2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency
= 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG
;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity
= 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency
= 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly
;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
94 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
97 * The exponential sliding window over which load is averaged for shares
101 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
121 unsigned int capacity_margin
= 1280; /* ~20% */
123 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
129 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
135 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
148 * This idea comes from the SD scheduler of Con Kolivas:
150 static unsigned int get_update_sysctl_factor(void)
152 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
155 switch (sysctl_sched_tunable_scaling
) {
156 case SCHED_TUNABLESCALING_NONE
:
159 case SCHED_TUNABLESCALING_LINEAR
:
162 case SCHED_TUNABLESCALING_LOG
:
164 factor
= 1 + ilog2(cpus
);
171 static void update_sysctl(void)
173 unsigned int factor
= get_update_sysctl_factor();
175 #define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity
);
178 SET_SYSCTL(sched_latency
);
179 SET_SYSCTL(sched_wakeup_granularity
);
183 void sched_init_granularity(void)
188 #define WMULT_CONST (~0U)
189 #define WMULT_SHIFT 32
191 static void __update_inv_weight(struct load_weight
*lw
)
195 if (likely(lw
->inv_weight
))
198 w
= scale_load_down(lw
->weight
);
200 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
202 else if (unlikely(!w
))
203 lw
->inv_weight
= WMULT_CONST
;
205 lw
->inv_weight
= WMULT_CONST
/ w
;
209 * delta_exec * weight / lw.weight
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
220 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
222 u64 fact
= scale_load_down(weight
);
223 int shift
= WMULT_SHIFT
;
225 __update_inv_weight(lw
);
227 if (unlikely(fact
>> 32)) {
234 /* hint to use a 32x32->64 mul */
235 fact
= (u64
)(u32
)fact
* lw
->inv_weight
;
242 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
246 const struct sched_class fair_sched_class
;
248 /**************************************************************
249 * CFS operations on generic schedulable entities:
252 #ifdef CONFIG_FAIR_GROUP_SCHED
254 /* cpu runqueue to which this cfs_rq is attached */
255 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
260 /* An entity is a task if it doesn't "own" a runqueue */
261 #define entity_is_task(se) (!se->my_q)
263 static inline struct task_struct
*task_of(struct sched_entity
*se
)
265 SCHED_WARN_ON(!entity_is_task(se
));
266 return container_of(se
, struct task_struct
, se
);
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
273 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
290 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
292 if (!cfs_rq
->on_list
) {
294 * Ensure we either appear before our parent (if already
295 * enqueued) or force our parent to appear after us when it is
296 * enqueued. The fact that we always enqueue bottom-up
297 * reduces this to two cases.
299 if (cfs_rq
->tg
->parent
&&
300 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
301 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
302 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
304 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
305 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
314 if (cfs_rq
->on_list
) {
315 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq
*
326 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
328 if (se
->cfs_rq
== pse
->cfs_rq
)
334 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
340 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
342 int se_depth
, pse_depth
;
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
351 /* First walk up until both entities are at same depth */
352 se_depth
= (*se
)->depth
;
353 pse_depth
= (*pse
)->depth
;
355 while (se_depth
> pse_depth
) {
357 *se
= parent_entity(*se
);
360 while (pse_depth
> se_depth
) {
362 *pse
= parent_entity(*pse
);
365 while (!is_same_group(*se
, *pse
)) {
366 *se
= parent_entity(*se
);
367 *pse
= parent_entity(*pse
);
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
373 static inline struct task_struct
*task_of(struct sched_entity
*se
)
375 return container_of(se
, struct task_struct
, se
);
378 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
380 return container_of(cfs_rq
, struct rq
, cfs
);
383 #define entity_is_task(se) 1
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
388 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
390 return &task_rq(p
)->cfs
;
393 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
395 struct task_struct
*p
= task_of(se
);
396 struct rq
*rq
= task_rq(p
);
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
424 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
437 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
439 s64 delta
= (s64
)(vruntime
- max_vruntime
);
441 max_vruntime
= vruntime
;
446 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
448 s64 delta
= (s64
)(vruntime
- min_vruntime
);
450 min_vruntime
= vruntime
;
455 static inline int entity_before(struct sched_entity
*a
,
456 struct sched_entity
*b
)
458 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
461 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
463 struct sched_entity
*curr
= cfs_rq
->curr
;
465 u64 vruntime
= cfs_rq
->min_vruntime
;
469 vruntime
= curr
->vruntime
;
474 if (cfs_rq
->rb_leftmost
) {
475 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
480 vruntime
= se
->vruntime
;
482 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
485 /* ensure we never gain time by being placed backwards. */
486 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
489 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
494 * Enqueue an entity into the rb-tree:
496 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
498 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
499 struct rb_node
*parent
= NULL
;
500 struct sched_entity
*entry
;
504 * Find the right place in the rbtree:
508 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
510 * We dont care about collisions. Nodes with
511 * the same key stay together.
513 if (entity_before(se
, entry
)) {
514 link
= &parent
->rb_left
;
516 link
= &parent
->rb_right
;
522 * Maintain a cache of leftmost tree entries (it is frequently
526 cfs_rq
->rb_leftmost
= &se
->run_node
;
528 rb_link_node(&se
->run_node
, parent
, link
);
529 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
532 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
534 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
535 struct rb_node
*next_node
;
537 next_node
= rb_next(&se
->run_node
);
538 cfs_rq
->rb_leftmost
= next_node
;
541 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
544 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
546 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
551 return rb_entry(left
, struct sched_entity
, run_node
);
554 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
556 struct rb_node
*next
= rb_next(&se
->run_node
);
561 return rb_entry(next
, struct sched_entity
, run_node
);
564 #ifdef CONFIG_SCHED_DEBUG
565 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
567 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
572 return rb_entry(last
, struct sched_entity
, run_node
);
575 /**************************************************************
576 * Scheduling class statistics methods:
579 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
580 void __user
*buffer
, size_t *lenp
,
583 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
584 unsigned int factor
= get_update_sysctl_factor();
589 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
590 sysctl_sched_min_granularity
);
592 #define WRT_SYSCTL(name) \
593 (normalized_sysctl_##name = sysctl_##name / (factor))
594 WRT_SYSCTL(sched_min_granularity
);
595 WRT_SYSCTL(sched_latency
);
596 WRT_SYSCTL(sched_wakeup_granularity
);
606 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
608 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
609 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
615 * The idea is to set a period in which each task runs once.
617 * When there are too many tasks (sched_nr_latency) we have to stretch
618 * this period because otherwise the slices get too small.
620 * p = (nr <= nl) ? l : l*nr/nl
622 static u64
__sched_period(unsigned long nr_running
)
624 if (unlikely(nr_running
> sched_nr_latency
))
625 return nr_running
* sysctl_sched_min_granularity
;
627 return sysctl_sched_latency
;
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
636 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
638 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
640 for_each_sched_entity(se
) {
641 struct load_weight
*load
;
642 struct load_weight lw
;
644 cfs_rq
= cfs_rq_of(se
);
645 load
= &cfs_rq
->load
;
647 if (unlikely(!se
->on_rq
)) {
650 update_load_add(&lw
, se
->load
.weight
);
653 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
659 * We calculate the vruntime slice of a to-be-inserted task.
663 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
665 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
669 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
670 static unsigned long task_h_load(struct task_struct
*p
);
673 * We choose a half-life close to 1 scheduling period.
674 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
675 * dependent on this value.
677 #define LOAD_AVG_PERIOD 32
678 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
679 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
681 /* Give new sched_entity start runnable values to heavy its load in infant time */
682 void init_entity_runnable_average(struct sched_entity
*se
)
684 struct sched_avg
*sa
= &se
->avg
;
686 sa
->last_update_time
= 0;
688 * sched_avg's period_contrib should be strictly less then 1024, so
689 * we give it 1023 to make sure it is almost a period (1024us), and
690 * will definitely be update (after enqueue).
692 sa
->period_contrib
= 1023;
694 * Tasks are intialized with full load to be seen as heavy tasks until
695 * they get a chance to stabilize to their real load level.
696 * Group entities are intialized with zero load to reflect the fact that
697 * nothing has been attached to the task group yet.
699 if (entity_is_task(se
))
700 sa
->load_avg
= scale_load_down(se
->load
.weight
);
701 sa
->load_sum
= sa
->load_avg
* LOAD_AVG_MAX
;
703 * At this point, util_avg won't be used in select_task_rq_fair anyway
707 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
710 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
);
711 static int update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
);
712 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
);
713 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
);
716 * With new tasks being created, their initial util_avgs are extrapolated
717 * based on the cfs_rq's current util_avg:
719 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
721 * However, in many cases, the above util_avg does not give a desired
722 * value. Moreover, the sum of the util_avgs may be divergent, such
723 * as when the series is a harmonic series.
725 * To solve this problem, we also cap the util_avg of successive tasks to
726 * only 1/2 of the left utilization budget:
728 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
730 * where n denotes the nth task.
732 * For example, a simplest series from the beginning would be like:
734 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
735 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
737 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
738 * if util_avg > util_avg_cap.
740 void post_init_entity_util_avg(struct sched_entity
*se
)
742 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
743 struct sched_avg
*sa
= &se
->avg
;
744 long cap
= (long)(SCHED_CAPACITY_SCALE
- cfs_rq
->avg
.util_avg
) / 2;
745 u64 now
= cfs_rq_clock_task(cfs_rq
);
748 if (cfs_rq
->avg
.util_avg
!= 0) {
749 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
750 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
752 if (sa
->util_avg
> cap
)
757 sa
->util_sum
= sa
->util_avg
* LOAD_AVG_MAX
;
760 if (entity_is_task(se
)) {
761 struct task_struct
*p
= task_of(se
);
762 if (p
->sched_class
!= &fair_sched_class
) {
764 * For !fair tasks do:
766 update_cfs_rq_load_avg(now, cfs_rq, false);
767 attach_entity_load_avg(cfs_rq, se);
768 switched_from_fair(rq, p);
770 * such that the next switched_to_fair() has the
773 se
->avg
.last_update_time
= now
;
778 update_cfs_rq_load_avg(now
, cfs_rq
, false);
779 attach_entity_load_avg(cfs_rq
, se
);
780 update_tg_load_avg(cfs_rq
, false);
783 #else /* !CONFIG_SMP */
784 void init_entity_runnable_average(struct sched_entity
*se
)
787 void post_init_entity_util_avg(struct sched_entity
*se
)
790 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
793 #endif /* CONFIG_SMP */
796 * Update the current task's runtime statistics.
798 static void update_curr(struct cfs_rq
*cfs_rq
)
800 struct sched_entity
*curr
= cfs_rq
->curr
;
801 u64 now
= rq_clock_task(rq_of(cfs_rq
));
807 delta_exec
= now
- curr
->exec_start
;
808 if (unlikely((s64
)delta_exec
<= 0))
811 curr
->exec_start
= now
;
813 schedstat_set(curr
->statistics
.exec_max
,
814 max(delta_exec
, curr
->statistics
.exec_max
));
816 curr
->sum_exec_runtime
+= delta_exec
;
817 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
819 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
820 update_min_vruntime(cfs_rq
);
822 if (entity_is_task(curr
)) {
823 struct task_struct
*curtask
= task_of(curr
);
825 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
826 cpuacct_charge(curtask
, delta_exec
);
827 account_group_exec_runtime(curtask
, delta_exec
);
830 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
833 static void update_curr_fair(struct rq
*rq
)
835 update_curr(cfs_rq_of(&rq
->curr
->se
));
839 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
841 u64 wait_start
, prev_wait_start
;
843 if (!schedstat_enabled())
846 wait_start
= rq_clock(rq_of(cfs_rq
));
847 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
849 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
850 likely(wait_start
> prev_wait_start
))
851 wait_start
-= prev_wait_start
;
853 schedstat_set(se
->statistics
.wait_start
, wait_start
);
857 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
859 struct task_struct
*p
;
862 if (!schedstat_enabled())
865 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
867 if (entity_is_task(se
)) {
869 if (task_on_rq_migrating(p
)) {
871 * Preserve migrating task's wait time so wait_start
872 * time stamp can be adjusted to accumulate wait time
873 * prior to migration.
875 schedstat_set(se
->statistics
.wait_start
, delta
);
878 trace_sched_stat_wait(p
, delta
);
881 schedstat_set(se
->statistics
.wait_max
,
882 max(schedstat_val(se
->statistics
.wait_max
), delta
));
883 schedstat_inc(se
->statistics
.wait_count
);
884 schedstat_add(se
->statistics
.wait_sum
, delta
);
885 schedstat_set(se
->statistics
.wait_start
, 0);
889 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
891 struct task_struct
*tsk
= NULL
;
892 u64 sleep_start
, block_start
;
894 if (!schedstat_enabled())
897 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
898 block_start
= schedstat_val(se
->statistics
.block_start
);
900 if (entity_is_task(se
))
904 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
909 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
910 schedstat_set(se
->statistics
.sleep_max
, delta
);
912 schedstat_set(se
->statistics
.sleep_start
, 0);
913 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
916 account_scheduler_latency(tsk
, delta
>> 10, 1);
917 trace_sched_stat_sleep(tsk
, delta
);
921 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
926 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
927 schedstat_set(se
->statistics
.block_max
, delta
);
929 schedstat_set(se
->statistics
.block_start
, 0);
930 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
933 if (tsk
->in_iowait
) {
934 schedstat_add(se
->statistics
.iowait_sum
, delta
);
935 schedstat_inc(se
->statistics
.iowait_count
);
936 trace_sched_stat_iowait(tsk
, delta
);
939 trace_sched_stat_blocked(tsk
, delta
);
942 * Blocking time is in units of nanosecs, so shift by
943 * 20 to get a milliseconds-range estimation of the
944 * amount of time that the task spent sleeping:
946 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
947 profile_hits(SLEEP_PROFILING
,
948 (void *)get_wchan(tsk
),
951 account_scheduler_latency(tsk
, delta
>> 10, 0);
957 * Task is being enqueued - update stats:
960 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
962 if (!schedstat_enabled())
966 * Are we enqueueing a waiting task? (for current tasks
967 * a dequeue/enqueue event is a NOP)
969 if (se
!= cfs_rq
->curr
)
970 update_stats_wait_start(cfs_rq
, se
);
972 if (flags
& ENQUEUE_WAKEUP
)
973 update_stats_enqueue_sleeper(cfs_rq
, se
);
977 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
980 if (!schedstat_enabled())
984 * Mark the end of the wait period if dequeueing a
987 if (se
!= cfs_rq
->curr
)
988 update_stats_wait_end(cfs_rq
, se
);
990 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
991 struct task_struct
*tsk
= task_of(se
);
993 if (tsk
->state
& TASK_INTERRUPTIBLE
)
994 schedstat_set(se
->statistics
.sleep_start
,
995 rq_clock(rq_of(cfs_rq
)));
996 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
997 schedstat_set(se
->statistics
.block_start
,
998 rq_clock(rq_of(cfs_rq
)));
1003 * We are picking a new current task - update its stats:
1006 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1009 * We are starting a new run period:
1011 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1014 /**************************************************
1015 * Scheduling class queueing methods:
1018 #ifdef CONFIG_NUMA_BALANCING
1020 * Approximate time to scan a full NUMA task in ms. The task scan period is
1021 * calculated based on the tasks virtual memory size and
1022 * numa_balancing_scan_size.
1024 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1025 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1027 /* Portion of address space to scan in MB */
1028 unsigned int sysctl_numa_balancing_scan_size
= 256;
1030 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1031 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1033 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1035 unsigned long rss
= 0;
1036 unsigned long nr_scan_pages
;
1039 * Calculations based on RSS as non-present and empty pages are skipped
1040 * by the PTE scanner and NUMA hinting faults should be trapped based
1043 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1044 rss
= get_mm_rss(p
->mm
);
1046 rss
= nr_scan_pages
;
1048 rss
= round_up(rss
, nr_scan_pages
);
1049 return rss
/ nr_scan_pages
;
1052 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1053 #define MAX_SCAN_WINDOW 2560
1055 static unsigned int task_scan_min(struct task_struct
*p
)
1057 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1058 unsigned int scan
, floor
;
1059 unsigned int windows
= 1;
1061 if (scan_size
< MAX_SCAN_WINDOW
)
1062 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1063 floor
= 1000 / windows
;
1065 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1066 return max_t(unsigned int, floor
, scan
);
1069 static unsigned int task_scan_max(struct task_struct
*p
)
1071 unsigned int smin
= task_scan_min(p
);
1074 /* Watch for min being lower than max due to floor calculations */
1075 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1076 return max(smin
, smax
);
1079 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1081 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= -1);
1082 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1085 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1087 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= -1);
1088 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1094 spinlock_t lock
; /* nr_tasks, tasks */
1099 struct rcu_head rcu
;
1100 unsigned long total_faults
;
1101 unsigned long max_faults_cpu
;
1103 * Faults_cpu is used to decide whether memory should move
1104 * towards the CPU. As a consequence, these stats are weighted
1105 * more by CPU use than by memory faults.
1107 unsigned long *faults_cpu
;
1108 unsigned long faults
[0];
1111 /* Shared or private faults. */
1112 #define NR_NUMA_HINT_FAULT_TYPES 2
1114 /* Memory and CPU locality */
1115 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1117 /* Averaged statistics, and temporary buffers. */
1118 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1120 pid_t
task_numa_group_id(struct task_struct
*p
)
1122 return p
->numa_group
? p
->numa_group
->gid
: 0;
1126 * The averaged statistics, shared & private, memory & cpu,
1127 * occupy the first half of the array. The second half of the
1128 * array is for current counters, which are averaged into the
1129 * first set by task_numa_placement.
1131 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1133 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1136 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1138 if (!p
->numa_faults
)
1141 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1142 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1145 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1150 return p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1151 p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1154 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1156 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1157 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1161 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1162 * considered part of a numa group's pseudo-interleaving set. Migrations
1163 * between these nodes are slowed down, to allow things to settle down.
1165 #define ACTIVE_NODE_FRACTION 3
1167 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1169 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1172 /* Handle placement on systems where not all nodes are directly connected. */
1173 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1174 int maxdist
, bool task
)
1176 unsigned long score
= 0;
1180 * All nodes are directly connected, and the same distance
1181 * from each other. No need for fancy placement algorithms.
1183 if (sched_numa_topology_type
== NUMA_DIRECT
)
1187 * This code is called for each node, introducing N^2 complexity,
1188 * which should be ok given the number of nodes rarely exceeds 8.
1190 for_each_online_node(node
) {
1191 unsigned long faults
;
1192 int dist
= node_distance(nid
, node
);
1195 * The furthest away nodes in the system are not interesting
1196 * for placement; nid was already counted.
1198 if (dist
== sched_max_numa_distance
|| node
== nid
)
1202 * On systems with a backplane NUMA topology, compare groups
1203 * of nodes, and move tasks towards the group with the most
1204 * memory accesses. When comparing two nodes at distance
1205 * "hoplimit", only nodes closer by than "hoplimit" are part
1206 * of each group. Skip other nodes.
1208 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1212 /* Add up the faults from nearby nodes. */
1214 faults
= task_faults(p
, node
);
1216 faults
= group_faults(p
, node
);
1219 * On systems with a glueless mesh NUMA topology, there are
1220 * no fixed "groups of nodes". Instead, nodes that are not
1221 * directly connected bounce traffic through intermediate
1222 * nodes; a numa_group can occupy any set of nodes.
1223 * The further away a node is, the less the faults count.
1224 * This seems to result in good task placement.
1226 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1227 faults
*= (sched_max_numa_distance
- dist
);
1228 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1238 * These return the fraction of accesses done by a particular task, or
1239 * task group, on a particular numa node. The group weight is given a
1240 * larger multiplier, in order to group tasks together that are almost
1241 * evenly spread out between numa nodes.
1243 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1246 unsigned long faults
, total_faults
;
1248 if (!p
->numa_faults
)
1251 total_faults
= p
->total_numa_faults
;
1256 faults
= task_faults(p
, nid
);
1257 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1259 return 1000 * faults
/ total_faults
;
1262 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1265 unsigned long faults
, total_faults
;
1270 total_faults
= p
->numa_group
->total_faults
;
1275 faults
= group_faults(p
, nid
);
1276 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1278 return 1000 * faults
/ total_faults
;
1281 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1282 int src_nid
, int dst_cpu
)
1284 struct numa_group
*ng
= p
->numa_group
;
1285 int dst_nid
= cpu_to_node(dst_cpu
);
1286 int last_cpupid
, this_cpupid
;
1288 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1291 * Multi-stage node selection is used in conjunction with a periodic
1292 * migration fault to build a temporal task<->page relation. By using
1293 * a two-stage filter we remove short/unlikely relations.
1295 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1296 * a task's usage of a particular page (n_p) per total usage of this
1297 * page (n_t) (in a given time-span) to a probability.
1299 * Our periodic faults will sample this probability and getting the
1300 * same result twice in a row, given these samples are fully
1301 * independent, is then given by P(n)^2, provided our sample period
1302 * is sufficiently short compared to the usage pattern.
1304 * This quadric squishes small probabilities, making it less likely we
1305 * act on an unlikely task<->page relation.
1307 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1308 if (!cpupid_pid_unset(last_cpupid
) &&
1309 cpupid_to_nid(last_cpupid
) != dst_nid
)
1312 /* Always allow migrate on private faults */
1313 if (cpupid_match_pid(p
, last_cpupid
))
1316 /* A shared fault, but p->numa_group has not been set up yet. */
1321 * Destination node is much more heavily used than the source
1322 * node? Allow migration.
1324 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1325 ACTIVE_NODE_FRACTION
)
1329 * Distribute memory according to CPU & memory use on each node,
1330 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1332 * faults_cpu(dst) 3 faults_cpu(src)
1333 * --------------- * - > ---------------
1334 * faults_mem(dst) 4 faults_mem(src)
1336 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1337 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1340 static unsigned long weighted_cpuload(const int cpu
);
1341 static unsigned long source_load(int cpu
, int type
);
1342 static unsigned long target_load(int cpu
, int type
);
1343 static unsigned long capacity_of(int cpu
);
1344 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
);
1346 /* Cached statistics for all CPUs within a node */
1348 unsigned long nr_running
;
1351 /* Total compute capacity of CPUs on a node */
1352 unsigned long compute_capacity
;
1354 /* Approximate capacity in terms of runnable tasks on a node */
1355 unsigned long task_capacity
;
1356 int has_free_capacity
;
1360 * XXX borrowed from update_sg_lb_stats
1362 static void update_numa_stats(struct numa_stats
*ns
, int nid
)
1364 int smt
, cpu
, cpus
= 0;
1365 unsigned long capacity
;
1367 memset(ns
, 0, sizeof(*ns
));
1368 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1369 struct rq
*rq
= cpu_rq(cpu
);
1371 ns
->nr_running
+= rq
->nr_running
;
1372 ns
->load
+= weighted_cpuload(cpu
);
1373 ns
->compute_capacity
+= capacity_of(cpu
);
1379 * If we raced with hotplug and there are no CPUs left in our mask
1380 * the @ns structure is NULL'ed and task_numa_compare() will
1381 * not find this node attractive.
1383 * We'll either bail at !has_free_capacity, or we'll detect a huge
1384 * imbalance and bail there.
1389 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1390 smt
= DIV_ROUND_UP(SCHED_CAPACITY_SCALE
* cpus
, ns
->compute_capacity
);
1391 capacity
= cpus
/ smt
; /* cores */
1393 ns
->task_capacity
= min_t(unsigned, capacity
,
1394 DIV_ROUND_CLOSEST(ns
->compute_capacity
, SCHED_CAPACITY_SCALE
));
1395 ns
->has_free_capacity
= (ns
->nr_running
< ns
->task_capacity
);
1398 struct task_numa_env
{
1399 struct task_struct
*p
;
1401 int src_cpu
, src_nid
;
1402 int dst_cpu
, dst_nid
;
1404 struct numa_stats src_stats
, dst_stats
;
1409 struct task_struct
*best_task
;
1414 static void task_numa_assign(struct task_numa_env
*env
,
1415 struct task_struct
*p
, long imp
)
1418 put_task_struct(env
->best_task
);
1423 env
->best_imp
= imp
;
1424 env
->best_cpu
= env
->dst_cpu
;
1427 static bool load_too_imbalanced(long src_load
, long dst_load
,
1428 struct task_numa_env
*env
)
1431 long orig_src_load
, orig_dst_load
;
1432 long src_capacity
, dst_capacity
;
1435 * The load is corrected for the CPU capacity available on each node.
1438 * ------------ vs ---------
1439 * src_capacity dst_capacity
1441 src_capacity
= env
->src_stats
.compute_capacity
;
1442 dst_capacity
= env
->dst_stats
.compute_capacity
;
1444 /* We care about the slope of the imbalance, not the direction. */
1445 if (dst_load
< src_load
)
1446 swap(dst_load
, src_load
);
1448 /* Is the difference below the threshold? */
1449 imb
= dst_load
* src_capacity
* 100 -
1450 src_load
* dst_capacity
* env
->imbalance_pct
;
1455 * The imbalance is above the allowed threshold.
1456 * Compare it with the old imbalance.
1458 orig_src_load
= env
->src_stats
.load
;
1459 orig_dst_load
= env
->dst_stats
.load
;
1461 if (orig_dst_load
< orig_src_load
)
1462 swap(orig_dst_load
, orig_src_load
);
1464 old_imb
= orig_dst_load
* src_capacity
* 100 -
1465 orig_src_load
* dst_capacity
* env
->imbalance_pct
;
1467 /* Would this change make things worse? */
1468 return (imb
> old_imb
);
1472 * This checks if the overall compute and NUMA accesses of the system would
1473 * be improved if the source tasks was migrated to the target dst_cpu taking
1474 * into account that it might be best if task running on the dst_cpu should
1475 * be exchanged with the source task
1477 static void task_numa_compare(struct task_numa_env
*env
,
1478 long taskimp
, long groupimp
)
1480 struct rq
*src_rq
= cpu_rq(env
->src_cpu
);
1481 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1482 struct task_struct
*cur
;
1483 long src_load
, dst_load
;
1485 long imp
= env
->p
->numa_group
? groupimp
: taskimp
;
1487 int dist
= env
->dist
;
1490 cur
= task_rcu_dereference(&dst_rq
->curr
);
1491 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1495 * Because we have preemption enabled we can get migrated around and
1496 * end try selecting ourselves (current == env->p) as a swap candidate.
