Linux 4.9.243
[linux/fpc-iii.git] / kernel / sched / deadline.c
blob3042927c8b8ae61a75363910d63568bbb2e9295f
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
17 #include "sched.h"
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth;
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 return container_of(dl_se, struct task_struct, dl);
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 return container_of(dl_rq, struct rq, dl);
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
38 return &rq->dl;
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
48 struct sched_dl_entity *dl_se = &p->dl;
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
60 void init_dl_bw(struct dl_bw *dl_b)
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
72 void init_dl_rq(struct dl_rq *dl_rq)
74 dl_rq->rb_root = RB_ROOT;
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
88 #ifdef CONFIG_SMP
90 static inline int dl_overloaded(struct rq *rq)
92 return atomic_read(&rq->rd->dlo_count);
95 static inline void dl_set_overload(struct rq *rq)
97 if (!rq->online)
98 return;
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
111 static inline void dl_clear_overload(struct rq *rq)
113 if (!rq->online)
114 return;
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 static void update_dl_migration(struct dl_rq *dl_rq)
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
135 struct task_struct *p = dl_task_of(dl_se);
137 if (tsk_nr_cpus_allowed(p) > 1)
138 dl_rq->dl_nr_migratory++;
140 update_dl_migration(dl_rq);
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
145 struct task_struct *p = dl_task_of(dl_se);
147 if (tsk_nr_cpus_allowed(p) > 1)
148 dl_rq->dl_nr_migratory--;
150 update_dl_migration(dl_rq);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
179 if (leftmost) {
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 dl_rq->earliest_dl.next = p->dl.deadline;
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
190 struct dl_rq *dl_rq = &rq->dl;
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 if (next_node) {
201 dl_rq->earliest_dl.next = rb_entry(next_node,
202 struct task_struct, pushable_dl_tasks)->dl.deadline;
206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 RB_CLEAR_NODE(&p->pushable_dl_tasks);
210 static inline int has_pushable_dl_tasks(struct rq *rq)
212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
215 static int push_dl_task(struct rq *rq);
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
219 return dl_task(prev);
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
228 static inline void queue_push_tasks(struct rq *rq)
230 if (!has_pushable_dl_tasks(rq))
231 return;
233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
236 static inline void queue_pull_task(struct rq *rq)
238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
245 struct rq *later_rq = NULL;
247 later_rq = find_lock_later_rq(p, rq);
248 if (!later_rq) {
249 int cpu;
252 * If we cannot preempt any rq, fall back to pick any
253 * online cpu.
255 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
256 if (cpu >= nr_cpu_ids) {
258 * Fail to find any suitable cpu.
259 * The task will never come back!
261 BUG_ON(dl_bandwidth_enabled());
264 * If admission control is disabled we
265 * try a little harder to let the task
266 * run.
268 cpu = cpumask_any(cpu_active_mask);
270 later_rq = cpu_rq(cpu);
271 double_lock_balance(rq, later_rq);
274 set_task_cpu(p, later_rq->cpu);
275 double_unlock_balance(later_rq, rq);
277 return later_rq;
280 #else
282 static inline
283 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
287 static inline
288 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
292 static inline
293 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 static inline
298 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
302 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
304 return false;
307 static inline void pull_dl_task(struct rq *rq)
311 static inline void queue_push_tasks(struct rq *rq)
315 static inline void queue_pull_task(struct rq *rq)
318 #endif /* CONFIG_SMP */
320 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
321 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
322 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
323 int flags);
326 * We are being explicitly informed that a new instance is starting,
327 * and this means that:
328 * - the absolute deadline of the entity has to be placed at
329 * current time + relative deadline;
330 * - the runtime of the entity has to be set to the maximum value.
332 * The capability of specifying such event is useful whenever a -deadline
333 * entity wants to (try to!) synchronize its behaviour with the scheduler's
334 * one, and to (try to!) reconcile itself with its own scheduling
335 * parameters.
337 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
339 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
340 struct rq *rq = rq_of_dl_rq(dl_rq);
342 WARN_ON(dl_se->dl_boosted);
343 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
346 * We are racing with the deadline timer. So, do nothing because
347 * the deadline timer handler will take care of properly recharging
348 * the runtime and postponing the deadline
350 if (dl_se->dl_throttled)
351 return;
354 * We use the regular wall clock time to set deadlines in the
355 * future; in fact, we must consider execution overheads (time
356 * spent on hardirq context, etc.).
358 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
359 dl_se->runtime = dl_se->dl_runtime;
363 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
364 * possibility of a entity lasting more than what it declared, and thus
365 * exhausting its runtime.
367 * Here we are interested in making runtime overrun possible, but we do
368 * not want a entity which is misbehaving to affect the scheduling of all
369 * other entities.
370 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
371 * is used, in order to confine each entity within its own bandwidth.
373 * This function deals exactly with that, and ensures that when the runtime
374 * of a entity is replenished, its deadline is also postponed. That ensures
375 * the overrunning entity can't interfere with other entity in the system and
376 * can't make them miss their deadlines. Reasons why this kind of overruns
377 * could happen are, typically, a entity voluntarily trying to overcome its
378 * runtime, or it just underestimated it during sched_setattr().
380 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
381 struct sched_dl_entity *pi_se)
383 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
384 struct rq *rq = rq_of_dl_rq(dl_rq);
386 BUG_ON(pi_se->dl_runtime <= 0);
389 * This could be the case for a !-dl task that is boosted.
390 * Just go with full inherited parameters.
392 if (dl_se->dl_deadline == 0) {
393 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
394 dl_se->runtime = pi_se->dl_runtime;
397 if (dl_se->dl_yielded && dl_se->runtime > 0)
398 dl_se->runtime = 0;
401 * We keep moving the deadline away until we get some
402 * available runtime for the entity. This ensures correct
403 * handling of situations where the runtime overrun is
404 * arbitrary large.
