2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
41 struct timekeeper timekeeper
;
42 } tk_core ____cacheline_aligned
= {
43 .seq
= SEQCNT_ZERO(tk_core
.seq
),
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
47 static struct timekeeper shadow_timekeeper
;
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
56 * See @update_fast_timekeeper() below.
60 struct tk_read_base base
[2];
63 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
64 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended
;
69 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
71 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
72 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
77 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
81 ts
.tv_sec
= tk
->xtime_sec
;
82 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
86 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
88 tk
->xtime_sec
= ts
->tv_sec
;
89 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
92 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
94 tk
->xtime_sec
+= ts
->tv_sec
;
95 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
96 tk_normalize_xtime(tk
);
99 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
101 struct timespec64 tmp
;
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
107 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
108 -tk
->wall_to_monotonic
.tv_nsec
);
109 WARN_ON_ONCE(tk
->offs_real
.tv64
!= timespec64_to_ktime(tmp
).tv64
);
110 tk
->wall_to_monotonic
= wtm
;
111 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
112 tk
->offs_real
= timespec64_to_ktime(tmp
);
113 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
116 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
118 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
122 * tk_clock_read - atomic clocksource read() helper
124 * This helper is necessary to use in the read paths because, while the
125 * seqlock ensures we don't return a bad value while structures are updated,
126 * it doesn't protect from potential crashes. There is the possibility that
127 * the tkr's clocksource may change between the read reference, and the
128 * clock reference passed to the read function. This can cause crashes if
129 * the wrong clocksource is passed to the wrong read function.
130 * This isn't necessary to use when holding the timekeeper_lock or doing
131 * a read of the fast-timekeeper tkrs (which is protected by its own locking
134 static inline u64
tk_clock_read(struct tk_read_base
*tkr
)
136 struct clocksource
*clock
= READ_ONCE(tkr
->clock
);
138 return clock
->read(clock
);
141 #ifdef CONFIG_DEBUG_TIMEKEEPING
142 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
144 static void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
147 cycle_t max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
148 const char *name
= tk
->tkr_mono
.clock
->name
;
150 if (offset
> max_cycles
) {
151 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
152 offset
, name
, max_cycles
);
153 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
155 if (offset
> (max_cycles
>> 1)) {
156 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
157 offset
, name
, max_cycles
>> 1);
158 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
162 if (tk
->underflow_seen
) {
163 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
164 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
166 printk_deferred(" Your kernel is probably still fine.\n");
167 tk
->last_warning
= jiffies
;
169 tk
->underflow_seen
= 0;
172 if (tk
->overflow_seen
) {
173 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
174 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
175 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
176 printk_deferred(" Your kernel is probably still fine.\n");
177 tk
->last_warning
= jiffies
;
179 tk
->overflow_seen
= 0;
183 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
185 struct timekeeper
*tk
= &tk_core
.timekeeper
;
186 cycle_t now
, last
, mask
, max
, delta
;
190 * Since we're called holding a seqlock, the data may shift
191 * under us while we're doing the calculation. This can cause
192 * false positives, since we'd note a problem but throw the
193 * results away. So nest another seqlock here to atomically
194 * grab the points we are checking with.
197 seq
= read_seqcount_begin(&tk_core
.seq
);
198 now
= tk_clock_read(tkr
);
199 last
= tkr
->cycle_last
;
201 max
= tkr
->clock
->max_cycles
;
202 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
204 delta
= clocksource_delta(now
, last
, mask
);
207 * Try to catch underflows by checking if we are seeing small
208 * mask-relative negative values.
210 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
211 tk
->underflow_seen
= 1;
215 /* Cap delta value to the max_cycles values to avoid mult overflows */
216 if (unlikely(delta
> max
)) {
217 tk
->overflow_seen
= 1;
218 delta
= tkr
->clock
->max_cycles
;
224 static inline void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
227 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
229 cycle_t cycle_now
, delta
;
231 /* read clocksource */
232 cycle_now
= tk_clock_read(tkr
);
234 /* calculate the delta since the last update_wall_time */
235 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
242 * tk_setup_internals - Set up internals to use clocksource clock.
244 * @tk: The target timekeeper to setup.
245 * @clock: Pointer to clocksource.
247 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
248 * pair and interval request.
250 * Unless you're the timekeeping code, you should not be using this!
252 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
255 u64 tmp
, ntpinterval
;
256 struct clocksource
*old_clock
;
258 ++tk
->cs_was_changed_seq
;
259 old_clock
= tk
->tkr_mono
.clock
;
260 tk
->tkr_mono
.clock
= clock
;
261 tk
->tkr_mono
.mask
= clock
->mask
;
262 tk
->tkr_mono
.cycle_last
= tk_clock_read(&tk
->tkr_mono
);
264 tk
->tkr_raw
.clock
= clock
;
265 tk
->tkr_raw
.mask
= clock
->mask
;
266 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
268 /* Do the ns -> cycle conversion first, using original mult */
269 tmp
= NTP_INTERVAL_LENGTH
;
270 tmp
<<= clock
->shift
;
272 tmp
+= clock
->mult
/2;
273 do_div(tmp
, clock
->mult
);
277 interval
= (cycle_t
) tmp
;
278 tk
->cycle_interval
= interval
;
280 /* Go back from cycles -> shifted ns */
281 tk
->xtime_interval
= (u64
) interval
* clock
->mult
;
282 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
283 tk
->raw_interval
= interval
* clock
->mult
;
285 /* if changing clocks, convert xtime_nsec shift units */
287 int shift_change
= clock
->shift
- old_clock
->shift
;
288 if (shift_change
< 0)
289 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
291 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
293 tk
->tkr_raw
.xtime_nsec
= 0;
295 tk
->tkr_mono
.shift
= clock
->shift
;
296 tk
->tkr_raw
.shift
= clock
->shift
;
299 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
300 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
303 * The timekeeper keeps its own mult values for the currently
304 * active clocksource. These value will be adjusted via NTP
305 * to counteract clock drifting.
307 tk
->tkr_mono
.mult
= clock
->mult
;
308 tk
->tkr_raw
.mult
= clock
->mult
;
309 tk
->ntp_err_mult
= 0;
312 /* Timekeeper helper functions. */
314 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
315 static u32
default_arch_gettimeoffset(void) { return 0; }
316 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
318 static inline u32
arch_gettimeoffset(void) { return 0; }
321 static inline u64
timekeeping_delta_to_ns(struct tk_read_base
*tkr
,
326 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
329 /* If arch requires, add in get_arch_timeoffset() */
330 return nsec
+ arch_gettimeoffset();
333 static inline s64
timekeeping_get_ns(struct tk_read_base
*tkr
)
337 delta
= timekeeping_get_delta(tkr
);
338 return timekeeping_delta_to_ns(tkr
, delta
);
341 static inline s64
timekeeping_cycles_to_ns(struct tk_read_base
*tkr
,
346 /* calculate the delta since the last update_wall_time */
347 delta
= clocksource_delta(cycles
, tkr
->cycle_last
, tkr
->mask
);
348 return timekeeping_delta_to_ns(tkr
, delta
);
352 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
353 * @tkr: Timekeeping readout base from which we take the update
355 * We want to use this from any context including NMI and tracing /
356 * instrumenting the timekeeping code itself.