1502 * "imp" is the fault differential for the source task between the
1503 * source and destination node. Calculate the total differential for
1504 * the source task and potential destination task. The more negative
1505 * the value is, the more rmeote accesses that would be expected to
1506 * be incurred if the tasks were swapped.
1509 /* Skip this swap candidate if cannot move to the source cpu */
1510 if (!cpumask_test_cpu(env
->src_cpu
, tsk_cpus_allowed(cur
)))
1514 * If dst and source tasks are in the same NUMA group, or not
1515 * in any group then look only at task weights.
1517 if (cur
->numa_group
== env
->p
->numa_group
) {
1518 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1519 task_weight(cur
, env
->dst_nid
, dist
);
1521 * Add some hysteresis to prevent swapping the
1522 * tasks within a group over tiny differences.
1524 if (cur
->numa_group
)
1528 * Compare the group weights. If a task is all by
1529 * itself (not part of a group), use the task weight
1532 if (cur
->numa_group
)
1533 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1534 group_weight(cur
, env
->dst_nid
, dist
);
1536 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1537 task_weight(cur
, env
->dst_nid
, dist
);
1541 if (imp
<= env
->best_imp
&& moveimp
<= env
->best_imp
)
1545 /* Is there capacity at our destination? */
1546 if (env
->src_stats
.nr_running
<= env
->src_stats
.task_capacity
&&
1547 !env
->dst_stats
.has_free_capacity
)
1553 /* Balance doesn't matter much if we're running a task per cpu */
1554 if (imp
> env
->best_imp
&& src_rq
->nr_running
== 1 &&
1555 dst_rq
->nr_running
== 1)
1559 * In the overloaded case, try and keep the load balanced.
1562 load
= task_h_load(env
->p
);
1563 dst_load
= env
->dst_stats
.load
+ load
;
1564 src_load
= env
->src_stats
.load
- load
;
1566 if (moveimp
> imp
&& moveimp
> env
->best_imp
) {
1568 * If the improvement from just moving env->p direction is
1569 * better than swapping tasks around, check if a move is
1570 * possible. Store a slightly smaller score than moveimp,
1571 * so an actually idle CPU will win.
1573 if (!load_too_imbalanced(src_load
, dst_load
, env
)) {
1580 if (imp
<= env
->best_imp
)
1584 load
= task_h_load(cur
);
1589 if (load_too_imbalanced(src_load
, dst_load
, env
))
1593 * One idle CPU per node is evaluated for a task numa move.
1594 * Call select_idle_sibling to maybe find a better one.
1598 * select_idle_siblings() uses an per-cpu cpumask that
1599 * can be used from IRQ context.
1601 local_irq_disable();
1602 env
->dst_cpu
= select_idle_sibling(env
->p
, env
->src_cpu
,
1608 task_numa_assign(env
, cur
, imp
);
1613 static void task_numa_find_cpu(struct task_numa_env
*env
,
1614 long taskimp
, long groupimp
)
1618 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1619 /* Skip this CPU if the source task cannot migrate */
1620 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(env
->p
)))
1624 task_numa_compare(env
, taskimp
, groupimp
);
1628 /* Only move tasks to a NUMA node less busy than the current node. */
1629 static bool numa_has_capacity(struct task_numa_env
*env
)
1631 struct numa_stats
*src
= &env
->src_stats
;
1632 struct numa_stats
*dst
= &env
->dst_stats
;
1634 if (src
->has_free_capacity
&& !dst
->has_free_capacity
)
1638 * Only consider a task move if the source has a higher load
1639 * than the destination, corrected for CPU capacity on each node.
1641 * src->load dst->load
1642 * --------------------- vs ---------------------
1643 * src->compute_capacity dst->compute_capacity
1645 if (src
->load
* dst
->compute_capacity
* env
->imbalance_pct
>
1647 dst
->load
* src
->compute_capacity
* 100)
1653 static int task_numa_migrate(struct task_struct
*p
)
1655 struct task_numa_env env
= {
1658 .src_cpu
= task_cpu(p
),
1659 .src_nid
= task_node(p
),
1661 .imbalance_pct
= 112,
1667 struct sched_domain
*sd
;
1668 unsigned long taskweight
, groupweight
;
1670 long taskimp
, groupimp
;
1673 * Pick the lowest SD_NUMA domain, as that would have the smallest
1674 * imbalance and would be the first to start moving tasks about.
1676 * And we want to avoid any moving of tasks about, as that would create
1677 * random movement of tasks -- counter the numa conditions we're trying
1681 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1683 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
1687 * Cpusets can break the scheduler domain tree into smaller
1688 * balance domains, some of which do not cross NUMA boundaries.
1689 * Tasks that are "trapped" in such domains cannot be migrated
1690 * elsewhere, so there is no point in (re)trying.
1692 if (unlikely(!sd
)) {
1693 p
->numa_preferred_nid
= task_node(p
);
1697 env
.dst_nid
= p
->numa_preferred_nid
;
1698 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1699 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1700 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1701 update_numa_stats(&env
.src_stats
, env
.src_nid
);
1702 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
1703 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
1704 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1706 /* Try to find a spot on the preferred nid. */
1707 if (numa_has_capacity(&env
))
1708 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1711 * Look at other nodes in these cases:
1712 * - there is no space available on the preferred_nid
1713 * - the task is part of a numa_group that is interleaved across
1714 * multiple NUMA nodes; in order to better consolidate the group,
1715 * we need to check other locations.
1717 if (env
.best_cpu
== -1 || (p
->numa_group
&& p
->numa_group
->active_nodes
> 1)) {
1718 for_each_online_node(nid
) {
1719 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
1722 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1723 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1725 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1726 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1729 /* Only consider nodes where both task and groups benefit */
1730 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
1731 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
1732 if (taskimp
< 0 && groupimp
< 0)
1737 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1738 if (numa_has_capacity(&env
))
1739 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1744 * If the task is part of a workload that spans multiple NUMA nodes,
1745 * and is migrating into one of the workload's active nodes, remember
1746 * this node as the task's preferred numa node, so the workload can
1748 * A task that migrated to a second choice node will be better off
1749 * trying for a better one later. Do not set the preferred node here.
1751 if (p
->numa_group
) {
1752 struct numa_group
*ng
= p
->numa_group
;
1754 if (env
.best_cpu
== -1)
1759 if (ng
->active_nodes
> 1 && numa_is_active_node(env
.dst_nid
, ng
))
1760 sched_setnuma(p
, env
.dst_nid
);
1763 /* No better CPU than the current one was found. */
1764 if (env
.best_cpu
== -1)
1768 * Reset the scan period if the task is being rescheduled on an
1769 * alternative node to recheck if the tasks is now properly placed.
1771 p
->numa_scan_period
= task_scan_min(p
);
1773 if (env
.best_task
== NULL
) {
1774 ret
= migrate_task_to(p
, env
.best_cpu
);
1776 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_cpu
);
1780 ret
= migrate_swap(p
, env
.best_task
);
1782 trace_sched_stick_numa(p
, env
.src_cpu
, task_cpu(env
.best_task
));
1783 put_task_struct(env
.best_task
);
1787 /* Attempt to migrate a task to a CPU on the preferred node. */
1788 static void numa_migrate_preferred(struct task_struct
*p
)
1790 unsigned long interval
= HZ
;
1792 /* This task has no NUMA fault statistics yet */
1793 if (unlikely(p
->numa_preferred_nid
== -1 || !p
->numa_faults
))
1796 /* Periodically retry migrating the task to the preferred node */
1797 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
1798 p
->numa_migrate_retry
= jiffies
+ interval
;
1800 /* Success if task is already running on preferred CPU */
1801 if (task_node(p
) == p
->numa_preferred_nid
)
1804 /* Otherwise, try migrate to a CPU on the preferred node */
1805 task_numa_migrate(p
);
1809 * Find out how many nodes on the workload is actively running on. Do this by
1810 * tracking the nodes from which NUMA hinting faults are triggered. This can
1811 * be different from the set of nodes where the workload's memory is currently
1814 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
1816 unsigned long faults
, max_faults
= 0;
1817 int nid
, active_nodes
= 0;
1819 for_each_online_node(nid
) {
1820 faults
= group_faults_cpu(numa_group
, nid
);
1821 if (faults
> max_faults
)
1822 max_faults
= faults
;
1825 for_each_online_node(nid
) {
1826 faults
= group_faults_cpu(numa_group
, nid
);
1827 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
1831 numa_group
->max_faults_cpu
= max_faults
;
1832 numa_group
->active_nodes
= active_nodes
;
1836 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1837 * increments. The more local the fault statistics are, the higher the scan
1838 * period will be for the next scan window. If local/(local+remote) ratio is
1839 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1840 * the scan period will decrease. Aim for 70% local accesses.
1842 #define NUMA_PERIOD_SLOTS 10
1843 #define NUMA_PERIOD_THRESHOLD 7
1846 * Increase the scan period (slow down scanning) if the majority of
1847 * our memory is already on our local node, or if the majority of
1848 * the page accesses are shared with other processes.
1849 * Otherwise, decrease the scan period.
1851 static void update_task_scan_period(struct task_struct
*p
,
1852 unsigned long shared
, unsigned long private)
1854 unsigned int period_slot
;
1858 unsigned long remote
= p
->numa_faults_locality
[0];
1859 unsigned long local
= p
->numa_faults_locality
[1];
1862 * If there were no record hinting faults then either the task is
1863 * completely idle or all activity is areas that are not of interest
1864 * to automatic numa balancing. Related to that, if there were failed
1865 * migration then it implies we are migrating too quickly or the local
1866 * node is overloaded. In either case, scan slower
1868 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
1869 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
1870 p
->numa_scan_period
<< 1);
1872 p
->mm
->numa_next_scan
= jiffies
+
1873 msecs_to_jiffies(p
->numa_scan_period
);
1879 * Prepare to scale scan period relative to the current period.
1880 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1881 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1882 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1884 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
1885 ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
1886 if (ratio
>= NUMA_PERIOD_THRESHOLD
) {
1887 int slot
= ratio
- NUMA_PERIOD_THRESHOLD
;
1890 diff
= slot
* period_slot
;
1892 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
1895 * Scale scan rate increases based on sharing. There is an
1896 * inverse relationship between the degree of sharing and
1897 * the adjustment made to the scanning period. Broadly
1898 * speaking the intent is that there is little point
1899 * scanning faster if shared accesses dominate as it may
1900 * simply bounce migrations uselessly
1902 ratio
= DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS
, (private + shared
+ 1));
1903 diff
= (diff
* ratio
) / NUMA_PERIOD_SLOTS
;
1906 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
1907 task_scan_min(p
), task_scan_max(p
));
1908 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
1912 * Get the fraction of time the task has been running since the last
1913 * NUMA placement cycle. The scheduler keeps similar statistics, but
1914 * decays those on a 32ms period, which is orders of magnitude off
1915 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1916 * stats only if the task is so new there are no NUMA statistics yet.
1918 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
1920 u64 runtime
, delta
, now
;
1921 /* Use the start of this time slice to avoid calculations. */
1922 now
= p
->se
.exec_start
;
1923 runtime
= p
->se
.sum_exec_runtime
;
1925 if (p
->last_task_numa_placement
) {
1926 delta
= runtime
- p
->last_sum_exec_runtime
;
1927 *period
= now
- p
->last_task_numa_placement
;
1929 /* Avoid time going backwards, prevent potential divide error: */
1930 if (unlikely((s64
)*period
< 0))
1933 delta
= p
->se
.avg
.load_sum
/ p
->se
.load
.weight
;
1934 *period
= LOAD_AVG_MAX
;
1937 p
->last_sum_exec_runtime
= runtime
;
1938 p
->last_task_numa_placement
= now
;
1944 * Determine the preferred nid for a task in a numa_group. This needs to
1945 * be done in a way that produces consistent results with group_weight,
1946 * otherwise workloads might not converge.
1948 static int preferred_group_nid(struct task_struct
*p
, int nid
)
1953 /* Direct connections between all NUMA nodes. */
1954 if (sched_numa_topology_type
== NUMA_DIRECT
)
1958 * On a system with glueless mesh NUMA topology, group_weight
1959 * scores nodes according to the number of NUMA hinting faults on
1960 * both the node itself, and on nearby nodes.
1962 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1963 unsigned long score
, max_score
= 0;
1964 int node
, max_node
= nid
;
1966 dist
= sched_max_numa_distance
;
1968 for_each_online_node(node
) {
1969 score
= group_weight(p
, node
, dist
);
1970 if (score
> max_score
) {
1979 * Finding the preferred nid in a system with NUMA backplane
1980 * interconnect topology is more involved. The goal is to locate
1981 * tasks from numa_groups near each other in the system, and
1982 * untangle workloads from different sides of the system. This requires
1983 * searching down the hierarchy of node groups, recursively searching
1984 * inside the highest scoring group of nodes. The nodemask tricks
1985 * keep the complexity of the search down.
1987 nodes
= node_online_map
;
1988 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
1989 unsigned long max_faults
= 0;
1990 nodemask_t max_group
= NODE_MASK_NONE
;
1993 /* Are there nodes at this distance from each other? */
1994 if (!find_numa_distance(dist
))
1997 for_each_node_mask(a
, nodes
) {
1998 unsigned long faults
= 0;
1999 nodemask_t this_group
;
2000 nodes_clear(this_group
);
2002 /* Sum group's NUMA faults; includes a==b case. */
2003 for_each_node_mask(b
, nodes
) {
2004 if (node_distance(a
, b
) < dist
) {
2005 faults
+= group_faults(p
, b
);
2006 node_set(b
, this_group
);
2007 node_clear(b
, nodes
);
2011 /* Remember the top group. */
2012 if (faults
> max_faults
) {
2013 max_faults
= faults
;
2014 max_group
= this_group
;
2016 * subtle: at the smallest distance there is
2017 * just one node left in each "group", the
2018 * winner is the preferred nid.
2023 /* Next round, evaluate the nodes within max_group. */
2031 static void task_numa_placement(struct task_struct
*p
)
2033 int seq
, nid
, max_nid
= -1, max_group_nid
= -1;
2034 unsigned long max_faults
= 0, max_group_faults
= 0;
2035 unsigned long fault_types
[2] = { 0, 0 };
2036 unsigned long total_faults
;
2037 u64 runtime
, period
;
2038 spinlock_t
*group_lock
= NULL
;
2041 * The p->mm->numa_scan_seq field gets updated without
2042 * exclusive access. Use READ_ONCE() here to ensure
2043 * that the field is read in a single access:
2045 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2046 if (p
->numa_scan_seq
== seq
)
2048 p
->numa_scan_seq
= seq
;
2049 p
->numa_scan_period_max
= task_scan_max(p
);
2051 total_faults
= p
->numa_faults_locality
[0] +
2052 p
->numa_faults_locality
[1];
2053 runtime
= numa_get_avg_runtime(p
, &period
);
2055 /* If the task is part of a group prevent parallel updates to group stats */
2056 if (p
->numa_group
) {
2057 group_lock
= &p
->numa_group
->lock
;
2058 spin_lock_irq(group_lock
);
2061 /* Find the node with the highest number of faults */
2062 for_each_online_node(nid
) {
2063 /* Keep track of the offsets in numa_faults array */
2064 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2065 unsigned long faults
= 0, group_faults
= 0;
2068 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2069 long diff
, f_diff
, f_weight
;
2071 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2072 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2073 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2074 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2076 /* Decay existing window, copy faults since last scan */
2077 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2078 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2079 p
->numa_faults
[membuf_idx
] = 0;
2082 * Normalize the faults_from, so all tasks in a group
2083 * count according to CPU use, instead of by the raw
2084 * number of faults. Tasks with little runtime have
2085 * little over-all impact on throughput, and thus their
2086 * faults are less important.
2088 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2089 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2091 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2092 p
->numa_faults
[cpubuf_idx
] = 0;
2094 p
->numa_faults
[mem_idx
] += diff
;
2095 p
->numa_faults
[cpu_idx
] += f_diff
;
2096 faults
+= p
->numa_faults
[mem_idx
];
2097 p
->total_numa_faults
+= diff
;
2098 if (p
->numa_group
) {
2100 * safe because we can only change our own group
2102 * mem_idx represents the offset for a given
2103 * nid and priv in a specific region because it
2104 * is at the beginning of the numa_faults array.
2106 p
->numa_group
->faults
[mem_idx
] += diff
;
2107 p
->numa_group
->faults_cpu
[mem_idx
] += f_diff
;
2108 p
->numa_group
->total_faults
+= diff
;
2109 group_faults
+= p
->numa_group
->faults
[mem_idx
];
2113 if (faults
> max_faults
) {
2114 max_faults
= faults
;
2118 if (group_faults
> max_group_faults
) {
2119 max_group_faults
= group_faults
;
2120 max_group_nid
= nid
;
2124 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2126 if (p
->numa_group
) {
2127 numa_group_count_active_nodes(p
->numa_group
);
2128 spin_unlock_irq(group_lock
);
2129 max_nid
= preferred_group_nid(p
, max_group_nid
);
2133 /* Set the new preferred node */
2134 if (max_nid
!= p
->numa_preferred_nid
)
2135 sched_setnuma(p
, max_nid
);
2137 if (task_node(p
) != p
->numa_preferred_nid
)
2138 numa_migrate_preferred(p
);
2142 static inline int get_numa_group(struct numa_group
*grp
)
2144 return atomic_inc_not_zero(&grp
->refcount
);
2147 static inline void put_numa_group(struct numa_group
*grp
)
2149 if (atomic_dec_and_test(&grp
->refcount
))
2150 kfree_rcu(grp
, rcu
);
2153 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2156 struct numa_group
*grp
, *my_grp
;
2157 struct task_struct
*tsk
;
2159 int cpu
= cpupid_to_cpu(cpupid
);
2162 if (unlikely(!p
->numa_group
)) {
2163 unsigned int size
= sizeof(struct numa_group
) +
2164 4*nr_node_ids
*sizeof(unsigned long);
2166 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2170 atomic_set(&grp
->refcount
, 1);
2171 grp
->active_nodes
= 1;
2172 grp
->max_faults_cpu
= 0;
2173 spin_lock_init(&grp
->lock
);
2175 /* Second half of the array tracks nids where faults happen */
2176 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2179 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2180 grp
->faults
[i
] = p
->numa_faults
[i
];
2182 grp
->total_faults
= p
->total_numa_faults
;
2185 rcu_assign_pointer(p
->numa_group
, grp
);
2189 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2191 if (!cpupid_match_pid(tsk
, cpupid
))
2194 grp
= rcu_dereference(tsk
->numa_group
);
2198 my_grp
= p
->numa_group
;
2203 * Only join the other group if its bigger; if we're the bigger group,
2204 * the other task will join us.
2206 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2210 * Tie-break on the grp address.
2212 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2215 /* Always join threads in the same process. */
2216 if (tsk
->mm
== current
->mm
)
2219 /* Simple filter to avoid false positives due to PID collisions */
2220 if (flags
& TNF_SHARED
)
2223 /* Update priv based on whether false sharing was detected */
2226 if (join
&& !get_numa_group(grp
))
2234 BUG_ON(irqs_disabled());
2235 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2237 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2238 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2239 grp
->faults
[i
] += p
->numa_faults
[i
];
2241 my_grp
->total_faults
-= p
->total_numa_faults
;
2242 grp
->total_faults
+= p
->total_numa_faults
;
2247 spin_unlock(&my_grp
->lock
);
2248 spin_unlock_irq(&grp
->lock
);
2250 rcu_assign_pointer(p
->numa_group
, grp
);
2252 put_numa_group(my_grp
);
2261 * Get rid of NUMA staticstics associated with a task (either current or dead).
2262 * If @final is set, the task is dead and has reached refcount zero, so we can
2263 * safely free all relevant data structures. Otherwise, there might be
2264 * concurrent reads from places like load balancing and procfs, and we should
2265 * reset the data back to default state without freeing ->numa_faults.
2267 void task_numa_free(struct task_struct
*p
, bool final
)
2269 struct numa_group
*grp
= p
->numa_group
;
2270 unsigned long *numa_faults
= p
->numa_faults
;
2271 unsigned long flags
;
2278 spin_lock_irqsave(&grp
->lock
, flags
);
2279 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2280 grp
->faults
[i
] -= p
->numa_faults
[i
];
2281 grp
->total_faults
-= p
->total_numa_faults
;
2284 spin_unlock_irqrestore(&grp
->lock
, flags
);
2285 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2286 put_numa_group(grp
);
2290 p
->numa_faults
= NULL
;
2293 p
->total_numa_faults
= 0;
2294 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2300 * Got a PROT_NONE fault for a page on @node.
2302 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2304 struct task_struct
*p
= current
;
2305 bool migrated
= flags
& TNF_MIGRATED
;
2306 int cpu_node
= task_node(current
);
2307 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2308 struct numa_group
*ng
;
2311 if (!static_branch_likely(&sched_numa_balancing
))
2314 /* for example, ksmd faulting in a user's mm */
2318 /* Allocate buffer to track faults on a per-node basis */
2319 if (unlikely(!p
->numa_faults
)) {
2320 int size
= sizeof(*p
->numa_faults
) *
2321 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2323 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2324 if (!p
->numa_faults
)
2327 p
->total_numa_faults
= 0;
2328 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2332 * First accesses are treated as private, otherwise consider accesses
2333 * to be private if the accessing pid has not changed
2335 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2338 priv
= cpupid_match_pid(p
, last_cpupid
);
2339 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2340 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2344 * If a workload spans multiple NUMA nodes, a shared fault that
2345 * occurs wholly within the set of nodes that the workload is
2346 * actively using should be counted as local. This allows the
2347 * scan rate to slow down when a workload has settled down.
2350 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2351 numa_is_active_node(cpu_node
, ng
) &&
2352 numa_is_active_node(mem_node
, ng
))
2355 task_numa_placement(p
);
2358 * Retry task to preferred node migration periodically, in case it
2359 * case it previously failed, or the scheduler moved us.
2361 if (time_after(jiffies
, p
->numa_migrate_retry
))
2362 numa_migrate_preferred(p
);
2365 p
->numa_pages_migrated
+= pages
;
2366 if (flags
& TNF_MIGRATE_FAIL
)
2367 p
->numa_faults_locality
[2] += pages
;
2369 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2370 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2371 p
->numa_faults_locality
[local
] += pages
;
2374 static void reset_ptenuma_scan(struct task_struct
*p
)
2377 * We only did a read acquisition of the mmap sem, so
2378 * p->mm->numa_scan_seq is written to without exclusive access
2379 * and the update is not guaranteed to be atomic. That's not
2380 * much of an issue though, since this is just used for
2381 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2382 * expensive, to avoid any form of compiler optimizations:
2384 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2385 p
->mm
->numa_scan_offset
= 0;
2389 * The expensive part of numa migration is done from task_work context.
2390 * Triggered from task_tick_numa().
2392 void task_numa_work(struct callback_head
*work
)
2394 unsigned long migrate
, next_scan
, now
= jiffies
;
2395 struct task_struct
*p
= current
;
2396 struct mm_struct
*mm
= p
->mm
;
2397 u64 runtime
= p
->se
.sum_exec_runtime
;
2398 struct vm_area_struct
*vma
;
2399 unsigned long start
, end
;
2400 unsigned long nr_pte_updates
= 0;
2401 long pages
, virtpages
;
2403 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2405 work
->next
= work
; /* protect against double add */
2407 * Who cares about NUMA placement when they're dying.
2409 * NOTE: make sure not to dereference p->mm before this check,
2410 * exit_task_work() happens _after_ exit_mm() so we could be called
2411 * without p->mm even though we still had it when we enqueued this
2414 if (p
->flags
& PF_EXITING
)
2417 if (!mm
->numa_next_scan
) {
2418 mm
->numa_next_scan
= now
+
2419 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2423 * Enforce maximal scan/migration frequency..
2425 migrate
= mm
->numa_next_scan
;
2426 if (time_before(now
, migrate
))
2429 if (p
->numa_scan_period
== 0) {
2430 p
->numa_scan_period_max
= task_scan_max(p
);
2431 p
->numa_scan_period
= task_scan_min(p
);
2434 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2435 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2439 * Delay this task enough that another task of this mm will likely win
2440 * the next time around.
2442 p
->node_stamp
+= 2 * TICK_NSEC
;
2444 start
= mm
->numa_scan_offset
;
2445 pages
= sysctl_numa_balancing_scan_size
;
2446 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2447 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2452 if (!down_read_trylock(&mm
->mmap_sem
))
2454 vma
= find_vma(mm
, start
);
2456 reset_ptenuma_scan(p
);
2460 for (; vma
; vma
= vma
->vm_next
) {
2461 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2462 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2467 * Shared library pages mapped by multiple processes are not
2468 * migrated as it is expected they are cache replicated. Avoid
2469 * hinting faults in read-only file-backed mappings or the vdso
2470 * as migrating the pages will be of marginal benefit.
2473 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2477 * Skip inaccessible VMAs to avoid any confusion between
2478 * PROT_NONE and NUMA hinting ptes
2480 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
2484 start
= max(start
, vma
->vm_start
);
2485 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2486 end
= min(end
, vma
->vm_end
);
2487 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2490 * Try to scan sysctl_numa_balancing_size worth of
2491 * hpages that have at least one present PTE that
2492 * is not already pte-numa. If the VMA contains
2493 * areas that are unused or already full of prot_numa
2494 * PTEs, scan up to virtpages, to skip through those
2498 pages
-= (end
- start
) >> PAGE_SHIFT
;
2499 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2502 if (pages
<= 0 || virtpages
<= 0)
2506 } while (end
!= vma
->vm_end
);
2511 * It is possible to reach the end of the VMA list but the last few
2512 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2513 * would find the !migratable VMA on the next scan but not reset the
2514 * scanner to the start so check it now.
2517 mm
->numa_scan_offset
= start
;
2519 reset_ptenuma_scan(p
);
2520 up_read(&mm
->mmap_sem
);
2523 * Make sure tasks use at least 32x as much time to run other code
2524 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2525 * Usually update_task_scan_period slows down scanning enough; on an
2526 * overloaded system we need to limit overhead on a per task basis.
2528 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2529 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2530 p
->node_stamp
+= 32 * diff
;
2535 * Drive the periodic memory faults..
2537 void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2539 struct callback_head
*work
= &curr
->numa_work
;
2543 * We don't care about NUMA placement if we don't have memory.
