
*dl_rq
)
122 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
123 if (!dl_rq
->overloaded
) {
124 dl_set_overload(rq_of_dl_rq(dl_rq
));
125 dl_rq
->overloaded
= 1;
127 } else if (dl_rq
->overloaded
) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq
));
129 dl_rq
->overloaded
= 0;
133 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
135 struct task_struct
*p
= dl_task_of(dl_se
);
137 if (tsk_nr_cpus_allowed(p
) > 1)
138 dl_rq
->dl_nr_migratory
++;
140 update_dl_migration(dl_rq
);
143 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
145 struct task_struct
*p
= dl_task_of(dl_se
);
147 if (tsk_nr_cpus_allowed(p
) > 1)
148 dl_rq
->dl_nr_migratory
--;
150 update_dl_migration(dl_rq
);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
159 struct dl_rq
*dl_rq
= &rq
->dl
;
160 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_node
;
161 struct rb_node
*parent
= NULL
;
162 struct task_struct
*entry
;
165 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
169 entry
= rb_entry(parent
, struct task_struct
,
171 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
172 link
= &parent
->rb_left
;
174 link
= &parent
->rb_right
;
180 dl_rq
->pushable_dl_tasks_leftmost
= &p
->pushable_dl_tasks
;
181 dl_rq
->earliest_dl
.next
= p
->dl
.deadline
;
184 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
185 rb_insert_color(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
188 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
190 struct dl_rq
*dl_rq
= &rq
->dl
;
192 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
195 if (dl_rq
->pushable_dl_tasks_leftmost
== &p
->pushable_dl_tasks
) {
196 struct rb_node
*next_node
;
198 next_node
= rb_next(&p
->pushable_dl_tasks
);
199 dl_rq
->pushable_dl_tasks_leftmost
= next_node
;
201 dl_rq
->earliest_dl
.next
= rb_entry(next_node
,
202 struct task_struct
, pushable_dl_tasks
)->dl
.deadline
;
206 rb_erase(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
207 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
210 static inline int has_pushable_dl_tasks(struct rq
*rq
)
212 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
);
215 static int push_dl_task(struct rq
*rq
);
217 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
219 return dl_task(prev
);
222 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
223 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
225 static void push_dl_tasks(struct rq
*);
226 static void pull_dl_task(struct rq
*);
228 static inline void queue_push_tasks(struct rq
*rq
)
230 if (!has_pushable_dl_tasks(rq
))
233 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
236 static inline void queue_pull_task(struct rq
*rq
)
238 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
241 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
243 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
245 struct rq
*later_rq
= NULL
;
247 later_rq
= find_lock_later_rq(p
, rq
);
252 * If we cannot preempt any rq, fall back to pick any
255 cpu
= cpumask_any_and(cpu_active_mask
, tsk_cpus_allowed(p
));
256 if (cpu
>= nr_cpu_ids
) {
258 * Fail to find any suitable cpu.
259 * The task will never come back!
261 BUG_ON(dl_bandwidth_enabled());
264 * If admission control is disabled we
265 * try a little harder to let the task
268 cpu
= cpumask_any(cpu_active_mask
);
270 later_rq
= cpu_rq(cpu
);
271 double_lock_balance(rq
, later_rq
);
274 set_task_cpu(p
, later_rq
->cpu
);
275 double_unlock_balance(later_rq
, rq
);
283 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
288 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
293 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
298 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
302 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
307 static inline void pull_dl_task(struct rq
*rq
)
311 static inline void queue_push_tasks(struct rq
*rq
)
315 static inline void queue_pull_task(struct rq
*rq
)
318 #endif /* CONFIG_SMP */
320 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
321 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
322 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
326 * We are being explicitly informed that a new instance is starting,
327 * and this means that:
328 * - the absolute deadline of the entity has to be placed at
329 * current time + relative deadline;
330 * - the runtime of the entity has to be set to the maximum value.
332 * The capability of specifying such event is useful whenever a -deadline
333 * entity wants to (try to!) synchronize its behaviour with the scheduler's
334 * one, and to (try to!) reconcile itself with its own scheduling
337 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
)
339 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
340 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
342 WARN_ON(dl_se
->dl_boosted
);
343 WARN_ON(dl_time_before(rq_clock(rq
), dl_se
->deadline
));
346 * We are racing with the deadline timer. So, do nothing because
347 * the deadline timer handler will take care of properly recharging
348 * the runtime and postponing the deadline
350 if (dl_se
->dl_throttled
)
354 * We use the regular wall clock time to set deadlines in the
355 * future; in fact, we must consider execution overheads (time
356 * spent on hardirq context, etc.).
358 dl_se
->deadline
= rq_clock(rq
) + dl_se
->dl_deadline
;
359 dl_se
->runtime
= dl_se
->dl_runtime
;
363 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
364 * possibility of a entity lasting more than what it declared, and thus
365 * exhausting its runtime.
367 * Here we are interested in making runtime overrun possible, but we do
368 * not want a entity which is misbehaving to affect the scheduling of all
370 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
371 * is used, in order to confine each entity within its own bandwidth.
373 * This function deals exactly with that, and ensures that when the runtime
374 * of a entity is replenished, its deadline is also postponed. That ensures
375 * the overrunning entity can't interfere with other entity in the system and
376 * can't make them miss their deadlines. Reasons why this kind of overruns
377 * could happen are, typically, a entity voluntarily trying to overcome its
378 * runtime, or it just underestimated it during sched_setattr().
380 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
381 struct sched_dl_entity
*pi_se
)
383 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
384 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
386 BUG_ON(pi_se
->dl_runtime
<= 0);
389 * This could be the case for a !-dl task that is boosted.
390 * Just go with full inherited parameters.