358 * Employ the latch technique; see @raw_write_seqcount_latch.
360 * So if a NMI hits the update of base[0] then it will use base[1]
361 * which is still consistent. In the worst case this can result is a
362 * slightly wrong timestamp (a few nanoseconds). See
363 * @ktime_get_mono_fast_ns.
365 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
367 struct tk_read_base
*base
= tkf
->base
;
369 /* Force readers off to base[1] */
370 raw_write_seqcount_latch(&tkf
->seq
);
373 memcpy(base
, tkr
, sizeof(*base
));
375 /* Force readers back to base[0] */
376 raw_write_seqcount_latch(&tkf
->seq
);
379 memcpy(base
+ 1, base
, sizeof(*base
));
383 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
385 * This timestamp is not guaranteed to be monotonic across an update.
386 * The timestamp is calculated by:
388 * now = base_mono + clock_delta * slope
390 * So if the update lowers the slope, readers who are forced to the
391 * not yet updated second array are still using the old steeper slope.
400 * |12345678---> reader order
406 * So reader 6 will observe time going backwards versus reader 5.
408 * While other CPUs are likely to be able observe that, the only way
409 * for a CPU local observation is when an NMI hits in the middle of
410 * the update. Timestamps taken from that NMI context might be ahead
411 * of the following timestamps. Callers need to be aware of that and
414 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
416 struct tk_read_base
*tkr
;
421 seq
= raw_read_seqcount_latch(&tkf
->seq
);
422 tkr
= tkf
->base
+ (seq
& 0x01);
423 now
= ktime_to_ns(tkr
->base
);
425 now
+= timekeeping_delta_to_ns(tkr
,
430 } while (read_seqcount_retry(&tkf
->seq
, seq
));
435 u64
ktime_get_mono_fast_ns(void)
437 return __ktime_get_fast_ns(&tk_fast_mono
);
439 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
441 u64
ktime_get_raw_fast_ns(void)
443 return __ktime_get_fast_ns(&tk_fast_raw
);
445 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
447 /* Suspend-time cycles value for halted fast timekeeper. */
448 static cycle_t cycles_at_suspend
;
450 static cycle_t
dummy_clock_read(struct clocksource
*cs
)
452 return cycles_at_suspend
;
455 static struct clocksource dummy_clock
= {
456 .read
= dummy_clock_read
,
460 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
461 * @tk: Timekeeper to snapshot.
463 * It generally is unsafe to access the clocksource after timekeeping has been
464 * suspended, so take a snapshot of the readout base of @tk and use it as the
465 * fast timekeeper's readout base while suspended. It will return the same
466 * number of cycles every time until timekeeping is resumed at which time the
467 * proper readout base for the fast timekeeper will be restored automatically.
469 static void halt_fast_timekeeper(struct timekeeper
*tk
)
471 static struct tk_read_base tkr_dummy
;
472 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
474 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
475 cycles_at_suspend
= tk_clock_read(tkr
);
476 tkr_dummy
.clock
= &dummy_clock
;
477 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
480 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
481 tkr_dummy
.clock
= &dummy_clock
;
482 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
485 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
487 static inline void update_vsyscall(struct timekeeper
*tk
)
489 struct timespec xt
, wm
;
491 xt
= timespec64_to_timespec(tk_xtime(tk
));
492 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
493 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
494 tk
->tkr_mono
.cycle_last
);
497 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
502 * Store only full nanoseconds into xtime_nsec after rounding
503 * it up and add the remainder to the error difference.
504 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
505 * by truncating the remainder in vsyscalls. However, it causes
506 * additional work to be done in timekeeping_adjust(). Once
507 * the vsyscall implementations are converted to use xtime_nsec
508 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
509 * users are removed, this can be killed.
511 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
512 if (remainder
!= 0) {
513 tk
->tkr_mono
.xtime_nsec
-= remainder
;
514 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
515 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
516 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
520 #define old_vsyscall_fixup(tk)
523 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
525 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
527 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
531 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
533 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
535 struct timekeeper
*tk
= &tk_core
.timekeeper
;
539 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
540 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
541 update_pvclock_gtod(tk
, true);
542 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
546 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
549 * pvclock_gtod_unregister_notifier - unregister a pvclock
550 * timedata update listener
552 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
557 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
558 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
559 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
563 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
566 * tk_update_leap_state - helper to update the next_leap_ktime
568 static inline void tk_update_leap_state(struct timekeeper
*tk
)
570 tk
->next_leap_ktime
= ntp_get_next_leap();
571 if (tk
->next_leap_ktime
.tv64
!= KTIME_MAX
)
572 /* Convert to monotonic time */
573 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
577 * Update the ktime_t based scalar nsec members of the timekeeper
579 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
585 * The xtime based monotonic readout is:
586 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
587 * The ktime based monotonic readout is:
588 * nsec = base_mono + now();
589 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
591 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
592 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
593 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
595 /* Update the monotonic raw base */
596 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
599 * The sum of the nanoseconds portions of xtime and
600 * wall_to_monotonic can be greater/equal one second. Take
601 * this into account before updating tk->ktime_sec.
603 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
604 if (nsec
>= NSEC_PER_SEC
)
606 tk
->ktime_sec
= seconds
;
609 /* must hold timekeeper_lock */
610 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
612 if (action
& TK_CLEAR_NTP
) {
617 tk_update_leap_state(tk
);
618 tk_update_ktime_data(tk
);
621 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
623 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
624 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
626 if (action
& TK_CLOCK_WAS_SET
)
627 tk
->clock_was_set_seq
++;
629 * The mirroring of the data to the shadow-timekeeper needs
630 * to happen last here to ensure we don't over-write the
631 * timekeeper structure on the next update with stale data
633 if (action
& TK_MIRROR
)
634 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
635 sizeof(tk_core
.timekeeper
));
639 * timekeeping_forward_now - update clock to the current time
641 * Forward the current clock to update its state since the last call to
642 * update_wall_time(). This is useful before significant clock changes,
643 * as it avoids having to deal with this time offset explicitly.
645 static void timekeeping_forward_now(struct timekeeper
*tk
)
647 cycle_t cycle_now
, delta
;
650 cycle_now
= tk_clock_read(&tk
->tkr_mono
);
651 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
652 tk
->tkr_mono
.cycle_last
= cycle_now
;
653 tk
->tkr_raw
.cycle_last
= cycle_now
;
655 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
657 /* If arch requires, add in get_arch_timeoffset() */
658 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
660 tk_normalize_xtime(tk
);
662 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
663 timespec64_add_ns(&tk
->raw_time
, nsec
);
667 * __getnstimeofday64 - Returns the time of day in a timespec64.
668 * @ts: pointer to the timespec to be set
670 * Updates the time of day in the timespec.
671 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
673 int __getnstimeofday64(struct timespec64
*ts
)
675 struct timekeeper
*tk
= &tk_core
.timekeeper
;
680 seq
= read_seqcount_begin(&tk_core
.seq
);
682 ts
->tv_sec
= tk
->xtime_sec
;
683 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
685 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
688 timespec64_add_ns(ts
, nsecs
);
691 * Do not bail out early, in case there were callers still using
692 * the value, even in the face of the WARN_ON.