2545 if ((curr
->flags
& (PF_EXITING
| PF_KTHREAD
)) || work
->next
!= work
)
2549 * Using runtime rather than walltime has the dual advantage that
2550 * we (mostly) drive the selection from busy threads and that the
2551 * task needs to have done some actual work before we bother with
2554 now
= curr
->se
.sum_exec_runtime
;
2555 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2557 if (now
> curr
->node_stamp
+ period
) {
2558 if (!curr
->node_stamp
)
2559 curr
->numa_scan_period
= task_scan_min(curr
);
2560 curr
->node_stamp
+= period
;
2562 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
)) {
2563 init_task_work(work
, task_numa_work
); /* TODO: move this into sched_fork() */
2564 task_work_add(curr
, work
, true);
2569 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2573 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2577 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2580 #endif /* CONFIG_NUMA_BALANCING */
2583 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2585 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2586 if (!parent_entity(se
))
2587 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2589 if (entity_is_task(se
)) {
2590 struct rq
*rq
= rq_of(cfs_rq
);
2592 account_numa_enqueue(rq
, task_of(se
));
2593 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2596 cfs_rq
->nr_running
++;
2600 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2602 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
2603 if (!parent_entity(se
))
2604 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2606 if (entity_is_task(se
)) {
2607 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
2608 list_del_init(&se
->group_node
);
2611 cfs_rq
->nr_running
--;
2614 #ifdef CONFIG_FAIR_GROUP_SCHED
2616 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2618 long tg_weight
, load
, shares
;
2621 * This really should be: cfs_rq->avg.load_avg, but instead we use
2622 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2623 * the shares for small weight interactive tasks.
2625 load
= scale_load_down(cfs_rq
->load
.weight
);
2627 tg_weight
= atomic_long_read(&tg
->load_avg
);
2629 /* Ensure tg_weight >= load */
2630 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
2633 shares
= (tg
->shares
* load
);
2635 shares
/= tg_weight
;
2637 if (shares
< MIN_SHARES
)
2638 shares
= MIN_SHARES
;
2639 if (shares
> tg
->shares
)
2640 shares
= tg
->shares
;
2644 # else /* CONFIG_SMP */
2645 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2649 # endif /* CONFIG_SMP */
2651 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
2652 unsigned long weight
)
2655 /* commit outstanding execution time */
2656 if (cfs_rq
->curr
== se
)
2657 update_curr(cfs_rq
);
2658 account_entity_dequeue(cfs_rq
, se
);
2661 update_load_set(&se
->load
, weight
);
2664 account_entity_enqueue(cfs_rq
, se
);
2667 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
2669 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2671 struct task_group
*tg
;
2672 struct sched_entity
*se
;
2676 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
2677 if (!se
|| throttled_hierarchy(cfs_rq
))
2680 if (likely(se
->load
.weight
== tg
->shares
))
2683 shares
= calc_cfs_shares(cfs_rq
, tg
);
2685 reweight_entity(cfs_rq_of(se
), se
, shares
);
2687 #else /* CONFIG_FAIR_GROUP_SCHED */
2688 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2691 #endif /* CONFIG_FAIR_GROUP_SCHED */
2694 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2695 static const u32 runnable_avg_yN_inv
[] = {
2696 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2697 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2698 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2699 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2700 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2701 0x85aac367, 0x82cd8698,
2705 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2706 * over-estimates when re-combining.
2708 static const u32 runnable_avg_yN_sum
[] = {
2709 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2710 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2711 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2715 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2716 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2719 static const u32 __accumulated_sum_N32
[] = {
2720 0, 23371, 35056, 40899, 43820, 45281,
2721 46011, 46376, 46559, 46650, 46696, 46719,
2726 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2728 static __always_inline u64
decay_load(u64 val
, u64 n
)
2730 unsigned int local_n
;
2734 else if (unlikely(n
> LOAD_AVG_PERIOD
* 63))
2737 /* after bounds checking we can collapse to 32-bit */
2741 * As y^PERIOD = 1/2, we can combine
2742 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2743 * With a look-up table which covers y^n (n<PERIOD)
2745 * To achieve constant time decay_load.
2747 if (unlikely(local_n
>= LOAD_AVG_PERIOD
)) {
2748 val
>>= local_n
/ LOAD_AVG_PERIOD
;
2749 local_n
%= LOAD_AVG_PERIOD
;
2752 val
= mul_u64_u32_shr(val
, runnable_avg_yN_inv
[local_n
], 32);
2757 * For updates fully spanning n periods, the contribution to runnable
2758 * average will be: \Sum 1024*y^n
2760 * We can compute this reasonably efficiently by combining:
2761 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2763 static u32
__compute_runnable_contrib(u64 n
)
2767 if (likely(n
<= LOAD_AVG_PERIOD
))
2768 return runnable_avg_yN_sum
[n
];
2769 else if (unlikely(n
>= LOAD_AVG_MAX_N
))
2770 return LOAD_AVG_MAX
;
2772 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2773 contrib
= __accumulated_sum_N32
[n
/LOAD_AVG_PERIOD
];
2774 n
%= LOAD_AVG_PERIOD
;
2775 contrib
= decay_load(contrib
, n
);
2776 return contrib
+ runnable_avg_yN_sum
[n
];
2779 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2782 * We can represent the historical contribution to runnable average as the
2783 * coefficients of a geometric series. To do this we sub-divide our runnable
2784 * history into segments of approximately 1ms (1024us); label the segment that
2785 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2787 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2789 * (now) (~1ms ago) (~2ms ago)
2791 * Let u_i denote the fraction of p_i that the entity was runnable.
2793 * We then designate the fractions u_i as our co-efficients, yielding the
2794 * following representation of historical load:
2795 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2797 * We choose y based on the with of a reasonably scheduling period, fixing:
2800 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2801 * approximately half as much as the contribution to load within the last ms
2804 * When a period "rolls over" and we have new u_0`, multiplying the previous
2805 * sum again by y is sufficient to update:
2806 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2807 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2809 static __always_inline
int
2810 __update_load_avg(u64 now
, int cpu
, struct sched_avg
*sa
,
2811 unsigned long weight
, int running
, struct cfs_rq
*cfs_rq
)
2813 u64 delta
, scaled_delta
, periods
;
2815 unsigned int delta_w
, scaled_delta_w
, decayed
= 0;
2816 unsigned long scale_freq
, scale_cpu
;
2818 delta
= now
- sa
->last_update_time
;
2820 * This should only happen when time goes backwards, which it
2821 * unfortunately does during sched clock init when we swap over to TSC.
2823 if ((s64
)delta
< 0) {
2824 sa
->last_update_time
= now
;
2829 * Use 1024ns as the unit of measurement since it's a reasonable
2830 * approximation of 1us and fast to compute.
2835 sa
->last_update_time
= now
;
2837 scale_freq
= arch_scale_freq_capacity(NULL
, cpu
);
2838 scale_cpu
= arch_scale_cpu_capacity(NULL
, cpu
);
2840 /* delta_w is the amount already accumulated against our next period */
2841 delta_w
= sa
->period_contrib
;
2842 if (delta
+ delta_w
>= 1024) {
2845 /* how much left for next period will start over, we don't know yet */
2846 sa
->period_contrib
= 0;
2849 * Now that we know we're crossing a period boundary, figure
2850 * out how much from delta we need to complete the current
2851 * period and accrue it.
2853 delta_w
= 1024 - delta_w
;
2854 scaled_delta_w
= cap_scale(delta_w
, scale_freq
);
2856 sa
->load_sum
+= weight
* scaled_delta_w
;
2858 cfs_rq
->runnable_load_sum
+=
2859 weight
* scaled_delta_w
;
2863 sa
->util_sum
+= scaled_delta_w
* scale_cpu
;
2867 /* Figure out how many additional periods this update spans */
2868 periods
= delta
/ 1024;
2871 sa
->load_sum
= decay_load(sa
->load_sum
, periods
+ 1);
2873 cfs_rq
->runnable_load_sum
=
2874 decay_load(cfs_rq
->runnable_load_sum
, periods
+ 1);
2876 sa
->util_sum
= decay_load((u64
)(sa
->util_sum
), periods
+ 1);
2878 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2879 contrib
= __compute_runnable_contrib(periods
);
2880 contrib
= cap_scale(contrib
, scale_freq
);
2882 sa
->load_sum
+= weight
* contrib
;
2884 cfs_rq
->runnable_load_sum
+= weight
* contrib
;
2887 sa
->util_sum
+= contrib
* scale_cpu
;
2890 /* Remainder of delta accrued against u_0` */
2891 scaled_delta
= cap_scale(delta
, scale_freq
);
2893 sa
->load_sum
+= weight
* scaled_delta
;
2895 cfs_rq
->runnable_load_sum
+= weight
* scaled_delta
;
2898 sa
->util_sum
+= scaled_delta
* scale_cpu
;
2900 sa
->period_contrib
+= delta
;
2903 sa
->load_avg
= div_u64(sa
->load_sum
, LOAD_AVG_MAX
);
2905 cfs_rq
->runnable_load_avg
=
2906 div_u64(cfs_rq
->runnable_load_sum
, LOAD_AVG_MAX
);
2908 sa
->util_avg
= sa
->util_sum
/ LOAD_AVG_MAX
;
2914 #ifdef CONFIG_FAIR_GROUP_SCHED
2916 * update_tg_load_avg - update the tg's load avg
2917 * @cfs_rq: the cfs_rq whose avg changed
2918 * @force: update regardless of how small the difference
2920 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2921 * However, because tg->load_avg is a global value there are performance
2924 * In order to avoid having to look at the other cfs_rq's, we use a
2925 * differential update where we store the last value we propagated. This in
2926 * turn allows skipping updates if the differential is 'small'.
2928 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2929 * done) and effective_load() (which is not done because it is too costly).
2931 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
2933 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
2936 * No need to update load_avg for root_task_group as it is not used.
2938 if (cfs_rq
->tg
== &root_task_group
)
2941 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
2942 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
2943 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
2948 * Called within set_task_rq() right before setting a task's cpu. The
2949 * caller only guarantees p->pi_lock is held; no other assumptions,
2950 * including the state of rq->lock, should be made.
2952 void set_task_rq_fair(struct sched_entity
*se
,
2953 struct cfs_rq
*prev
, struct cfs_rq
*next
)
2955 if (!sched_feat(ATTACH_AGE_LOAD
))
2959 * We are supposed to update the task to "current" time, then its up to
2960 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2961 * getting what current time is, so simply throw away the out-of-date
2962 * time. This will result in the wakee task is less decayed, but giving
2963 * the wakee more load sounds not bad.
2965 if (se
->avg
.last_update_time
&& prev
) {
2966 u64 p_last_update_time
;
2967 u64 n_last_update_time
;
2969 #ifndef CONFIG_64BIT
2970 u64 p_last_update_time_copy
;
2971 u64 n_last_update_time_copy
;
2974 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
2975 n_last_update_time_copy
= next
->load_last_update_time_copy
;
2979 p_last_update_time
= prev
->avg
.last_update_time
;
2980 n_last_update_time
= next
->avg
.last_update_time
;
2982 } while (p_last_update_time
!= p_last_update_time_copy
||
2983 n_last_update_time
!= n_last_update_time_copy
);
2985 p_last_update_time
= prev
->avg
.last_update_time
;
2986 n_last_update_time
= next
->avg
.last_update_time
;
2988 __update_load_avg(p_last_update_time
, cpu_of(rq_of(prev
)),
2989 &se
->avg
, 0, 0, NULL
);
2990 se
->avg
.last_update_time
= n_last_update_time
;
2993 #else /* CONFIG_FAIR_GROUP_SCHED */
2994 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
2995 #endif /* CONFIG_FAIR_GROUP_SCHED */
2997 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
)
2999 if (&this_rq()->cfs
== cfs_rq
) {
3001 * There are a few boundary cases this might miss but it should
3002 * get called often enough that that should (hopefully) not be
3003 * a real problem -- added to that it only calls on the local
3004 * CPU, so if we enqueue remotely we'll miss an update, but
3005 * the next tick/schedule should update.
3007 * It will not get called when we go idle, because the idle
3008 * thread is a different class (!fair), nor will the utilization
3009 * number include things like RT tasks.
3011 * As is, the util number is not freq-invariant (we'd have to
3012 * implement arch_scale_freq_capacity() for that).
3016 cpufreq_update_util(rq_of(cfs_rq
), 0);
3021 * Unsigned subtract and clamp on underflow.
3023 * Explicitly do a load-store to ensure the intermediate value never hits
3024 * memory. This allows lockless observations without ever seeing the negative
3027 #define sub_positive(_ptr, _val) do { \
3028 typeof(_ptr) ptr = (_ptr); \
3029 typeof(*ptr) val = (_val); \
3030 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3034 WRITE_ONCE(*ptr, res); \
3038 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3039 * @now: current time, as per cfs_rq_clock_task()
3040 * @cfs_rq: cfs_rq to update
3041 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3043 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3044 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3045 * post_init_entity_util_avg().
3047 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3049 * Returns true if the load decayed or we removed load.
3051 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3052 * call update_tg_load_avg() when this function returns true.
3055 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
)
3057 struct sched_avg
*sa
= &cfs_rq
->avg
;
3058 int decayed
, removed_load
= 0, removed_util
= 0;
3060 if (atomic_long_read(&cfs_rq
->removed_load_avg
)) {
3061 s64 r
= atomic_long_xchg(&cfs_rq
->removed_load_avg
, 0);
3062 sub_positive(&sa
->load_avg
, r
);
3063 sub_positive(&sa
->load_sum
, r
* LOAD_AVG_MAX
);
3067 if (atomic_long_read(&cfs_rq
->removed_util_avg
)) {
3068 long r
= atomic_long_xchg(&cfs_rq
->removed_util_avg
, 0);
3069 sub_positive(&sa
->util_avg
, r
);
3070 sub_positive(&sa
->util_sum
, r
* LOAD_AVG_MAX
);
3074 decayed
= __update_load_avg(now
, cpu_of(rq_of(cfs_rq
)), sa
,
3075 scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->curr
!= NULL
, cfs_rq
);
3077 #ifndef CONFIG_64BIT
3079 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3082 if (update_freq
&& (decayed
|| removed_util
))
3083 cfs_rq_util_change(cfs_rq
);
3085 return decayed
|| removed_load
;
3088 /* Update task and its cfs_rq load average */
3089 static inline void update_load_avg(struct sched_entity
*se
, int update_tg
)
3091 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3092 u64 now
= cfs_rq_clock_task(cfs_rq
);
3093 struct rq
*rq
= rq_of(cfs_rq
);
3094 int cpu
= cpu_of(rq
);
3097 * Track task load average for carrying it to new CPU after migrated, and
3098 * track group sched_entity load average for task_h_load calc in migration
3100 __update_load_avg(now
, cpu
, &se
->avg
,
3101 se
->on_rq
* scale_load_down(se
->load
.weight
),
3102 cfs_rq
->curr
== se
, NULL
);
3104 if (update_cfs_rq_load_avg(now
, cfs_rq
, true) && update_tg
)
3105 update_tg_load_avg(cfs_rq
, 0);
3109 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3110 * @cfs_rq: cfs_rq to attach to
3111 * @se: sched_entity to attach
3113 * Must call update_cfs_rq_load_avg() before this, since we rely on
3114 * cfs_rq->avg.last_update_time being current.
3116 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3118 if (!sched_feat(ATTACH_AGE_LOAD
))
3122 * If we got migrated (either between CPUs or between cgroups) we'll
3123 * have aged the average right before clearing @last_update_time.
3125 * Or we're fresh through post_init_entity_util_avg().
3127 if (se
->avg
.last_update_time
) {
3128 __update_load_avg(cfs_rq
->avg
.last_update_time
, cpu_of(rq_of(cfs_rq
)),
3129 &se
->avg
, 0, 0, NULL
);
3132 * XXX: we could have just aged the entire load away if we've been
3133 * absent from the fair class for too long.
3138 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3139 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3140 cfs_rq
->avg
.load_sum
+= se
->avg
.load_sum
;
3141 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3142 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3144 cfs_rq_util_change(cfs_rq
);
3148 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3149 * @cfs_rq: cfs_rq to detach from
3150 * @se: sched_entity to detach
3152 * Must call update_cfs_rq_load_avg() before this, since we rely on
3153 * cfs_rq->avg.last_update_time being current.
3155 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3157 __update_load_avg(cfs_rq
->avg
.last_update_time
, cpu_of(rq_of(cfs_rq
)),
3158 &se
->avg
, se
->on_rq
* scale_load_down(se
->load
.weight
),
3159 cfs_rq
->curr
== se
, NULL
);
3161 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3162 sub_positive(&cfs_rq
->avg
.load_sum
, se
->avg
.load_sum
);
3163 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3164 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3166 cfs_rq_util_change(cfs_rq
);
3169 /* Add the load generated by se into cfs_rq's load average */
3171 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3173 struct sched_avg
*sa
= &se
->avg
;
3174 u64 now
= cfs_rq_clock_task(cfs_rq
);
3175 int migrated
, decayed
;
3177 migrated
= !sa
->last_update_time
;
3179 __update_load_avg(now
, cpu_of(rq_of(cfs_rq
)), sa
,
3180 se
->on_rq
* scale_load_down(se
->load
.weight
),
3181 cfs_rq
->curr
== se
, NULL
);
3184 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
, !migrated
);
3186 cfs_rq
->runnable_load_avg
+= sa
->load_avg
;
3187 cfs_rq
->runnable_load_sum
+= sa
->load_sum
;
3190 attach_entity_load_avg(cfs_rq
, se
);
3192 if (decayed
|| migrated
)
3193 update_tg_load_avg(cfs_rq
, 0);
3196 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3198 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3200 update_load_avg(se
, 1);
3202 cfs_rq
->runnable_load_avg
=
3203 max_t(long, cfs_rq
->runnable_load_avg
- se
->avg
.load_avg
, 0);
3204 cfs_rq
->runnable_load_sum
=
3205 max_t(s64
, cfs_rq
->runnable_load_sum
- se
->avg
.load_sum
, 0);
3208 #ifndef CONFIG_64BIT
3209 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3211 u64 last_update_time_copy
;
3212 u64 last_update_time
;
3215 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3217 last_update_time
= cfs_rq
->avg
.last_update_time
;
3218 } while (last_update_time
!= last_update_time_copy
);
3220 return last_update_time
;
3223 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3225 return cfs_rq
->avg
.last_update_time
;
3230 * Task first catches up with cfs_rq, and then subtract
3231 * itself from the cfs_rq (task must be off the queue now).
3233 void remove_entity_load_avg(struct sched_entity
*se
)
3235 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3236 u64 last_update_time
;
3239 * tasks cannot exit without having gone through wake_up_new_task() ->
3240 * post_init_entity_util_avg() which will have added things to the
3241 * cfs_rq, so we can remove unconditionally.
3243 * Similarly for groups, they will have passed through
3244 * post_init_entity_util_avg() before unregister_sched_fair_group()
3248 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3250 __update_load_avg(last_update_time
, cpu_of(rq_of(cfs_rq
)), &se
->avg
, 0, 0, NULL
);
3251 atomic_long_add(se
->avg
.load_avg
, &cfs_rq
->removed_load_avg
);
3252 atomic_long_add(se
->avg
.util_avg
, &cfs_rq
->removed_util_avg
);
3255 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
)
3257 return cfs_rq
->runnable_load_avg
;
3260 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3262 return cfs_rq
->avg
.load_avg
;
3265 static int idle_balance(struct rq
*this_rq
);
3267 #else /* CONFIG_SMP */
3270 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
)
3275 static inline void update_load_avg(struct sched_entity
*se
, int not_used
)
3277 cpufreq_update_util(rq_of(cfs_rq_of(se
)), 0);
3281 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3283 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3284 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
3287 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3289 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3291 static inline int idle_balance(struct rq
*rq
)
3296 #endif /* CONFIG_SMP */
3298 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3300 #ifdef CONFIG_SCHED_DEBUG
3301 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
3306 if (d
> 3*sysctl_sched_latency
)
3307 schedstat_inc(cfs_rq
->nr_spread_over
);
3312 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
3314 u64 vruntime
= cfs_rq
->min_vruntime
;
3317 * The 'current' period is already promised to the current tasks,
3318 * however the extra weight of the new task will slow them down a
3319 * little, place the new task so that it fits in the slot that
3320 * stays open at the end.
3322 if (initial
&& sched_feat(START_DEBIT
))
3323 vruntime
+= sched_vslice(cfs_rq
, se
);
3325 /* sleeps up to a single latency don't count. */
3327 unsigned long thresh
= sysctl_sched_latency
;
3330 * Halve their sleep time's effect, to allow
3331 * for a gentler effect of sleepers:
3333 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
3339 /* ensure we never gain time by being placed backwards. */
3340 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
3343 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
3345 static inline void check_schedstat_required(void)
3347 #ifdef CONFIG_SCHEDSTATS
3348 if (schedstat_enabled())
3351 /* Force schedstat enabled if a dependent tracepoint is active */
3352 if (trace_sched_stat_wait_enabled() ||
3353 trace_sched_stat_sleep_enabled() ||
3354 trace_sched_stat_iowait_enabled() ||
3355 trace_sched_stat_blocked_enabled() ||
3356 trace_sched_stat_runtime_enabled()) {
3357 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3358 "stat_blocked and stat_runtime require the "
3359 "kernel parameter schedstats=enabled or "
3360 "kernel.sched_schedstats=1\n");
3371 * update_min_vruntime()
3372 * vruntime -= min_vruntime
3376 * update_min_vruntime()
3377 * vruntime += min_vruntime
3379 * this way the vruntime transition between RQs is done when both
3380 * min_vruntime are up-to-date.
3384 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3385 * vruntime -= min_vruntime
3389 * update_min_vruntime()
3390 * vruntime += min_vruntime
3392 * this way we don't have the most up-to-date min_vruntime on the originating
3393 * CPU and an up-to-date min_vruntime on the destination CPU.
3397 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3399 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
3400 bool curr
= cfs_rq
->curr
== se
;
3403 * If we're the current task, we must renormalise before calling
3407 se
->vruntime
+= cfs_rq
->min_vruntime
;
3409 update_curr(cfs_rq
);
3412 * Otherwise, renormalise after, such that we're placed at the current
3413 * moment in time, instead of some random moment in the past. Being
3414 * placed in the past could significantly boost this task to the
3415 * fairness detriment of existing tasks.
3417 if (renorm
&& !curr
)
3418 se
->vruntime
+= cfs_rq
->min_vruntime
;
3420 enqueue_entity_load_avg(cfs_rq
, se
);
3421 account_entity_enqueue(cfs_rq
, se
);
3422 update_cfs_shares(cfs_rq
);
3424 if (flags
& ENQUEUE_WAKEUP
)
3425 place_entity(cfs_rq
, se
, 0);
3427 check_schedstat_required();
3428 update_stats_enqueue(cfs_rq
, se
, flags
);
3429 check_spread(cfs_rq
, se
);
3431 __enqueue_entity(cfs_rq
, se
);
3434 if (cfs_rq
->nr_running
== 1) {
3435 list_add_leaf_cfs_rq(cfs_rq
);
3436 check_enqueue_throttle(cfs_rq
);
3440 static void __clear_buddies_last(struct sched_entity
*se
)
3442 for_each_sched_entity(se
) {
3443 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3444 if (cfs_rq
->last
!= se
)
3447 cfs_rq
->last
= NULL
;
3451 static void __clear_buddies_next(struct sched_entity
*se
)
3453 for_each_sched_entity(se
) {
3454 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3455 if (cfs_rq
->next
!= se
)
3458 cfs_rq
->next
= NULL
;
3462 static void __clear_buddies_skip(struct sched_entity
*se
)
3464 for_each_sched_entity(se
) {
3465 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3466 if (cfs_rq
->skip
!= se
)
3469 cfs_rq
->skip
= NULL
;
3473 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3475 if (cfs_rq
->last
== se
)
3476 __clear_buddies_last(se
);
3478 if (cfs_rq
->next
== se
)
3479 __clear_buddies_next(se
);
3481 if (cfs_rq
->skip
== se
)
3482 __clear_buddies_skip(se
);
3485 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3488 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3491 * Update run-time statistics of the 'current'.
3493 update_curr(cfs_rq
);
3494 dequeue_entity_load_avg(cfs_rq
, se
);
3496 update_stats_dequeue(cfs_rq
, se
, flags
);
3498 clear_buddies(cfs_rq
, se
);
3500 if (se
!= cfs_rq
->curr
)
3501 __dequeue_entity(cfs_rq
, se
);
3503 account_entity_dequeue(cfs_rq
, se
);
3506 * Normalize after update_curr(); which will also have moved
3507 * min_vruntime if @se is the one holding it back. But before doing
3508 * update_min_vruntime() again, which will discount @se's position and
3509 * can move min_vruntime forward still more.
3511 if (!(flags
& DEQUEUE_SLEEP
))
3512 se
->vruntime
-= cfs_rq
->min_vruntime
;
3514 /* return excess runtime on last dequeue */
3515 return_cfs_rq_runtime(cfs_rq
);
3517 update_cfs_shares(cfs_rq
);
3520 * Now advance min_vruntime if @se was the entity holding it back,
3521 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3522 * put back on, and if we advance min_vruntime, we'll be placed back
3523 * further than we started -- ie. we'll be penalized.
3525 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
3526 update_min_vruntime(cfs_rq
);
3530 * Preempt the current task with a newly woken task if needed:
3533 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3535 unsigned long ideal_runtime
, delta_exec
;
3536 struct sched_entity
*se
;
3539 ideal_runtime
= sched_slice(cfs_rq
, curr
);
3540 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
3541 if (delta_exec
> ideal_runtime
) {
3542 resched_curr(rq_of(cfs_rq
));
3544 * The current task ran long enough, ensure it doesn't get
3545 * re-elected due to buddy favours.
3547 clear_buddies(cfs_rq
, curr
);
3552 * Ensure that a task that missed wakeup preemption by a
3553 * narrow margin doesn't have to wait for a full slice.
3554 * This also mitigates buddy induced latencies under load.