406 while (dl_se->runtime <= 0) {
407 dl_se->deadline += pi_se->dl_period;
408 dl_se->runtime += pi_se->dl_runtime;
412 * At this point, the deadline really should be "in
413 * the future" with respect to rq->clock. If it's
414 * not, we are, for some reason, lagging too much!
415 * Anyway, after having warn userspace abut that,
416 * we still try to keep the things running by
417 * resetting the deadline and the budget of the
418 * entity.
420 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
421 printk_deferred_once("sched: DL replenish lagged too much\n");
422 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
423 dl_se->runtime = pi_se->dl_runtime;
426 if (dl_se->dl_yielded)
427 dl_se->dl_yielded = 0;
428 if (dl_se->dl_throttled)
429 dl_se->dl_throttled = 0;
433 * Here we check if --at time t-- an entity (which is probably being
434 * [re]activated or, in general, enqueued) can use its remaining runtime
435 * and its current deadline _without_ exceeding the bandwidth it is
436 * assigned (function returns true if it can't). We are in fact applying
437 * one of the CBS rules: when a task wakes up, if the residual runtime
438 * over residual deadline fits within the allocated bandwidth, then we
439 * can keep the current (absolute) deadline and residual budget without
440 * disrupting the schedulability of the system. Otherwise, we should
441 * refill the runtime and set the deadline a period in the future,
442 * because keeping the current (absolute) deadline of the task would
443 * result in breaking guarantees promised to other tasks (refer to
444 * Documentation/scheduler/sched-deadline.txt for more informations).
446 * This function returns true if:
448 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
450 * IOW we can't recycle current parameters.
452 * Notice that the bandwidth check is done against the deadline. For
453 * task with deadline equal to period this is the same of using
454 * dl_period instead of dl_deadline in the equation above.
456 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
457 struct sched_dl_entity *pi_se, u64 t)
459 u64 left, right;
462 * left and right are the two sides of the equation above,
463 * after a bit of shuffling to use multiplications instead
464 * of divisions.
466 * Note that none of the time values involved in the two
467 * multiplications are absolute: dl_deadline and dl_runtime
468 * are the relative deadline and the maximum runtime of each
469 * instance, runtime is the runtime left for the last instance
470 * and (deadline - t), since t is rq->clock, is the time left
471 * to the (absolute) deadline. Even if overflowing the u64 type
472 * is very unlikely to occur in both cases, here we scale down
473 * as we want to avoid that risk at all. Scaling down by 10
474 * means that we reduce granularity to 1us. We are fine with it,
475 * since this is only a true/false check and, anyway, thinking
476 * of anything below microseconds resolution is actually fiction
477 * (but still we want to give the user that illusion >;).
479 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
480 right = ((dl_se->deadline - t) >> DL_SCALE) *
481 (pi_se->dl_runtime >> DL_SCALE);
483 return dl_time_before(right, left);
487 * Revised wakeup rule [1]: For self-suspending tasks, rather then
488 * re-initializing task's runtime and deadline, the revised wakeup
489 * rule adjusts the task's runtime to avoid the task to overrun its
490 * density.
492 * Reasoning: a task may overrun the density if:
493 * runtime / (deadline - t) > dl_runtime / dl_deadline
495 * Therefore, runtime can be adjusted to:
496 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
498 * In such way that runtime will be equal to the maximum density
499 * the task can use without breaking any rule.
501 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
502 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
504 static void
505 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
507 u64 laxity = dl_se->deadline - rq_clock(rq);
510 * If the task has deadline < period, and the deadline is in the past,
511 * it should already be throttled before this check.
513 * See update_dl_entity() comments for further details.
515 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
517 dl_se->runtime = (dl_se->dl_density * laxity) >> 20;
521 * Regarding the deadline, a task with implicit deadline has a relative
522 * deadline == relative period. A task with constrained deadline has a
523 * relative deadline <= relative period.
525 * We support constrained deadline tasks. However, there are some restrictions
526 * applied only for tasks which do not have an implicit deadline. See
527 * update_dl_entity() to know more about such restrictions.
529 * The dl_is_implicit() returns true if the task has an implicit deadline.
531 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
533 return dl_se->dl_deadline == dl_se->dl_period;
537 * When a deadline entity is placed in the runqueue, its runtime and deadline
538 * might need to be updated. This is done by a CBS wake up rule. There are two
539 * different rules: 1) the original CBS; and 2) the Revisited CBS.
541 * When the task is starting a new period, the Original CBS is used. In this
542 * case, the runtime is replenished and a new absolute deadline is set.
544 * When a task is queued before the begin of the next period, using the
545 * remaining runtime and deadline could make the entity to overflow, see
546 * dl_entity_overflow() to find more about runtime overflow. When such case
547 * is detected, the runtime and deadline need to be updated.
549 * If the task has an implicit deadline, i.e., deadline == period, the Original
550 * CBS is applied. the runtime is replenished and a new absolute deadline is
551 * set, as in the previous cases.
553 * However, the Original CBS does not work properly for tasks with
554 * deadline < period, which are said to have a constrained deadline. By
555 * applying the Original CBS, a constrained deadline task would be able to run
556 * runtime/deadline in a period. With deadline < period, the task would
557 * overrun the runtime/period allowed bandwidth, breaking the admission test.
559 * In order to prevent this misbehave, the Revisited CBS is used for
560 * constrained deadline tasks when a runtime overflow is detected. In the
561 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
562 * the remaining runtime of the task is reduced to avoid runtime overflow.
563 * Please refer to the comments update_dl_revised_wakeup() function to find
564 * more about the Revised CBS rule.
566 static void update_dl_entity(struct sched_dl_entity *dl_se,
567 struct sched_dl_entity *pi_se)
569 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
570 struct rq *rq = rq_of_dl_rq(dl_rq);
572 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
573 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
575 if (unlikely(!dl_is_implicit(dl_se) &&
576 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
577 !dl_se->dl_boosted)){
578 update_dl_revised_wakeup(dl_se, rq);
579 return;
582 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
583 dl_se->runtime = pi_se->dl_runtime;
587 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
589 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
593 * If the entity depleted all its runtime, and if we want it to sleep
594 * while waiting for some new execution time to become available, we
595 * set the bandwidth replenishment timer to the replenishment instant
596 * and try to activate it.