694 if (unlikely(timekeeping_suspended
))
698 EXPORT_SYMBOL(__getnstimeofday64
);
701 * getnstimeofday64 - Returns the time of day in a timespec64.
702 * @ts: pointer to the timespec64 to be set
704 * Returns the time of day in a timespec64 (WARN if suspended).
706 void getnstimeofday64(struct timespec64
*ts
)
708 WARN_ON(__getnstimeofday64(ts
));
710 EXPORT_SYMBOL(getnstimeofday64
);
712 ktime_t
ktime_get(void)
714 struct timekeeper
*tk
= &tk_core
.timekeeper
;
719 WARN_ON(timekeeping_suspended
);
722 seq
= read_seqcount_begin(&tk_core
.seq
);
723 base
= tk
->tkr_mono
.base
;
724 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
726 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
728 return ktime_add_ns(base
, nsecs
);
730 EXPORT_SYMBOL_GPL(ktime_get
);
732 u32
ktime_get_resolution_ns(void)
734 struct timekeeper
*tk
= &tk_core
.timekeeper
;
738 WARN_ON(timekeeping_suspended
);
741 seq
= read_seqcount_begin(&tk_core
.seq
);
742 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
743 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
747 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
749 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
750 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
751 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
752 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
755 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
757 struct timekeeper
*tk
= &tk_core
.timekeeper
;
759 ktime_t base
, *offset
= offsets
[offs
];
762 WARN_ON(timekeeping_suspended
);
765 seq
= read_seqcount_begin(&tk_core
.seq
);
766 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
767 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
769 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
771 return ktime_add_ns(base
, nsecs
);
774 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
777 * ktime_mono_to_any() - convert mononotic time to any other time
778 * @tmono: time to convert.
779 * @offs: which offset to use
781 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
783 ktime_t
*offset
= offsets
[offs
];
788 seq
= read_seqcount_begin(&tk_core
.seq
);
789 tconv
= ktime_add(tmono
, *offset
);
790 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
794 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
797 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
799 ktime_t
ktime_get_raw(void)
801 struct timekeeper
*tk
= &tk_core
.timekeeper
;
807 seq
= read_seqcount_begin(&tk_core
.seq
);
808 base
= tk
->tkr_raw
.base
;
809 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
811 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
813 return ktime_add_ns(base
, nsecs
);
815 EXPORT_SYMBOL_GPL(ktime_get_raw
);
818 * ktime_get_ts64 - get the monotonic clock in timespec64 format
819 * @ts: pointer to timespec variable
821 * The function calculates the monotonic clock from the realtime
822 * clock and the wall_to_monotonic offset and stores the result
823 * in normalized timespec64 format in the variable pointed to by @ts.
825 void ktime_get_ts64(struct timespec64
*ts
)
827 struct timekeeper
*tk
= &tk_core
.timekeeper
;
828 struct timespec64 tomono
;
832 WARN_ON(timekeeping_suspended
);
835 seq
= read_seqcount_begin(&tk_core
.seq
);
836 ts
->tv_sec
= tk
->xtime_sec
;
837 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
838 tomono
= tk
->wall_to_monotonic
;
840 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
842 ts
->tv_sec
+= tomono
.tv_sec
;
844 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
846 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
849 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
851 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
852 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
853 * works on both 32 and 64 bit systems. On 32 bit systems the readout
854 * covers ~136 years of uptime which should be enough to prevent
855 * premature wrap arounds.
857 time64_t
ktime_get_seconds(void)
859 struct timekeeper
*tk
= &tk_core
.timekeeper
;
861 WARN_ON(timekeeping_suspended
);
862 return tk
->ktime_sec
;
864 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
867 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
869 * Returns the wall clock seconds since 1970. This replaces the
870 * get_seconds() interface which is not y2038 safe on 32bit systems.
872 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
873 * 32bit systems the access must be protected with the sequence
874 * counter to provide "atomic" access to the 64bit tk->xtime_sec
877 time64_t
ktime_get_real_seconds(void)
879 struct timekeeper
*tk
= &tk_core
.timekeeper
;
883 if (IS_ENABLED(CONFIG_64BIT
))
884 return tk
->xtime_sec
;
887 seq
= read_seqcount_begin(&tk_core
.seq
);
888 seconds
= tk
->xtime_sec
;
890 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
894 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
897 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
898 * but without the sequence counter protect. This internal function
899 * is called just when timekeeping lock is already held.
901 time64_t
__ktime_get_real_seconds(void)
903 struct timekeeper
*tk
= &tk_core
.timekeeper
;
905 return tk
->xtime_sec
;
909 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
910 * @systime_snapshot: pointer to struct receiving the system time snapshot
912 void ktime_get_snapshot(struct system_time_snapshot
*systime_snapshot
)
914 struct timekeeper
*tk
= &tk_core
.timekeeper
;
922 WARN_ON_ONCE(timekeeping_suspended
);
925 seq
= read_seqcount_begin(&tk_core
.seq
);
926 now
= tk_clock_read(&tk
->tkr_mono
);
927 systime_snapshot
->cs_was_changed_seq
= tk
->cs_was_changed_seq
;
928 systime_snapshot
->clock_was_set_seq
= tk
->clock_was_set_seq
;
929 base_real
= ktime_add(tk
->tkr_mono
.base
,
930 tk_core
.timekeeper
.offs_real
);
931 base_raw
= tk
->tkr_raw
.base
;
932 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, now
);
933 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, now
);
934 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
936 systime_snapshot
->cycles
= now
;
937 systime_snapshot
->real
= ktime_add_ns(base_real
, nsec_real
);
938 systime_snapshot
->raw
= ktime_add_ns(base_raw
, nsec_raw
);
940 EXPORT_SYMBOL_GPL(ktime_get_snapshot
);
942 /* Scale base by mult/div checking for overflow */
943 static int scale64_check_overflow(u64 mult
, u64 div
, u64
*base
)
947 tmp
= div64_u64_rem(*base
, div
, &rem
);
949 if (((int)sizeof(u64
)*8 - fls64(mult
) < fls64(tmp
)) ||
950 ((int)sizeof(u64
)*8 - fls64(mult
) < fls64(rem
)))
954 rem
= div64_u64(rem
* mult
, div
);
960 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
961 * @history: Snapshot representing start of history
962 * @partial_history_cycles: Cycle offset into history (fractional part)
963 * @total_history_cycles: Total history length in cycles
964 * @discontinuity: True indicates clock was set on history period
965 * @ts: Cross timestamp that should be adjusted using
966 * partial/total ratio
968 * Helper function used by get_device_system_crosststamp() to correct the
969 * crosstimestamp corresponding to the start of the current interval to the
970 * system counter value (timestamp point) provided by the driver. The
971 * total_history_* quantities are the total history starting at the provided
972 * reference point and ending at the start of the current interval. The cycle
973 * count between the driver timestamp point and the start of the current
974 * interval is partial_history_cycles.