3556 if (delta_exec
< sysctl_sched_min_granularity
)
3559 se
= __pick_first_entity(cfs_rq
);
3560 delta
= curr
->vruntime
- se
->vruntime
;
3565 if (delta
> ideal_runtime
)
3566 resched_curr(rq_of(cfs_rq
));
3570 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3572 /* 'current' is not kept within the tree. */
3575 * Any task has to be enqueued before it get to execute on
3576 * a CPU. So account for the time it spent waiting on the
3579 update_stats_wait_end(cfs_rq
, se
);
3580 __dequeue_entity(cfs_rq
, se
);
3581 update_load_avg(se
, 1);
3584 update_stats_curr_start(cfs_rq
, se
);
3588 * Track our maximum slice length, if the CPU's load is at
3589 * least twice that of our own weight (i.e. dont track it
3590 * when there are only lesser-weight tasks around):
3592 if (schedstat_enabled() && rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
3593 schedstat_set(se
->statistics
.slice_max
,
3594 max((u64
)schedstat_val(se
->statistics
.slice_max
),
3595 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
3598 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
3602 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
3605 * Pick the next process, keeping these things in mind, in this order:
3606 * 1) keep things fair between processes/task groups
3607 * 2) pick the "next" process, since someone really wants that to run
3608 * 3) pick the "last" process, for cache locality
3609 * 4) do not run the "skip" process, if something else is available
3611 static struct sched_entity
*
3612 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3614 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
3615 struct sched_entity
*se
;
3618 * If curr is set we have to see if its left of the leftmost entity
3619 * still in the tree, provided there was anything in the tree at all.
3621 if (!left
|| (curr
&& entity_before(curr
, left
)))
3624 se
= left
; /* ideally we run the leftmost entity */
3627 * Avoid running the skip buddy, if running something else can
3628 * be done without getting too unfair.
3630 if (cfs_rq
->skip
== se
) {
3631 struct sched_entity
*second
;
3634 second
= __pick_first_entity(cfs_rq
);
3636 second
= __pick_next_entity(se
);
3637 if (!second
|| (curr
&& entity_before(curr
, second
)))
3641 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
3646 * Prefer last buddy, try to return the CPU to a preempted task.
3648 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
3652 * Someone really wants this to run. If it's not unfair, run it.
3654 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
3657 clear_buddies(cfs_rq
, se
);
3662 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3664 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
3667 * If still on the runqueue then deactivate_task()
3668 * was not called and update_curr() has to be done:
3671 update_curr(cfs_rq
);
3673 /* throttle cfs_rqs exceeding runtime */
3674 check_cfs_rq_runtime(cfs_rq
);
3676 check_spread(cfs_rq
, prev
);
3679 update_stats_wait_start(cfs_rq
, prev
);
3680 /* Put 'current' back into the tree. */
3681 __enqueue_entity(cfs_rq
, prev
);
3682 /* in !on_rq case, update occurred at dequeue */
3683 update_load_avg(prev
, 0);
3685 cfs_rq
->curr
= NULL
;
3689 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
3692 * Update run-time statistics of the 'current'.
3694 update_curr(cfs_rq
);
3697 * Ensure that runnable average is periodically updated.
3699 update_load_avg(curr
, 1);
3700 update_cfs_shares(cfs_rq
);
3702 #ifdef CONFIG_SCHED_HRTICK
3704 * queued ticks are scheduled to match the slice, so don't bother
3705 * validating it and just reschedule.
3708 resched_curr(rq_of(cfs_rq
));
3712 * don't let the period tick interfere with the hrtick preemption
3714 if (!sched_feat(DOUBLE_TICK
) &&
3715 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
3719 if (cfs_rq
->nr_running
> 1)
3720 check_preempt_tick(cfs_rq
, curr
);
3724 /**************************************************
3725 * CFS bandwidth control machinery
3728 #ifdef CONFIG_CFS_BANDWIDTH
3730 #ifdef HAVE_JUMP_LABEL
3731 static struct static_key __cfs_bandwidth_used
;
3733 static inline bool cfs_bandwidth_used(void)
3735 return static_key_false(&__cfs_bandwidth_used
);
3738 void cfs_bandwidth_usage_inc(void)
3740 static_key_slow_inc(&__cfs_bandwidth_used
);
3743 void cfs_bandwidth_usage_dec(void)
3745 static_key_slow_dec(&__cfs_bandwidth_used
);
3747 #else /* HAVE_JUMP_LABEL */
3748 static bool cfs_bandwidth_used(void)
3753 void cfs_bandwidth_usage_inc(void) {}
3754 void cfs_bandwidth_usage_dec(void) {}
3755 #endif /* HAVE_JUMP_LABEL */
3758 * default period for cfs group bandwidth.
3759 * default: 0.1s, units: nanoseconds
3761 static inline u64
default_cfs_period(void)
3763 return 100000000ULL;
3766 static inline u64
sched_cfs_bandwidth_slice(void)
3768 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
3772 * Replenish runtime according to assigned quota and update expiration time.
3773 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3774 * additional synchronization around rq->lock.
3776 * requires cfs_b->lock
3778 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
3782 if (cfs_b
->quota
== RUNTIME_INF
)
3785 now
= sched_clock_cpu(smp_processor_id());
3786 cfs_b
->runtime
= cfs_b
->quota
;
3787 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
3790 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
3792 return &tg
->cfs_bandwidth
;
3795 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3796 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
3798 if (unlikely(cfs_rq
->throttle_count
))
3799 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
3801 return rq_clock_task(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
3804 /* returns 0 on failure to allocate runtime */
3805 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3807 struct task_group
*tg
= cfs_rq
->tg
;
3808 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
3809 u64 amount
= 0, min_amount
, expires
;
3811 /* note: this is a positive sum as runtime_remaining <= 0 */
3812 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
3814 raw_spin_lock(&cfs_b
->lock
);
3815 if (cfs_b
->quota
== RUNTIME_INF
)
3816 amount
= min_amount
;
3818 start_cfs_bandwidth(cfs_b
);
3820 if (cfs_b
->runtime
> 0) {
3821 amount
= min(cfs_b
->runtime
, min_amount
);
3822 cfs_b
->runtime
-= amount
;
3826 expires
= cfs_b
->runtime_expires
;
3827 raw_spin_unlock(&cfs_b
->lock
);
3829 cfs_rq
->runtime_remaining
+= amount
;
3831 * we may have advanced our local expiration to account for allowed
3832 * spread between our sched_clock and the one on which runtime was
3835 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
3836 cfs_rq
->runtime_expires
= expires
;
3838 return cfs_rq
->runtime_remaining
> 0;
3842 * Note: This depends on the synchronization provided by sched_clock and the
3843 * fact that rq->clock snapshots this value.
3845 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3847 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3849 /* if the deadline is ahead of our clock, nothing to do */
3850 if (likely((s64
)(rq_clock(rq_of(cfs_rq
)) - cfs_rq
->runtime_expires
) < 0))
3853 if (cfs_rq
->runtime_remaining
< 0)
3857 * If the local deadline has passed we have to consider the
3858 * possibility that our sched_clock is 'fast' and the global deadline
3859 * has not truly expired.
3861 * Fortunately we can check determine whether this the case by checking
3862 * whether the global deadline has advanced. It is valid to compare
3863 * cfs_b->runtime_expires without any locks since we only care about
3864 * exact equality, so a partial write will still work.
3867 if (cfs_rq
->runtime_expires
!= cfs_b
->runtime_expires
) {
3868 /* extend local deadline, drift is bounded above by 2 ticks */
3869 cfs_rq
->runtime_expires
+= TICK_NSEC
;
3871 /* global deadline is ahead, expiration has passed */
3872 cfs_rq
->runtime_remaining
= 0;
3876 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
3878 /* dock delta_exec before expiring quota (as it could span periods) */
3879 cfs_rq
->runtime_remaining
-= delta_exec
;
3880 expire_cfs_rq_runtime(cfs_rq
);
3882 if (likely(cfs_rq
->runtime_remaining
> 0))
3885 if (cfs_rq
->throttled
)
3888 * if we're unable to extend our runtime we resched so that the active
3889 * hierarchy can be throttled
3891 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
3892 resched_curr(rq_of(cfs_rq
));
3895 static __always_inline
3896 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
3898 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
3901 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
3904 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
3906 return cfs_bandwidth_used() && cfs_rq
->throttled
;
3909 /* check whether cfs_rq, or any parent, is throttled */
3910 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
3912 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
3916 * Ensure that neither of the group entities corresponding to src_cpu or
3917 * dest_cpu are members of a throttled hierarchy when performing group
3918 * load-balance operations.
3920 static inline int throttled_lb_pair(struct task_group
*tg
,
3921 int src_cpu
, int dest_cpu
)
3923 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
3925 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
3926 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
3928 return throttled_hierarchy(src_cfs_rq
) ||
3929 throttled_hierarchy(dest_cfs_rq
);
3932 /* updated child weight may affect parent so we have to do this bottom up */
3933 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
3935 struct rq
*rq
= data
;
3936 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
3938 cfs_rq
->throttle_count
--;
3939 if (!cfs_rq
->throttle_count
) {
3940 /* adjust cfs_rq_clock_task() */
3941 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
3942 cfs_rq
->throttled_clock_task
;
3948 static int tg_throttle_down(struct task_group
*tg
, void *data
)
3950 struct rq
*rq
= data
;
3951 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
3953 /* group is entering throttled state, stop time */
3954 if (!cfs_rq
->throttle_count
)
3955 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
3956 cfs_rq
->throttle_count
++;
3961 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
3963 struct rq
*rq
= rq_of(cfs_rq
);
3964 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
3965 struct sched_entity
*se
;
3966 long task_delta
, dequeue
= 1;
3969 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
3971 /* freeze hierarchy runnable averages while throttled */
3973 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
3976 task_delta
= cfs_rq
->h_nr_running
;
3977 for_each_sched_entity(se
) {
3978 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
3979 /* throttled entity or throttle-on-deactivate */
3984 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
3985 qcfs_rq
->h_nr_running
-= task_delta
;
3987 if (qcfs_rq
->load
.weight
)
3992 sub_nr_running(rq
, task_delta
);
3994 cfs_rq
->throttled
= 1;
3995 cfs_rq
->throttled_clock
= rq_clock(rq
);
3996 raw_spin_lock(&cfs_b
->lock
);
3997 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
4000 * Add to the _head_ of the list, so that an already-started
4001 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4002 * not running add to the tail so that later runqueues don't get starved.
4004 if (cfs_b
->distribute_running
)
4005 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4007 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4010 * If we're the first throttled task, make sure the bandwidth
4014 start_cfs_bandwidth(cfs_b
);
4016 raw_spin_unlock(&cfs_b
->lock
);
4019 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4021 struct rq
*rq
= rq_of(cfs_rq
);
4022 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4023 struct sched_entity
*se
;
4027 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4029 cfs_rq
->throttled
= 0;
4031 update_rq_clock(rq
);
4033 raw_spin_lock(&cfs_b
->lock
);
4034 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4035 list_del_rcu(&cfs_rq
->throttled_list
);
4036 raw_spin_unlock(&cfs_b
->lock
);
4038 /* update hierarchical throttle state */
4039 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4041 if (!cfs_rq
->load
.weight
)
4044 task_delta
= cfs_rq
->h_nr_running
;
4045 for_each_sched_entity(se
) {
4049 cfs_rq
= cfs_rq_of(se
);
4051 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4052 cfs_rq
->h_nr_running
+= task_delta
;
4054 if (cfs_rq_throttled(cfs_rq
))
4059 add_nr_running(rq
, task_delta
);
4061 /* determine whether we need to wake up potentially idle cpu */
4062 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4066 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
4067 u64 remaining
, u64 expires
)
4069 struct cfs_rq
*cfs_rq
;
4071 u64 starting_runtime
= remaining
;
4074 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4076 struct rq
*rq
= rq_of(cfs_rq
);
4078 raw_spin_lock(&rq
->lock
);
4079 if (!cfs_rq_throttled(cfs_rq
))
4082 /* By the above check, this should never be true */
4083 SCHED_WARN_ON(cfs_rq
->runtime_remaining
> 0);
4085 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4086 if (runtime
> remaining
)
4087 runtime
= remaining
;
4088 remaining
-= runtime
;
4090 cfs_rq
->runtime_remaining
+= runtime
;
4091 cfs_rq
->runtime_expires
= expires
;
4093 /* we check whether we're throttled above */
4094 if (cfs_rq
->runtime_remaining
> 0)
4095 unthrottle_cfs_rq(cfs_rq
);
4098 raw_spin_unlock(&rq
->lock
);
4105 return starting_runtime
- remaining
;
4109 * Responsible for refilling a task_group's bandwidth and unthrottling its
4110 * cfs_rqs as appropriate. If there has been no activity within the last
4111 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4112 * used to track this state.
4114 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
4116 u64 runtime
, runtime_expires
;
4119 /* no need to continue the timer with no bandwidth constraint */
4120 if (cfs_b
->quota
== RUNTIME_INF
)
4121 goto out_deactivate
;
4123 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4124 cfs_b
->nr_periods
+= overrun
;
4127 * idle depends on !throttled (for the case of a large deficit), and if
4128 * we're going inactive then everything else can be deferred
4130 if (cfs_b
->idle
&& !throttled
)
4131 goto out_deactivate
;
4133 __refill_cfs_bandwidth_runtime(cfs_b
);
4136 /* mark as potentially idle for the upcoming period */
4141 /* account preceding periods in which throttling occurred */
4142 cfs_b
->nr_throttled
+= overrun
;
4144 runtime_expires
= cfs_b
->runtime_expires
;
4147 * This check is repeated as we are holding onto the new bandwidth while
4148 * we unthrottle. This can potentially race with an unthrottled group
4149 * trying to acquire new bandwidth from the global pool. This can result
4150 * in us over-using our runtime if it is all used during this loop, but
4151 * only by limited amounts in that extreme case.
4153 while (throttled
&& cfs_b
->runtime
> 0 && !cfs_b
->distribute_running
) {
4154 runtime
= cfs_b
->runtime
;
4155 cfs_b
->distribute_running
= 1;
4156 raw_spin_unlock(&cfs_b
->lock
);
4157 /* we can't nest cfs_b->lock while distributing bandwidth */
4158 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
4160 raw_spin_lock(&cfs_b
->lock
);
4162 cfs_b
->distribute_running
= 0;
4163 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4165 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4169 * While we are ensured activity in the period following an
4170 * unthrottle, this also covers the case in which the new bandwidth is
4171 * insufficient to cover the existing bandwidth deficit. (Forcing the
4172 * timer to remain active while there are any throttled entities.)
4182 /* a cfs_rq won't donate quota below this amount */
4183 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4184 /* minimum remaining period time to redistribute slack quota */
4185 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4186 /* how long we wait to gather additional slack before distributing */
4187 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4190 * Are we near the end of the current quota period?
4192 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4193 * hrtimer base being cleared by hrtimer_start. In the case of
4194 * migrate_hrtimers, base is never cleared, so we are fine.
4196 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4198 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
4201 /* if the call-back is running a quota refresh is already occurring */
4202 if (hrtimer_callback_running(refresh_timer
))
4205 /* is a quota refresh about to occur? */
4206 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
4207 if (remaining
< min_expire
)
4213 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
4215 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
4217 /* if there's a quota refresh soon don't bother with slack */
4218 if (runtime_refresh_within(cfs_b
, min_left
))
4221 hrtimer_start(&cfs_b
->slack_timer
,
4222 ns_to_ktime(cfs_bandwidth_slack_period
),
4226 /* we know any runtime found here is valid as update_curr() precedes return */
4227 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4229 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4230 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
4232 if (slack_runtime
<= 0)
4235 raw_spin_lock(&cfs_b
->lock
);
4236 if (cfs_b
->quota
!= RUNTIME_INF
&&
4237 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
4238 cfs_b
->runtime
+= slack_runtime
;
4240 /* we are under rq->lock, defer unthrottling using a timer */
4241 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
4242 !list_empty(&cfs_b
->throttled_cfs_rq
))
4243 start_cfs_slack_bandwidth(cfs_b
);
4245 raw_spin_unlock(&cfs_b
->lock
);
4247 /* even if it's not valid for return we don't want to try again */
4248 cfs_rq
->runtime_remaining
-= slack_runtime
;
4251 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4253 if (!cfs_bandwidth_used())
4256 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
4259 __return_cfs_rq_runtime(cfs_rq
);
4263 * This is done with a timer (instead of inline with bandwidth return) since
4264 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4266 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
4268 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
4271 /* confirm we're still not at a refresh boundary */
4272 raw_spin_lock(&cfs_b
->lock
);
4273 if (cfs_b
->distribute_running
) {
4274 raw_spin_unlock(&cfs_b
->lock
);
4278 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
4279 raw_spin_unlock(&cfs_b
->lock
);
4283 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
4284 runtime
= cfs_b
->runtime
;
4286 expires
= cfs_b
->runtime_expires
;
4288 cfs_b
->distribute_running
= 1;
4290 raw_spin_unlock(&cfs_b
->lock
);
4295 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
4297 raw_spin_lock(&cfs_b
->lock
);
4298 if (expires
== cfs_b
->runtime_expires
)
4299 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4300 cfs_b
->distribute_running
= 0;
4301 raw_spin_unlock(&cfs_b
->lock
);
4305 * When a group wakes up we want to make sure that its quota is not already
4306 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4307 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4309 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
4311 if (!cfs_bandwidth_used())
4314 /* an active group must be handled by the update_curr()->put() path */
4315 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
4318 /* ensure the group is not already throttled */
4319 if (cfs_rq_throttled(cfs_rq
))
4322 /* update runtime allocation */
4323 account_cfs_rq_runtime(cfs_rq
, 0);
4324 if (cfs_rq
->runtime_remaining
<= 0)
4325 throttle_cfs_rq(cfs_rq
);
4328 static void sync_throttle(struct task_group
*tg
, int cpu
)
4330 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
4332 if (!cfs_bandwidth_used())
4338 cfs_rq
= tg
->cfs_rq
[cpu
];
4339 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
4341 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
4342 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
4345 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4346 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4348 if (!cfs_bandwidth_used())
4351 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
4355 * it's possible for a throttled entity to be forced into a running
4356 * state (e.g. set_curr_task), in this case we're finished.
4358 if (cfs_rq_throttled(cfs_rq
))
4361 throttle_cfs_rq(cfs_rq
);
4365 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
4367 struct cfs_bandwidth
*cfs_b
=
4368 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
4370 do_sched_cfs_slack_timer(cfs_b
);
4372 return HRTIMER_NORESTART
;
4375 extern const u64 max_cfs_quota_period
;
4377 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
4379 struct cfs_bandwidth
*cfs_b
=
4380 container_of(timer
, struct cfs_bandwidth
, period_timer
);
4385 raw_spin_lock(&cfs_b
->lock
);
4387 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
4392 u64
new, old
= ktime_to_ns(cfs_b
->period
);
4395 * Grow period by a factor of 2 to avoid losing precision.
4396 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4400 if (new < max_cfs_quota_period
) {
4401 cfs_b
->period
= ns_to_ktime(new);
4404 pr_warn_ratelimited(
4405 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4407 div_u64(new, NSEC_PER_USEC
),
4408 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
4410 pr_warn_ratelimited(
4411 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4413 div_u64(old
, NSEC_PER_USEC
),
4414 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
4417 /* reset count so we don't come right back in here */
4421 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
4424 cfs_b
->period_active
= 0;
4425 raw_spin_unlock(&cfs_b
->lock
);
4427 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
4430 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4432 raw_spin_lock_init(&cfs_b
->lock
);
4434 cfs_b
->quota
= RUNTIME_INF
;
4435 cfs_b
->period
= ns_to_ktime(default_cfs_period());
4437 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
4438 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
4439 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
4440 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4441 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
4442 cfs_b
->distribute_running
= 0;
4445 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4447 cfs_rq
->runtime_enabled
= 0;
4448 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
4451 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4453 lockdep_assert_held(&cfs_b
->lock
);
4455 if (!cfs_b
->period_active
) {
4456 cfs_b
->period_active
= 1;
4457 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
4458 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
4462 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4464 /* init_cfs_bandwidth() was not called */
4465 if (!cfs_b
->throttled_cfs_rq
.next
)
4468 hrtimer_cancel(&cfs_b
->period_timer
);
4469 hrtimer_cancel(&cfs_b
->slack_timer
);
4472 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
4474 struct cfs_rq
*cfs_rq
;
4476 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4477 struct cfs_bandwidth
*cfs_b
= &cfs_rq
->tg
->cfs_bandwidth
;
4479 raw_spin_lock(&cfs_b
->lock
);
4480 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
4481 raw_spin_unlock(&cfs_b
->lock
);
4485 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
4487 struct cfs_rq
*cfs_rq
;
4489 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4490 if (!cfs_rq
->runtime_enabled
)
4494 * clock_task is not advancing so we just need to make sure
4495 * there's some valid quota amount
4497 cfs_rq
->runtime_remaining
= 1;
4499 * Offline rq is schedulable till cpu is completely disabled
4500 * in take_cpu_down(), so we prevent new cfs throttling here.
4502 cfs_rq
->runtime_enabled
= 0;
4504 if (cfs_rq_throttled(cfs_rq
))
4505 unthrottle_cfs_rq(cfs_rq
);
4509 #else /* CONFIG_CFS_BANDWIDTH */
4510 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
4512 return rq_clock_task(rq_of(cfs_rq
));
4515 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
4516 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
4517 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
4518 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
4519 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4521 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4526 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4531 static inline int throttled_lb_pair(struct task_group
*tg
,
4532 int src_cpu
, int dest_cpu
)
4537 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4539 #ifdef CONFIG_FAIR_GROUP_SCHED
4540 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4543 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4547 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4548 static inline void update_runtime_enabled(struct rq
*rq
) {}
4549 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
4551 #endif /* CONFIG_CFS_BANDWIDTH */
4553 /**************************************************
4554 * CFS operations on tasks:
4557 #ifdef CONFIG_SCHED_HRTICK
4558 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4560 struct sched_entity
*se
= &p
->se
;
4561 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4563 SCHED_WARN_ON(task_rq(p
) != rq
);
4565 if (rq
->cfs
.h_nr_running
> 1) {
4566 u64 slice
= sched_slice(cfs_rq
, se
);
4567 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
4568 s64 delta
= slice
- ran
;
4575 hrtick_start(rq
, delta
);
4580 * called from enqueue/dequeue and updates the hrtick when the
4581 * current task is from our class and nr_running is low enough
4584 static void hrtick_update(struct rq
*rq
)
4586 struct task_struct
*curr
= rq
->curr
;
4588 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
4591 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
4592 hrtick_start_fair(rq
, curr
);
4594 #else /* !CONFIG_SCHED_HRTICK */
4596 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4600 static inline void hrtick_update(struct rq
*rq
)
4606 * The enqueue_task method is called before nr_running is
4607 * increased. Here we update the fair scheduling stats and
4608 * then put the task into the rbtree:
4611 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4613 struct cfs_rq
*cfs_rq
;
4614 struct sched_entity
*se
= &p
->se
;
4617 * If in_iowait is set, the code below may not trigger any cpufreq
4618 * utilization updates, so do it here explicitly with the IOWAIT flag
4622 cpufreq_update_this_cpu(rq
, SCHED_CPUFREQ_IOWAIT
);
4624 for_each_sched_entity(se
) {
4627 cfs_rq
= cfs_rq_of(se
);
4628 enqueue_entity(cfs_rq
, se
, flags
);
4631 * end evaluation on encountering a throttled cfs_rq
4633 * note: in the case of encountering a throttled cfs_rq we will
4634 * post the final h_nr_running increment below.
4636 if (cfs_rq_throttled(cfs_rq
))
4638 cfs_rq
->h_nr_running
++;
4640 flags
= ENQUEUE_WAKEUP
;
4643 for_each_sched_entity(se
) {
4644 cfs_rq
= cfs_rq_of(se
);
4645 cfs_rq
->h_nr_running
++;
4647 if (cfs_rq_throttled(cfs_rq
))
4650 update_load_avg(se
, 1);
4651 update_cfs_shares(cfs_rq
);
4655 add_nr_running(rq
, 1);
4660 static void set_next_buddy(struct sched_entity
*se
);
4663 * The dequeue_task method is called before nr_running is
4664 * decreased. We remove the task from the rbtree and
4665 * update the fair scheduling stats:
4667 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4669 struct cfs_rq
*cfs_rq
;
4670 struct sched_entity
*se
= &p
->se
;
4671 int task_sleep
= flags
& DEQUEUE_SLEEP
;
4673 for_each_sched_entity(se
) {
4674 cfs_rq
= cfs_rq_of(se
);
4675 dequeue_entity(cfs_rq
, se
, flags
);
4678 * end evaluation on encountering a throttled cfs_rq
4680 * note: in the case of encountering a throttled cfs_rq we will
4681 * post the final h_nr_running decrement below.
4683 if (cfs_rq_throttled(cfs_rq
))
4685 cfs_rq
->h_nr_running
--;
4687 /* Don't dequeue parent if it has other entities besides us */
4688 if (cfs_rq
->load
.weight
) {
4689 /* Avoid re-evaluating load for this entity: */
4690 se
= parent_entity(se
);
4692 * Bias pick_next to pick a task from this cfs_rq, as
4693 * p is sleeping when it is within its sched_slice.
4695 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
4699 flags
|= DEQUEUE_SLEEP
;
4702 for_each_sched_entity(se
) {
4703 cfs_rq
= cfs_rq_of(se
);
4704 cfs_rq
->h_nr_running
--;
4706 if (cfs_rq_throttled(cfs_rq
))
4709 update_load_avg(se
, 1);
4710 update_cfs_shares(cfs_rq
);
4714 sub_nr_running(rq
, 1);
4721 /* Working cpumask for: load_balance, load_balance_newidle. */
4722 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
4723 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
4725 #ifdef CONFIG_NO_HZ_COMMON
4727 * per rq 'load' arrray crap; XXX kill this.
4731 * The exact cpuload calculated at every tick would be:
4733 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4735 * If a cpu misses updates for n ticks (as it was idle) and update gets
4736 * called on the n+1-th tick when cpu may be busy, then we have:
4738 * load_n = (1 - 1/2^i)^n * load_0
4739 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4741 * decay_load_missed() below does efficient calculation of
4743 * load' = (1 - 1/2^i)^n * load
4745 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4746 * This allows us to precompute the above in said factors, thereby allowing the
4747 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4748 * fixed_power_int())
4750 * The calculation is approximated on a 128 point scale.
4752 #define DEGRADE_SHIFT 7
4754 static const u8 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
4755 static const u8 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
4756 { 0, 0, 0, 0, 0, 0, 0, 0 },
4757 { 64, 32, 8, 0, 0, 0, 0, 0 },
4758 { 96, 72, 40, 12, 1, 0, 0, 0 },
4759 { 112, 98, 75, 43, 15, 1, 0, 0 },
4760 { 120, 112, 98, 76, 45, 16, 2, 0 }
4764 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4765 * would be when CPU is idle and so we just decay the old load without
4766 * adding any new load.