598 * Notice that it is important for the caller to know if the timer
599 * actually started or not (i.e., the replenishment instant is in
600 * the future or in the past).
602 static int start_dl_timer(struct task_struct *p)
604 struct sched_dl_entity *dl_se = &p->dl;
605 struct hrtimer *timer = &dl_se->dl_timer;
606 struct rq *rq = task_rq(p);
607 ktime_t now, act;
608 s64 delta;
610 lockdep_assert_held(&rq->lock);
613 * We want the timer to fire at the deadline, but considering
614 * that it is actually coming from rq->clock and not from
615 * hrtimer's time base reading.
617 act = ns_to_ktime(dl_next_period(dl_se));
618 now = hrtimer_cb_get_time(timer);
619 delta = ktime_to_ns(now) - rq_clock(rq);
620 act = ktime_add_ns(act, delta);
623 * If the expiry time already passed, e.g., because the value
624 * chosen as the deadline is too small, don't even try to
625 * start the timer in the past!
627 if (ktime_us_delta(act, now) < 0)
628 return 0;
631 * !enqueued will guarantee another callback; even if one is already in
632 * progress. This ensures a balanced {get,put}_task_struct().
634 * The race against __run_timer() clearing the enqueued state is
635 * harmless because we're holding task_rq()->lock, therefore the timer
636 * expiring after we've done the check will wait on its task_rq_lock()
637 * and observe our state.
639 if (!hrtimer_is_queued(timer)) {
640 get_task_struct(p);
641 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
644 return 1;
648 * This is the bandwidth enforcement timer callback. If here, we know
649 * a task is not on its dl_rq, since the fact that the timer was running
650 * means the task is throttled and needs a runtime replenishment.
652 * However, what we actually do depends on the fact the task is active,
653 * (it is on its rq) or has been removed from there by a call to
654 * dequeue_task_dl(). In the former case we must issue the runtime
655 * replenishment and add the task back to the dl_rq; in the latter, we just
656 * do nothing but clearing dl_throttled, so that runtime and deadline
657 * updating (and the queueing back to dl_rq) will be done by the
658 * next call to enqueue_task_dl().
660 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
662 struct sched_dl_entity *dl_se = container_of(timer,
663 struct sched_dl_entity,
664 dl_timer);
665 struct task_struct *p = dl_task_of(dl_se);
666 struct rq_flags rf;
667 struct rq *rq;
669 rq = task_rq_lock(p, &rf);
672 * The task might have changed its scheduling policy to something
673 * different than SCHED_DEADLINE (through switched_fromd_dl()).
675 if (!dl_task(p)) {
676 __dl_clear_params(p);
677 goto unlock;
681 * The task might have been boosted by someone else and might be in the
682 * boosting/deboosting path, its not throttled.
684 if (dl_se->dl_boosted)
685 goto unlock;
688 * Spurious timer due to start_dl_timer() race; or we already received
689 * a replenishment from rt_mutex_setprio().
691 if (!dl_se->dl_throttled)
692 goto unlock;
694 sched_clock_tick();
695 update_rq_clock(rq);
698 * If the throttle happened during sched-out; like:
700 * schedule()
701 * deactivate_task()
702 * dequeue_task_dl()
703 * update_curr_dl()
704 * start_dl_timer()
705 * __dequeue_task_dl()
706 * prev->on_rq = 0;
708 * We can be both throttled and !queued. Replenish the counter
709 * but do not enqueue -- wait for our wakeup to do that.
711 if (!task_on_rq_queued(p)) {
712 replenish_dl_entity(dl_se, dl_se);
713 goto unlock;
716 #ifdef CONFIG_SMP
717 if (unlikely(!rq->online)) {
719 * If the runqueue is no longer available, migrate the
720 * task elsewhere. This necessarily changes rq.
722 lockdep_unpin_lock(&rq->lock, rf.cookie);
723 rq = dl_task_offline_migration(rq, p);
724 rf.cookie = lockdep_pin_lock(&rq->lock);
725 update_rq_clock(rq);
728 * Now that the task has been migrated to the new RQ and we
729 * have that locked, proceed as normal and enqueue the task
730 * there.
733 #endif
735 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
736 if (dl_task(rq->curr))
737 check_preempt_curr_dl(rq, p, 0);
738 else
739 resched_curr(rq);
741 #ifdef CONFIG_SMP
743 * Queueing this task back might have overloaded rq, check if we need
744 * to kick someone away.
746 if (has_pushable_dl_tasks(rq)) {
748 * Nothing relies on rq->lock after this, so its safe to drop
749 * rq->lock.
751 lockdep_unpin_lock(&rq->lock, rf.cookie);
752 push_dl_task(rq);
753 lockdep_repin_lock(&rq->lock, rf.cookie);
755 #endif
757 unlock:
758 task_rq_unlock(rq, p, &rf);
761 * This can free the task_struct, including this hrtimer, do not touch
762 * anything related to that after this.
764 put_task_struct(p);
766 return HRTIMER_NORESTART;
769 void init_dl_task_timer(struct sched_dl_entity *dl_se)
771 struct hrtimer *timer = &dl_se->dl_timer;
773 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
774 timer->function = dl_task_timer;
778 * During the activation, CBS checks if it can reuse the current task's
779 * runtime and period. If the deadline of the task is in the past, CBS
780 * cannot use the runtime, and so it replenishes the task. This rule
781 * works fine for implicit deadline tasks (deadline == period), and the
782 * CBS was designed for implicit deadline tasks. However, a task with
783 * constrained deadline (deadine < period) might be awakened after the
784 * deadline, but before the next period. In this case, replenishing the
785 * task would allow it to run for runtime / deadline. As in this case
786 * deadline < period, CBS enables a task to run for more than the
787 * runtime / period. In a very loaded system, this can cause a domino
788 * effect, making other tasks miss their deadlines.