392 if (dl_se
->dl_deadline
== 0) {
393 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
394 dl_se
->runtime
= pi_se
->dl_runtime
;
397 if (dl_se
->dl_yielded
&& dl_se
->runtime
> 0)
401 * We keep moving the deadline away until we get some
402 * available runtime for the entity. This ensures correct
403 * handling of situations where the runtime overrun is
406 while (dl_se
->runtime
<= 0) {
407 dl_se
->deadline
+= pi_se
->dl_period
;
408 dl_se
->runtime
+= pi_se
->dl_runtime
;
412 * At this point, the deadline really should be "in
413 * the future" with respect to rq->clock. If it's
414 * not, we are, for some reason, lagging too much!
415 * Anyway, after having warn userspace abut that,
416 * we still try to keep the things running by
417 * resetting the deadline and the budget of the
420 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
421 printk_deferred_once("sched: DL replenish lagged too much\n");
422 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
423 dl_se
->runtime
= pi_se
->dl_runtime
;
426 if (dl_se
->dl_yielded
)
427 dl_se
->dl_yielded
= 0;
428 if (dl_se
->dl_throttled
)
429 dl_se
->dl_throttled
= 0;
433 * Here we check if --at time t-- an entity (which is probably being
434 * [re]activated or, in general, enqueued) can use its remaining runtime
435 * and its current deadline _without_ exceeding the bandwidth it is
436 * assigned (function returns true if it can't). We are in fact applying
437 * one of the CBS rules: when a task wakes up, if the residual runtime
438 * over residual deadline fits within the allocated bandwidth, then we
439 * can keep the current (absolute) deadline and residual budget without
440 * disrupting the schedulability of the system. Otherwise, we should
441 * refill the runtime and set the deadline a period in the future,
442 * because keeping the current (absolute) deadline of the task would
443 * result in breaking guarantees promised to other tasks (refer to
444 * Documentation/scheduler/sched-deadline.txt for more informations).
446 * This function returns true if:
448 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
450 * IOW we can't recycle current parameters.
452 * Notice that the bandwidth check is done against the deadline. For
453 * task with deadline equal to period this is the same of using
454 * dl_period instead of dl_deadline in the equation above.
456 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
457 struct sched_dl_entity
*pi_se
, u64 t
)
462 * left and right are the two sides of the equation above,
463 * after a bit of shuffling to use multiplications instead
466 * Note that none of the time values involved in the two
467 * multiplications are absolute: dl_deadline and dl_runtime
468 * are the relative deadline and the maximum runtime of each
469 * instance, runtime is the runtime left for the last instance
470 * and (deadline - t), since t is rq->clock, is the time left
471 * to the (absolute) deadline. Even if overflowing the u64 type
472 * is very unlikely to occur in both cases, here we scale down
473 * as we want to avoid that risk at all. Scaling down by 10
474 * means that we reduce granularity to 1us. We are fine with it,
475 * since this is only a true/false check and, anyway, thinking
476 * of anything below microseconds resolution is actually fiction
477 * (but still we want to give the user that illusion >;).
479 left
= (pi_se
->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
480 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
481 (pi_se
->dl_runtime
>> DL_SCALE
);
483 return dl_time_before(right
, left
);
487 * Revised wakeup rule [1]: For self-suspending tasks, rather then
488 * re-initializing task's runtime and deadline, the revised wakeup
489 * rule adjusts the task's runtime to avoid the task to overrun its
492 * Reasoning: a task may overrun the density if:
493 * runtime / (deadline - t) > dl_runtime / dl_deadline
495 * Therefore, runtime can be adjusted to:
496 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
498 * In such way that runtime will be equal to the maximum density
499 * the task can use without breaking any rule.
501 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
502 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
505 update_dl_revised_wakeup(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
507 u64 laxity
= dl_se
->deadline
- rq_clock(rq
);
510 * If the task has deadline < period, and the deadline is in the past,
511 * it should already be throttled before this check.
513 * See update_dl_entity() comments for further details.
515 WARN_ON(dl_time_before(dl_se
->deadline
, rq_clock(rq
)));
517 dl_se
->runtime
= (dl_se
->dl_density
* laxity
) >> 20;
521 * Regarding the deadline, a task with implicit deadline has a relative
522 * deadline == relative period. A task with constrained deadline has a
523 * relative deadline <= relative period.
525 * We support constrained deadline tasks. However, there are some restrictions
526 * applied only for tasks which do not have an implicit deadline. See
527 * update_dl_entity() to know more about such restrictions.
529 * The dl_is_implicit() returns true if the task has an implicit deadline.
531 static inline bool dl_is_implicit(struct sched_dl_entity
*dl_se
)
533 return dl_se
->dl_deadline
== dl_se
->dl_period
;
537 * When a deadline entity is placed in the runqueue, its runtime and deadline
538 * might need to be updated. This is done by a CBS wake up rule. There are two
539 * different rules: 1) the original CBS; and 2) the Revisited CBS.
541 * When the task is starting a new period, the Original CBS is used. In this
542 * case, the runtime is replenished and a new absolute deadline is set.
544 * When a task is queued before the begin of the next period, using the
545 * remaining runtime and deadline could make the entity to overflow, see
546 * dl_entity_overflow() to find more about runtime overflow. When such case
547 * is detected, the runtime and deadline need to be updated.
549 * If the task has an implicit deadline, i.e., deadline == period, the Original
550 * CBS is applied. the runtime is replenished and a new absolute deadline is
551 * set, as in the previous cases.
553 * However, the Original CBS does not work properly for tasks with
554 * deadline < period, which are said to have a constrained deadline. By
555 * applying the Original CBS, a constrained deadline task would be able to run
556 * runtime/deadline in a period. With deadline < period, the task would
557 * overrun the runtime/period allowed bandwidth, breaking the admission test.