4768 static unsigned long
4769 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
4773 if (!missed_updates
)
4776 if (missed_updates
>= degrade_zero_ticks
[idx
])
4780 return load
>> missed_updates
;
4782 while (missed_updates
) {
4783 if (missed_updates
% 2)
4784 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
4786 missed_updates
>>= 1;
4791 #endif /* CONFIG_NO_HZ_COMMON */
4794 * __cpu_load_update - update the rq->cpu_load[] statistics
4795 * @this_rq: The rq to update statistics for
4796 * @this_load: The current load
4797 * @pending_updates: The number of missed updates
4799 * Update rq->cpu_load[] statistics. This function is usually called every
4800 * scheduler tick (TICK_NSEC).
4802 * This function computes a decaying average:
4804 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4806 * Because of NOHZ it might not get called on every tick which gives need for
4807 * the @pending_updates argument.
4809 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4810 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4811 * = A * (A * load[i]_n-2 + B) + B
4812 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4813 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4814 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4815 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4816 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4818 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4819 * any change in load would have resulted in the tick being turned back on.
4821 * For regular NOHZ, this reduces to:
4823 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4825 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4828 static void cpu_load_update(struct rq
*this_rq
, unsigned long this_load
,
4829 unsigned long pending_updates
)
4831 unsigned long __maybe_unused tickless_load
= this_rq
->cpu_load
[0];
4834 this_rq
->nr_load_updates
++;
4836 /* Update our load: */
4837 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
4838 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
4839 unsigned long old_load
, new_load
;
4841 /* scale is effectively 1 << i now, and >> i divides by scale */
4843 old_load
= this_rq
->cpu_load
[i
];
4844 #ifdef CONFIG_NO_HZ_COMMON
4845 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
4846 if (tickless_load
) {
4847 old_load
-= decay_load_missed(tickless_load
, pending_updates
- 1, i
);
4849 * old_load can never be a negative value because a
4850 * decayed tickless_load cannot be greater than the
4851 * original tickless_load.
4853 old_load
+= tickless_load
;
4856 new_load
= this_load
;
4858 * Round up the averaging division if load is increasing. This
4859 * prevents us from getting stuck on 9 if the load is 10, for
4862 if (new_load
> old_load
)
4863 new_load
+= scale
- 1;
4865 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
4868 sched_avg_update(this_rq
);
4871 /* Used instead of source_load when we know the type == 0 */
4872 static unsigned long weighted_cpuload(const int cpu
)
4874 return cfs_rq_runnable_load_avg(&cpu_rq(cpu
)->cfs
);
4877 #ifdef CONFIG_NO_HZ_COMMON
4879 * There is no sane way to deal with nohz on smp when using jiffies because the
4880 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4881 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4883 * Therefore we need to avoid the delta approach from the regular tick when
4884 * possible since that would seriously skew the load calculation. This is why we
4885 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4886 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4887 * loop exit, nohz_idle_balance, nohz full exit...)
4889 * This means we might still be one tick off for nohz periods.
4892 static void cpu_load_update_nohz(struct rq
*this_rq
,
4893 unsigned long curr_jiffies
,
4896 unsigned long pending_updates
;
4898 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
4899 if (pending_updates
) {
4900 this_rq
->last_load_update_tick
= curr_jiffies
;
4902 * In the regular NOHZ case, we were idle, this means load 0.
4903 * In the NOHZ_FULL case, we were non-idle, we should consider
4904 * its weighted load.
4906 cpu_load_update(this_rq
, load
, pending_updates
);
4911 * Called from nohz_idle_balance() to update the load ratings before doing the
4914 static void cpu_load_update_idle(struct rq
*this_rq
)
4917 * bail if there's load or we're actually up-to-date.
4919 if (weighted_cpuload(cpu_of(this_rq
)))
4922 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), 0);
4926 * Record CPU load on nohz entry so we know the tickless load to account
4927 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4928 * than other cpu_load[idx] but it should be fine as cpu_load readers
4929 * shouldn't rely into synchronized cpu_load[*] updates.
4931 void cpu_load_update_nohz_start(void)
4933 struct rq
*this_rq
= this_rq();
4936 * This is all lockless but should be fine. If weighted_cpuload changes
4937 * concurrently we'll exit nohz. And cpu_load write can race with
4938 * cpu_load_update_idle() but both updater would be writing the same.
4940 this_rq
->cpu_load
[0] = weighted_cpuload(cpu_of(this_rq
));
4944 * Account the tickless load in the end of a nohz frame.
4946 void cpu_load_update_nohz_stop(void)
4948 unsigned long curr_jiffies
= READ_ONCE(jiffies
);
4949 struct rq
*this_rq
= this_rq();
4952 if (curr_jiffies
== this_rq
->last_load_update_tick
)
4955 load
= weighted_cpuload(cpu_of(this_rq
));
4956 raw_spin_lock(&this_rq
->lock
);
4957 update_rq_clock(this_rq
);
4958 cpu_load_update_nohz(this_rq
, curr_jiffies
, load
);
4959 raw_spin_unlock(&this_rq
->lock
);
4961 #else /* !CONFIG_NO_HZ_COMMON */
4962 static inline void cpu_load_update_nohz(struct rq
*this_rq
,
4963 unsigned long curr_jiffies
,
4964 unsigned long load
) { }
4965 #endif /* CONFIG_NO_HZ_COMMON */
4967 static void cpu_load_update_periodic(struct rq
*this_rq
, unsigned long load
)
4969 #ifdef CONFIG_NO_HZ_COMMON
4970 /* See the mess around cpu_load_update_nohz(). */
4971 this_rq
->last_load_update_tick
= READ_ONCE(jiffies
);
4973 cpu_load_update(this_rq
, load
, 1);
4977 * Called from scheduler_tick()
4979 void cpu_load_update_active(struct rq
*this_rq
)
4981 unsigned long load
= weighted_cpuload(cpu_of(this_rq
));
4983 if (tick_nohz_tick_stopped())
4984 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), load
);
4986 cpu_load_update_periodic(this_rq
, load
);
4990 * Return a low guess at the load of a migration-source cpu weighted
4991 * according to the scheduling class and "nice" value.
4993 * We want to under-estimate the load of migration sources, to
4994 * balance conservatively.
4996 static unsigned long source_load(int cpu
, int type
)
4998 struct rq
*rq
= cpu_rq(cpu
);
4999 unsigned long total
= weighted_cpuload(cpu
);
5001 if (type
== 0 || !sched_feat(LB_BIAS
))
5004 return min(rq
->cpu_load
[type
-1], total
);
5008 * Return a high guess at the load of a migration-target cpu weighted
5009 * according to the scheduling class and "nice" value.
5011 static unsigned long target_load(int cpu
, int type
)
5013 struct rq
*rq
= cpu_rq(cpu
);
5014 unsigned long total
= weighted_cpuload(cpu
);
5016 if (type
== 0 || !sched_feat(LB_BIAS
))
5019 return max(rq
->cpu_load
[type
-1], total
);
5022 static unsigned long capacity_of(int cpu
)
5024 return cpu_rq(cpu
)->cpu_capacity
;
5027 static unsigned long capacity_orig_of(int cpu
)
5029 return cpu_rq(cpu
)->cpu_capacity_orig
;
5032 static unsigned long cpu_avg_load_per_task(int cpu
)
5034 struct rq
*rq
= cpu_rq(cpu
);
5035 unsigned long nr_running
= READ_ONCE(rq
->cfs
.h_nr_running
);
5036 unsigned long load_avg
= weighted_cpuload(cpu
);
5039 return load_avg
/ nr_running
;
5044 #ifdef CONFIG_FAIR_GROUP_SCHED
5046 * effective_load() calculates the load change as seen from the root_task_group
5048 * Adding load to a group doesn't make a group heavier, but can cause movement
5049 * of group shares between cpus. Assuming the shares were perfectly aligned one
5050 * can calculate the shift in shares.
5052 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5053 * on this @cpu and results in a total addition (subtraction) of @wg to the
5054 * total group weight.
5056 * Given a runqueue weight distribution (rw_i) we can compute a shares
5057 * distribution (s_i) using:
5059 * s_i = rw_i / \Sum rw_j (1)
5061 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5062 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5063 * shares distribution (s_i):
5065 * rw_i = { 2, 4, 1, 0 }
5066 * s_i = { 2/7, 4/7, 1/7, 0 }
5068 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5069 * task used to run on and the CPU the waker is running on), we need to
5070 * compute the effect of waking a task on either CPU and, in case of a sync
5071 * wakeup, compute the effect of the current task going to sleep.
5073 * So for a change of @wl to the local @cpu with an overall group weight change
5074 * of @wl we can compute the new shares distribution (s'_i) using:
5076 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5078 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5079 * differences in waking a task to CPU 0. The additional task changes the
5080 * weight and shares distributions like:
5082 * rw'_i = { 3, 4, 1, 0 }
5083 * s'_i = { 3/8, 4/8, 1/8, 0 }
5085 * We can then compute the difference in effective weight by using:
5087 * dw_i = S * (s'_i - s_i) (3)
5089 * Where 'S' is the group weight as seen by its parent.
5091 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5092 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5093 * 4/7) times the weight of the group.
5095 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
5097 struct sched_entity
*se
= tg
->se
[cpu
];
5099 if (!tg
->parent
) /* the trivial, non-cgroup case */
5102 for_each_sched_entity(se
) {
5103 struct cfs_rq
*cfs_rq
= se
->my_q
;
5104 long W
, w
= cfs_rq_load_avg(cfs_rq
);
5109 * W = @wg + \Sum rw_j
5111 W
= wg
+ atomic_long_read(&tg
->load_avg
);
5113 /* Ensure \Sum rw_j >= rw_i */
5114 W
-= cfs_rq
->tg_load_avg_contrib
;
5123 * wl = S * s'_i; see (2)
5126 wl
= (w
* (long)scale_load_down(tg
->shares
)) / W
;
5128 wl
= scale_load_down(tg
->shares
);
5131 * Per the above, wl is the new se->load.weight value; since
5132 * those are clipped to [MIN_SHARES, ...) do so now. See
5133 * calc_cfs_shares().
5135 if (wl
< MIN_SHARES
)
5139 * wl = dw_i = S * (s'_i - s_i); see (3)
5141 wl
-= se
->avg
.load_avg
;
5144 * Recursively apply this logic to all parent groups to compute
5145 * the final effective load change on the root group. Since
5146 * only the @tg group gets extra weight, all parent groups can
5147 * only redistribute existing shares. @wl is the shift in shares
5148 * resulting from this level per the above.
5157 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
5164 static void record_wakee(struct task_struct
*p
)
5167 * Only decay a single time; tasks that have less then 1 wakeup per
5168 * jiffy will not have built up many flips.
5170 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5171 current
->wakee_flips
>>= 1;
5172 current
->wakee_flip_decay_ts
= jiffies
;
5175 if (current
->last_wakee
!= p
) {
5176 current
->last_wakee
= p
;
5177 current
->wakee_flips
++;
5182 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5184 * A waker of many should wake a different task than the one last awakened
5185 * at a frequency roughly N times higher than one of its wakees.
5187 * In order to determine whether we should let the load spread vs consolidating
5188 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5189 * partner, and a factor of lls_size higher frequency in the other.
5191 * With both conditions met, we can be relatively sure that the relationship is
5192 * non-monogamous, with partner count exceeding socket size.
5194 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5195 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5198 static int wake_wide(struct task_struct
*p
)
5200 unsigned int master
= current
->wakee_flips
;
5201 unsigned int slave
= p
->wakee_flips
;
5202 int factor
= this_cpu_read(sd_llc_size
);
5205 swap(master
, slave
);
5206 if (slave
< factor
|| master
< slave
* factor
)
5211 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5212 int prev_cpu
, int sync
)
5214 s64 this_load
, load
;
5215 s64 this_eff_load
, prev_eff_load
;
5217 struct task_group
*tg
;
5218 unsigned long weight
;
5222 this_cpu
= smp_processor_id();
5223 load
= source_load(prev_cpu
, idx
);
5224 this_load
= target_load(this_cpu
, idx
);
5227 * If sync wakeup then subtract the (maximum possible)
5228 * effect of the currently running task from the load
5229 * of the current CPU:
5232 tg
= task_group(current
);
5233 weight
= current
->se
.avg
.load_avg
;
5235 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
5236 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
5240 weight
= p
->se
.avg
.load_avg
;
5243 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5244 * due to the sync cause above having dropped this_load to 0, we'll
5245 * always have an imbalance, but there's really nothing you can do
5246 * about that, so that's good too.
5248 * Otherwise check if either cpus are near enough in load to allow this
5249 * task to be woken on this_cpu.
5251 this_eff_load
= 100;
5252 this_eff_load
*= capacity_of(prev_cpu
);
5254 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
5255 prev_eff_load
*= capacity_of(this_cpu
);
5257 if (this_load
> 0) {
5258 this_eff_load
*= this_load
+
5259 effective_load(tg
, this_cpu
, weight
, weight
);
5261 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
5264 balanced
= this_eff_load
<= prev_eff_load
;
5266 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5271 schedstat_inc(sd
->ttwu_move_affine
);
5272 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5278 * find_idlest_group finds and returns the least busy CPU group within the
5281 static struct sched_group
*
5282 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
5283 int this_cpu
, int sd_flag
)
5285 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
5286 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
5287 int load_idx
= sd
->forkexec_idx
;
5288 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
5290 if (sd_flag
& SD_BALANCE_WAKE
)
5291 load_idx
= sd
->wake_idx
;
5294 unsigned long load
, avg_load
;
5298 /* Skip over this group if it has no CPUs allowed */
5299 if (!cpumask_intersects(sched_group_cpus(group
),
5300 tsk_cpus_allowed(p
)))
5303 local_group
= cpumask_test_cpu(this_cpu
,
5304 sched_group_cpus(group
));
5306 /* Tally up the load of all CPUs in the group */
5309 for_each_cpu(i
, sched_group_cpus(group
)) {
5310 /* Bias balancing toward cpus of our domain */
5312 load
= source_load(i
, load_idx
);
5314 load
= target_load(i
, load_idx
);
5319 /* Adjust by relative CPU capacity of the group */
5320 avg_load
= (avg_load
* SCHED_CAPACITY_SCALE
) / group
->sgc
->capacity
;
5323 this_load
= avg_load
;
5324 } else if (avg_load
< min_load
) {
5325 min_load
= avg_load
;
5328 } while (group
= group
->next
, group
!= sd
->groups
);
5330 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
5336 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5339 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5341 unsigned long load
, min_load
= ULONG_MAX
;
5342 unsigned int min_exit_latency
= UINT_MAX
;
5343 u64 latest_idle_timestamp
= 0;
5344 int least_loaded_cpu
= this_cpu
;
5345 int shallowest_idle_cpu
= -1;
5348 /* Check if we have any choice: */
5349 if (group
->group_weight
== 1)
5350 return cpumask_first(sched_group_cpus(group
));
5352 /* Traverse only the allowed CPUs */
5353 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
5355 struct rq
*rq
= cpu_rq(i
);
5356 struct cpuidle_state
*idle
= idle_get_state(rq
);
5357 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5359 * We give priority to a CPU whose idle state
5360 * has the smallest exit latency irrespective
5361 * of any idle timestamp.
5363 min_exit_latency
= idle
->exit_latency
;
5364 latest_idle_timestamp
= rq
->idle_stamp
;
5365 shallowest_idle_cpu
= i
;
5366 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5367 rq
->idle_stamp
> latest_idle_timestamp
) {
5369 * If equal or no active idle state, then
5370 * the most recently idled CPU might have
5373 latest_idle_timestamp
= rq
->idle_stamp
;
5374 shallowest_idle_cpu
= i
;
5376 } else if (shallowest_idle_cpu
== -1) {
5377 load
= weighted_cpuload(i
);
5378 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
5380 least_loaded_cpu
= i
;
5385 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5388 #ifdef CONFIG_SCHED_SMT
5390 static inline void set_idle_cores(int cpu
, int val
)
5392 struct sched_domain_shared
*sds
;
5394 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5396 WRITE_ONCE(sds
->has_idle_cores
, val
);
5399 static inline bool test_idle_cores(int cpu
, bool def
)
5401 struct sched_domain_shared
*sds
;
5403 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5405 return READ_ONCE(sds
->has_idle_cores
);
5411 * Scans the local SMT mask to see if the entire core is idle, and records this
5412 * information in sd_llc_shared->has_idle_cores.
5414 * Since SMT siblings share all cache levels, inspecting this limited remote
5415 * state should be fairly cheap.
5417 void update_idle_core(struct rq
*rq
)
5419 int core
= cpu_of(rq
);
5423 if (test_idle_cores(core
, true))
5426 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5434 set_idle_cores(core
, 1);
5440 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5441 * there are no idle cores left in the system; tracked through
5442 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5444 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5446 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
5449 if (!test_idle_cores(target
, false))
5452 cpumask_and(cpus
, sched_domain_span(sd
), tsk_cpus_allowed(p
));
5454 for_each_cpu_wrap(core
, cpus
, target
) {
5457 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5458 cpumask_clear_cpu(cpu
, cpus
);
5468 * Failed to find an idle core; stop looking for one.
5470 set_idle_cores(target
, 0);
5476 * Scan the local SMT mask for idle CPUs.
5478 static int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5482 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
5483 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
5492 #else /* CONFIG_SCHED_SMT */
5494 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5499 static inline int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5504 #endif /* CONFIG_SCHED_SMT */
5507 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5508 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5509 * average idle time for this rq (as found in rq->avg_idle).
5511 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5513 struct sched_domain
*this_sd
;
5514 u64 avg_cost
, avg_idle
= this_rq()->avg_idle
;
5519 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
5523 avg_cost
= this_sd
->avg_scan_cost
;
5526 * Due to large variance we need a large fuzz factor; hackbench in
5527 * particularly is sensitive here.
5529 if (sched_feat(SIS_AVG_CPU
) && (avg_idle
/ 512) < avg_cost
)
5532 time
= local_clock();
5534 for_each_cpu_wrap(cpu
, sched_domain_span(sd
), target
) {
5535 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
5541 time
= local_clock() - time
;
5542 cost
= this_sd
->avg_scan_cost
;
5543 delta
= (s64
)(time
- cost
) / 8;
5544 this_sd
->avg_scan_cost
+= delta
;
5550 * Try and locate an idle core/thread in the LLC cache domain.
5552 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
5554 struct sched_domain
*sd
;
5557 if (idle_cpu(target
))
5561 * If the previous cpu is cache affine and idle, don't be stupid.
5563 if (prev
!= target
&& cpus_share_cache(prev
, target
) && idle_cpu(prev
))
5566 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
5570 i
= select_idle_core(p
, sd
, target
);
5571 if ((unsigned)i
< nr_cpumask_bits
)
5574 i
= select_idle_cpu(p
, sd
, target
);
5575 if ((unsigned)i
< nr_cpumask_bits
)
5578 i
= select_idle_smt(p
, sd
, target
);
5579 if ((unsigned)i
< nr_cpumask_bits
)
5586 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5587 * tasks. The unit of the return value must be the one of capacity so we can
5588 * compare the utilization with the capacity of the CPU that is available for
5589 * CFS task (ie cpu_capacity).
5591 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5592 * recent utilization of currently non-runnable tasks on a CPU. It represents
5593 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5594 * capacity_orig is the cpu_capacity available at the highest frequency
5595 * (arch_scale_freq_capacity()).
5596 * The utilization of a CPU converges towards a sum equal to or less than the
5597 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5598 * the running time on this CPU scaled by capacity_curr.
5600 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5601 * higher than capacity_orig because of unfortunate rounding in
5602 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5603 * the average stabilizes with the new running time. We need to check that the
5604 * utilization stays within the range of [0..capacity_orig] and cap it if
5605 * necessary. Without utilization capping, a group could be seen as overloaded
5606 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5607 * available capacity. We allow utilization to overshoot capacity_curr (but not
5608 * capacity_orig) as it useful for predicting the capacity required after task
5609 * migrations (scheduler-driven DVFS).
5611 static int cpu_util(int cpu
)
5613 unsigned long util
= cpu_rq(cpu
)->cfs
.avg
.util_avg
;
5614 unsigned long capacity
= capacity_orig_of(cpu
);
5616 return (util
>= capacity
) ? capacity
: util
;
5619 static inline int task_util(struct task_struct
*p
)
5621 return p
->se
.avg
.util_avg
;
5625 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5626 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5628 * In that case WAKE_AFFINE doesn't make sense and we'll let
5629 * BALANCE_WAKE sort things out.
5631 static int wake_cap(struct task_struct
*p
, int cpu
, int prev_cpu
)
5633 long min_cap
, max_cap
;
5635 min_cap
= min(capacity_orig_of(prev_cpu
), capacity_orig_of(cpu
));
5636 max_cap
= cpu_rq(cpu
)->rd
->max_cpu_capacity
;
5638 /* Minimum capacity is close to max, no need to abort wake_affine */
5639 if (max_cap
- min_cap
< max_cap
>> 3)
5642 return min_cap
* 1024 < task_util(p
) * capacity_margin
;
5646 * select_task_rq_fair: Select target runqueue for the waking task in domains
5647 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5648 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5650 * Balances load by selecting the idlest cpu in the idlest group, or under
5651 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5653 * Returns the target cpu number.
5655 * preempt must be disabled.
5658 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
5660 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
5661 int cpu
= smp_processor_id();
5662 int new_cpu
= prev_cpu
;
5663 int want_affine
= 0;
5664 int sync
= wake_flags
& WF_SYNC
;
5666 if (sd_flag
& SD_BALANCE_WAKE
) {
5668 want_affine
= !wake_wide(p
) && !wake_cap(p
, cpu
, prev_cpu
)
5669 && cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
));
5673 for_each_domain(cpu
, tmp
) {
5674 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
5678 * If both cpu and prev_cpu are part of this domain,
5679 * cpu is a valid SD_WAKE_AFFINE target.
5681 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
5682 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
5687 if (tmp
->flags
& sd_flag
)
5689 else if (!want_affine
)
5694 sd
= NULL
; /* Prefer wake_affine over balance flags */
5695 if (cpu
!= prev_cpu
&& wake_affine(affine_sd
, p
, prev_cpu
, sync
))
5700 if (sd_flag
& SD_BALANCE_WAKE
) /* XXX always ? */
5701 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
5704 struct sched_group
*group
;
5707 if (!(sd
->flags
& sd_flag
)) {
5712 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5718 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
5719 if (new_cpu
== -1 || new_cpu
== cpu
) {
5720 /* Now try balancing at a lower domain level of cpu */
5725 /* Now try balancing at a lower domain level of new_cpu */
5727 weight
= sd
->span_weight
;
5729 for_each_domain(cpu
, tmp
) {
5730 if (weight
<= tmp
->span_weight
)
5732 if (tmp
->flags
& sd_flag
)
5735 /* while loop will break here if sd == NULL */
5743 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5744 * cfs_rq_of(p) references at time of call are still valid and identify the
5745 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5747 static void migrate_task_rq_fair(struct task_struct
*p
)
5750 * As blocked tasks retain absolute vruntime the migration needs to
5751 * deal with this by subtracting the old and adding the new
5752 * min_vruntime -- the latter is done by enqueue_entity() when placing
5753 * the task on the new runqueue.
5755 if (p
->state
== TASK_WAKING
) {
5756 struct sched_entity
*se
= &p
->se
;
5757 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5760 #ifndef CONFIG_64BIT
5761 u64 min_vruntime_copy
;
5764 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
5766 min_vruntime
= cfs_rq
->min_vruntime
;
5767 } while (min_vruntime
!= min_vruntime_copy
);
5769 min_vruntime
= cfs_rq
->min_vruntime
;
5772 se
->vruntime
-= min_vruntime
;
5776 * We are supposed to update the task to "current" time, then its up to date
5777 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5778 * what current time is, so simply throw away the out-of-date time. This
5779 * will result in the wakee task is less decayed, but giving the wakee more
5780 * load sounds not bad.
5782 remove_entity_load_avg(&p
->se
);
5784 /* Tell new CPU we are migrated */
5785 p
->se
.avg
.last_update_time
= 0;
5787 /* We have migrated, no longer consider this task hot */
5788 p
->se
.exec_start
= 0;
5791 static void task_dead_fair(struct task_struct
*p
)
5793 remove_entity_load_avg(&p
->se
);
5795 #endif /* CONFIG_SMP */
5797 static unsigned long
5798 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
5800 unsigned long gran
= sysctl_sched_wakeup_granularity
;
5803 * Since its curr running now, convert the gran from real-time
5804 * to virtual-time in his units.
5806 * By using 'se' instead of 'curr' we penalize light tasks, so
5807 * they get preempted easier. That is, if 'se' < 'curr' then
5808 * the resulting gran will be larger, therefore penalizing the
5809 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5810 * be smaller, again penalizing the lighter task.
5812 * This is especially important for buddies when the leftmost
5813 * task is higher priority than the buddy.
5815 return calc_delta_fair(gran
, se
);
5819 * Should 'se' preempt 'curr'.
5833 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
5835 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
5840 gran
= wakeup_gran(curr
, se
);
5847 static void set_last_buddy(struct sched_entity
*se
)
5849 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
5852 for_each_sched_entity(se
)
5853 cfs_rq_of(se
)->last
= se
;
5856 static void set_next_buddy(struct sched_entity
*se
)
5858 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
5861 for_each_sched_entity(se
)
5862 cfs_rq_of(se
)->next
= se
;
5865 static void set_skip_buddy(struct sched_entity
*se
)
5867 for_each_sched_entity(se
)
5868 cfs_rq_of(se
)->skip
= se
;
5872 * Preempt the current task with a newly woken task if needed:
5874 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
5876 struct task_struct
*curr
= rq
->curr
;
5877 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
5878 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
5879 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
5880 int next_buddy_marked
= 0;
5882 if (unlikely(se
== pse
))
5886 * This is possible from callers such as attach_tasks(), in which we
5887 * unconditionally check_prempt_curr() after an enqueue (which may have
5888 * lead to a throttle). This both saves work and prevents false
5889 * next-buddy nomination below.