976 static int adjust_historical_crosststamp(struct system_time_snapshot
*history
,
977 cycle_t partial_history_cycles
,
978 cycle_t total_history_cycles
,
980 struct system_device_crosststamp
*ts
)
982 struct timekeeper
*tk
= &tk_core
.timekeeper
;
983 u64 corr_raw
, corr_real
;
987 if (total_history_cycles
== 0 || partial_history_cycles
== 0)
990 /* Interpolate shortest distance from beginning or end of history */
991 interp_forward
= partial_history_cycles
> total_history_cycles
/2 ?
993 partial_history_cycles
= interp_forward
?
994 total_history_cycles
- partial_history_cycles
:
995 partial_history_cycles
;
998 * Scale the monotonic raw time delta by:
999 * partial_history_cycles / total_history_cycles
1001 corr_raw
= (u64
)ktime_to_ns(
1002 ktime_sub(ts
->sys_monoraw
, history
->raw
));
1003 ret
= scale64_check_overflow(partial_history_cycles
,
1004 total_history_cycles
, &corr_raw
);
1009 * If there is a discontinuity in the history, scale monotonic raw
1011 * mult(real)/mult(raw) yielding the realtime correction
1012 * Otherwise, calculate the realtime correction similar to monotonic
1015 if (discontinuity
) {
1016 corr_real
= mul_u64_u32_div
1017 (corr_raw
, tk
->tkr_mono
.mult
, tk
->tkr_raw
.mult
);
1019 corr_real
= (u64
)ktime_to_ns(
1020 ktime_sub(ts
->sys_realtime
, history
->real
));
1021 ret
= scale64_check_overflow(partial_history_cycles
,
1022 total_history_cycles
, &corr_real
);
1027 /* Fixup monotonic raw and real time time values */
1028 if (interp_forward
) {
1029 ts
->sys_monoraw
= ktime_add_ns(history
->raw
, corr_raw
);
1030 ts
->sys_realtime
= ktime_add_ns(history
->real
, corr_real
);
1032 ts
->sys_monoraw
= ktime_sub_ns(ts
->sys_monoraw
, corr_raw
);
1033 ts
->sys_realtime
= ktime_sub_ns(ts
->sys_realtime
, corr_real
);
1040 * cycle_between - true if test occurs chronologically between before and after
1042 static bool cycle_between(cycle_t before
, cycle_t test
, cycle_t after
)
1044 if (test
> before
&& test
< after
)
1046 if (test
< before
&& before
> after
)
1052 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1053 * @get_time_fn: Callback to get simultaneous device time and
1054 * system counter from the device driver
1055 * @ctx: Context passed to get_time_fn()
1056 * @history_begin: Historical reference point used to interpolate system
1057 * time when counter provided by the driver is before the current interval
1058 * @xtstamp: Receives simultaneously captured system and device time
1060 * Reads a timestamp from a device and correlates it to system time
1062 int get_device_system_crosststamp(int (*get_time_fn
)
1063 (ktime_t
*device_time
,
1064 struct system_counterval_t
*sys_counterval
,
1067 struct system_time_snapshot
*history_begin
,
1068 struct system_device_crosststamp
*xtstamp
)
1070 struct system_counterval_t system_counterval
;
1071 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1072 cycle_t cycles
, now
, interval_start
;
1073 unsigned int clock_was_set_seq
= 0;
1074 ktime_t base_real
, base_raw
;
1075 s64 nsec_real
, nsec_raw
;
1076 u8 cs_was_changed_seq
;
1082 seq
= read_seqcount_begin(&tk_core
.seq
);
1084 * Try to synchronously capture device time and a system
1085 * counter value calling back into the device driver
1087 ret
= get_time_fn(&xtstamp
->device
, &system_counterval
, ctx
);
1092 * Verify that the clocksource associated with the captured
1093 * system counter value is the same as the currently installed
1094 * timekeeper clocksource
1096 if (tk
->tkr_mono
.clock
!= system_counterval
.cs
)
1098 cycles
= system_counterval
.cycles
;
1101 * Check whether the system counter value provided by the
1102 * device driver is on the current timekeeping interval.
1104 now
= tk_clock_read(&tk
->tkr_mono
);
1105 interval_start
= tk
->tkr_mono
.cycle_last
;
1106 if (!cycle_between(interval_start
, cycles
, now
)) {
1107 clock_was_set_seq
= tk
->clock_was_set_seq
;
1108 cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1109 cycles
= interval_start
;
1115 base_real
= ktime_add(tk
->tkr_mono
.base
,
1116 tk_core
.timekeeper
.offs_real
);
1117 base_raw
= tk
->tkr_raw
.base
;
1119 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
,
1120 system_counterval
.cycles
);
1121 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
,
1122 system_counterval
.cycles
);
1123 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1125 xtstamp
->sys_realtime
= ktime_add_ns(base_real
, nsec_real
);
1126 xtstamp
->sys_monoraw
= ktime_add_ns(base_raw
, nsec_raw
);
1129 * Interpolate if necessary, adjusting back from the start of the
1133 cycle_t partial_history_cycles
, total_history_cycles
;
1137 * Check that the counter value occurs after the provided
1138 * history reference and that the history doesn't cross a
1139 * clocksource change
1141 if (!history_begin
||
1142 !cycle_between(history_begin
->cycles
,
1143 system_counterval
.cycles
, cycles
) ||
1144 history_begin
->cs_was_changed_seq
!= cs_was_changed_seq
)
1146 partial_history_cycles
= cycles
- system_counterval
.cycles
;
1147 total_history_cycles
= cycles
- history_begin
->cycles
;
1149 history_begin
->clock_was_set_seq
!= clock_was_set_seq
;
1151 ret
= adjust_historical_crosststamp(history_begin
,
1152 partial_history_cycles
,
1153 total_history_cycles
,
1154 discontinuity
, xtstamp
);
1161 EXPORT_SYMBOL_GPL(get_device_system_crosststamp
);
1164 * do_gettimeofday - Returns the time of day in a timeval
1165 * @tv: pointer to the timeval to be set
1167 * NOTE: Users should be converted to using getnstimeofday()
1169 void do_gettimeofday(struct timeval
*tv
)
1171 struct timespec64 now
;
1173 getnstimeofday64(&now
);
1174 tv
->tv_sec
= now
.tv_sec
;
1175 tv
->tv_usec
= now
.tv_nsec
/1000;
1177 EXPORT_SYMBOL(do_gettimeofday
);
1180 * do_settimeofday64 - Sets the time of day.
1181 * @ts: pointer to the timespec64 variable containing the new time
1183 * Sets the time of day to the new time and update NTP and notify hrtimers
1185 int do_settimeofday64(const struct timespec64
*ts
)
1187 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1188 struct timespec64 ts_delta
, xt
;
1189 unsigned long flags
;
1192 if (!timespec64_valid_strict(ts
))
1195 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1196 write_seqcount_begin(&tk_core
.seq
);
1198 timekeeping_forward_now(tk
);
1201 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
1202 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
1204 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
1209 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
1211 tk_set_xtime(tk
, ts
);
1213 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1215 write_seqcount_end(&tk_core
.seq
);
1216 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1218 /* signal hrtimers about time change */
1223 EXPORT_SYMBOL(do_settimeofday64
);
1226 * timekeeping_inject_offset - Adds or subtracts from the current time.