559 * In order to prevent this misbehave, the Revisited CBS is used for
560 * constrained deadline tasks when a runtime overflow is detected. In the
561 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
562 * the remaining runtime of the task is reduced to avoid runtime overflow.
563 * Please refer to the comments update_dl_revised_wakeup() function to find
564 * more about the Revised CBS rule.
566 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
567 struct sched_dl_entity
*pi_se
)
569 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
570 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
572 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
573 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
575 if (unlikely(!dl_is_implicit(dl_se
) &&
576 !dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
577 !dl_se
->dl_boosted
)){
578 update_dl_revised_wakeup(dl_se
, rq
);
582 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
583 dl_se
->runtime
= pi_se
->dl_runtime
;
587 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
589 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
593 * If the entity depleted all its runtime, and if we want it to sleep
594 * while waiting for some new execution time to become available, we
595 * set the bandwidth replenishment timer to the replenishment instant
596 * and try to activate it.
598 * Notice that it is important for the caller to know if the timer
599 * actually started or not (i.e., the replenishment instant is in
600 * the future or in the past).
602 static int start_dl_timer(struct task_struct
*p
)
604 struct sched_dl_entity
*dl_se
= &p
->dl
;
605 struct hrtimer
*timer
= &dl_se
->dl_timer
;
606 struct rq
*rq
= task_rq(p
);
610 lockdep_assert_held(&rq
->lock
);
613 * We want the timer to fire at the deadline, but considering
614 * that it is actually coming from rq->clock and not from
615 * hrtimer's time base reading.
617 act
= ns_to_ktime(dl_next_period(dl_se
));
618 now
= hrtimer_cb_get_time(timer
);
619 delta
= ktime_to_ns(now
) - rq_clock(rq
);
620 act
= ktime_add_ns(act
, delta
);
623 * If the expiry time already passed, e.g., because the value
624 * chosen as the deadline is too small, don't even try to
625 * start the timer in the past!
627 if (ktime_us_delta(act
, now
) < 0)
631 * !enqueued will guarantee another callback; even if one is already in
632 * progress. This ensures a balanced {get,put}_task_struct().
634 * The race against __run_timer() clearing the enqueued state is
635 * harmless because we're holding task_rq()->lock, therefore the timer
636 * expiring after we've done the check will wait on its task_rq_lock()
637 * and observe our state.
639 if (!hrtimer_is_queued(timer
)) {
641 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS
);
648 * This is the bandwidth enforcement timer callback. If here, we know
649 * a task is not on its dl_rq, since the fact that the timer was running
650 * means the task is throttled and needs a runtime replenishment.
652 * However, what we actually do depends on the fact the task is active,
653 * (it is on its rq) or has been removed from there by a call to
654 * dequeue_task_dl(). In the former case we must issue the runtime
655 * replenishment and add the task back to the dl_rq; in the latter, we just
656 * do nothing but clearing dl_throttled, so that runtime and deadline
657 * updating (and the queueing back to dl_rq) will be done by the
658 * next call to enqueue_task_dl().
660 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
662 struct sched_dl_entity
*dl_se
= container_of(timer
,
663 struct sched_dl_entity
,
665 struct task_struct
*p
= dl_task_of(dl_se
);
669 rq
= task_rq_lock(p
, &rf
);
672 * The task might have changed its scheduling policy to something
673 * different than SCHED_DEADLINE (through switched_fromd_dl()).
676 __dl_clear_params(p
);
681 * The task might have been boosted by someone else and might be in the
682 * boosting/deboosting path, its not throttled.
684 if (dl_se
->dl_boosted
)
688 * Spurious timer due to start_dl_timer() race; or we already received
689 * a replenishment from rt_mutex_setprio().
691 if (!dl_se
->dl_throttled
)
698 * If the throttle happened during sched-out; like:
705 * __dequeue_task_dl()
708 * We can be both throttled and !queued. Replenish the counter
709 * but do not enqueue -- wait for our wakeup to do that.
711 if (!task_on_rq_queued(p
)) {
712 replenish_dl_entity(dl_se
, dl_se
);
717 if (unlikely(!rq
->online
)) {
719 * If the runqueue is no longer available, migrate the
720 * task elsewhere. This necessarily changes rq.
722 lockdep_unpin_lock(&rq
->lock
, rf
.cookie
);
723 rq
= dl_task_offline_migration(rq
, p
);
724 rf
.cookie
= lockdep_pin_lock(&rq
->lock
);
728 * Now that the task has been migrated to the new RQ and we
729 * have that locked, proceed as normal and enqueue the task
735 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
736 if (dl_task(rq
->curr
))
737 check_preempt_curr_dl(rq
, p
, 0);
743 * Queueing this task back might have overloaded rq, check if we need
744 * to kick someone away.
746 if (has_pushable_dl_tasks(rq
)) {
748 * Nothing relies on rq->lock after this, so its safe to drop
751 lockdep_unpin_lock(&rq
->lock
, rf
.cookie
);
753 lockdep_repin_lock(&rq
->lock
, rf
.cookie
);
758 task_rq_unlock(rq
, p
, &rf
);
761 * This can free the task_struct, including this hrtimer, do not touch
762 * anything related to that after this.