5891 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
5894 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
5895 set_next_buddy(pse
);
5896 next_buddy_marked
= 1;
5900 * We can come here with TIF_NEED_RESCHED already set from new task
5903 * Note: this also catches the edge-case of curr being in a throttled
5904 * group (e.g. via set_curr_task), since update_curr() (in the
5905 * enqueue of curr) will have resulted in resched being set. This
5906 * prevents us from potentially nominating it as a false LAST_BUDDY
5909 if (test_tsk_need_resched(curr
))
5912 /* Idle tasks are by definition preempted by non-idle tasks. */
5913 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
5914 likely(p
->policy
!= SCHED_IDLE
))
5918 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5919 * is driven by the tick):
5921 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
5924 find_matching_se(&se
, &pse
);
5925 update_curr(cfs_rq_of(se
));
5927 if (wakeup_preempt_entity(se
, pse
) == 1) {
5929 * Bias pick_next to pick the sched entity that is
5930 * triggering this preemption.
5932 if (!next_buddy_marked
)
5933 set_next_buddy(pse
);
5942 * Only set the backward buddy when the current task is still
5943 * on the rq. This can happen when a wakeup gets interleaved
5944 * with schedule on the ->pre_schedule() or idle_balance()
5945 * point, either of which can * drop the rq lock.
5947 * Also, during early boot the idle thread is in the fair class,
5948 * for obvious reasons its a bad idea to schedule back to it.
5950 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
5953 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
5957 static struct task_struct
*
5958 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct pin_cookie cookie
)
5960 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
5961 struct sched_entity
*se
;
5962 struct task_struct
*p
;
5966 #ifdef CONFIG_FAIR_GROUP_SCHED
5967 if (!cfs_rq
->nr_running
)
5970 if (prev
->sched_class
!= &fair_sched_class
)
5974 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5975 * likely that a next task is from the same cgroup as the current.
5977 * Therefore attempt to avoid putting and setting the entire cgroup
5978 * hierarchy, only change the part that actually changes.
5982 struct sched_entity
*curr
= cfs_rq
->curr
;
5985 * Since we got here without doing put_prev_entity() we also
5986 * have to consider cfs_rq->curr. If it is still a runnable
5987 * entity, update_curr() will update its vruntime, otherwise
5988 * forget we've ever seen it.
5992 update_curr(cfs_rq
);
5997 * This call to check_cfs_rq_runtime() will do the
5998 * throttle and dequeue its entity in the parent(s).
5999 * Therefore the 'simple' nr_running test will indeed
6002 if (unlikely(check_cfs_rq_runtime(cfs_rq
)))
6006 se
= pick_next_entity(cfs_rq
, curr
);
6007 cfs_rq
= group_cfs_rq(se
);
6013 * Since we haven't yet done put_prev_entity and if the selected task
6014 * is a different task than we started out with, try and touch the
6015 * least amount of cfs_rqs.
6018 struct sched_entity
*pse
= &prev
->se
;
6020 while (!(cfs_rq
= is_same_group(se
, pse
))) {
6021 int se_depth
= se
->depth
;
6022 int pse_depth
= pse
->depth
;
6024 if (se_depth
<= pse_depth
) {
6025 put_prev_entity(cfs_rq_of(pse
), pse
);
6026 pse
= parent_entity(pse
);
6028 if (se_depth
>= pse_depth
) {
6029 set_next_entity(cfs_rq_of(se
), se
);
6030 se
= parent_entity(se
);
6034 put_prev_entity(cfs_rq
, pse
);
6035 set_next_entity(cfs_rq
, se
);
6038 if (hrtick_enabled(rq
))
6039 hrtick_start_fair(rq
, p
);
6046 if (!cfs_rq
->nr_running
)
6049 put_prev_task(rq
, prev
);
6052 se
= pick_next_entity(cfs_rq
, NULL
);
6053 set_next_entity(cfs_rq
, se
);
6054 cfs_rq
= group_cfs_rq(se
);
6059 if (hrtick_enabled(rq
))
6060 hrtick_start_fair(rq
, p
);
6066 * This is OK, because current is on_cpu, which avoids it being picked
6067 * for load-balance and preemption/IRQs are still disabled avoiding
6068 * further scheduler activity on it and we're being very careful to
6069 * re-start the picking loop.
6071 lockdep_unpin_lock(&rq
->lock
, cookie
);
6072 new_tasks
= idle_balance(rq
);
6073 lockdep_repin_lock(&rq
->lock
, cookie
);
6075 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6076 * possible for any higher priority task to appear. In that case we
6077 * must re-start the pick_next_entity() loop.
6089 * Account for a descheduled task:
6091 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
6093 struct sched_entity
*se
= &prev
->se
;
6094 struct cfs_rq
*cfs_rq
;
6096 for_each_sched_entity(se
) {
6097 cfs_rq
= cfs_rq_of(se
);
6098 put_prev_entity(cfs_rq
, se
);
6103 * sched_yield() is very simple
6105 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6107 static void yield_task_fair(struct rq
*rq
)
6109 struct task_struct
*curr
= rq
->curr
;
6110 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6111 struct sched_entity
*se
= &curr
->se
;
6114 * Are we the only task in the tree?
6116 if (unlikely(rq
->nr_running
== 1))
6119 clear_buddies(cfs_rq
, se
);
6121 if (curr
->policy
!= SCHED_BATCH
) {
6122 update_rq_clock(rq
);
6124 * Update run-time statistics of the 'current'.
6126 update_curr(cfs_rq
);
6128 * Tell update_rq_clock() that we've just updated,
6129 * so we don't do microscopic update in schedule()
6130 * and double the fastpath cost.
6132 rq_clock_skip_update(rq
, true);
6138 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
6140 struct sched_entity
*se
= &p
->se
;
6142 /* throttled hierarchies are not runnable */
6143 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
6146 /* Tell the scheduler that we'd really like pse to run next. */
6149 yield_task_fair(rq
);
6155 /**************************************************
6156 * Fair scheduling class load-balancing methods.
6160 * The purpose of load-balancing is to achieve the same basic fairness the
6161 * per-cpu scheduler provides, namely provide a proportional amount of compute
6162 * time to each task. This is expressed in the following equation:
6164 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6166 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6167 * W_i,0 is defined as:
6169 * W_i,0 = \Sum_j w_i,j (2)
6171 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6172 * is derived from the nice value as per sched_prio_to_weight[].
6174 * The weight average is an exponential decay average of the instantaneous
6177 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6179 * C_i is the compute capacity of cpu i, typically it is the
6180 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6181 * can also include other factors [XXX].
6183 * To achieve this balance we define a measure of imbalance which follows
6184 * directly from (1):
6186 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6188 * We them move tasks around to minimize the imbalance. In the continuous
6189 * function space it is obvious this converges, in the discrete case we get
6190 * a few fun cases generally called infeasible weight scenarios.
6193 * - infeasible weights;
6194 * - local vs global optima in the discrete case. ]
6199 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6200 * for all i,j solution, we create a tree of cpus that follows the hardware
6201 * topology where each level pairs two lower groups (or better). This results
6202 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6203 * tree to only the first of the previous level and we decrease the frequency
6204 * of load-balance at each level inv. proportional to the number of cpus in
6210 * \Sum { --- * --- * 2^i } = O(n) (5)
6212 * `- size of each group
6213 * | | `- number of cpus doing load-balance
6215 * `- sum over all levels
6217 * Coupled with a limit on how many tasks we can migrate every balance pass,
6218 * this makes (5) the runtime complexity of the balancer.
6220 * An important property here is that each CPU is still (indirectly) connected
6221 * to every other cpu in at most O(log n) steps:
6223 * The adjacency matrix of the resulting graph is given by:
6226 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6229 * And you'll find that:
6231 * A^(log_2 n)_i,j != 0 for all i,j (7)
6233 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6234 * The task movement gives a factor of O(m), giving a convergence complexity
6237 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6242 * In order to avoid CPUs going idle while there's still work to do, new idle
6243 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6244 * tree itself instead of relying on other CPUs to bring it work.
6246 * This adds some complexity to both (5) and (8) but it reduces the total idle
6254 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6257 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6262 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6264 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6266 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6269 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6270 * rewrite all of this once again.]
6273 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
6275 enum fbq_type
{ regular
, remote
, all
};
6277 #define LBF_ALL_PINNED 0x01
6278 #define LBF_NEED_BREAK 0x02
6279 #define LBF_DST_PINNED 0x04
6280 #define LBF_SOME_PINNED 0x08
6283 struct sched_domain
*sd
;
6291 struct cpumask
*dst_grpmask
;
6293 enum cpu_idle_type idle
;
6295 /* The set of CPUs under consideration for load-balancing */
6296 struct cpumask
*cpus
;
6301 unsigned int loop_break
;
6302 unsigned int loop_max
;
6304 enum fbq_type fbq_type
;
6305 struct list_head tasks
;
6309 * Is this task likely cache-hot:
6311 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
6315 lockdep_assert_held(&env
->src_rq
->lock
);
6317 if (p
->sched_class
!= &fair_sched_class
)
6320 if (unlikely(p
->policy
== SCHED_IDLE
))
6324 * Buddy candidates are cache hot:
6326 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
6327 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
6328 &p
->se
== cfs_rq_of(&p
->se
)->last
))
6331 if (sysctl_sched_migration_cost
== -1)
6333 if (sysctl_sched_migration_cost
== 0)
6336 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
6338 return delta
< (s64
)sysctl_sched_migration_cost
;
6341 #ifdef CONFIG_NUMA_BALANCING
6343 * Returns 1, if task migration degrades locality
6344 * Returns 0, if task migration improves locality i.e migration preferred.
6345 * Returns -1, if task migration is not affected by locality.
6347 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
6349 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
6350 unsigned long src_faults
, dst_faults
;
6351 int src_nid
, dst_nid
;
6353 if (!static_branch_likely(&sched_numa_balancing
))
6356 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
6359 src_nid
= cpu_to_node(env
->src_cpu
);
6360 dst_nid
= cpu_to_node(env
->dst_cpu
);
6362 if (src_nid
== dst_nid
)
6365 /* Migrating away from the preferred node is always bad. */
6366 if (src_nid
== p
->numa_preferred_nid
) {
6367 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
6373 /* Encourage migration to the preferred node. */
6374 if (dst_nid
== p
->numa_preferred_nid
)
6378 src_faults
= group_faults(p
, src_nid
);
6379 dst_faults
= group_faults(p
, dst_nid
);
6381 src_faults
= task_faults(p
, src_nid
);
6382 dst_faults
= task_faults(p
, dst_nid
);
6385 return dst_faults
< src_faults
;
6389 static inline int migrate_degrades_locality(struct task_struct
*p
,
6397 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6400 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
6404 lockdep_assert_held(&env
->src_rq
->lock
);
6407 * We do not migrate tasks that are:
6408 * 1) throttled_lb_pair, or
6409 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6410 * 3) running (obviously), or
6411 * 4) are cache-hot on their current CPU.
6413 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
6416 if (!cpumask_test_cpu(env
->dst_cpu
, tsk_cpus_allowed(p
))) {
6419 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
6421 env
->flags
|= LBF_SOME_PINNED
;
6424 * Remember if this task can be migrated to any other cpu in
6425 * our sched_group. We may want to revisit it if we couldn't
6426 * meet load balance goals by pulling other tasks on src_cpu.
6428 * Also avoid computing new_dst_cpu if we have already computed
6429 * one in current iteration.
6431 if (!env
->dst_grpmask
|| (env
->flags
& LBF_DST_PINNED
))
6434 /* Prevent to re-select dst_cpu via env's cpus */
6435 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
6436 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
))) {
6437 env
->flags
|= LBF_DST_PINNED
;
6438 env
->new_dst_cpu
= cpu
;
6446 /* Record that we found atleast one task that could run on dst_cpu */
6447 env
->flags
&= ~LBF_ALL_PINNED
;
6449 if (task_running(env
->src_rq
, p
)) {
6450 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
6455 * Aggressive migration if:
6456 * 1) destination numa is preferred
6457 * 2) task is cache cold, or
6458 * 3) too many balance attempts have failed.
6460 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
6461 if (tsk_cache_hot
== -1)
6462 tsk_cache_hot
= task_hot(p
, env
);
6464 if (tsk_cache_hot
<= 0 ||
6465 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
6466 if (tsk_cache_hot
== 1) {
6467 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
6468 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
6473 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
6478 * detach_task() -- detach the task for the migration specified in env
6480 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
6482 lockdep_assert_held(&env
->src_rq
->lock
);
6484 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
6485 deactivate_task(env
->src_rq
, p
, 0);
6486 set_task_cpu(p
, env
->dst_cpu
);
6490 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6491 * part of active balancing operations within "domain".
6493 * Returns a task if successful and NULL otherwise.
6495 static struct task_struct
*detach_one_task(struct lb_env
*env
)
6497 struct task_struct
*p
, *n
;
6499 lockdep_assert_held(&env
->src_rq
->lock
);
6501 list_for_each_entry_safe(p
, n
, &env
->src_rq
->cfs_tasks
, se
.group_node
) {
6502 if (!can_migrate_task(p
, env
))
6505 detach_task(p
, env
);
6508 * Right now, this is only the second place where
6509 * lb_gained[env->idle] is updated (other is detach_tasks)
6510 * so we can safely collect stats here rather than
6511 * inside detach_tasks().
6513 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
6519 static const unsigned int sched_nr_migrate_break
= 32;
6522 * detach_tasks() -- tries to detach up to imbalance weighted load from
6523 * busiest_rq, as part of a balancing operation within domain "sd".
6525 * Returns number of detached tasks if successful and 0 otherwise.
6527 static int detach_tasks(struct lb_env
*env
)
6529 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
6530 struct task_struct
*p
;
6534 lockdep_assert_held(&env
->src_rq
->lock
);
6536 if (env
->imbalance
<= 0)
6539 while (!list_empty(tasks
)) {
6541 * We don't want to steal all, otherwise we may be treated likewise,
6542 * which could at worst lead to a livelock crash.
6544 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
6547 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
6550 /* We've more or less seen every task there is, call it quits */
6551 if (env
->loop
> env
->loop_max
)
6554 /* take a breather every nr_migrate tasks */
6555 if (env
->loop
> env
->loop_break
) {
6556 env
->loop_break
+= sched_nr_migrate_break
;
6557 env
->flags
|= LBF_NEED_BREAK
;
6561 if (!can_migrate_task(p
, env
))
6565 * Depending of the number of CPUs and tasks and the
6566 * cgroup hierarchy, task_h_load() can return a null
6567 * value. Make sure that env->imbalance decreases
6568 * otherwise detach_tasks() will stop only after
6569 * detaching up to loop_max tasks.
6571 load
= max_t(unsigned long, task_h_load(p
), 1);
6574 if (sched_feat(LB_MIN
) && load
< 16 && !env
->sd
->nr_balance_failed
)
6577 if ((load
/ 2) > env
->imbalance
)
6580 detach_task(p
, env
);
6581 list_add(&p
->se
.group_node
, &env
->tasks
);
6584 env
->imbalance
-= load
;
6586 #ifdef CONFIG_PREEMPT
6588 * NEWIDLE balancing is a source of latency, so preemptible
6589 * kernels will stop after the first task is detached to minimize
6590 * the critical section.
6592 if (env
->idle
== CPU_NEWLY_IDLE
)
6597 * We only want to steal up to the prescribed amount of
6600 if (env
->imbalance
<= 0)
6605 list_move_tail(&p
->se
.group_node
, tasks
);
6609 * Right now, this is one of only two places we collect this stat
6610 * so we can safely collect detach_one_task() stats here rather
6611 * than inside detach_one_task().
6613 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
6619 * attach_task() -- attach the task detached by detach_task() to its new rq.
6621 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
6623 lockdep_assert_held(&rq
->lock
);
6625 BUG_ON(task_rq(p
) != rq
);
6626 activate_task(rq
, p
, 0);
6627 p
->on_rq
= TASK_ON_RQ_QUEUED
;
6628 check_preempt_curr(rq
, p
, 0);
6632 * attach_one_task() -- attaches the task returned from detach_one_task() to
6635 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
6637 raw_spin_lock(&rq
->lock
);
6639 raw_spin_unlock(&rq
->lock
);
6643 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6646 static void attach_tasks(struct lb_env
*env
)
6648 struct list_head
*tasks
= &env
->tasks
;
6649 struct task_struct
*p
;
6651 raw_spin_lock(&env
->dst_rq
->lock
);
6653 while (!list_empty(tasks
)) {
6654 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
6655 list_del_init(&p
->se
.group_node
);
6657 attach_task(env
->dst_rq
, p
);
6660 raw_spin_unlock(&env
->dst_rq
->lock
);
6663 #ifdef CONFIG_FAIR_GROUP_SCHED
6664 static void update_blocked_averages(int cpu
)
6666 struct rq
*rq
= cpu_rq(cpu
);
6667 struct cfs_rq
*cfs_rq
;
6668 unsigned long flags
;
6670 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6671 update_rq_clock(rq
);
6674 * Iterates the task_group tree in a bottom up fashion, see
6675 * list_add_leaf_cfs_rq() for details.
6677 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
6678 /* throttled entities do not contribute to load */
6679 if (throttled_hierarchy(cfs_rq
))
6682 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
, true))
6683 update_tg_load_avg(cfs_rq
, 0);
6685 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6689 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6690 * This needs to be done in a top-down fashion because the load of a child
6691 * group is a fraction of its parents load.
6693 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
6695 struct rq
*rq
= rq_of(cfs_rq
);
6696 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
6697 unsigned long now
= jiffies
;
6700 if (cfs_rq
->last_h_load_update
== now
)
6703 WRITE_ONCE(cfs_rq
->h_load_next
, NULL
);
6704 for_each_sched_entity(se
) {
6705 cfs_rq
= cfs_rq_of(se
);
6706 WRITE_ONCE(cfs_rq
->h_load_next
, se
);
6707 if (cfs_rq
->last_h_load_update
== now
)
6712 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
6713 cfs_rq
->last_h_load_update
= now
;
6716 while ((se
= READ_ONCE(cfs_rq
->h_load_next
)) != NULL
) {
6717 load
= cfs_rq
->h_load
;
6718 load
= div64_ul(load
* se
->avg
.load_avg
,
6719 cfs_rq_load_avg(cfs_rq
) + 1);
6720 cfs_rq
= group_cfs_rq(se
);
6721 cfs_rq
->h_load
= load
;
6722 cfs_rq
->last_h_load_update
= now
;
6726 static unsigned long task_h_load(struct task_struct
*p
)
6728 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
6730 update_cfs_rq_h_load(cfs_rq
);
6731 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
6732 cfs_rq_load_avg(cfs_rq
) + 1);
6735 static inline void update_blocked_averages(int cpu
)
6737 struct rq
*rq
= cpu_rq(cpu
);
6738 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6739 unsigned long flags
;
6741 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6742 update_rq_clock(rq
);
6743 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
, true);
6744 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6747 static unsigned long task_h_load(struct task_struct
*p
)
6749 return p
->se
.avg
.load_avg
;
6753 /********** Helpers for find_busiest_group ************************/
6762 * sg_lb_stats - stats of a sched_group required for load_balancing
6764 struct sg_lb_stats
{
6765 unsigned long avg_load
; /*Avg load across the CPUs of the group */
6766 unsigned long group_load
; /* Total load over the CPUs of the group */
6767 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
6768 unsigned long load_per_task
;
6769 unsigned long group_capacity
;
6770 unsigned long group_util
; /* Total utilization of the group */
6771 unsigned int sum_nr_running
; /* Nr tasks running in the group */
6772 unsigned int idle_cpus
;
6773 unsigned int group_weight
;
6774 enum group_type group_type
;
6775 int group_no_capacity
;
6776 #ifdef CONFIG_NUMA_BALANCING
6777 unsigned int nr_numa_running
;
6778 unsigned int nr_preferred_running
;
6783 * sd_lb_stats - Structure to store the statistics of a sched_domain
6784 * during load balancing.
6786 struct sd_lb_stats
{
6787 struct sched_group
*busiest
; /* Busiest group in this sd */
6788 struct sched_group
*local
; /* Local group in this sd */
6789 unsigned long total_load
; /* Total load of all groups in sd */
6790 unsigned long total_capacity
; /* Total capacity of all groups in sd */
6791 unsigned long avg_load
; /* Average load across all groups in sd */
6793 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
6794 struct sg_lb_stats local_stat
; /* Statistics of the local group */
6797 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
6800 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6801 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6802 * We must however clear busiest_stat::avg_load because
6803 * update_sd_pick_busiest() reads this before assignment.
6805 *sds
= (struct sd_lb_stats
){
6809 .total_capacity
= 0UL,
6812 .sum_nr_running
= 0,
6813 .group_type
= group_other
,
6819 * get_sd_load_idx - Obtain the load index for a given sched domain.
6820 * @sd: The sched_domain whose load_idx is to be obtained.
6821 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6823 * Return: The load index.
6825 static inline int get_sd_load_idx(struct sched_domain
*sd
,
6826 enum cpu_idle_type idle
)
6832 load_idx
= sd
->busy_idx
;
6835 case CPU_NEWLY_IDLE
:
6836 load_idx
= sd
->newidle_idx
;
6839 load_idx
= sd
->idle_idx
;
6846 static unsigned long scale_rt_capacity(int cpu
)
6848 struct rq
*rq
= cpu_rq(cpu
);
6849 u64 total
, used
, age_stamp
, avg
;
6853 * Since we're reading these variables without serialization make sure
6854 * we read them once before doing sanity checks on them.
6856 age_stamp
= READ_ONCE(rq
->age_stamp
);
6857 avg
= READ_ONCE(rq
->rt_avg
);
6858 delta
= __rq_clock_broken(rq
) - age_stamp
;
6860 if (unlikely(delta
< 0))
6863 total
= sched_avg_period() + delta
;
6865 used
= div_u64(avg
, total
);
6867 if (likely(used
< SCHED_CAPACITY_SCALE
))
6868 return SCHED_CAPACITY_SCALE
- used
;
6873 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
6875 unsigned long capacity
= arch_scale_cpu_capacity(sd
, cpu
);
6876 struct sched_group
*sdg
= sd
->groups
;
6878 cpu_rq(cpu
)->cpu_capacity_orig
= capacity
;
6880 capacity
*= scale_rt_capacity(cpu
);
6881 capacity
>>= SCHED_CAPACITY_SHIFT
;
6886 cpu_rq(cpu
)->cpu_capacity
= capacity
;
6887 sdg
->sgc
->capacity
= capacity
;
6890 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
6892 struct sched_domain
*child
= sd
->child
;
6893 struct sched_group
*group
, *sdg
= sd
->groups
;
6894 unsigned long capacity
;
6895 unsigned long interval
;
6897 interval
= msecs_to_jiffies(sd
->balance_interval
);
6898 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
6899 sdg
->sgc
->next_update
= jiffies
+ interval
;
6902 update_cpu_capacity(sd
, cpu
);
6908 if (child
->flags
& SD_OVERLAP
) {
6910 * SD_OVERLAP domains cannot assume that child groups
6911 * span the current group.
6914 for_each_cpu(cpu
, sched_group_cpus(sdg
)) {
6915 struct sched_group_capacity
*sgc
;
6916 struct rq
*rq
= cpu_rq(cpu
);
6919 * build_sched_domains() -> init_sched_groups_capacity()
6920 * gets here before we've attached the domains to the
6923 * Use capacity_of(), which is set irrespective of domains
6924 * in update_cpu_capacity().
6926 * This avoids capacity from being 0 and
6927 * causing divide-by-zero issues on boot.
6929 if (unlikely(!rq
->sd
)) {
6930 capacity
+= capacity_of(cpu
);
6934 sgc
= rq
->sd
->groups
->sgc
;
6935 capacity
+= sgc
->capacity
;
6939 * !SD_OVERLAP domains can assume that child groups
6940 * span the current group.
6943 group
= child
->groups
;
6945 capacity
+= group
->sgc
->capacity
;
6946 group
= group
->next
;
6947 } while (group
!= child
->groups
);
6950 sdg
->sgc
->capacity
= capacity
;
6954 * Check whether the capacity of the rq has been noticeably reduced by side
6955 * activity. The imbalance_pct is used for the threshold.
6956 * Return true is the capacity is reduced
6959 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
6961 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
6962 (rq
->cpu_capacity_orig
* 100));
6966 * Group imbalance indicates (and tries to solve) the problem where balancing
6967 * groups is inadequate due to tsk_cpus_allowed() constraints.
6969 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6970 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6973 * { 0 1 2 3 } { 4 5 6 7 }
6976 * If we were to balance group-wise we'd place two tasks in the first group and
6977 * two tasks in the second group. Clearly this is undesired as it will overload
6978 * cpu 3 and leave one of the cpus in the second group unused.
6980 * The current solution to this issue is detecting the skew in the first group
6981 * by noticing the lower domain failed to reach balance and had difficulty
6982 * moving tasks due to affinity constraints.
6984 * When this is so detected; this group becomes a candidate for busiest; see
6985 * update_sd_pick_busiest(). And calculate_imbalance() and
6986 * find_busiest_group() avoid some of the usual balance conditions to allow it
6987 * to create an effective group imbalance.
6989 * This is a somewhat tricky proposition since the next run might not find the
6990 * group imbalance and decide the groups need to be balanced again. A most
6991 * subtle and fragile situation.
6994 static inline int sg_imbalanced(struct sched_group
*group
)
6996 return group
->sgc
->imbalance
;
7000 * group_has_capacity returns true if the group has spare capacity that could
7001 * be used by some tasks.
7002 * We consider that a group has spare capacity if the * number of task is
7003 * smaller than the number of CPUs or if the utilization is lower than the
7004 * available capacity for CFS tasks.
7005 * For the latter, we use a threshold to stabilize the state, to take into
7006 * account the variance of the tasks' load and to return true if the available
7007 * capacity in meaningful for the load balancer.
7008 * As an example, an available capacity of 1% can appear but it doesn't make
7009 * any benefit for the load balance.
7012 group_has_capacity(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7014 if (sgs
->sum_nr_running
< sgs
->group_weight
)
7017 if ((sgs
->group_capacity
* 100) >
7018 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7025 * group_is_overloaded returns true if the group has more tasks than it can
7027 * group_is_overloaded is not equals to !group_has_capacity because a group
7028 * with the exact right number of tasks, has no more spare capacity but is not
7029 * overloaded so both group_has_capacity and group_is_overloaded return
7033 group_is_overloaded(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7035 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
7038 if ((sgs
->group_capacity
* 100) <
7039 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7046 group_type
group_classify(struct sched_group
*group
,
7047 struct sg_lb_stats
*sgs
)
7049 if (sgs
->group_no_capacity
)
7050 return group_overloaded
;
7052 if (sg_imbalanced(group
))
7053 return group_imbalanced
;
7059 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7060 * @env: The load balancing environment.