1227 * @tv: pointer to the timespec variable containing the offset
1229 * Adds or subtracts an offset value from the current time.
1231 int timekeeping_inject_offset(struct timespec
*ts
)
1233 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1234 unsigned long flags
;
1235 struct timespec64 ts64
, tmp
;
1238 if (!timespec_inject_offset_valid(ts
))
1241 ts64
= timespec_to_timespec64(*ts
);
1243 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1244 write_seqcount_begin(&tk_core
.seq
);
1246 timekeeping_forward_now(tk
);
1248 /* Make sure the proposed value is valid */
1249 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
1250 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts64
) > 0 ||
1251 !timespec64_valid_strict(&tmp
)) {
1256 tk_xtime_add(tk
, &ts64
);
1257 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
1259 error
: /* even if we error out, we forwarded the time, so call update */
1260 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1262 write_seqcount_end(&tk_core
.seq
);
1263 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1265 /* signal hrtimers about time change */
1270 EXPORT_SYMBOL(timekeeping_inject_offset
);
1274 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1277 s32
timekeeping_get_tai_offset(void)
1279 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1284 seq
= read_seqcount_begin(&tk_core
.seq
);
1285 ret
= tk
->tai_offset
;
1286 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1292 * __timekeeping_set_tai_offset - Lock free worker function
1295 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1297 tk
->tai_offset
= tai_offset
;
1298 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1302 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1305 void timekeeping_set_tai_offset(s32 tai_offset
)
1307 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1308 unsigned long flags
;
1310 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1311 write_seqcount_begin(&tk_core
.seq
);
1312 __timekeeping_set_tai_offset(tk
, tai_offset
);
1313 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1314 write_seqcount_end(&tk_core
.seq
);
1315 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1320 * change_clocksource - Swaps clocksources if a new one is available
1322 * Accumulates current time interval and initializes new clocksource
1324 static int change_clocksource(void *data
)
1326 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1327 struct clocksource
*new, *old
;
1328 unsigned long flags
;
1330 new = (struct clocksource
*) data
;
1332 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1333 write_seqcount_begin(&tk_core
.seq
);
1335 timekeeping_forward_now(tk
);
1337 * If the cs is in module, get a module reference. Succeeds
1338 * for built-in code (owner == NULL) as well.
1340 if (try_module_get(new->owner
)) {
1341 if (!new->enable
|| new->enable(new) == 0) {
1342 old
= tk
->tkr_mono
.clock
;
1343 tk_setup_internals(tk
, new);
1346 module_put(old
->owner
);
1348 module_put(new->owner
);
1351 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1353 write_seqcount_end(&tk_core
.seq
);
1354 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1360 * timekeeping_notify - Install a new clock source
1361 * @clock: pointer to the clock source
1363 * This function is called from clocksource.c after a new, better clock
1364 * source has been registered. The caller holds the clocksource_mutex.
1366 int timekeeping_notify(struct clocksource
*clock
)
1368 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1370 if (tk
->tkr_mono
.clock
== clock
)
1372 stop_machine(change_clocksource
, clock
, NULL
);
1373 tick_clock_notify();
1374 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1378 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1379 * @ts: pointer to the timespec64 to be set
1381 * Returns the raw monotonic time (completely un-modified by ntp)
1383 void getrawmonotonic64(struct timespec64
*ts
)
1385 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1386 struct timespec64 ts64
;
1391 seq
= read_seqcount_begin(&tk_core
.seq
);
1392 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1393 ts64
= tk
->raw_time
;
1395 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1397 timespec64_add_ns(&ts64
, nsecs
);
1400 EXPORT_SYMBOL(getrawmonotonic64
);
1404 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1406 int timekeeping_valid_for_hres(void)
1408 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1413 seq
= read_seqcount_begin(&tk_core
.seq
);
1415 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1417 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1423 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1425 u64
timekeeping_max_deferment(void)
1427 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1432 seq
= read_seqcount_begin(&tk_core
.seq
);
1434 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1436 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1442 * read_persistent_clock - Return time from the persistent clock.
1444 * Weak dummy function for arches that do not yet support it.
1445 * Reads the time from the battery backed persistent clock.
1446 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1448 * XXX - Do be sure to remove it once all arches implement it.
1450 void __weak
read_persistent_clock(struct timespec
*ts
)
1456 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1460 read_persistent_clock(&ts
);
1461 *ts64
= timespec_to_timespec64(ts
);
1465 * read_boot_clock64 - Return time of the system start.
1467 * Weak dummy function for arches that do not yet support it.
1468 * Function to read the exact time the system has been started.
1469 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1471 * XXX - Do be sure to remove it once all arches implement it.
1473 void __weak
read_boot_clock64(struct timespec64
*ts
)
1479 /* Flag for if timekeeping_resume() has injected sleeptime */
1480 static bool sleeptime_injected
;
1482 /* Flag for if there is a persistent clock on this platform */
1483 static bool persistent_clock_exists
;
1486 * timekeeping_init - Initializes the clocksource and common timekeeping values
1488 void __init
timekeeping_init(void)
1490 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1491 struct clocksource
*clock
;
1492 unsigned long flags
;
1493 struct timespec64 now
, boot
, tmp
;
1495 read_persistent_clock64(&now
);
1496 if (!timespec64_valid_strict(&now
)) {
1497 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1498 " Check your CMOS/BIOS settings.\n");
1501 } else if (now
.tv_sec
|| now
.tv_nsec
)
1502 persistent_clock_exists
= true;
1504 read_boot_clock64(&boot
);
1505 if (!timespec64_valid_strict(&boot
)) {
1506 pr_warn("WARNING: Boot clock returned invalid value!\n"
1507 " Check your CMOS/BIOS settings.\n");
1512 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1513 write_seqcount_begin(&tk_core
.seq
);
1516 clock
= clocksource_default_clock();
1518 clock
->enable(clock
);
1519 tk_setup_internals(tk
, clock
);
1521 tk_set_xtime(tk
, &now
);
1522 tk
->raw_time
.tv_sec
= 0;
1523 tk
->raw_time
.tv_nsec
= 0;
1524 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1525 boot
= tk_xtime(tk
);
1527 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1528 tk_set_wall_to_mono(tk
, tmp
);
1530 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1532 write_seqcount_end(&tk_core
.seq
);
1533 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1536 /* time in seconds when suspend began for persistent clock */
1537 static struct timespec64 timekeeping_suspend_time
;
1540 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1541 * @delta: pointer to a timespec delta value
1543 * Takes a timespec offset measuring a suspend interval and properly
1544 * adds the sleep offset to the timekeeping variables.
1546 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1547 struct timespec64
*delta
)
1549 if (!timespec64_valid_strict(delta
)) {
1550 printk_deferred(KERN_WARNING
1551 "__timekeeping_inject_sleeptime: Invalid "
1552 "sleep delta value!\n");
1555 tk_xtime_add(tk
, delta
);
1556 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1557 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1558 tk_debug_account_sleep_time(delta
);
1561 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1563 * We have three kinds of time sources to use for sleep time
1564 * injection, the preference order is:
1565 * 1) non-stop clocksource
1566 * 2) persistent clock (ie: RTC accessible when irqs are off)
1569 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1570 * If system has neither 1) nor 2), 3) will be used finally.