766 return HRTIMER_NORESTART
;
769 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
771 struct hrtimer
*timer
= &dl_se
->dl_timer
;
773 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
774 timer
->function
= dl_task_timer
;
778 * During the activation, CBS checks if it can reuse the current task's
779 * runtime and period. If the deadline of the task is in the past, CBS
780 * cannot use the runtime, and so it replenishes the task. This rule
781 * works fine for implicit deadline tasks (deadline == period), and the
782 * CBS was designed for implicit deadline tasks. However, a task with
783 * constrained deadline (deadine < period) might be awakened after the
784 * deadline, but before the next period. In this case, replenishing the
785 * task would allow it to run for runtime / deadline. As in this case
786 * deadline < period, CBS enables a task to run for more than the
787 * runtime / period. In a very loaded system, this can cause a domino
788 * effect, making other tasks miss their deadlines.
790 * To avoid this problem, in the activation of a constrained deadline
791 * task after the deadline but before the next period, throttle the
792 * task and set the replenishing timer to the begin of the next period,
793 * unless it is boosted.
795 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
797 struct task_struct
*p
= dl_task_of(dl_se
);
798 struct rq
*rq
= rq_of_dl_rq(dl_rq_of_se(dl_se
));
800 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
801 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
802 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(p
)))
804 dl_se
->dl_throttled
= 1;
805 if (dl_se
->runtime
> 0)
811 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
813 return (dl_se
->runtime
<= 0);
816 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
819 * Update the current task's runtime statistics (provided it is still
820 * a -deadline task and has not been removed from the dl_rq).
822 static void update_curr_dl(struct rq
*rq
)
824 struct task_struct
*curr
= rq
->curr
;
825 struct sched_dl_entity
*dl_se
= &curr
->dl
;
828 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
832 * Consumed budget is computed considering the time as
833 * observed by schedulable tasks (excluding time spent
834 * in hardirq context, etc.). Deadlines are instead
835 * computed using hard walltime. This seems to be the more
836 * natural solution, but the full ramifications of this
837 * approach need further study.
839 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
840 if (unlikely((s64
)delta_exec
<= 0)) {
841 if (unlikely(dl_se
->dl_yielded
))
846 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
847 cpufreq_update_this_cpu(rq
, SCHED_CPUFREQ_DL
);
849 schedstat_set(curr
->se
.statistics
.exec_max
,
850 max(curr
->se
.statistics
.exec_max
, delta_exec
));
852 curr
->se
.sum_exec_runtime
+= delta_exec
;
853 account_group_exec_runtime(curr
, delta_exec
);
855 curr
->se
.exec_start
= rq_clock_task(rq
);
856 cpuacct_charge(curr
, delta_exec
);
858 sched_rt_avg_update(rq
, delta_exec
);
860 dl_se
->runtime
-= delta_exec
;
863 if (dl_runtime_exceeded(dl_se
) || dl_se
->dl_yielded
) {
864 dl_se
->dl_throttled
= 1;
865 __dequeue_task_dl(rq
, curr
, 0);
866 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(curr
)))
867 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
869 if (!is_leftmost(curr
, &rq
->dl
))
874 * Because -- for now -- we share the rt bandwidth, we need to
875 * account our runtime there too, otherwise actual rt tasks
876 * would be able to exceed the shared quota.
878 * Account to the root rt group for now.
880 * The solution we're working towards is having the RT groups scheduled
881 * using deadline servers -- however there's a few nasties to figure
882 * out before that can happen.
884 if (rt_bandwidth_enabled()) {
885 struct rt_rq
*rt_rq
= &rq
->rt
;
887 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
889 * We'll let actual RT tasks worry about the overflow here, we
890 * have our own CBS to keep us inline; only account when RT
891 * bandwidth is relevant.
893 if (sched_rt_bandwidth_account(rt_rq
))
894 rt_rq
->rt_time
+= delta_exec
;
895 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
901 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
903 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
905 if (dl_rq
->earliest_dl
.curr
== 0 ||
906 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
907 dl_rq
->earliest_dl
.curr
= deadline
;
908 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
);
912 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
914 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
917 * Since we may have removed our earliest (and/or next earliest)
918 * task we must recompute them.
920 if (!dl_rq
->dl_nr_running
) {
921 dl_rq
->earliest_dl
.curr
= 0;
922 dl_rq
->earliest_dl
.next
= 0;
923 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
925 struct rb_node
*leftmost
= dl_rq
->rb_leftmost
;
926 struct sched_dl_entity
*entry
;
928 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
929 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
930 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
);
936 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
937 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
939 #endif /* CONFIG_SMP */
942 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
944 int prio
= dl_task_of(dl_se
)->prio
;
945 u64 deadline
= dl_se
->deadline
;
947 WARN_ON(!dl_prio(prio
));
948 dl_rq
->dl_nr_running
++;
949 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
951 inc_dl_deadline(dl_rq
, deadline
);
952 inc_dl_migration(dl_se
, dl_rq
);
956 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
958 int prio
= dl_task_of(dl_se
)->prio
;
960 WARN_ON(!dl_prio(prio
));
961 WARN_ON(!dl_rq
->dl_nr_running
);
962 dl_rq
->dl_nr_running
--;
963 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
965 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
966 dec_dl_migration(dl_se
, dl_rq
);
969 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
971 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
972 struct rb_node
**link
= &dl_rq
->rb_root
.rb_node
;
973 struct rb_node
*parent
= NULL
;
974 struct sched_dl_entity
*entry
;
977 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
981 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
982 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
983 link
= &parent
->rb_left
;
985 link
= &parent
->rb_right
;
991 dl_rq
->rb_leftmost
= &dl_se
->rb_node
;
993 rb_link_node(&dl_se
->rb_node
, parent
, link
);
994 rb_insert_color(&dl_se
->rb_node
, &dl_rq
->rb_root
);
996 inc_dl_tasks(dl_se
, dl_rq
);
999 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1001 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1003 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
1006 if (dl_rq
->rb_leftmost
== &dl_se
->rb_node
) {
1007 struct rb_node
*next_node
;
1009 next_node
= rb_next(&dl_se
->rb_node
);
1010 dl_rq
->rb_leftmost
= next_node
;
1013 rb_erase(&dl_se
->rb_node
, &dl_rq
->rb_root
);
1014 RB_CLEAR_NODE(&dl_se
->rb_node
);
1016 dec_dl_tasks(dl_se
, dl_rq
);
1020 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
1021 struct sched_dl_entity
*pi_se
, int flags
)
1023 BUG_ON(on_dl_rq(dl_se
));
1026 * If this is a wakeup or a new instance, the scheduling
1027 * parameters of the task might need updating. Otherwise,
1028 * we want a replenishment of its runtime.