790 * To avoid this problem, in the activation of a constrained deadline
791 * task after the deadline but before the next period, throttle the
792 * task and set the replenishing timer to the begin of the next period,
793 * unless it is boosted.
795 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
797 struct task_struct *p = dl_task_of(dl_se);
798 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
800 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
801 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
802 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
803 return;
804 dl_se->dl_throttled = 1;
805 if (dl_se->runtime > 0)
806 dl_se->runtime = 0;
810 static
811 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
813 return (dl_se->runtime <= 0);
816 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
819 * Update the current task's runtime statistics (provided it is still
820 * a -deadline task and has not been removed from the dl_rq).
822 static void update_curr_dl(struct rq *rq)
824 struct task_struct *curr = rq->curr;
825 struct sched_dl_entity *dl_se = &curr->dl;
826 u64 delta_exec;
828 if (!dl_task(curr) || !on_dl_rq(dl_se))
829 return;
832 * Consumed budget is computed considering the time as
833 * observed by schedulable tasks (excluding time spent
834 * in hardirq context, etc.). Deadlines are instead
835 * computed using hard walltime. This seems to be the more
836 * natural solution, but the full ramifications of this
837 * approach need further study.
839 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
840 if (unlikely((s64)delta_exec <= 0)) {
841 if (unlikely(dl_se->dl_yielded))
842 goto throttle;
843 return;
846 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
847 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
849 schedstat_set(curr->se.statistics.exec_max,
850 max(curr->se.statistics.exec_max, delta_exec));
852 curr->se.sum_exec_runtime += delta_exec;
853 account_group_exec_runtime(curr, delta_exec);
855 curr->se.exec_start = rq_clock_task(rq);
856 cpuacct_charge(curr, delta_exec);
858 sched_rt_avg_update(rq, delta_exec);
860 dl_se->runtime -= delta_exec;
862 throttle:
863 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
864 dl_se->dl_throttled = 1;
865 __dequeue_task_dl(rq, curr, 0);
866 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
867 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
869 if (!is_leftmost(curr, &rq->dl))
870 resched_curr(rq);
874 * Because -- for now -- we share the rt bandwidth, we need to
875 * account our runtime there too, otherwise actual rt tasks
876 * would be able to exceed the shared quota.
878 * Account to the root rt group for now.
880 * The solution we're working towards is having the RT groups scheduled
881 * using deadline servers -- however there's a few nasties to figure
882 * out before that can happen.
884 if (rt_bandwidth_enabled()) {
885 struct rt_rq *rt_rq = &rq->rt;
887 raw_spin_lock(&rt_rq->rt_runtime_lock);
889 * We'll let actual RT tasks worry about the overflow here, we
890 * have our own CBS to keep us inline; only account when RT
891 * bandwidth is relevant.
893 if (sched_rt_bandwidth_account(rt_rq))
894 rt_rq->rt_time += delta_exec;
895 raw_spin_unlock(&rt_rq->rt_runtime_lock);
899 #ifdef CONFIG_SMP
901 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
903 struct rq *rq = rq_of_dl_rq(dl_rq);
905 if (dl_rq->earliest_dl.curr == 0 ||
906 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
907 dl_rq->earliest_dl.curr = deadline;
908 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
912 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
914 struct rq *rq = rq_of_dl_rq(dl_rq);
917 * Since we may have removed our earliest (and/or next earliest)
918 * task we must recompute them.
920 if (!dl_rq->dl_nr_running) {
921 dl_rq->earliest_dl.curr = 0;
922 dl_rq->earliest_dl.next = 0;
923 cpudl_clear(&rq->rd->cpudl, rq->cpu);
924 } else {
925 struct rb_node *leftmost = dl_rq->rb_leftmost;
926 struct sched_dl_entity *entry;
928 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
929 dl_rq->earliest_dl.curr = entry->deadline;
930 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
934 #else
936 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
937 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
939 #endif /* CONFIG_SMP */
941 static inline
942 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
944 int prio = dl_task_of(dl_se)->prio;
945 u64 deadline = dl_se->deadline;
947 WARN_ON(!dl_prio(prio));
948 dl_rq->dl_nr_running++;
949 add_nr_running(rq_of_dl_rq(dl_rq), 1);
951 inc_dl_deadline(dl_rq, deadline);
952 inc_dl_migration(dl_se, dl_rq);
955 static inline
956 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
958 int prio = dl_task_of(dl_se)->prio;
960 WARN_ON(!dl_prio(prio));
961 WARN_ON(!dl_rq->dl_nr_running);
962 dl_rq->dl_nr_running--;
963 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
965 dec_dl_deadline(dl_rq, dl_se->deadline);
966 dec_dl_migration(dl_se, dl_rq);
969 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
971 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
972 struct rb_node **link = &dl_rq->rb_root.rb_node;
973 struct rb_node *parent = NULL;
974 struct sched_dl_entity *entry;
975 int leftmost = 1;
977 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
979 while (*link) {
980 parent = *link;
981 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
982 if (dl_time_before(dl_se->deadline, entry->deadline))
983 link = &parent->rb_left;
984 else {
985 link = &parent->rb_right;
986 leftmost = 0;
990 if (leftmost)
991 dl_rq->rb_leftmost = &dl_se->rb_node;
993 rb_link_node(&dl_se->rb_node, parent, link);
994 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
996 inc_dl_tasks(dl_se, dl_rq);
999 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1001 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1003 if (RB_EMPTY_NODE(&dl_se->rb_node))
1004 return;
1006 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
1007 struct rb_node *next_node;
1009 next_node = rb_next(&dl_se->rb_node);
1010 dl_rq->rb_leftmost = next_node;
1013 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
1014 RB_CLEAR_NODE(&dl_se->rb_node);
1016 dec_dl_tasks(dl_se, dl_rq);
1019 static void
1020 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1021 struct sched_dl_entity *pi_se, int flags)
1023 BUG_ON(on_dl_rq(dl_se));
1026 * If this is a wakeup or a new instance, the scheduling
1027 * parameters of the task might need updating. Otherwise,
1028 * we want a replenishment of its runtime.