1573 * If timekeeping has injected sleeptime via either 1) or 2),
1574 * 3) becomes needless, so in this case we don't need to call
1575 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1578 bool timekeeping_rtc_skipresume(void)
1580 return sleeptime_injected
;
1584 * 1) can be determined whether to use or not only when doing
1585 * timekeeping_resume() which is invoked after rtc_suspend(),
1586 * so we can't skip rtc_suspend() surely if system has 1).
1588 * But if system has 2), 2) will definitely be used, so in this
1589 * case we don't need to call rtc_suspend(), and this is what
1590 * timekeeping_rtc_skipsuspend() means.
1592 bool timekeeping_rtc_skipsuspend(void)
1594 return persistent_clock_exists
;
1598 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1599 * @delta: pointer to a timespec64 delta value
1601 * This hook is for architectures that cannot support read_persistent_clock64
1602 * because their RTC/persistent clock is only accessible when irqs are enabled.
1603 * and also don't have an effective nonstop clocksource.
1605 * This function should only be called by rtc_resume(), and allows
1606 * a suspend offset to be injected into the timekeeping values.
1608 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1610 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1611 unsigned long flags
;
1613 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1614 write_seqcount_begin(&tk_core
.seq
);
1616 timekeeping_forward_now(tk
);
1618 __timekeeping_inject_sleeptime(tk
, delta
);
1620 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1622 write_seqcount_end(&tk_core
.seq
);
1623 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1625 /* signal hrtimers about time change */
1631 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1633 void timekeeping_resume(void)
1635 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1636 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1637 unsigned long flags
;
1638 struct timespec64 ts_new
, ts_delta
;
1639 cycle_t cycle_now
, cycle_delta
;
1641 sleeptime_injected
= false;
1642 read_persistent_clock64(&ts_new
);
1644 clockevents_resume();
1645 clocksource_resume();
1647 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1648 write_seqcount_begin(&tk_core
.seq
);
1651 * After system resumes, we need to calculate the suspended time and
1652 * compensate it for the OS time. There are 3 sources that could be
1653 * used: Nonstop clocksource during suspend, persistent clock and rtc
1656 * One specific platform may have 1 or 2 or all of them, and the
1657 * preference will be:
1658 * suspend-nonstop clocksource -> persistent clock -> rtc
1659 * The less preferred source will only be tried if there is no better
1660 * usable source. The rtc part is handled separately in rtc core code.
1662 cycle_now
= tk_clock_read(&tk
->tkr_mono
);
1663 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1664 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1665 u64 num
, max
= ULLONG_MAX
;
1666 u32 mult
= clock
->mult
;
1667 u32 shift
= clock
->shift
;
1670 cycle_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1674 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1675 * suspended time is too long. In that case we need do the
1676 * 64 bits math carefully
1679 if (cycle_delta
> max
) {
1680 num
= div64_u64(cycle_delta
, max
);
1681 nsec
= (((u64
) max
* mult
) >> shift
) * num
;
1682 cycle_delta
-= num
* max
;
1684 nsec
+= ((u64
) cycle_delta
* mult
) >> shift
;
1686 ts_delta
= ns_to_timespec64(nsec
);
1687 sleeptime_injected
= true;
1688 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1689 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1690 sleeptime_injected
= true;
1693 if (sleeptime_injected
)
1694 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1696 /* Re-base the last cycle value */
1697 tk
->tkr_mono
.cycle_last
= cycle_now
;
1698 tk
->tkr_raw
.cycle_last
= cycle_now
;
1701 timekeeping_suspended
= 0;
1702 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1703 write_seqcount_end(&tk_core
.seq
);
1704 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1706 touch_softlockup_watchdog();
1712 int timekeeping_suspend(void)
1714 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1715 unsigned long flags
;
1716 struct timespec64 delta
, delta_delta
;
1717 static struct timespec64 old_delta
;
1719 read_persistent_clock64(&timekeeping_suspend_time
);
1722 * On some systems the persistent_clock can not be detected at
1723 * timekeeping_init by its return value, so if we see a valid
1724 * value returned, update the persistent_clock_exists flag.
1726 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1727 persistent_clock_exists
= true;
1729 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1730 write_seqcount_begin(&tk_core
.seq
);
1731 timekeeping_forward_now(tk
);
1732 timekeeping_suspended
= 1;
1734 if (persistent_clock_exists
) {
1736 * To avoid drift caused by repeated suspend/resumes,
1737 * which each can add ~1 second drift error,
1738 * try to compensate so the difference in system time
1739 * and persistent_clock time stays close to constant.
1741 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1742 delta_delta
= timespec64_sub(delta
, old_delta
);
1743 if (abs(delta_delta
.tv_sec
) >= 2) {
1745 * if delta_delta is too large, assume time correction
1746 * has occurred and set old_delta to the current delta.
1750 /* Otherwise try to adjust old_system to compensate */
1751 timekeeping_suspend_time
=
1752 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1756 timekeeping_update(tk
, TK_MIRROR
);
1757 halt_fast_timekeeper(tk
);
1758 write_seqcount_end(&tk_core
.seq
);
1759 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1762 clocksource_suspend();
1763 clockevents_suspend();
1768 /* sysfs resume/suspend bits for timekeeping */
1769 static struct syscore_ops timekeeping_syscore_ops
= {
1770 .resume
= timekeeping_resume
,
1771 .suspend
= timekeeping_suspend
,
1774 static int __init
timekeeping_init_ops(void)
1776 register_syscore_ops(&timekeeping_syscore_ops
);
1779 device_initcall(timekeeping_init_ops
);
1782 * Apply a multiplier adjustment to the timekeeper
1784 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1789 s64 interval
= tk
->cycle_interval
;
1793 mult_adj
= -mult_adj
;
1794 interval
= -interval
;
1797 mult_adj
<<= adj_scale
;
1798 interval
<<= adj_scale
;
1799 offset
<<= adj_scale
;
1802 * So the following can be confusing.
1804 * To keep things simple, lets assume mult_adj == 1 for now.
1806 * When mult_adj != 1, remember that the interval and offset values
1807 * have been appropriately scaled so the math is the same.
1809 * The basic idea here is that we're increasing the multiplier
1810 * by one, this causes the xtime_interval to be incremented by
1811 * one cycle_interval. This is because:
1812 * xtime_interval = cycle_interval * mult
1813 * So if mult is being incremented by one:
1814 * xtime_interval = cycle_interval * (mult + 1)
1816 * xtime_interval = (cycle_interval * mult) + cycle_interval
1817 * Which can be shortened to:
1818 * xtime_interval += cycle_interval
1820 * So offset stores the non-accumulated cycles. Thus the current
1821 * time (in shifted nanoseconds) is:
1822 * now = (offset * adj) + xtime_nsec
1823 * Now, even though we're adjusting the clock frequency, we have
1824 * to keep time consistent. In other words, we can't jump back
1825 * in time, and we also want to avoid jumping forward in time.