1030 if (flags
& ENQUEUE_WAKEUP
)
1031 update_dl_entity(dl_se
, pi_se
);
1032 else if (flags
& ENQUEUE_REPLENISH
)
1033 replenish_dl_entity(dl_se
, pi_se
);
1035 __enqueue_dl_entity(dl_se
);
1038 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1040 __dequeue_dl_entity(dl_se
);
1043 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1045 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
1046 struct sched_dl_entity
*pi_se
= &p
->dl
;
1049 * Use the scheduling parameters of the top pi-waiter
1050 * task if we have one and its (absolute) deadline is
1051 * smaller than our one... OTW we keep our runtime and
1054 if (pi_task
&& p
->dl
.dl_boosted
&& dl_prio(pi_task
->normal_prio
)) {
1055 pi_se
= &pi_task
->dl
;
1056 } else if (!dl_prio(p
->normal_prio
)) {
1058 * Special case in which we have a !SCHED_DEADLINE task
1059 * that is going to be deboosted, but exceedes its
1060 * runtime while doing so. No point in replenishing
1061 * it, as it's going to return back to its original
1062 * scheduling class after this.
1064 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
1069 * Check if a constrained deadline task was activated
1070 * after the deadline but before the next period.
1071 * If that is the case, the task will be throttled and
1072 * the replenishment timer will be set to the next period.
1074 if (!p
->dl
.dl_throttled
&& !dl_is_implicit(&p
->dl
))
1075 dl_check_constrained_dl(&p
->dl
);
1078 * If p is throttled, we do nothing. In fact, if it exhausted
1079 * its budget it needs a replenishment and, since it now is on
1080 * its rq, the bandwidth timer callback (which clearly has not
1081 * run yet) will take care of this.
1083 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
))
1086 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
1088 if (!task_current(rq
, p
) && tsk_nr_cpus_allowed(p
) > 1)
1089 enqueue_pushable_dl_task(rq
, p
);
1092 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1094 dequeue_dl_entity(&p
->dl
);
1095 dequeue_pushable_dl_task(rq
, p
);
1098 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1101 __dequeue_task_dl(rq
, p
, flags
);
1105 * Yield task semantic for -deadline tasks is:
1107 * get off from the CPU until our next instance, with
1108 * a new runtime. This is of little use now, since we
1109 * don't have a bandwidth reclaiming mechanism. Anyway,
1110 * bandwidth reclaiming is planned for the future, and
1111 * yield_task_dl will indicate that some spare budget
1112 * is available for other task instances to use it.
1114 static void yield_task_dl(struct rq
*rq
)
1117 * We make the task go to sleep until its current deadline by
1118 * forcing its runtime to zero. This way, update_curr_dl() stops
1119 * it and the bandwidth timer will wake it up and will give it
1120 * new scheduling parameters (thanks to dl_yielded=1).
1122 rq
->curr
->dl
.dl_yielded
= 1;
1124 update_rq_clock(rq
);
1127 * Tell update_rq_clock() that we've just updated,
1128 * so we don't do microscopic update in schedule()
1129 * and double the fastpath cost.
1131 rq_clock_skip_update(rq
, true);
1136 static int find_later_rq(struct task_struct
*task
);
1139 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1141 struct task_struct
*curr
;
1144 if (sd_flag
!= SD_BALANCE_WAKE
)
1150 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1153 * If we are dealing with a -deadline task, we must
1154 * decide where to wake it up.
1155 * If it has a later deadline and the current task
1156 * on this rq can't move (provided the waking task
1157 * can!) we prefer to send it somewhere else. On the
1158 * other hand, if it has a shorter deadline, we
1159 * try to make it stay here, it might be important.
1161 if (unlikely(dl_task(curr
)) &&
1162 (tsk_nr_cpus_allowed(curr
) < 2 ||
1163 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1164 (tsk_nr_cpus_allowed(p
) > 1)) {
1165 int target
= find_later_rq(p
);
1168 (dl_time_before(p
->dl
.deadline
,
1169 cpu_rq(target
)->dl
.earliest_dl
.curr
) ||
1170 (cpu_rq(target
)->dl
.dl_nr_running
== 0)))
1179 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1182 * Current can't be migrated, useless to reschedule,
1183 * let's hope p can move out.
1185 if (tsk_nr_cpus_allowed(rq
->curr
) == 1 ||
1186 cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
) == -1)
1190 * p is migratable, so let's not schedule it and
1191 * see if it is pushed or pulled somewhere else.
1193 if (tsk_nr_cpus_allowed(p
) != 1 &&
1194 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
) != -1)
1200 #endif /* CONFIG_SMP */
1203 * Only called when both the current and waking task are -deadline
1206 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1209 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1216 * In the unlikely case current and p have the same deadline
1217 * let us try to decide what's the best thing to do...