1030 if (flags & ENQUEUE_WAKEUP)
1031 update_dl_entity(dl_se, pi_se);
1032 else if (flags & ENQUEUE_REPLENISH)
1033 replenish_dl_entity(dl_se, pi_se);
1035 __enqueue_dl_entity(dl_se);
1038 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1040 __dequeue_dl_entity(dl_se);
1043 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1045 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1046 struct sched_dl_entity *pi_se = &p->dl;
1049 * Use the scheduling parameters of the top pi-waiter
1050 * task if we have one and its (absolute) deadline is
1051 * smaller than our one... OTW we keep our runtime and
1052 * deadline.
1054 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
1055 pi_se = &pi_task->dl;
1056 } else if (!dl_prio(p->normal_prio)) {
1058 * Special case in which we have a !SCHED_DEADLINE task
1059 * that is going to be deboosted, but exceedes its
1060 * runtime while doing so. No point in replenishing
1061 * it, as it's going to return back to its original
1062 * scheduling class after this.
1064 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1065 return;
1069 * Check if a constrained deadline task was activated
1070 * after the deadline but before the next period.
1071 * If that is the case, the task will be throttled and
1072 * the replenishment timer will be set to the next period.
1074 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1075 dl_check_constrained_dl(&p->dl);
1078 * If p is throttled, we do nothing. In fact, if it exhausted
1079 * its budget it needs a replenishment and, since it now is on
1080 * its rq, the bandwidth timer callback (which clearly has not
1081 * run yet) will take care of this.
1083 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
1084 return;
1086 enqueue_dl_entity(&p->dl, pi_se, flags);
1088 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1089 enqueue_pushable_dl_task(rq, p);
1092 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1094 dequeue_dl_entity(&p->dl);
1095 dequeue_pushable_dl_task(rq, p);
1098 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1100 update_curr_dl(rq);
1101 __dequeue_task_dl(rq, p, flags);
1105 * Yield task semantic for -deadline tasks is:
1107 * get off from the CPU until our next instance, with
1108 * a new runtime. This is of little use now, since we
1109 * don't have a bandwidth reclaiming mechanism. Anyway,
1110 * bandwidth reclaiming is planned for the future, and
1111 * yield_task_dl will indicate that some spare budget
1112 * is available for other task instances to use it.
1114 static void yield_task_dl(struct rq *rq)
1117 * We make the task go to sleep until its current deadline by
1118 * forcing its runtime to zero. This way, update_curr_dl() stops
1119 * it and the bandwidth timer will wake it up and will give it
1120 * new scheduling parameters (thanks to dl_yielded=1).
1122 rq->curr->dl.dl_yielded = 1;
1124 update_rq_clock(rq);
1125 update_curr_dl(rq);
1127 * Tell update_rq_clock() that we've just updated,
1128 * so we don't do microscopic update in schedule()
1129 * and double the fastpath cost.
1131 rq_clock_skip_update(rq, true);
1134 #ifdef CONFIG_SMP
1136 static int find_later_rq(struct task_struct *task);
1138 static int
1139 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1141 struct task_struct *curr;
1142 struct rq *rq;
1144 if (sd_flag != SD_BALANCE_WAKE)
1145 goto out;
1147 rq = cpu_rq(cpu);
1149 rcu_read_lock();
1150 curr = READ_ONCE(rq->curr); /* unlocked access */
1153 * If we are dealing with a -deadline task, we must
1154 * decide where to wake it up.
1155 * If it has a later deadline and the current task
1156 * on this rq can't move (provided the waking task
1157 * can!) we prefer to send it somewhere else. On the
1158 * other hand, if it has a shorter deadline, we
1159 * try to make it stay here, it might be important.
1161 if (unlikely(dl_task(curr)) &&
1162 (tsk_nr_cpus_allowed(curr) < 2 ||
1163 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1164 (tsk_nr_cpus_allowed(p) > 1)) {
1165 int target = find_later_rq(p);
1167 if (target != -1 &&
1168 (dl_time_before(p->dl.deadline,
1169 cpu_rq(target)->dl.earliest_dl.curr) ||
1170 (cpu_rq(target)->dl.dl_nr_running == 0)))
1171 cpu = target;
1173 rcu_read_unlock();
1175 out:
1176 return cpu;
1179 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1182 * Current can't be migrated, useless to reschedule,
1183 * let's hope p can move out.
1185 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1186 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1187 return;
1190 * p is migratable, so let's not schedule it and
1191 * see if it is pushed or pulled somewhere else.
1193 if (tsk_nr_cpus_allowed(p) != 1 &&
1194 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1195 return;
1197 resched_curr(rq);
1200 #endif /* CONFIG_SMP */
1203 * Only called when both the current and waking task are -deadline
1204 * tasks.
1206 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1207 int flags)
1209 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1210 resched_curr(rq);
1211 return;
1214 #ifdef CONFIG_SMP
1216 * In the unlikely case current and p have the same deadline
1217 * let us try to decide what's the best thing to do...
1219 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1220 !test_tsk_need_resched(rq->curr))
1221 check_preempt_equal_dl(rq, p);
1222 #endif /* CONFIG_SMP */
1225 #ifdef CONFIG_SCHED_HRTICK
1226 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1228 hrtick_start(rq, p->dl.runtime);
1230 #else /* !CONFIG_SCHED_HRTICK */
1231 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1234 #endif
1236 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1237 struct dl_rq *dl_rq)
1239 struct rb_node *left = dl_rq->rb_leftmost;
1241 if (!left)
1242 return NULL;
1244 return rb_entry(left, struct sched_dl_entity, rb_node);
1247 struct task_struct *
1248 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1250 struct sched_dl_entity *dl_se;
1251 struct task_struct *p;
1252 struct dl_rq *dl_rq;
1254 dl_rq = &rq->dl;
1256 if (need_pull_dl_task(rq, prev)) {
1258 * This is OK, because current is on_cpu, which avoids it being
1259 * picked for load-balance and preemption/IRQs are still
1260 * disabled avoiding further scheduler activity on it and we're
1261 * being very careful to re-start the picking loop.