7061 * @group: sched_group whose statistics are to be updated.
7062 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7063 * @local_group: Does group contain this_cpu.
7064 * @sgs: variable to hold the statistics for this group.
7065 * @overload: Indicate more than one runnable task for any CPU.
7067 static inline void update_sg_lb_stats(struct lb_env
*env
,
7068 struct sched_group
*group
, int load_idx
,
7069 int local_group
, struct sg_lb_stats
*sgs
,
7075 memset(sgs
, 0, sizeof(*sgs
));
7077 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
7078 struct rq
*rq
= cpu_rq(i
);
7080 /* Bias balancing toward cpus of our domain */
7082 load
= target_load(i
, load_idx
);
7084 load
= source_load(i
, load_idx
);
7086 sgs
->group_load
+= load
;
7087 sgs
->group_util
+= cpu_util(i
);
7088 sgs
->sum_nr_running
+= rq
->cfs
.h_nr_running
;
7090 nr_running
= rq
->nr_running
;
7094 #ifdef CONFIG_NUMA_BALANCING
7095 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
7096 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
7098 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
7100 * No need to call idle_cpu() if nr_running is not 0
7102 if (!nr_running
&& idle_cpu(i
))
7106 /* Adjust by relative CPU capacity of the group */
7107 sgs
->group_capacity
= group
->sgc
->capacity
;
7108 sgs
->avg_load
= (sgs
->group_load
*SCHED_CAPACITY_SCALE
) / sgs
->group_capacity
;
7110 if (sgs
->sum_nr_running
)
7111 sgs
->load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
7113 sgs
->group_weight
= group
->group_weight
;
7115 sgs
->group_no_capacity
= group_is_overloaded(env
, sgs
);
7116 sgs
->group_type
= group_classify(group
, sgs
);
7120 * update_sd_pick_busiest - return 1 on busiest group
7121 * @env: The load balancing environment.
7122 * @sds: sched_domain statistics
7123 * @sg: sched_group candidate to be checked for being the busiest
7124 * @sgs: sched_group statistics
7126 * Determine if @sg is a busier group than the previously selected
7129 * Return: %true if @sg is a busier group than the previously selected
7130 * busiest group. %false otherwise.
7132 static bool update_sd_pick_busiest(struct lb_env
*env
,
7133 struct sd_lb_stats
*sds
,
7134 struct sched_group
*sg
,
7135 struct sg_lb_stats
*sgs
)
7137 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
7139 if (sgs
->group_type
> busiest
->group_type
)
7142 if (sgs
->group_type
< busiest
->group_type
)
7145 if (sgs
->avg_load
<= busiest
->avg_load
)
7148 /* This is the busiest node in its class. */
7149 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7152 /* No ASYM_PACKING if target cpu is already busy */
7153 if (env
->idle
== CPU_NOT_IDLE
)
7156 * ASYM_PACKING needs to move all the work to the lowest
7157 * numbered CPUs in the group, therefore mark all groups
7158 * higher than ourself as busy.
7160 if (sgs
->sum_nr_running
&& env
->dst_cpu
< group_first_cpu(sg
)) {
7164 /* Prefer to move from highest possible cpu's work */
7165 if (group_first_cpu(sds
->busiest
) < group_first_cpu(sg
))
7172 #ifdef CONFIG_NUMA_BALANCING
7173 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7175 if (sgs
->sum_nr_running
> sgs
->nr_numa_running
)
7177 if (sgs
->sum_nr_running
> sgs
->nr_preferred_running
)
7182 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7184 if (rq
->nr_running
> rq
->nr_numa_running
)
7186 if (rq
->nr_running
> rq
->nr_preferred_running
)
7191 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7196 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7200 #endif /* CONFIG_NUMA_BALANCING */
7203 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7204 * @env: The load balancing environment.
7205 * @sds: variable to hold the statistics for this sched_domain.
7207 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7209 struct sched_domain
*child
= env
->sd
->child
;
7210 struct sched_group
*sg
= env
->sd
->groups
;
7211 struct sg_lb_stats tmp_sgs
;
7212 int load_idx
, prefer_sibling
= 0;
7213 bool overload
= false;
7215 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
7218 load_idx
= get_sd_load_idx(env
->sd
, env
->idle
);
7221 struct sg_lb_stats
*sgs
= &tmp_sgs
;
7224 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_cpus(sg
));
7227 sgs
= &sds
->local_stat
;
7229 if (env
->idle
!= CPU_NEWLY_IDLE
||
7230 time_after_eq(jiffies
, sg
->sgc
->next_update
))
7231 update_group_capacity(env
->sd
, env
->dst_cpu
);
7234 update_sg_lb_stats(env
, sg
, load_idx
, local_group
, sgs
,
7241 * In case the child domain prefers tasks go to siblings
7242 * first, lower the sg capacity so that we'll try
7243 * and move all the excess tasks away. We lower the capacity
7244 * of a group only if the local group has the capacity to fit
7245 * these excess tasks. The extra check prevents the case where
7246 * you always pull from the heaviest group when it is already
7247 * under-utilized (possible with a large weight task outweighs
7248 * the tasks on the system).
7250 if (prefer_sibling
&& sds
->local
&&
7251 group_has_capacity(env
, &sds
->local_stat
) &&
7252 (sgs
->sum_nr_running
> 1)) {
7253 sgs
->group_no_capacity
= 1;
7254 sgs
->group_type
= group_classify(sg
, sgs
);
7257 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
7259 sds
->busiest_stat
= *sgs
;
7263 /* Now, start updating sd_lb_stats */
7264 sds
->total_load
+= sgs
->group_load
;
7265 sds
->total_capacity
+= sgs
->group_capacity
;
7268 } while (sg
!= env
->sd
->groups
);
7270 if (env
->sd
->flags
& SD_NUMA
)
7271 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
7273 if (!env
->sd
->parent
) {
7274 /* update overload indicator if we are at root domain */
7275 if (env
->dst_rq
->rd
->overload
!= overload
)
7276 env
->dst_rq
->rd
->overload
= overload
;
7282 * check_asym_packing - Check to see if the group is packed into the
7285 * This is primarily intended to used at the sibling level. Some
7286 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7287 * case of POWER7, it can move to lower SMT modes only when higher
7288 * threads are idle. When in lower SMT modes, the threads will
7289 * perform better since they share less core resources. Hence when we
7290 * have idle threads, we want them to be the higher ones.
7292 * This packing function is run on idle threads. It checks to see if
7293 * the busiest CPU in this domain (core in the P7 case) has a higher
7294 * CPU number than the packing function is being run on. Here we are
7295 * assuming lower CPU number will be equivalent to lower a SMT thread
7298 * Return: 1 when packing is required and a task should be moved to
7299 * this CPU. The amount of the imbalance is returned in *imbalance.
7301 * @env: The load balancing environment.
7302 * @sds: Statistics of the sched_domain which is to be packed
7304 static int check_asym_packing(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7308 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7311 if (env
->idle
== CPU_NOT_IDLE
)
7317 busiest_cpu
= group_first_cpu(sds
->busiest
);
7318 if (env
->dst_cpu
> busiest_cpu
)
7321 env
->imbalance
= DIV_ROUND_CLOSEST(
7322 sds
->busiest_stat
.avg_load
* sds
->busiest_stat
.group_capacity
,
7323 SCHED_CAPACITY_SCALE
);
7329 * fix_small_imbalance - Calculate the minor imbalance that exists
7330 * amongst the groups of a sched_domain, during
7332 * @env: The load balancing environment.
7333 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7336 void fix_small_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7338 unsigned long tmp
, capa_now
= 0, capa_move
= 0;
7339 unsigned int imbn
= 2;
7340 unsigned long scaled_busy_load_per_task
;
7341 struct sg_lb_stats
*local
, *busiest
;
7343 local
= &sds
->local_stat
;
7344 busiest
= &sds
->busiest_stat
;
7346 if (!local
->sum_nr_running
)
7347 local
->load_per_task
= cpu_avg_load_per_task(env
->dst_cpu
);
7348 else if (busiest
->load_per_task
> local
->load_per_task
)
7351 scaled_busy_load_per_task
=
7352 (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
7353 busiest
->group_capacity
;
7355 if (busiest
->avg_load
+ scaled_busy_load_per_task
>=
7356 local
->avg_load
+ (scaled_busy_load_per_task
* imbn
)) {
7357 env
->imbalance
= busiest
->load_per_task
;
7362 * OK, we don't have enough imbalance to justify moving tasks,
7363 * however we may be able to increase total CPU capacity used by
7367 capa_now
+= busiest
->group_capacity
*
7368 min(busiest
->load_per_task
, busiest
->avg_load
);
7369 capa_now
+= local
->group_capacity
*
7370 min(local
->load_per_task
, local
->avg_load
);
7371 capa_now
/= SCHED_CAPACITY_SCALE
;
7373 /* Amount of load we'd subtract */
7374 if (busiest
->avg_load
> scaled_busy_load_per_task
) {
7375 capa_move
+= busiest
->group_capacity
*
7376 min(busiest
->load_per_task
,
7377 busiest
->avg_load
- scaled_busy_load_per_task
);
7380 /* Amount of load we'd add */
7381 if (busiest
->avg_load
* busiest
->group_capacity
<
7382 busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) {
7383 tmp
= (busiest
->avg_load
* busiest
->group_capacity
) /
7384 local
->group_capacity
;
7386 tmp
= (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
7387 local
->group_capacity
;
7389 capa_move
+= local
->group_capacity
*
7390 min(local
->load_per_task
, local
->avg_load
+ tmp
);
7391 capa_move
/= SCHED_CAPACITY_SCALE
;
7393 /* Move if we gain throughput */
7394 if (capa_move
> capa_now
)
7395 env
->imbalance
= busiest
->load_per_task
;
7399 * calculate_imbalance - Calculate the amount of imbalance present within the
7400 * groups of a given sched_domain during load balance.
7401 * @env: load balance environment
7402 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7404 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7406 unsigned long max_pull
, load_above_capacity
= ~0UL;
7407 struct sg_lb_stats
*local
, *busiest
;
7409 local
= &sds
->local_stat
;
7410 busiest
= &sds
->busiest_stat
;
7412 if (busiest
->group_type
== group_imbalanced
) {
7414 * In the group_imb case we cannot rely on group-wide averages
7415 * to ensure cpu-load equilibrium, look at wider averages. XXX
7417 busiest
->load_per_task
=
7418 min(busiest
->load_per_task
, sds
->avg_load
);
7422 * Avg load of busiest sg can be less and avg load of local sg can
7423 * be greater than avg load across all sgs of sd because avg load
7424 * factors in sg capacity and sgs with smaller group_type are
7425 * skipped when updating the busiest sg:
7427 if (busiest
->avg_load
<= sds
->avg_load
||
7428 local
->avg_load
>= sds
->avg_load
) {
7430 return fix_small_imbalance(env
, sds
);
7434 * If there aren't any idle cpus, avoid creating some.
7436 if (busiest
->group_type
== group_overloaded
&&
7437 local
->group_type
== group_overloaded
) {
7438 load_above_capacity
= busiest
->sum_nr_running
* SCHED_CAPACITY_SCALE
;
7439 if (load_above_capacity
> busiest
->group_capacity
) {
7440 load_above_capacity
-= busiest
->group_capacity
;
7441 load_above_capacity
*= scale_load_down(NICE_0_LOAD
);
7442 load_above_capacity
/= busiest
->group_capacity
;
7444 load_above_capacity
= ~0UL;
7448 * We're trying to get all the cpus to the average_load, so we don't
7449 * want to push ourselves above the average load, nor do we wish to
7450 * reduce the max loaded cpu below the average load. At the same time,
7451 * we also don't want to reduce the group load below the group
7452 * capacity. Thus we look for the minimum possible imbalance.
7454 max_pull
= min(busiest
->avg_load
- sds
->avg_load
, load_above_capacity
);
7456 /* How much load to actually move to equalise the imbalance */
7457 env
->imbalance
= min(
7458 max_pull
* busiest
->group_capacity
,
7459 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
7460 ) / SCHED_CAPACITY_SCALE
;
7463 * if *imbalance is less than the average load per runnable task
7464 * there is no guarantee that any tasks will be moved so we'll have
7465 * a think about bumping its value to force at least one task to be
7468 if (env
->imbalance
< busiest
->load_per_task
)
7469 return fix_small_imbalance(env
, sds
);
7472 /******* find_busiest_group() helpers end here *********************/
7475 * find_busiest_group - Returns the busiest group within the sched_domain
7476 * if there is an imbalance.
7478 * Also calculates the amount of weighted load which should be moved
7479 * to restore balance.
7481 * @env: The load balancing environment.
7483 * Return: - The busiest group if imbalance exists.
7485 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
7487 struct sg_lb_stats
*local
, *busiest
;
7488 struct sd_lb_stats sds
;
7490 init_sd_lb_stats(&sds
);
7493 * Compute the various statistics relavent for load balancing at
7496 update_sd_lb_stats(env
, &sds
);
7497 local
= &sds
.local_stat
;
7498 busiest
= &sds
.busiest_stat
;
7500 /* ASYM feature bypasses nice load balance check */
7501 if (check_asym_packing(env
, &sds
))
7504 /* There is no busy sibling group to pull tasks from */
7505 if (!sds
.busiest
|| busiest
->sum_nr_running
== 0)
7508 sds
.avg_load
= (SCHED_CAPACITY_SCALE
* sds
.total_load
)
7509 / sds
.total_capacity
;
7512 * If the busiest group is imbalanced the below checks don't
7513 * work because they assume all things are equal, which typically
7514 * isn't true due to cpus_allowed constraints and the like.
7516 if (busiest
->group_type
== group_imbalanced
)
7519 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7520 if (env
->idle
== CPU_NEWLY_IDLE
&& group_has_capacity(env
, local
) &&
7521 busiest
->group_no_capacity
)
7525 * If the local group is busier than the selected busiest group
7526 * don't try and pull any tasks.
7528 if (local
->avg_load
>= busiest
->avg_load
)
7532 * Don't pull any tasks if this group is already above the domain
7535 if (local
->avg_load
>= sds
.avg_load
)
7538 if (env
->idle
== CPU_IDLE
) {
7540 * This cpu is idle. If the busiest group is not overloaded
7541 * and there is no imbalance between this and busiest group
7542 * wrt idle cpus, it is balanced. The imbalance becomes
7543 * significant if the diff is greater than 1 otherwise we
7544 * might end up to just move the imbalance on another group
7546 if ((busiest
->group_type
!= group_overloaded
) &&
7547 (local
->idle_cpus
<= (busiest
->idle_cpus
+ 1)))
7551 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7552 * imbalance_pct to be conservative.
7554 if (100 * busiest
->avg_load
<=
7555 env
->sd
->imbalance_pct
* local
->avg_load
)
7560 /* Looks like there is an imbalance. Compute it */
7561 calculate_imbalance(env
, &sds
);
7570 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7572 static struct rq
*find_busiest_queue(struct lb_env
*env
,
7573 struct sched_group
*group
)
7575 struct rq
*busiest
= NULL
, *rq
;
7576 unsigned long busiest_load
= 0, busiest_capacity
= 1;
7579 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
7580 unsigned long capacity
, wl
;
7584 rt
= fbq_classify_rq(rq
);
7587 * We classify groups/runqueues into three groups:
7588 * - regular: there are !numa tasks
7589 * - remote: there are numa tasks that run on the 'wrong' node
7590 * - all: there is no distinction
7592 * In order to avoid migrating ideally placed numa tasks,
7593 * ignore those when there's better options.
7595 * If we ignore the actual busiest queue to migrate another
7596 * task, the next balance pass can still reduce the busiest
7597 * queue by moving tasks around inside the node.
7599 * If we cannot move enough load due to this classification
7600 * the next pass will adjust the group classification and
7601 * allow migration of more tasks.
7603 * Both cases only affect the total convergence complexity.
7605 if (rt
> env
->fbq_type
)
7608 capacity
= capacity_of(i
);
7610 wl
= weighted_cpuload(i
);
7613 * When comparing with imbalance, use weighted_cpuload()
7614 * which is not scaled with the cpu capacity.
7617 if (rq
->nr_running
== 1 && wl
> env
->imbalance
&&
7618 !check_cpu_capacity(rq
, env
->sd
))
7622 * For the load comparisons with the other cpu's, consider
7623 * the weighted_cpuload() scaled with the cpu capacity, so
7624 * that the load can be moved away from the cpu that is
7625 * potentially running at a lower capacity.
7627 * Thus we're looking for max(wl_i / capacity_i), crosswise
7628 * multiplication to rid ourselves of the division works out
7629 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7630 * our previous maximum.
7632 if (wl
* busiest_capacity
> busiest_load
* capacity
) {
7634 busiest_capacity
= capacity
;
7643 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7644 * so long as it is large enough.
7646 #define MAX_PINNED_INTERVAL 512
7648 static int need_active_balance(struct lb_env
*env
)
7650 struct sched_domain
*sd
= env
->sd
;
7652 if (env
->idle
== CPU_NEWLY_IDLE
) {
7655 * ASYM_PACKING needs to force migrate tasks from busy but
7656 * higher numbered CPUs in order to pack all tasks in the
7657 * lowest numbered CPUs.
7659 if ((sd
->flags
& SD_ASYM_PACKING
) && env
->src_cpu
> env
->dst_cpu
)
7664 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7665 * It's worth migrating the task if the src_cpu's capacity is reduced
7666 * because of other sched_class or IRQs if more capacity stays
7667 * available on dst_cpu.
7669 if ((env
->idle
!= CPU_NOT_IDLE
) &&
7670 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
7671 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
7672 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
7676 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
7679 static int active_load_balance_cpu_stop(void *data
);
7681 static int should_we_balance(struct lb_env
*env
)
7683 struct sched_group
*sg
= env
->sd
->groups
;
7684 struct cpumask
*sg_cpus
, *sg_mask
;
7685 int cpu
, balance_cpu
= -1;
7688 * In the newly idle case, we will allow all the cpu's
7689 * to do the newly idle load balance.
7691 if (env
->idle
== CPU_NEWLY_IDLE
)
7694 sg_cpus
= sched_group_cpus(sg
);
7695 sg_mask
= sched_group_mask(sg
);
7696 /* Try to find first idle cpu */
7697 for_each_cpu_and(cpu
, sg_cpus
, env
->cpus
) {
7698 if (!cpumask_test_cpu(cpu
, sg_mask
) || !idle_cpu(cpu
))
7705 if (balance_cpu
== -1)
7706 balance_cpu
= group_balance_cpu(sg
);
7709 * First idle cpu or the first cpu(busiest) in this sched group
7710 * is eligible for doing load balancing at this and above domains.
7712 return balance_cpu
== env
->dst_cpu
;
7716 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7717 * tasks if there is an imbalance.
7719 static int load_balance(int this_cpu
, struct rq
*this_rq
,
7720 struct sched_domain
*sd
, enum cpu_idle_type idle
,
7721 int *continue_balancing
)
7723 int ld_moved
, cur_ld_moved
, active_balance
= 0;
7724 struct sched_domain
*sd_parent
= sd
->parent
;
7725 struct sched_group
*group
;
7727 unsigned long flags
;
7728 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
7730 struct lb_env env
= {
7732 .dst_cpu
= this_cpu
,
7734 .dst_grpmask
= sched_group_cpus(sd
->groups
),
7736 .loop_break
= sched_nr_migrate_break
,
7739 .tasks
= LIST_HEAD_INIT(env
.tasks
),
7743 * For NEWLY_IDLE load_balancing, we don't need to consider
7744 * other cpus in our group
7746 if (idle
== CPU_NEWLY_IDLE
)
7747 env
.dst_grpmask
= NULL
;
7749 cpumask_copy(cpus
, cpu_active_mask
);
7751 schedstat_inc(sd
->lb_count
[idle
]);
7754 if (!should_we_balance(&env
)) {
7755 *continue_balancing
= 0;
7759 group
= find_busiest_group(&env
);
7761 schedstat_inc(sd
->lb_nobusyg
[idle
]);
7765 busiest
= find_busiest_queue(&env
, group
);
7767 schedstat_inc(sd
->lb_nobusyq
[idle
]);
7771 BUG_ON(busiest
== env
.dst_rq
);
7773 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
7775 env
.src_cpu
= busiest
->cpu
;
7776 env
.src_rq
= busiest
;
7779 if (busiest
->nr_running
> 1) {
7781 * Attempt to move tasks. If find_busiest_group has found
7782 * an imbalance but busiest->nr_running <= 1, the group is
7783 * still unbalanced. ld_moved simply stays zero, so it is
7784 * correctly treated as an imbalance.
7786 env
.flags
|= LBF_ALL_PINNED
;
7787 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
7790 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
7793 * cur_ld_moved - load moved in current iteration
7794 * ld_moved - cumulative load moved across iterations
7796 cur_ld_moved
= detach_tasks(&env
);
7799 * We've detached some tasks from busiest_rq. Every
7800 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7801 * unlock busiest->lock, and we are able to be sure
7802 * that nobody can manipulate the tasks in parallel.
7803 * See task_rq_lock() family for the details.
7806 raw_spin_unlock(&busiest
->lock
);
7810 ld_moved
+= cur_ld_moved
;
7813 local_irq_restore(flags
);
7815 if (env
.flags
& LBF_NEED_BREAK
) {
7816 env
.flags
&= ~LBF_NEED_BREAK
;
7821 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7822 * us and move them to an alternate dst_cpu in our sched_group
7823 * where they can run. The upper limit on how many times we
7824 * iterate on same src_cpu is dependent on number of cpus in our
7827 * This changes load balance semantics a bit on who can move
7828 * load to a given_cpu. In addition to the given_cpu itself
7829 * (or a ilb_cpu acting on its behalf where given_cpu is
7830 * nohz-idle), we now have balance_cpu in a position to move
7831 * load to given_cpu. In rare situations, this may cause
7832 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7833 * _independently_ and at _same_ time to move some load to
7834 * given_cpu) causing exceess load to be moved to given_cpu.
7835 * This however should not happen so much in practice and
7836 * moreover subsequent load balance cycles should correct the
7837 * excess load moved.
7839 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
7841 /* Prevent to re-select dst_cpu via env's cpus */
7842 cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
7844 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
7845 env
.dst_cpu
= env
.new_dst_cpu
;
7846 env
.flags
&= ~LBF_DST_PINNED
;
7848 env
.loop_break
= sched_nr_migrate_break
;
7851 * Go back to "more_balance" rather than "redo" since we
7852 * need to continue with same src_cpu.
7858 * We failed to reach balance because of affinity.
7861 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
7863 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
7864 *group_imbalance
= 1;
7867 /* All tasks on this runqueue were pinned by CPU affinity */
7868 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
7869 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
7870 if (!cpumask_empty(cpus
)) {
7872 env
.loop_break
= sched_nr_migrate_break
;
7875 goto out_all_pinned
;
7880 schedstat_inc(sd
->lb_failed
[idle
]);
7882 * Increment the failure counter only on periodic balance.
7883 * We do not want newidle balance, which can be very
7884 * frequent, pollute the failure counter causing
7885 * excessive cache_hot migrations and active balances.
7887 if (idle
!= CPU_NEWLY_IDLE
)
7888 sd
->nr_balance_failed
++;
7890 if (need_active_balance(&env
)) {
7891 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
7893 /* don't kick the active_load_balance_cpu_stop,
7894 * if the curr task on busiest cpu can't be
7897 if (!cpumask_test_cpu(this_cpu
,
7898 tsk_cpus_allowed(busiest
->curr
))) {
7899 raw_spin_unlock_irqrestore(&busiest
->lock
,
7901 env
.flags
|= LBF_ALL_PINNED
;
7902 goto out_one_pinned
;
7906 * ->active_balance synchronizes accesses to
7907 * ->active_balance_work. Once set, it's cleared
7908 * only after active load balance is finished.
7910 if (!busiest
->active_balance
) {
7911 busiest
->active_balance
= 1;
7912 busiest
->push_cpu
= this_cpu
;
7915 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
7917 if (active_balance
) {
7918 stop_one_cpu_nowait(cpu_of(busiest
),
7919 active_load_balance_cpu_stop
, busiest
,
7920 &busiest
->active_balance_work
);
7923 /* We've kicked active balancing, force task migration. */
7924 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
7927 sd
->nr_balance_failed
= 0;
7929 if (likely(!active_balance
)) {
7930 /* We were unbalanced, so reset the balancing interval */
7931 sd
->balance_interval
= sd
->min_interval
;
7934 * If we've begun active balancing, start to back off. This
7935 * case may not be covered by the all_pinned logic if there
7936 * is only 1 task on the busy runqueue (because we don't call
7939 if (sd
->balance_interval
< sd
->max_interval
)
7940 sd
->balance_interval
*= 2;
7947 * We reach balance although we may have faced some affinity
7948 * constraints. Clear the imbalance flag only if other tasks got
7949 * a chance to move and fix the imbalance.
7951 if (sd_parent
&& !(env
.flags
& LBF_ALL_PINNED
)) {
7952 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
7954 if (*group_imbalance
)
7955 *group_imbalance
= 0;
7960 * We reach balance because all tasks are pinned at this level so
7961 * we can't migrate them. Let the imbalance flag set so parent level
7962 * can try to migrate them.
7964 schedstat_inc(sd
->lb_balanced
[idle
]);
7966 sd
->nr_balance_failed
= 0;
7972 * idle_balance() disregards balance intervals, so we could repeatedly
7973 * reach this code, which would lead to balance_interval skyrocketting
7974 * in a short amount of time. Skip the balance_interval increase logic
7977 if (env
.idle
== CPU_NEWLY_IDLE
)
7980 /* tune up the balancing interval */
7981 if (((env
.flags
& LBF_ALL_PINNED
) &&
7982 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
7983 (sd
->balance_interval
< sd
->max_interval
))
7984 sd
->balance_interval
*= 2;
7989 static inline unsigned long
7990 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
7992 unsigned long interval
= sd
->balance_interval
;
7995 interval
*= sd
->busy_factor
;
7997 /* scale ms to jiffies */
7998 interval
= msecs_to_jiffies(interval
);
7999 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8005 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
8007 unsigned long interval
, next
;
8009 /* used by idle balance, so cpu_busy = 0 */
8010 interval
= get_sd_balance_interval(sd
, 0);
8011 next
= sd
->last_balance
+ interval
;
8013 if (time_after(*next_balance
, next
))
8014 *next_balance
= next
;
8018 * idle_balance is called by schedule() if this_cpu is about to become
8019 * idle. Attempts to pull tasks from other CPUs.