1219 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1220 !test_tsk_need_resched(rq
->curr
))
1221 check_preempt_equal_dl(rq
, p
);
1222 #endif /* CONFIG_SMP */
1225 #ifdef CONFIG_SCHED_HRTICK
1226 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1228 hrtick_start(rq
, p
->dl
.runtime
);
1230 #else /* !CONFIG_SCHED_HRTICK */
1231 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1236 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1237 struct dl_rq
*dl_rq
)
1239 struct rb_node
*left
= dl_rq
->rb_leftmost
;
1244 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1247 struct task_struct
*
1248 pick_next_task_dl(struct rq
*rq
, struct task_struct
*prev
, struct pin_cookie cookie
)
1250 struct sched_dl_entity
*dl_se
;
1251 struct task_struct
*p
;
1252 struct dl_rq
*dl_rq
;
1256 if (need_pull_dl_task(rq
, prev
)) {
1258 * This is OK, because current is on_cpu, which avoids it being
1259 * picked for load-balance and preemption/IRQs are still
1260 * disabled avoiding further scheduler activity on it and we're
1261 * being very careful to re-start the picking loop.
1263 lockdep_unpin_lock(&rq
->lock
, cookie
);
1265 lockdep_repin_lock(&rq
->lock
, cookie
);
1267 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1268 * means a stop task can slip in, in which case we need to
1269 * re-start task selection.
1271 if (rq
->stop
&& task_on_rq_queued(rq
->stop
))
1276 * When prev is DL, we may throttle it in put_prev_task().
1277 * So, we update time before we check for dl_nr_running.
1279 if (prev
->sched_class
== &dl_sched_class
)
1282 if (unlikely(!dl_rq
->dl_nr_running
))
1285 put_prev_task(rq
, prev
);
1287 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1290 p
= dl_task_of(dl_se
);
1291 p
->se
.exec_start
= rq_clock_task(rq
);
1293 /* Running task will never be pushed. */
1294 dequeue_pushable_dl_task(rq
, p
);
1296 if (hrtick_enabled(rq
))
1297 start_hrtick_dl(rq
, p
);
1299 queue_push_tasks(rq
);
1304 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1308 if (on_dl_rq(&p
->dl
) && tsk_nr_cpus_allowed(p
) > 1)
1309 enqueue_pushable_dl_task(rq
, p
);
1312 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1317 * Even when we have runtime, update_curr_dl() might have resulted in us
1318 * not being the leftmost task anymore. In that case NEED_RESCHED will
1319 * be set and schedule() will start a new hrtick for the next task.
1321 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1322 is_leftmost(p
, &rq
->dl
))
1323 start_hrtick_dl(rq
, p
);
1326 static void task_fork_dl(struct task_struct
*p
)
1329 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1334 static void task_dead_dl(struct task_struct
*p
)
1336 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1339 * Since we are TASK_DEAD we won't slip out of the domain!
1341 raw_spin_lock_irq(&dl_b
->lock
);
1342 /* XXX we should retain the bw until 0-lag */
1343 dl_b
->total_bw
-= p
->dl
.dl_bw
;
1344 raw_spin_unlock_irq(&dl_b
->lock
);
1347 static void set_curr_task_dl(struct rq
*rq
)
1349 struct task_struct
*p
= rq
->curr
;
1351 p
->se
.exec_start
= rq_clock_task(rq
);
1353 /* You can't push away the running task */
1354 dequeue_pushable_dl_task(rq
, p
);
1359 /* Only try algorithms three times */
1360 #define DL_MAX_TRIES 3
1362 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1364 if (!task_running(rq
, p
) &&
1365 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1371 * Return the earliest pushable rq's task, which is suitable to be executed
1372 * on the CPU, NULL otherwise:
1374 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1376 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_leftmost
;
1377 struct task_struct
*p
= NULL
;
1379 if (!has_pushable_dl_tasks(rq
))
1384 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1386 if (pick_dl_task(rq
, p
, cpu
))
1389 next_node
= rb_next(next_node
);
1396 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1398 static int find_later_rq(struct task_struct
*task
)
1400 struct sched_domain
*sd
;
1401 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1402 int this_cpu
= smp_processor_id();
1403 int best_cpu
, cpu
= task_cpu(task
);
1405 /* Make sure the mask is initialized first */
1406 if (unlikely(!later_mask
))
1409 if (tsk_nr_cpus_allowed(task
) == 1)
1413 * We have to consider system topology and task affinity
1414 * first, then we can look for a suitable cpu.
1416 best_cpu
= cpudl_find(&task_rq(task
)->rd
->cpudl
,
1422 * If we are here, some target has been found,
1423 * the most suitable of which is cached in best_cpu.
1424 * This is, among the runqueues where the current tasks
1425 * have later deadlines than the task's one, the rq
1426 * with the latest possible one.
1428 * Now we check how well this matches with task's
1429 * affinity and system topology.
1431 * The last cpu where the task run is our first
1432 * guess, since it is most likely cache-hot there.
1434 if (cpumask_test_cpu(cpu
, later_mask
))
1437 * Check if this_cpu is to be skipped (i.e., it is
1438 * not in the mask) or not.
1440 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1444 for_each_domain(cpu
, sd
) {
1445 if (sd
->flags
& SD_WAKE_AFFINE
) {
1448 * If possible, preempting this_cpu is
1449 * cheaper than migrating.
1451 if (this_cpu
!= -1 &&
1452 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1458 * Last chance: if best_cpu is valid and is
1459 * in the mask, that becomes our choice.
1461 if (best_cpu
< nr_cpu_ids
&&
1462 cpumask_test_cpu(best_cpu
, sched_domain_span(sd
))) {
1471 * At this point, all our guesses failed, we just return
1472 * 'something', and let the caller sort the things out.