1263 lockdep_unpin_lock(&rq->lock, cookie);
1264 pull_dl_task(rq);
1265 lockdep_repin_lock(&rq->lock, cookie);
1267 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1268 * means a stop task can slip in, in which case we need to
1269 * re-start task selection.
1271 if (rq->stop && task_on_rq_queued(rq->stop))
1272 return RETRY_TASK;
1276 * When prev is DL, we may throttle it in put_prev_task().
1277 * So, we update time before we check for dl_nr_running.
1279 if (prev->sched_class == &dl_sched_class)
1280 update_curr_dl(rq);
1282 if (unlikely(!dl_rq->dl_nr_running))
1283 return NULL;
1285 put_prev_task(rq, prev);
1287 dl_se = pick_next_dl_entity(rq, dl_rq);
1288 BUG_ON(!dl_se);
1290 p = dl_task_of(dl_se);
1291 p->se.exec_start = rq_clock_task(rq);
1293 /* Running task will never be pushed. */
1294 dequeue_pushable_dl_task(rq, p);
1296 if (hrtick_enabled(rq))
1297 start_hrtick_dl(rq, p);
1299 queue_push_tasks(rq);
1301 return p;
1304 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1306 update_curr_dl(rq);
1308 if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1309 enqueue_pushable_dl_task(rq, p);
1312 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1314 update_curr_dl(rq);
1317 * Even when we have runtime, update_curr_dl() might have resulted in us
1318 * not being the leftmost task anymore. In that case NEED_RESCHED will
1319 * be set and schedule() will start a new hrtick for the next task.
1321 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1322 is_leftmost(p, &rq->dl))
1323 start_hrtick_dl(rq, p);
1326 static void task_fork_dl(struct task_struct *p)
1329 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1330 * sched_fork()
1334 static void task_dead_dl(struct task_struct *p)
1336 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1339 * Since we are TASK_DEAD we won't slip out of the domain!
1341 raw_spin_lock_irq(&dl_b->lock);
1342 /* XXX we should retain the bw until 0-lag */
1343 dl_b->total_bw -= p->dl.dl_bw;
1344 raw_spin_unlock_irq(&dl_b->lock);
1347 static void set_curr_task_dl(struct rq *rq)
1349 struct task_struct *p = rq->curr;
1351 p->se.exec_start = rq_clock_task(rq);
1353 /* You can't push away the running task */
1354 dequeue_pushable_dl_task(rq, p);
1357 #ifdef CONFIG_SMP
1359 /* Only try algorithms three times */
1360 #define DL_MAX_TRIES 3
1362 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1364 if (!task_running(rq, p) &&
1365 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1366 return 1;
1367 return 0;
1371 * Return the earliest pushable rq's task, which is suitable to be executed
1372 * on the CPU, NULL otherwise:
1374 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1376 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1377 struct task_struct *p = NULL;
1379 if (!has_pushable_dl_tasks(rq))
1380 return NULL;
1382 next_node:
1383 if (next_node) {
1384 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1386 if (pick_dl_task(rq, p, cpu))
1387 return p;
1389 next_node = rb_next(next_node);
1390 goto next_node;
1393 return NULL;
1396 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1398 static int find_later_rq(struct task_struct *task)
1400 struct sched_domain *sd;
1401 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1402 int this_cpu = smp_processor_id();
1403 int best_cpu, cpu = task_cpu(task);
1405 /* Make sure the mask is initialized first */
1406 if (unlikely(!later_mask))
1407 return -1;
1409 if (tsk_nr_cpus_allowed(task) == 1)
1410 return -1;
1413 * We have to consider system topology and task affinity
1414 * first, then we can look for a suitable cpu.
1416 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1417 task, later_mask);
1418 if (best_cpu == -1)
1419 return -1;
1422 * If we are here, some target has been found,
1423 * the most suitable of which is cached in best_cpu.
1424 * This is, among the runqueues where the current tasks
1425 * have later deadlines than the task's one, the rq
1426 * with the latest possible one.
1428 * Now we check how well this matches with task's
1429 * affinity and system topology.
1431 * The last cpu where the task run is our first
1432 * guess, since it is most likely cache-hot there.
1434 if (cpumask_test_cpu(cpu, later_mask))
1435 return cpu;
1437 * Check if this_cpu is to be skipped (i.e., it is
1438 * not in the mask) or not.
1440 if (!cpumask_test_cpu(this_cpu, later_mask))
1441 this_cpu = -1;
1443 rcu_read_lock();
1444 for_each_domain(cpu, sd) {
1445 if (sd->flags & SD_WAKE_AFFINE) {
1448 * If possible, preempting this_cpu is
1449 * cheaper than migrating.
1451 if (this_cpu != -1 &&
1452 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1453 rcu_read_unlock();
1454 return this_cpu;
1458 * Last chance: if best_cpu is valid and is
1459 * in the mask, that becomes our choice.
1461 if (best_cpu < nr_cpu_ids &&
1462 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1463 rcu_read_unlock();
1464 return best_cpu;
1468 rcu_read_unlock();
1471 * At this point, all our guesses failed, we just return
1472 * 'something', and let the caller sort the things out.
1474 if (this_cpu != -1)
1475 return this_cpu;
1477 cpu = cpumask_any(later_mask);
1478 if (cpu < nr_cpu_ids)
1479 return cpu;
1481 return -1;
1484 /* Locks the rq it finds */
1485 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1487 struct rq *later_rq = NULL;
1488 int tries;
1489 int cpu;
1491 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1492 cpu = find_later_rq(task);
1494 if ((cpu == -1) || (cpu == rq->cpu))
1495 break;
1497 later_rq = cpu_rq(cpu);
1499 if (later_rq->dl.dl_nr_running &&
1500 !dl_time_before(task->dl.deadline,
1501 later_rq->dl.earliest_dl.curr)) {
1503 * Target rq has tasks of equal or earlier deadline,
1504 * retrying does not release any lock and is unlikely
1505 * to yield a different result.