1827 * So given the same offset value, we need the time to be the same
1828 * both before and after the freq adjustment.
1829 * now = (offset * adj_1) + xtime_nsec_1
1830 * now = (offset * adj_2) + xtime_nsec_2
1832 * (offset * adj_1) + xtime_nsec_1 =
1833 * (offset * adj_2) + xtime_nsec_2
1837 * (offset * adj_1) + xtime_nsec_1 =
1838 * (offset * (adj_1+1)) + xtime_nsec_2
1839 * (offset * adj_1) + xtime_nsec_1 =
1840 * (offset * adj_1) + offset + xtime_nsec_2
1841 * Canceling the sides:
1842 * xtime_nsec_1 = offset + xtime_nsec_2
1844 * xtime_nsec_2 = xtime_nsec_1 - offset
1845 * Which simplfies to:
1846 * xtime_nsec -= offset
1848 * XXX - TODO: Doc ntp_error calculation.
1850 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1851 /* NTP adjustment caused clocksource mult overflow */
1856 tk
->tkr_mono
.mult
+= mult_adj
;
1857 tk
->xtime_interval
+= interval
;
1858 tk
->tkr_mono
.xtime_nsec
-= offset
;
1859 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1863 * Calculate the multiplier adjustment needed to match the frequency
1866 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1869 s64 interval
= tk
->cycle_interval
;
1870 s64 xinterval
= tk
->xtime_interval
;
1871 u32 base
= tk
->tkr_mono
.clock
->mult
;
1872 u32 max
= tk
->tkr_mono
.clock
->maxadj
;
1873 u32 cur_adj
= tk
->tkr_mono
.mult
;
1878 /* Remove any current error adj from freq calculation */
1879 if (tk
->ntp_err_mult
)
1880 xinterval
-= tk
->cycle_interval
;
1882 tk
->ntp_tick
= ntp_tick_length();
1884 /* Calculate current error per tick */
1885 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1886 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1888 /* Don't worry about correcting it if its small */
1889 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1892 /* preserve the direction of correction */
1893 negative
= (tick_error
< 0);
1895 /* If any adjustment would pass the max, just return */
1896 if (negative
&& (cur_adj
- 1) <= (base
- max
))
1898 if (!negative
&& (cur_adj
+ 1) >= (base
+ max
))
1901 * Sort out the magnitude of the correction, but
1902 * avoid making so large a correction that we go
1903 * over the max adjustment.
1906 tick_error
= abs(tick_error
);
1907 while (tick_error
> interval
) {
1908 u32 adj
= 1 << (adj_scale
+ 1);
1910 /* Check if adjustment gets us within 1 unit from the max */
1911 if (negative
&& (cur_adj
- adj
) <= (base
- max
))
1913 if (!negative
&& (cur_adj
+ adj
) >= (base
+ max
))
1920 /* scale the corrections */
1921 timekeeping_apply_adjustment(tk
, offset
, negative
, adj_scale
);
1925 * Adjust the timekeeper's multiplier to the correct frequency
1926 * and also to reduce the accumulated error value.
1928 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1930 /* Correct for the current frequency error */
1931 timekeeping_freqadjust(tk
, offset
);
1933 /* Next make a small adjustment to fix any cumulative error */
1934 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1935 tk
->ntp_err_mult
= 1;
1936 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1937 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1938 /* Undo any existing error adjustment */
1939 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1940 tk
->ntp_err_mult
= 0;
1943 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1944 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1945 > tk
->tkr_mono
.clock
->maxadj
))) {
1946 printk_once(KERN_WARNING
1947 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1948 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1949 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1953 * It may be possible that when we entered this function, xtime_nsec
1954 * was very small. Further, if we're slightly speeding the clocksource
1955 * in the code above, its possible the required corrective factor to
1956 * xtime_nsec could cause it to underflow.
1958 * Now, since we already accumulated the second, cannot simply roll
1959 * the accumulated second back, since the NTP subsystem has been
1960 * notified via second_overflow. So instead we push xtime_nsec forward
1961 * by the amount we underflowed, and add that amount into the error.
1963 * We'll correct this error next time through this function, when
1964 * xtime_nsec is not as small.
1966 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1967 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1968 tk
->tkr_mono
.xtime_nsec
= 0;
1969 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1974 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1976 * Helper function that accumulates the nsecs greater than a second
1977 * from the xtime_nsec field to the xtime_secs field.
1978 * It also calls into the NTP code to handle leapsecond processing.
1981 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1983 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1984 unsigned int clock_set
= 0;
1986 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1989 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1992 /* Figure out if its a leap sec and apply if needed */
1993 leap
= second_overflow(tk
->xtime_sec
);
1994 if (unlikely(leap
)) {
1995 struct timespec64 ts
;
1997 tk
->xtime_sec
+= leap
;
2001 tk_set_wall_to_mono(tk
,
2002 timespec64_sub(tk
->wall_to_monotonic
, ts
));
2004 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
2006 clock_set
= TK_CLOCK_WAS_SET
;
2013 * logarithmic_accumulation - shifted accumulation of cycles
2015 * This functions accumulates a shifted interval of cycles into
2016 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2019 * Returns the unconsumed cycles.
2021 static cycle_t
logarithmic_accumulation(struct timekeeper
*tk
, cycle_t offset
,
2023 unsigned int *clock_set
)
2025 cycle_t interval
= tk
->cycle_interval
<< shift
;
2028 /* If the offset is smaller than a shifted interval, do nothing */
2029 if (offset
< interval
)
2032 /* Accumulate one shifted interval */
2034 tk
->tkr_mono
.cycle_last
+= interval
;
2035 tk
->tkr_raw
.cycle_last
+= interval
;
2037 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
2038 *clock_set
|= accumulate_nsecs_to_secs(tk
);
2040 /* Accumulate raw time */
2041 tk
->tkr_raw
.xtime_nsec
+= (u64
)tk
->raw_time
.tv_nsec
<< tk
->tkr_raw
.shift
;
2042 tk
->tkr_raw
.xtime_nsec
+= tk
->raw_interval
<< shift
;
2043 snsec_per_sec
= (u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
;
2044 while (tk
->tkr_raw
.xtime_nsec
>= snsec_per_sec
) {
2045 tk
->tkr_raw
.xtime_nsec
-= snsec_per_sec
;
2046 tk
->raw_time
.tv_sec
++;
2048 tk
->raw_time
.tv_nsec
= tk
->tkr_raw
.xtime_nsec
>> tk
->tkr_raw
.shift
;
2049 tk
->tkr_raw
.xtime_nsec
-= (u64
)tk
->raw_time
.tv_nsec
<< tk
->tkr_raw
.shift
;
2051 /* Accumulate error between NTP and clock interval */
2052 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
2053 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
2054 (tk
->ntp_error_shift
+ shift
);
2060 * update_wall_time - Uses the current clocksource to increment the wall time
2063 void update_wall_time(void)
2065 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
2066 struct timekeeper
*tk
= &shadow_timekeeper
;
2068 int shift
= 0, maxshift
;
2069 unsigned int clock_set
= 0;
2070 unsigned long flags
;
2072 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2074 /* Make sure we're fully resumed: */
2075 if (unlikely(timekeeping_suspended
))
2078 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2079 offset
= real_tk
->cycle_interval
;
2081 offset
= clocksource_delta(tk_clock_read(&tk
->tkr_mono
),
2082 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
2085 /* Check if there's really nothing to do */
2086 if (offset
< real_tk
->cycle_interval
)
2089 /* Do some additional sanity checking */
2090 timekeeping_check_update(real_tk
, offset
);
2093 * With NO_HZ we may have to accumulate many cycle_intervals
2094 * (think "ticks") worth of time at once. To do this efficiently,
2095 * we calculate the largest doubling multiple of cycle_intervals
2096 * that is smaller than the offset. We then accumulate that
2097 * chunk in one go, and then try to consume the next smaller
2100 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
2101 shift
= max(0, shift
);
2102 /* Bound shift to one less than what overflows tick_length */
2103 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
2104 shift
= min(shift
, maxshift
);
2105 while (offset
>= tk
->cycle_interval
) {
2106 offset
= logarithmic_accumulation(tk
, offset
, shift
,
2108 if (offset
< tk
->cycle_interval
<<shift
)
2112 /* correct the clock when NTP error is too big */
2113 timekeeping_adjust(tk
, offset
);
2116 * XXX This can be killed once everyone converts
2117 * to the new update_vsyscall.