1477 cpu
= cpumask_any(later_mask
);
1478 if (cpu
< nr_cpu_ids
)
1484 /* Locks the rq it finds */
1485 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1487 struct rq
*later_rq
= NULL
;
1491 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1492 cpu
= find_later_rq(task
);
1494 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1497 later_rq
= cpu_rq(cpu
);
1499 if (later_rq
->dl
.dl_nr_running
&&
1500 !dl_time_before(task
->dl
.deadline
,
1501 later_rq
->dl
.earliest_dl
.curr
)) {
1503 * Target rq has tasks of equal or earlier deadline,
1504 * retrying does not release any lock and is unlikely
1505 * to yield a different result.
1511 /* Retry if something changed. */
1512 if (double_lock_balance(rq
, later_rq
)) {
1513 if (unlikely(task_rq(task
) != rq
||
1514 !cpumask_test_cpu(later_rq
->cpu
,
1515 tsk_cpus_allowed(task
)) ||
1516 task_running(rq
, task
) ||
1518 !task_on_rq_queued(task
))) {
1519 double_unlock_balance(rq
, later_rq
);
1526 * If the rq we found has no -deadline task, or
1527 * its earliest one has a later deadline than our
1528 * task, the rq is a good one.
1530 if (!later_rq
->dl
.dl_nr_running
||
1531 dl_time_before(task
->dl
.deadline
,
1532 later_rq
->dl
.earliest_dl
.curr
))
1535 /* Otherwise we try again. */
1536 double_unlock_balance(rq
, later_rq
);
1543 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
1545 struct task_struct
*p
;
1547 if (!has_pushable_dl_tasks(rq
))
1550 p
= rb_entry(rq
->dl
.pushable_dl_tasks_leftmost
,
1551 struct task_struct
, pushable_dl_tasks
);
1553 BUG_ON(rq
->cpu
!= task_cpu(p
));
1554 BUG_ON(task_current(rq
, p
));
1555 BUG_ON(tsk_nr_cpus_allowed(p
) <= 1);
1557 BUG_ON(!task_on_rq_queued(p
));
1558 BUG_ON(!dl_task(p
));
1564 * See if the non running -deadline tasks on this rq
1565 * can be sent to some other CPU where they can preempt
1566 * and start executing.
1568 static int push_dl_task(struct rq
*rq
)
1570 struct task_struct
*next_task
;
1571 struct rq
*later_rq
;
1574 if (!rq
->dl
.overloaded
)
1577 next_task
= pick_next_pushable_dl_task(rq
);
1582 if (unlikely(next_task
== rq
->curr
)) {
1588 * If next_task preempts rq->curr, and rq->curr
1589 * can move away, it makes sense to just reschedule
1590 * without going further in pushing next_task.
1592 if (dl_task(rq
->curr
) &&
1593 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
1594 tsk_nr_cpus_allowed(rq
->curr
) > 1) {
1599 /* We might release rq lock */
1600 get_task_struct(next_task
);
1602 /* Will lock the rq it'll find */
1603 later_rq
= find_lock_later_rq(next_task
, rq
);
1605 struct task_struct
*task
;
1608 * We must check all this again, since
1609 * find_lock_later_rq releases rq->lock and it is
1610 * then possible that next_task has migrated.
1612 task
= pick_next_pushable_dl_task(rq
);
1613 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1615 * The task is still there. We don't try
1616 * again, some other cpu will pull it when ready.
1625 put_task_struct(next_task
);
1630 deactivate_task(rq
, next_task
, 0);
1631 set_task_cpu(next_task
, later_rq
->cpu
);
1632 activate_task(later_rq
, next_task
, 0);
1635 resched_curr(later_rq
);
1637 double_unlock_balance(rq
, later_rq
);
1640 put_task_struct(next_task
);
1645 static void push_dl_tasks(struct rq
*rq
)
1647 /* push_dl_task() will return true if it moved a -deadline task */
1648 while (push_dl_task(rq
))
1652 static void pull_dl_task(struct rq
*this_rq
)
1654 int this_cpu
= this_rq
->cpu
, cpu
;
1655 struct task_struct
*p
;
1656 bool resched
= false;
1658 u64 dmin
= LONG_MAX
;
1660 if (likely(!dl_overloaded(this_rq
)))
1664 * Match the barrier from dl_set_overloaded; this guarantees that if we
1665 * see overloaded we must also see the dlo_mask bit.
1669 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
1670 if (this_cpu
== cpu
)
1673 src_rq
= cpu_rq(cpu
);
1676 * It looks racy, abd it is! However, as in sched_rt.c,
1677 * we are fine with this.
1679 if (this_rq
->dl
.dl_nr_running
&&
1680 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
1681 src_rq
->dl
.earliest_dl
.next
))
1684 /* Might drop this_rq->lock */
1685 double_lock_balance(this_rq
, src_rq
);
1688 * If there are no more pullable tasks on the
1689 * rq, we're done with it.
1691 if (src_rq
->dl
.dl_nr_running
<= 1)
1694 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
1697 * We found a task to be pulled if:
1698 * - it preempts our current (if there's one),
1699 * - it will preempt the last one we pulled (if any).
1701 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
1702 (!this_rq
->dl
.dl_nr_running
||
1703 dl_time_before(p
->dl
.deadline
,
1704 this_rq
->dl
.earliest_dl
.curr
))) {
1705 WARN_ON(p
== src_rq
->curr
);
1706 WARN_ON(!task_on_rq_queued(p
));
1709 * Then we pull iff p has actually an earlier
1710 * deadline than the current task of its runqueue.
1712 if (dl_time_before(p
->dl
.deadline
,
1713 src_rq
->curr
->dl
.deadline
))
1718 deactivate_task(src_rq
, p
, 0);
1719 set_task_cpu(p
, this_cpu
);
1720 activate_task(this_rq
, p
, 0);
1721 dmin
= p
->dl
.deadline
;
1723 /* Is there any other task even earlier? */
1726 double_unlock_balance(this_rq
, src_rq
);
1730 resched_curr(this_rq
);
1734 * Since the task is not running and a reschedule is not going to happen
1735 * anytime soon on its runqueue, we try pushing it away now.