1507 later_rq = NULL;
1508 break;
1511 /* Retry if something changed. */
1512 if (double_lock_balance(rq, later_rq)) {
1513 if (unlikely(task_rq(task) != rq ||
1514 !cpumask_test_cpu(later_rq->cpu,
1515 tsk_cpus_allowed(task)) ||
1516 task_running(rq, task) ||
1517 !dl_task(task) ||
1518 !task_on_rq_queued(task))) {
1519 double_unlock_balance(rq, later_rq);
1520 later_rq = NULL;
1521 break;
1526 * If the rq we found has no -deadline task, or
1527 * its earliest one has a later deadline than our
1528 * task, the rq is a good one.
1530 if (!later_rq->dl.dl_nr_running ||
1531 dl_time_before(task->dl.deadline,
1532 later_rq->dl.earliest_dl.curr))
1533 break;
1535 /* Otherwise we try again. */
1536 double_unlock_balance(rq, later_rq);
1537 later_rq = NULL;
1540 return later_rq;
1543 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1545 struct task_struct *p;
1547 if (!has_pushable_dl_tasks(rq))
1548 return NULL;
1550 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1551 struct task_struct, pushable_dl_tasks);
1553 BUG_ON(rq->cpu != task_cpu(p));
1554 BUG_ON(task_current(rq, p));
1555 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1557 BUG_ON(!task_on_rq_queued(p));
1558 BUG_ON(!dl_task(p));
1560 return p;
1564 * See if the non running -deadline tasks on this rq
1565 * can be sent to some other CPU where they can preempt
1566 * and start executing.
1568 static int push_dl_task(struct rq *rq)
1570 struct task_struct *next_task;
1571 struct rq *later_rq;
1572 int ret = 0;
1574 if (!rq->dl.overloaded)
1575 return 0;
1577 next_task = pick_next_pushable_dl_task(rq);
1578 if (!next_task)
1579 return 0;
1581 retry:
1582 if (unlikely(next_task == rq->curr)) {
1583 WARN_ON(1);
1584 return 0;
1588 * If next_task preempts rq->curr, and rq->curr
1589 * can move away, it makes sense to just reschedule
1590 * without going further in pushing next_task.
1592 if (dl_task(rq->curr) &&
1593 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1594 tsk_nr_cpus_allowed(rq->curr) > 1) {
1595 resched_curr(rq);
1596 return 0;
1599 /* We might release rq lock */
1600 get_task_struct(next_task);
1602 /* Will lock the rq it'll find */
1603 later_rq = find_lock_later_rq(next_task, rq);
1604 if (!later_rq) {
1605 struct task_struct *task;
1608 * We must check all this again, since
1609 * find_lock_later_rq releases rq->lock and it is
1610 * then possible that next_task has migrated.
1612 task = pick_next_pushable_dl_task(rq);
1613 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1615 * The task is still there. We don't try
1616 * again, some other cpu will pull it when ready.
1618 goto out;
1621 if (!task)
1622 /* No more tasks */
1623 goto out;
1625 put_task_struct(next_task);
1626 next_task = task;
1627 goto retry;
1630 deactivate_task(rq, next_task, 0);
1631 set_task_cpu(next_task, later_rq->cpu);
1632 activate_task(later_rq, next_task, 0);
1633 ret = 1;
1635 resched_curr(later_rq);
1637 double_unlock_balance(rq, later_rq);
1639 out:
1640 put_task_struct(next_task);
1642 return ret;
1645 static void push_dl_tasks(struct rq *rq)
1647 /* push_dl_task() will return true if it moved a -deadline task */
1648 while (push_dl_task(rq))
1652 static void pull_dl_task(struct rq *this_rq)
1654 int this_cpu = this_rq->cpu, cpu;
1655 struct task_struct *p;
1656 bool resched = false;
1657 struct rq *src_rq;
1658 u64 dmin = LONG_MAX;
1660 if (likely(!dl_overloaded(this_rq)))
1661 return;
1664 * Match the barrier from dl_set_overloaded; this guarantees that if we
1665 * see overloaded we must also see the dlo_mask bit.
1667 smp_rmb();
1669 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1670 if (this_cpu == cpu)
1671 continue;
1673 src_rq = cpu_rq(cpu);
1676 * It looks racy, abd it is! However, as in sched_rt.c,
1677 * we are fine with this.
1679 if (this_rq->dl.dl_nr_running &&
1680 dl_time_before(this_rq->dl.earliest_dl.curr,
1681 src_rq->dl.earliest_dl.next))
1682 continue;
1684 /* Might drop this_rq->lock */
1685 double_lock_balance(this_rq, src_rq);
1688 * If there are no more pullable tasks on the
1689 * rq, we're done with it.
1691 if (src_rq->dl.dl_nr_running <= 1)
1692 goto skip;
1694 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1697 * We found a task to be pulled if:
1698 * - it preempts our current (if there's one),
1699 * - it will preempt the last one we pulled (if any).
1701 if (p && dl_time_before(p->dl.deadline, dmin) &&
1702 (!this_rq->dl.dl_nr_running ||
1703 dl_time_before(p->dl.deadline,
1704 this_rq->dl.earliest_dl.curr))) {
1705 WARN_ON(p == src_rq->curr);
1706 WARN_ON(!task_on_rq_queued(p));
1709 * Then we pull iff p has actually an earlier
1710 * deadline than the current task of its runqueue.