8021 static int idle_balance(struct rq
*this_rq
)
8023 unsigned long next_balance
= jiffies
+ HZ
;
8024 int this_cpu
= this_rq
->cpu
;
8025 struct sched_domain
*sd
;
8026 int pulled_task
= 0;
8030 * We must set idle_stamp _before_ calling idle_balance(), such that we
8031 * measure the duration of idle_balance() as idle time.
8033 this_rq
->idle_stamp
= rq_clock(this_rq
);
8035 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
8036 !this_rq
->rd
->overload
) {
8038 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
8040 update_next_balance(sd
, &next_balance
);
8046 raw_spin_unlock(&this_rq
->lock
);
8048 update_blocked_averages(this_cpu
);
8050 for_each_domain(this_cpu
, sd
) {
8051 int continue_balancing
= 1;
8052 u64 t0
, domain_cost
;
8054 if (!(sd
->flags
& SD_LOAD_BALANCE
))
8057 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
8058 update_next_balance(sd
, &next_balance
);
8062 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
8063 t0
= sched_clock_cpu(this_cpu
);
8065 pulled_task
= load_balance(this_cpu
, this_rq
,
8067 &continue_balancing
);
8069 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
8070 if (domain_cost
> sd
->max_newidle_lb_cost
)
8071 sd
->max_newidle_lb_cost
= domain_cost
;
8073 curr_cost
+= domain_cost
;
8076 update_next_balance(sd
, &next_balance
);
8079 * Stop searching for tasks to pull if there are
8080 * now runnable tasks on this rq.
8082 if (pulled_task
|| this_rq
->nr_running
> 0)
8087 raw_spin_lock(&this_rq
->lock
);
8089 if (curr_cost
> this_rq
->max_idle_balance_cost
)
8090 this_rq
->max_idle_balance_cost
= curr_cost
;
8093 * While browsing the domains, we released the rq lock, a task could
8094 * have been enqueued in the meantime. Since we're not going idle,
8095 * pretend we pulled a task.
8097 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
8101 /* Move the next balance forward */
8102 if (time_after(this_rq
->next_balance
, next_balance
))
8103 this_rq
->next_balance
= next_balance
;
8105 /* Is there a task of a high priority class? */
8106 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
8110 this_rq
->idle_stamp
= 0;
8116 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8117 * running tasks off the busiest CPU onto idle CPUs. It requires at
8118 * least 1 task to be running on each physical CPU where possible, and
8119 * avoids physical / logical imbalances.
8121 static int active_load_balance_cpu_stop(void *data
)
8123 struct rq
*busiest_rq
= data
;
8124 int busiest_cpu
= cpu_of(busiest_rq
);
8125 int target_cpu
= busiest_rq
->push_cpu
;
8126 struct rq
*target_rq
= cpu_rq(target_cpu
);
8127 struct sched_domain
*sd
;
8128 struct task_struct
*p
= NULL
;
8130 raw_spin_lock_irq(&busiest_rq
->lock
);
8132 /* make sure the requested cpu hasn't gone down in the meantime */
8133 if (unlikely(busiest_cpu
!= smp_processor_id() ||
8134 !busiest_rq
->active_balance
))
8137 /* Is there any task to move? */
8138 if (busiest_rq
->nr_running
<= 1)
8142 * This condition is "impossible", if it occurs
8143 * we need to fix it. Originally reported by
8144 * Bjorn Helgaas on a 128-cpu setup.
8146 BUG_ON(busiest_rq
== target_rq
);
8148 /* Search for an sd spanning us and the target CPU. */
8150 for_each_domain(target_cpu
, sd
) {
8151 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
8152 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
8157 struct lb_env env
= {
8159 .dst_cpu
= target_cpu
,
8160 .dst_rq
= target_rq
,
8161 .src_cpu
= busiest_rq
->cpu
,
8162 .src_rq
= busiest_rq
,
8166 schedstat_inc(sd
->alb_count
);
8168 p
= detach_one_task(&env
);
8170 schedstat_inc(sd
->alb_pushed
);
8171 /* Active balancing done, reset the failure counter. */
8172 sd
->nr_balance_failed
= 0;
8174 schedstat_inc(sd
->alb_failed
);
8179 busiest_rq
->active_balance
= 0;
8180 raw_spin_unlock(&busiest_rq
->lock
);
8183 attach_one_task(target_rq
, p
);
8190 static inline int on_null_domain(struct rq
*rq
)
8192 return unlikely(!rcu_dereference_sched(rq
->sd
));
8195 #ifdef CONFIG_NO_HZ_COMMON
8197 * idle load balancing details
8198 * - When one of the busy CPUs notice that there may be an idle rebalancing
8199 * needed, they will kick the idle load balancer, which then does idle
8200 * load balancing for all the idle CPUs.
8203 cpumask_var_t idle_cpus_mask
;
8205 unsigned long next_balance
; /* in jiffy units */
8206 } nohz ____cacheline_aligned
;
8208 static inline int find_new_ilb(void)
8210 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
8212 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
8219 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8220 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8221 * CPU (if there is one).
8223 static void nohz_balancer_kick(void)
8227 nohz
.next_balance
++;
8229 ilb_cpu
= find_new_ilb();
8231 if (ilb_cpu
>= nr_cpu_ids
)
8234 if (test_and_set_bit(NOHZ_BALANCE_KICK
, nohz_flags(ilb_cpu
)))
8237 * Use smp_send_reschedule() instead of resched_cpu().
8238 * This way we generate a sched IPI on the target cpu which
8239 * is idle. And the softirq performing nohz idle load balance
8240 * will be run before returning from the IPI.
8242 smp_send_reschedule(ilb_cpu
);
8246 void nohz_balance_exit_idle(unsigned int cpu
)
8248 if (unlikely(test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))) {
8250 * Completely isolated CPUs don't ever set, so we must test.
8252 if (likely(cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))) {
8253 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
8254 atomic_dec(&nohz
.nr_cpus
);
8256 clear_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
8260 static inline void set_cpu_sd_state_busy(void)
8262 struct sched_domain
*sd
;
8263 int cpu
= smp_processor_id();
8266 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
8268 if (!sd
|| !sd
->nohz_idle
)
8272 atomic_inc(&sd
->shared
->nr_busy_cpus
);
8277 void set_cpu_sd_state_idle(void)
8279 struct sched_domain
*sd
;
8280 int cpu
= smp_processor_id();
8283 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
8285 if (!sd
|| sd
->nohz_idle
)
8289 atomic_dec(&sd
->shared
->nr_busy_cpus
);
8295 * This routine will record that the cpu is going idle with tick stopped.
8296 * This info will be used in performing idle load balancing in the future.
8298 void nohz_balance_enter_idle(int cpu
)
8301 * If this cpu is going down, then nothing needs to be done.
8303 if (!cpu_active(cpu
))
8306 if (test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))
8310 * If we're a completely isolated CPU, we don't play.
8312 if (on_null_domain(cpu_rq(cpu
)))
8315 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
8316 atomic_inc(&nohz
.nr_cpus
);
8317 set_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
8321 static DEFINE_SPINLOCK(balancing
);
8324 * Scale the max load_balance interval with the number of CPUs in the system.
8325 * This trades load-balance latency on larger machines for less cross talk.
8327 void update_max_interval(void)
8329 max_load_balance_interval
= HZ
*num_online_cpus()/10;
8333 * It checks each scheduling domain to see if it is due to be balanced,
8334 * and initiates a balancing operation if so.
8336 * Balancing parameters are set up in init_sched_domains.
8338 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
8340 int continue_balancing
= 1;
8342 unsigned long interval
;
8343 struct sched_domain
*sd
;
8344 /* Earliest time when we have to do rebalance again */
8345 unsigned long next_balance
= jiffies
+ 60*HZ
;
8346 int update_next_balance
= 0;
8347 int need_serialize
, need_decay
= 0;
8350 update_blocked_averages(cpu
);
8353 for_each_domain(cpu
, sd
) {
8355 * Decay the newidle max times here because this is a regular
8356 * visit to all the domains. Decay ~1% per second.
8358 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
8359 sd
->max_newidle_lb_cost
=
8360 (sd
->max_newidle_lb_cost
* 253) / 256;
8361 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
8364 max_cost
+= sd
->max_newidle_lb_cost
;
8366 if (!(sd
->flags
& SD_LOAD_BALANCE
))
8370 * Stop the load balance at this level. There is another
8371 * CPU in our sched group which is doing load balancing more
8374 if (!continue_balancing
) {
8380 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
8382 need_serialize
= sd
->flags
& SD_SERIALIZE
;
8383 if (need_serialize
) {
8384 if (!spin_trylock(&balancing
))
8388 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
8389 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
8391 * The LBF_DST_PINNED logic could have changed
8392 * env->dst_cpu, so we can't know our idle
8393 * state even if we migrated tasks. Update it.
8395 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
8397 sd
->last_balance
= jiffies
;
8398 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
8401 spin_unlock(&balancing
);
8403 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
8404 next_balance
= sd
->last_balance
+ interval
;
8405 update_next_balance
= 1;
8410 * Ensure the rq-wide value also decays but keep it at a
8411 * reasonable floor to avoid funnies with rq->avg_idle.
8413 rq
->max_idle_balance_cost
=
8414 max((u64
)sysctl_sched_migration_cost
, max_cost
);
8419 * next_balance will be updated only when there is a need.
8420 * When the cpu is attached to null domain for ex, it will not be
8423 if (likely(update_next_balance
)) {
8424 rq
->next_balance
= next_balance
;
8426 #ifdef CONFIG_NO_HZ_COMMON
8428 * If this CPU has been elected to perform the nohz idle
8429 * balance. Other idle CPUs have already rebalanced with
8430 * nohz_idle_balance() and nohz.next_balance has been
8431 * updated accordingly. This CPU is now running the idle load
8432 * balance for itself and we need to update the
8433 * nohz.next_balance accordingly.
8435 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
8436 nohz
.next_balance
= rq
->next_balance
;
8441 #ifdef CONFIG_NO_HZ_COMMON
8443 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8444 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8446 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
8448 int this_cpu
= this_rq
->cpu
;
8451 /* Earliest time when we have to do rebalance again */
8452 unsigned long next_balance
= jiffies
+ 60*HZ
;
8453 int update_next_balance
= 0;
8455 if (idle
!= CPU_IDLE
||
8456 !test_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
)))
8459 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
8460 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
8464 * If this cpu gets work to do, stop the load balancing
8465 * work being done for other cpus. Next load
8466 * balancing owner will pick it up.
8471 rq
= cpu_rq(balance_cpu
);
8474 * If time for next balance is due,
8477 if (time_after_eq(jiffies
, rq
->next_balance
)) {
8478 raw_spin_lock_irq(&rq
->lock
);
8479 update_rq_clock(rq
);
8480 cpu_load_update_idle(rq
);
8481 raw_spin_unlock_irq(&rq
->lock
);
8482 rebalance_domains(rq
, CPU_IDLE
);
8485 if (time_after(next_balance
, rq
->next_balance
)) {
8486 next_balance
= rq
->next_balance
;
8487 update_next_balance
= 1;
8492 * next_balance will be updated only when there is a need.
8493 * When the CPU is attached to null domain for ex, it will not be
8496 if (likely(update_next_balance
))
8497 nohz
.next_balance
= next_balance
;
8499 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
));
8503 * Current heuristic for kicking the idle load balancer in the presence
8504 * of an idle cpu in the system.
8505 * - This rq has more than one task.
8506 * - This rq has at least one CFS task and the capacity of the CPU is
8507 * significantly reduced because of RT tasks or IRQs.
8508 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8509 * multiple busy cpu.
8510 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8511 * domain span are idle.
8513 static inline bool nohz_kick_needed(struct rq
*rq
)
8515 unsigned long now
= jiffies
;
8516 struct sched_domain_shared
*sds
;
8517 struct sched_domain
*sd
;
8518 int nr_busy
, cpu
= rq
->cpu
;
8521 if (unlikely(rq
->idle_balance
))
8525 * We may be recently in ticked or tickless idle mode. At the first
8526 * busy tick after returning from idle, we will update the busy stats.
8528 set_cpu_sd_state_busy();
8529 nohz_balance_exit_idle(cpu
);
8532 * None are in tickless mode and hence no need for NOHZ idle load
8535 if (likely(!atomic_read(&nohz
.nr_cpus
)))
8538 if (time_before(now
, nohz
.next_balance
))
8541 if (rq
->nr_running
>= 2)
8545 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
8548 * XXX: write a coherent comment on why we do this.
8549 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8551 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
8559 sd
= rcu_dereference(rq
->sd
);
8561 if ((rq
->cfs
.h_nr_running
>= 1) &&
8562 check_cpu_capacity(rq
, sd
)) {
8568 sd
= rcu_dereference(per_cpu(sd_asym
, cpu
));
8569 if (sd
&& (cpumask_first_and(nohz
.idle_cpus_mask
,
8570 sched_domain_span(sd
)) < cpu
)) {
8580 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
) { }
8584 * run_rebalance_domains is triggered when needed from the scheduler tick.
8585 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8587 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
8589 struct rq
*this_rq
= this_rq();
8590 enum cpu_idle_type idle
= this_rq
->idle_balance
?
8591 CPU_IDLE
: CPU_NOT_IDLE
;
8594 * If this cpu has a pending nohz_balance_kick, then do the
8595 * balancing on behalf of the other idle cpus whose ticks are
8596 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8597 * give the idle cpus a chance to load balance. Else we may
8598 * load balance only within the local sched_domain hierarchy
8599 * and abort nohz_idle_balance altogether if we pull some load.
8601 nohz_idle_balance(this_rq
, idle
);
8602 rebalance_domains(this_rq
, idle
);
8606 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8608 void trigger_load_balance(struct rq
*rq
)
8610 /* Don't need to rebalance while attached to NULL domain */
8611 if (unlikely(on_null_domain(rq
)))
8614 if (time_after_eq(jiffies
, rq
->next_balance
))
8615 raise_softirq(SCHED_SOFTIRQ
);
8616 #ifdef CONFIG_NO_HZ_COMMON
8617 if (nohz_kick_needed(rq
))
8618 nohz_balancer_kick();
8622 static void rq_online_fair(struct rq
*rq
)
8626 update_runtime_enabled(rq
);
8629 static void rq_offline_fair(struct rq
*rq
)
8633 /* Ensure any throttled groups are reachable by pick_next_task */
8634 unthrottle_offline_cfs_rqs(rq
);
8637 #endif /* CONFIG_SMP */
8640 * scheduler tick hitting a task of our scheduling class:
8642 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
8644 struct cfs_rq
*cfs_rq
;
8645 struct sched_entity
*se
= &curr
->se
;
8647 for_each_sched_entity(se
) {
8648 cfs_rq
= cfs_rq_of(se
);
8649 entity_tick(cfs_rq
, se
, queued
);
8652 if (static_branch_unlikely(&sched_numa_balancing
))
8653 task_tick_numa(rq
, curr
);
8657 * called on fork with the child task as argument from the parent's context
8658 * - child not yet on the tasklist
8659 * - preemption disabled
8661 static void task_fork_fair(struct task_struct
*p
)
8663 struct cfs_rq
*cfs_rq
;
8664 struct sched_entity
*se
= &p
->se
, *curr
;
8665 struct rq
*rq
= this_rq();
8667 raw_spin_lock(&rq
->lock
);
8668 update_rq_clock(rq
);
8670 cfs_rq
= task_cfs_rq(current
);
8671 curr
= cfs_rq
->curr
;
8673 update_curr(cfs_rq
);
8674 se
->vruntime
= curr
->vruntime
;
8676 place_entity(cfs_rq
, se
, 1);
8678 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
8680 * Upon rescheduling, sched_class::put_prev_task() will place
8681 * 'current' within the tree based on its new key value.
8683 swap(curr
->vruntime
, se
->vruntime
);
8687 se
->vruntime
-= cfs_rq
->min_vruntime
;
8688 raw_spin_unlock(&rq
->lock
);
8692 * Priority of the task has changed. Check to see if we preempt
8696 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
8698 if (!task_on_rq_queued(p
))
8702 * Reschedule if we are currently running on this runqueue and
8703 * our priority decreased, or if we are not currently running on
8704 * this runqueue and our priority is higher than the current's
8706 if (rq
->curr
== p
) {
8707 if (p
->prio
> oldprio
)
8710 check_preempt_curr(rq
, p
, 0);
8713 static inline bool vruntime_normalized(struct task_struct
*p
)
8715 struct sched_entity
*se
= &p
->se
;
8718 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8719 * the dequeue_entity(.flags=0) will already have normalized the
8726 * When !on_rq, vruntime of the task has usually NOT been normalized.
8727 * But there are some cases where it has already been normalized:
8729 * - A forked child which is waiting for being woken up by
8730 * wake_up_new_task().
8731 * - A task which has been woken up by try_to_wake_up() and
8732 * waiting for actually being woken up by sched_ttwu_pending().
8734 if (!se
->sum_exec_runtime
||
8735 (p
->state
== TASK_WAKING
&& p
->sched_remote_wakeup
))
8741 static void detach_task_cfs_rq(struct task_struct
*p
)
8743 struct sched_entity
*se
= &p
->se
;
8744 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8745 u64 now
= cfs_rq_clock_task(cfs_rq
);
8747 if (!vruntime_normalized(p
)) {
8749 * Fix up our vruntime so that the current sleep doesn't
8750 * cause 'unlimited' sleep bonus.
8752 place_entity(cfs_rq
, se
, 0);
8753 se
->vruntime
-= cfs_rq
->min_vruntime
;
8756 /* Catch up with the cfs_rq and remove our load when we leave */
8757 update_cfs_rq_load_avg(now
, cfs_rq
, false);
8758 detach_entity_load_avg(cfs_rq
, se
);
8759 update_tg_load_avg(cfs_rq
, false);
8762 static void attach_task_cfs_rq(struct task_struct
*p
)
8764 struct sched_entity
*se
= &p
->se
;
8765 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8766 u64 now
= cfs_rq_clock_task(cfs_rq
);
8768 #ifdef CONFIG_FAIR_GROUP_SCHED
8770 * Since the real-depth could have been changed (only FAIR
8771 * class maintain depth value), reset depth properly.
8773 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
8776 /* Synchronize task with its cfs_rq */
8777 update_cfs_rq_load_avg(now
, cfs_rq
, false);
8778 attach_entity_load_avg(cfs_rq
, se
);
8779 update_tg_load_avg(cfs_rq
, false);
8781 if (!vruntime_normalized(p
))
8782 se
->vruntime
+= cfs_rq
->min_vruntime
;
8785 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
8787 detach_task_cfs_rq(p
);
8790 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
8792 attach_task_cfs_rq(p
);
8794 if (task_on_rq_queued(p
)) {
8796 * We were most likely switched from sched_rt, so
8797 * kick off the schedule if running, otherwise just see
8798 * if we can still preempt the current task.
8803 check_preempt_curr(rq
, p
, 0);
8807 /* Account for a task changing its policy or group.
8809 * This routine is mostly called to set cfs_rq->curr field when a task
8810 * migrates between groups/classes.
8812 static void set_curr_task_fair(struct rq
*rq
)
8814 struct sched_entity
*se
= &rq
->curr
->se
;
8816 for_each_sched_entity(se
) {
8817 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
8819 set_next_entity(cfs_rq
, se
);
8820 /* ensure bandwidth has been allocated on our new cfs_rq */
8821 account_cfs_rq_runtime(cfs_rq
, 0);
8825 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
8827 cfs_rq
->tasks_timeline
= RB_ROOT
;
8828 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8829 #ifndef CONFIG_64BIT
8830 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
8833 atomic_long_set(&cfs_rq
->removed_load_avg
, 0);
8834 atomic_long_set(&cfs_rq
->removed_util_avg
, 0);
8838 #ifdef CONFIG_FAIR_GROUP_SCHED
8839 static void task_set_group_fair(struct task_struct
*p
)
8841 struct sched_entity
*se
= &p
->se
;
8843 set_task_rq(p
, task_cpu(p
));
8844 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
8847 static void task_move_group_fair(struct task_struct
*p
)
8849 detach_task_cfs_rq(p
);
8850 set_task_rq(p
, task_cpu(p
));
8853 /* Tell se's cfs_rq has been changed -- migrated */
8854 p
->se
.avg
.last_update_time
= 0;
8856 attach_task_cfs_rq(p
);
8859 static void task_change_group_fair(struct task_struct
*p
, int type
)
8862 case TASK_SET_GROUP
:
8863 task_set_group_fair(p
);
8866 case TASK_MOVE_GROUP
:
8867 task_move_group_fair(p
);
8872 void free_fair_sched_group(struct task_group
*tg
)
8876 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8878 for_each_possible_cpu(i
) {
8880 kfree(tg
->cfs_rq
[i
]);
8889 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8891 struct sched_entity
*se
;
8892 struct cfs_rq
*cfs_rq
;
8895 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8898 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8902 tg
->shares
= NICE_0_LOAD
;
8904 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8906 for_each_possible_cpu(i
) {
8907 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8908 GFP_KERNEL
, cpu_to_node(i
));
8912 se
= kzalloc_node(sizeof(struct sched_entity
),
8913 GFP_KERNEL
, cpu_to_node(i
));
8917 init_cfs_rq(cfs_rq
);
8918 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8919 init_entity_runnable_average(se
);
8930 void online_fair_sched_group(struct task_group
*tg
)
8932 struct sched_entity
*se
;
8936 for_each_possible_cpu(i
) {
8940 raw_spin_lock_irq(&rq
->lock
);
8941 post_init_entity_util_avg(se
);
8942 sync_throttle(tg
, i
);
8943 raw_spin_unlock_irq(&rq
->lock
);
8947 void unregister_fair_sched_group(struct task_group
*tg
)
8949 unsigned long flags
;
8953 for_each_possible_cpu(cpu
) {
8955 remove_entity_load_avg(tg
->se
[cpu
]);
8958 * Only empty task groups can be destroyed; so we can speculatively
8959 * check on_list without danger of it being re-added.
8961 if (!tg
->cfs_rq
[cpu
]->on_list
)
8966 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8967 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8968 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8972 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8973 struct sched_entity
*se
, int cpu
,
8974 struct sched_entity
*parent
)
8976 struct rq
*rq
= cpu_rq(cpu
);
8980 init_cfs_rq_runtime(cfs_rq
);
8982 tg
->cfs_rq
[cpu
] = cfs_rq
;
8985 /* se could be NULL for root_task_group */
8990 se
->cfs_rq
= &rq
->cfs
;
8993 se
->cfs_rq
= parent
->my_q
;
8994 se
->depth
= parent
->depth
+ 1;
8998 /* guarantee group entities always have weight */
8999 update_load_set(&se
->load
, NICE_0_LOAD
);
9000 se
->parent
= parent
;
9003 static DEFINE_MUTEX(shares_mutex
);
9005 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9008 unsigned long flags
;
9011 * We can't change the weight of the root cgroup.
9016 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
9018 mutex_lock(&shares_mutex
);
9019 if (tg
->shares
== shares
)
9022 tg
->shares
= shares
;
9023 for_each_possible_cpu(i
) {
9024 struct rq
*rq
= cpu_rq(i
);
9025 struct sched_entity
*se
;
9028 /* Propagate contribution to hierarchy */
9029 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9031 /* Possible calls to update_curr() need rq clock */
9032 update_rq_clock(rq
);
9033 for_each_sched_entity(se
)
9034 update_cfs_shares(group_cfs_rq(se
));
9035 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9039 mutex_unlock(&shares_mutex
);
9042 #else /* CONFIG_FAIR_GROUP_SCHED */
9044 void free_fair_sched_group(struct task_group
*tg
) { }
9046 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9051 void online_fair_sched_group(struct task_group
*tg
) { }
9053 void unregister_fair_sched_group(struct task_group
*tg
) { }
9055 #endif /* CONFIG_FAIR_GROUP_SCHED */
9058 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
9060 struct sched_entity
*se
= &task
->se
;
9061 unsigned int rr_interval
= 0;
9064 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9067 if (rq
->cfs
.load
.weight
)
9068 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
9074 * All the scheduling class methods:
9076 const struct sched_class fair_sched_class
= {
9077 .next
= &idle_sched_class
,
9078 .enqueue_task
= enqueue_task_fair
,
9079 .dequeue_task
= dequeue_task_fair
,
9080 .yield_task
= yield_task_fair
,
9081 .yield_to_task
= yield_to_task_fair
,
9083 .check_preempt_curr
= check_preempt_wakeup
,
9085 .pick_next_task
= pick_next_task_fair
,
9086 .put_prev_task
= put_prev_task_fair
,
9089 .select_task_rq
= select_task_rq_fair
,
9090 .migrate_task_rq
= migrate_task_rq_fair
,
9092 .rq_online
= rq_online_fair
,
9093 .rq_offline
= rq_offline_fair
,
9095 .task_dead
= task_dead_fair
,
9096 .set_cpus_allowed
= set_cpus_allowed_common
,
9099 .set_curr_task
= set_curr_task_fair
,
9100 .task_tick
= task_tick_fair
,
9101 .task_fork
= task_fork_fair
,
9103 .prio_changed
= prio_changed_fair
,
9104 .switched_from
= switched_from_fair
,
9105 .switched_to
= switched_to_fair
,
9107 .get_rr_interval
= get_rr_interval_fair
,
9109 .update_curr
= update_curr_fair
,
9111 #ifdef CONFIG_FAIR_GROUP_SCHED
9112 .task_change_group
= task_change_group_fair
,
9116 #ifdef CONFIG_SCHED_DEBUG
9117 void print_cfs_stats(struct seq_file
*m
, int cpu
)
9119 struct cfs_rq
*cfs_rq
;
9122 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
9123 print_cfs_rq(m
, cpu
, cfs_rq
);
9127 #ifdef CONFIG_NUMA_BALANCING
9128 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
9131 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
9133 for_each_online_node(node
) {
9134 if (p
->numa_faults
) {
9135 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
9136 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9138 if (p
->numa_group
) {
9139 gsf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
9140 gpf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9142 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
9145 #endif /* CONFIG_NUMA_BALANCING */
9146 #endif /* CONFIG_SCHED_DEBUG */
9148 __init
void init_sched_fair_class(void)
9151 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9153 #ifdef CONFIG_NO_HZ_COMMON
9154 nohz
.next_balance
= jiffies
;
9155 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);