1737 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
1739 if (!task_running(rq
, p
) &&
1740 !test_tsk_need_resched(rq
->curr
) &&
1741 tsk_nr_cpus_allowed(p
) > 1 &&
1742 dl_task(rq
->curr
) &&
1743 (tsk_nr_cpus_allowed(rq
->curr
) < 2 ||
1744 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
1749 static void set_cpus_allowed_dl(struct task_struct
*p
,
1750 const struct cpumask
*new_mask
)
1752 struct root_domain
*src_rd
;
1755 BUG_ON(!dl_task(p
));
1760 * Migrating a SCHED_DEADLINE task between exclusive
1761 * cpusets (different root_domains) entails a bandwidth
1762 * update. We already made space for us in the destination
1763 * domain (see cpuset_can_attach()).
1765 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
1766 struct dl_bw
*src_dl_b
;
1768 src_dl_b
= dl_bw_of(cpu_of(rq
));
1770 * We now free resources of the root_domain we are migrating
1771 * off. In the worst case, sched_setattr() may temporary fail
1772 * until we complete the update.
1774 raw_spin_lock(&src_dl_b
->lock
);
1775 __dl_clear(src_dl_b
, p
->dl
.dl_bw
);
1776 raw_spin_unlock(&src_dl_b
->lock
);
1779 set_cpus_allowed_common(p
, new_mask
);
1782 /* Assumes rq->lock is held */
1783 static void rq_online_dl(struct rq
*rq
)
1785 if (rq
->dl
.overloaded
)
1786 dl_set_overload(rq
);
1788 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1789 if (rq
->dl
.dl_nr_running
> 0)
1790 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
);
1793 /* Assumes rq->lock is held */
1794 static void rq_offline_dl(struct rq
*rq
)
1796 if (rq
->dl
.overloaded
)
1797 dl_clear_overload(rq
);
1799 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
1800 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1803 void __init
init_sched_dl_class(void)
1807 for_each_possible_cpu(i
)
1808 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
1809 GFP_KERNEL
, cpu_to_node(i
));
1812 #endif /* CONFIG_SMP */
1814 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
1817 * Start the deadline timer; if we switch back to dl before this we'll
1818 * continue consuming our current CBS slice. If we stay outside of
1819 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1822 if (!start_dl_timer(p
))
1823 __dl_clear_params(p
);
1826 * Since this might be the only -deadline task on the rq,
1827 * this is the right place to try to pull some other one
1828 * from an overloaded cpu, if any.
1830 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
1833 queue_pull_task(rq
);
1837 * When switching to -deadline, we may overload the rq, then
1838 * we try to push someone off, if possible.
1840 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
1843 /* If p is not queued we will update its parameters at next wakeup. */
1844 if (!task_on_rq_queued(p
))
1848 * If p is boosted we already updated its params in
1849 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
1850 * p's deadline being now already after rq_clock(rq).
1852 if (dl_time_before(p
->dl
.deadline
, rq_clock(rq
)))
1853 setup_new_dl_entity(&p
->dl
);
1855 if (rq
->curr
!= p
) {
1857 if (tsk_nr_cpus_allowed(p
) > 1 && rq
->dl
.overloaded
)
1858 queue_push_tasks(rq
);
1860 if (dl_task(rq
->curr
))
1861 check_preempt_curr_dl(rq
, p
, 0);
1868 * If the scheduling parameters of a -deadline task changed,
1869 * a push or pull operation might be needed.
1871 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
1874 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
1877 * This might be too much, but unfortunately
1878 * we don't have the old deadline value, and
1879 * we can't argue if the task is increasing
1880 * or lowering its prio, so...
1882 if (!rq
->dl
.overloaded
)
1883 queue_pull_task(rq
);
1886 * If we now have a earlier deadline task than p,
1887 * then reschedule, provided p is still on this
1890 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
1894 * Again, we don't know if p has a earlier
1895 * or later deadline, so let's blindly set a
1896 * (maybe not needed) rescheduling point.
1899 #endif /* CONFIG_SMP */
1903 const struct sched_class dl_sched_class
= {
1904 .next
= &rt_sched_class
,
1905 .enqueue_task
= enqueue_task_dl
,
1906 .dequeue_task
= dequeue_task_dl
,
1907 .yield_task
= yield_task_dl
,
1909 .check_preempt_curr
= check_preempt_curr_dl
,
1911 .pick_next_task
= pick_next_task_dl
,
1912 .put_prev_task
= put_prev_task_dl
,
1915 .select_task_rq
= select_task_rq_dl
,
1916 .set_cpus_allowed
= set_cpus_allowed_dl
,
1917 .rq_online
= rq_online_dl
,
1918 .rq_offline
= rq_offline_dl
,
1919 .task_woken
= task_woken_dl
,
1922 .set_curr_task
= set_curr_task_dl
,
1923 .task_tick
= task_tick_dl
,
1924 .task_fork
= task_fork_dl
,
1925 .task_dead
= task_dead_dl
,
1927 .prio_changed
= prio_changed_dl
,
1928 .switched_from
= switched_from_dl
,
1929 .switched_to
= switched_to_dl
,
1931 .update_curr
= update_curr_dl
,
1934 #ifdef CONFIG_SCHED_DEBUG
1935 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
1937 void print_dl_stats(struct seq_file
*m
, int cpu
)
1939 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
1941 #endif /* CONFIG_SCHED_DEBUG */