1712 if (dl_time_before(p->dl.deadline,
1713 src_rq->curr->dl.deadline))
1714 goto skip;
1716 resched = true;
1718 deactivate_task(src_rq, p, 0);
1719 set_task_cpu(p, this_cpu);
1720 activate_task(this_rq, p, 0);
1721 dmin = p->dl.deadline;
1723 /* Is there any other task even earlier? */
1725 skip:
1726 double_unlock_balance(this_rq, src_rq);
1729 if (resched)
1730 resched_curr(this_rq);
1734 * Since the task is not running and a reschedule is not going to happen
1735 * anytime soon on its runqueue, we try pushing it away now.
1737 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1739 if (!task_running(rq, p) &&
1740 !test_tsk_need_resched(rq->curr) &&
1741 tsk_nr_cpus_allowed(p) > 1 &&
1742 dl_task(rq->curr) &&
1743 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1744 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1745 push_dl_tasks(rq);
1749 static void set_cpus_allowed_dl(struct task_struct *p,
1750 const struct cpumask *new_mask)
1752 struct root_domain *src_rd;
1753 struct rq *rq;
1755 BUG_ON(!dl_task(p));
1757 rq = task_rq(p);
1758 src_rd = rq->rd;
1760 * Migrating a SCHED_DEADLINE task between exclusive
1761 * cpusets (different root_domains) entails a bandwidth
1762 * update. We already made space for us in the destination
1763 * domain (see cpuset_can_attach()).
1765 if (!cpumask_intersects(src_rd->span, new_mask)) {
1766 struct dl_bw *src_dl_b;
1768 src_dl_b = dl_bw_of(cpu_of(rq));
1770 * We now free resources of the root_domain we are migrating
1771 * off. In the worst case, sched_setattr() may temporary fail
1772 * until we complete the update.
1774 raw_spin_lock(&src_dl_b->lock);
1775 __dl_clear(src_dl_b, p->dl.dl_bw);
1776 raw_spin_unlock(&src_dl_b->lock);
1779 set_cpus_allowed_common(p, new_mask);
1782 /* Assumes rq->lock is held */
1783 static void rq_online_dl(struct rq *rq)
1785 if (rq->dl.overloaded)
1786 dl_set_overload(rq);
1788 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1789 if (rq->dl.dl_nr_running > 0)
1790 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1793 /* Assumes rq->lock is held */
1794 static void rq_offline_dl(struct rq *rq)
1796 if (rq->dl.overloaded)
1797 dl_clear_overload(rq);
1799 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1800 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1803 void __init init_sched_dl_class(void)
1805 unsigned int i;
1807 for_each_possible_cpu(i)
1808 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1809 GFP_KERNEL, cpu_to_node(i));
1812 #endif /* CONFIG_SMP */
1814 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1817 * Start the deadline timer; if we switch back to dl before this we'll
1818 * continue consuming our current CBS slice. If we stay outside of
1819 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1820 * task.
1822 if (!start_dl_timer(p))
1823 __dl_clear_params(p);
1826 * Since this might be the only -deadline task on the rq,
1827 * this is the right place to try to pull some other one
1828 * from an overloaded cpu, if any.
1830 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1831 return;
1833 queue_pull_task(rq);
1837 * When switching to -deadline, we may overload the rq, then
1838 * we try to push someone off, if possible.
1840 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1843 /* If p is not queued we will update its parameters at next wakeup. */
1844 if (!task_on_rq_queued(p))
1845 return;
1848 * If p is boosted we already updated its params in
1849 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
1850 * p's deadline being now already after rq_clock(rq).
1852 if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1853 setup_new_dl_entity(&p->dl);
1855 if (rq->curr != p) {
1856 #ifdef CONFIG_SMP
1857 if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1858 queue_push_tasks(rq);
1859 #endif
1860 if (dl_task(rq->curr))
1861 check_preempt_curr_dl(rq, p, 0);
1862 else
1863 resched_curr(rq);
1868 * If the scheduling parameters of a -deadline task changed,
1869 * a push or pull operation might be needed.
1871 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1872 int oldprio)
1874 if (task_on_rq_queued(p) || rq->curr == p) {
1875 #ifdef CONFIG_SMP
1877 * This might be too much, but unfortunately
1878 * we don't have the old deadline value, and
1879 * we can't argue if the task is increasing
1880 * or lowering its prio, so...
1882 if (!rq->dl.overloaded)
1883 queue_pull_task(rq);
1886 * If we now have a earlier deadline task than p,
1887 * then reschedule, provided p is still on this
1888 * runqueue.
1890 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1891 resched_curr(rq);
1892 #else
1894 * Again, we don't know if p has a earlier
1895 * or later deadline, so let's blindly set a
1896 * (maybe not needed) rescheduling point.
1898 resched_curr(rq);
1899 #endif /* CONFIG_SMP */
1903 const struct sched_class dl_sched_class = {
1904 .next = &rt_sched_class,
1905 .enqueue_task = enqueue_task_dl,
1906 .dequeue_task = dequeue_task_dl,
1907 .yield_task = yield_task_dl,
1909 .check_preempt_curr = check_preempt_curr_dl,
1911 .pick_next_task = pick_next_task_dl,
1912 .put_prev_task = put_prev_task_dl,
1914 #ifdef CONFIG_SMP
1915 .select_task_rq = select_task_rq_dl,
1916 .set_cpus_allowed = set_cpus_allowed_dl,
1917 .rq_online = rq_online_dl,
1918 .rq_offline = rq_offline_dl,
1919 .task_woken = task_woken_dl,
1920 #endif
1922 .set_curr_task = set_curr_task_dl,
1923 .task_tick = task_tick_dl,
1924 .task_fork = task_fork_dl,
1925 .task_dead = task_dead_dl,
1927 .prio_changed = prio_changed_dl,
1928 .switched_from = switched_from_dl,
1929 .switched_to = switched_to_dl,
1931 .update_curr = update_curr_dl,
1934 #ifdef CONFIG_SCHED_DEBUG
1935 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1937 void print_dl_stats(struct seq_file *m, int cpu)
1939 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1941 #endif /* CONFIG_SCHED_DEBUG */