2119 old_vsyscall_fixup(tk
);
2122 * Finally, make sure that after the rounding
2123 * xtime_nsec isn't larger than NSEC_PER_SEC
2125 clock_set
|= accumulate_nsecs_to_secs(tk
);
2127 write_seqcount_begin(&tk_core
.seq
);
2129 * Update the real timekeeper.
2131 * We could avoid this memcpy by switching pointers, but that
2132 * requires changes to all other timekeeper usage sites as
2133 * well, i.e. move the timekeeper pointer getter into the
2134 * spinlocked/seqcount protected sections. And we trade this
2135 * memcpy under the tk_core.seq against one before we start
2138 timekeeping_update(tk
, clock_set
);
2139 memcpy(real_tk
, tk
, sizeof(*tk
));
2140 /* The memcpy must come last. Do not put anything here! */
2141 write_seqcount_end(&tk_core
.seq
);
2143 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2145 /* Have to call _delayed version, since in irq context*/
2146 clock_was_set_delayed();
2150 * getboottime64 - Return the real time of system boot.
2151 * @ts: pointer to the timespec64 to be set
2153 * Returns the wall-time of boot in a timespec64.
2155 * This is based on the wall_to_monotonic offset and the total suspend
2156 * time. Calls to settimeofday will affect the value returned (which
2157 * basically means that however wrong your real time clock is at boot time,
2158 * you get the right time here).
2160 void getboottime64(struct timespec64
*ts
)
2162 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2163 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
2165 *ts
= ktime_to_timespec64(t
);
2167 EXPORT_SYMBOL_GPL(getboottime64
);
2169 unsigned long get_seconds(void)
2171 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2173 return tk
->xtime_sec
;
2175 EXPORT_SYMBOL(get_seconds
);
2177 struct timespec
__current_kernel_time(void)
2179 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2181 return timespec64_to_timespec(tk_xtime(tk
));
2184 struct timespec64
current_kernel_time64(void)
2186 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2187 struct timespec64 now
;
2191 seq
= read_seqcount_begin(&tk_core
.seq
);
2194 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2198 EXPORT_SYMBOL(current_kernel_time64
);
2200 struct timespec64
get_monotonic_coarse64(void)
2202 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2203 struct timespec64 now
, mono
;
2207 seq
= read_seqcount_begin(&tk_core
.seq
);
2210 mono
= tk
->wall_to_monotonic
;
2211 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2213 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
2214 now
.tv_nsec
+ mono
.tv_nsec
);
2218 EXPORT_SYMBOL(get_monotonic_coarse64
);
2221 * Must hold jiffies_lock
2223 void do_timer(unsigned long ticks
)
2225 jiffies_64
+= ticks
;
2226 calc_global_load(ticks
);
2230 * ktime_get_update_offsets_now - hrtimer helper
2231 * @cwsseq: pointer to check and store the clock was set sequence number
2232 * @offs_real: pointer to storage for monotonic -> realtime offset
2233 * @offs_boot: pointer to storage for monotonic -> boottime offset
2234 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2236 * Returns current monotonic time and updates the offsets if the
2237 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2240 * Called from hrtimer_interrupt() or retrigger_next_event()
2242 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
2243 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
2245 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2251 seq
= read_seqcount_begin(&tk_core
.seq
);
2253 base
= tk
->tkr_mono
.base
;
2254 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2255 base
= ktime_add_ns(base
, nsecs
);
2257 if (*cwsseq
!= tk
->clock_was_set_seq
) {
2258 *cwsseq
= tk
->clock_was_set_seq
;
2259 *offs_real
= tk
->offs_real
;
2260 *offs_boot
= tk
->offs_boot
;
2261 *offs_tai
= tk
->offs_tai
;
2264 /* Handle leapsecond insertion adjustments */
2265 if (unlikely(base
.tv64
>= tk
->next_leap_ktime
.tv64
))
2266 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2268 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2274 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2276 int do_adjtimex(struct timex
*txc
)
2278 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2279 unsigned long flags
;
2280 struct timespec64 ts
;
2284 /* Validate the data before disabling interrupts */
2285 ret
= ntp_validate_timex(txc
);
2289 if (txc
->modes
& ADJ_SETOFFSET
) {
2290 struct timespec delta
;
2291 delta
.tv_sec
= txc
->time
.tv_sec
;
2292 delta
.tv_nsec
= txc
->time
.tv_usec
;
2293 if (!(txc
->modes
& ADJ_NANO
))
2294 delta
.tv_nsec
*= 1000;
2295 ret
= timekeeping_inject_offset(&delta
);
2300 getnstimeofday64(&ts
);
2302 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2303 write_seqcount_begin(&tk_core
.seq
);
2305 orig_tai
= tai
= tk
->tai_offset
;
2306 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2308 if (tai
!= orig_tai
) {
2309 __timekeeping_set_tai_offset(tk
, tai
);
2310 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2312 tk_update_leap_state(tk
);
2314 write_seqcount_end(&tk_core
.seq
);
2315 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2317 if (tai
!= orig_tai
)
2320 ntp_notify_cmos_timer();
2325 #ifdef CONFIG_NTP_PPS
2327 * hardpps() - Accessor function to NTP __hardpps function
2329 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2331 unsigned long flags
;
2333 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2334 write_seqcount_begin(&tk_core
.seq
);
2336 __hardpps(phase_ts
, raw_ts
);
2338 write_seqcount_end(&tk_core
.seq
);
2339 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2341 EXPORT_SYMBOL(hardpps
);
2345 * xtime_update() - advances the timekeeping infrastructure
2346 * @ticks: number of ticks, that have elapsed since the last call.
2348 * Must be called with interrupts disabled.
2350 void xtime_update(unsigned long ticks
)
2352 write_seqlock(&jiffies_lock
);
2354 write_sequnlock(&jiffies_lock
);