Linux 4.9.243
[linux/fpc-iii.git] / kernel / workqueue.c
blob00c295d3104bb870fe63fd25960a612a2d12528f
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/nmi.h>
53 #include "workqueue_internal.h"
55 enum {
57 * worker_pool flags
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
68 * Note that DISASSOCIATED should be flipped only while holding
69 * attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
107 WQ_NAME_LEN = 24,
111 * Structure fields follow one of the following exclusion rules.
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
119 * L: pool->lock protected. Access with pool->lock held.
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
126 * A: pool->attach_mutex protected.
128 * PL: wq_pool_mutex protected.
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
137 * WQ: wq->mutex protected.
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
141 * MD: wq_mayday_lock protected.
144 /* struct worker is defined in workqueue_internal.h */
146 struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
155 struct list_head worklist; /* L: list of pending works */
156 int nr_workers; /* L: total number of workers */
158 /* nr_idle includes the ones off idle_list for rebinding */
159 int nr_idle; /* L: currently idle ones */
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
169 /* see manage_workers() for details on the two manager mutexes */
170 struct worker *manager; /* L: purely informational */
171 struct mutex attach_mutex; /* attach/detach exclusion */
172 struct list_head workers; /* A: attached workers */
173 struct completion *detach_completion; /* all workers detached */
175 struct ida worker_ida; /* worker IDs for task name */
177 struct workqueue_attrs *attrs; /* I: worker attributes */
178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
179 int refcnt; /* PL: refcnt for unbound pools */
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
184 * cacheline.
186 atomic_t nr_running ____cacheline_aligned_in_smp;
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
192 struct rcu_head rcu;
193 } ____cacheline_aligned_in_smp;
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
201 struct pool_workqueue {
202 struct worker_pool *pool; /* I: the associated pool */
203 struct workqueue_struct *wq; /* I: the owning workqueue */
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
206 int refcnt; /* L: reference count */
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
209 int nr_active; /* L: nr of active works */
210 int max_active; /* L: max active works */
211 struct list_head delayed_works; /* L: delayed works */
212 struct list_head pwqs_node; /* WR: node on wq->pwqs */
213 struct list_head mayday_node; /* MD: node on wq->maydays */
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
219 * determined without grabbing wq->mutex.
221 struct work_struct unbound_release_work;
222 struct rcu_head rcu;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
226 * Structure used to wait for workqueue flush.
228 struct wq_flusher {
229 struct list_head list; /* WQ: list of flushers */
230 int flush_color; /* WQ: flush color waiting for */
231 struct completion done; /* flush completion */
234 struct wq_device;
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
240 struct workqueue_struct {
241 struct list_head pwqs; /* WR: all pwqs of this wq */
242 struct list_head list; /* PR: list of all workqueues */
244 struct mutex mutex; /* protects this wq */
245 int work_color; /* WQ: current work color */
246 int flush_color; /* WQ: current flush color */
247 atomic_t nr_pwqs_to_flush; /* flush in progress */
248 struct wq_flusher *first_flusher; /* WQ: first flusher */
249 struct list_head flusher_queue; /* WQ: flush waiters */
250 struct list_head flusher_overflow; /* WQ: flush overflow list */
252 struct list_head maydays; /* MD: pwqs requesting rescue */
253 struct worker *rescuer; /* I: rescue worker */
255 int nr_drainers; /* WQ: drain in progress */
256 int saved_max_active; /* WQ: saved pwq max_active */
258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
261 #ifdef CONFIG_SYSFS
262 struct wq_device *wq_dev; /* I: for sysfs interface */
263 #endif
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
274 struct rcu_head rcu;
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
282 static struct kmem_cache *pwq_cache;
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
297 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
300 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
304 static bool workqueue_freezing; /* PL: have wqs started freezing? */
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
359 #define assert_rcu_or_pool_mutex() \
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
364 #define assert_rcu_or_wq_mutex(wq) \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375 #define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
392 #define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
402 * This must be called with @pool->attach_mutex.
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
407 #define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
410 else
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
417 * This must be called either with wq->mutex held or sched RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
424 #define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
427 else
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
431 static struct debug_obj_descr work_debug_descr;
433 static void *work_debug_hint(void *addr)
435 return ((struct work_struct *) addr)->func;
438 static bool work_is_static_object(void *addr)
440 struct work_struct *work = addr;
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446 * fixup_init is called when:
447 * - an active object is initialized
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 struct work_struct *work = addr;
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
464 * fixup_free is called when:
465 * - an active object is freed
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 struct work_struct *work = addr;
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
481 static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
489 static inline void debug_work_activate(struct work_struct *work)
491 debug_object_activate(work, &work_debug_descr);
494 static inline void debug_work_deactivate(struct work_struct *work)
496 debug_object_deactivate(work, &work_debug_descr);
499 void __init_work(struct work_struct *work, int onstack)
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
506 EXPORT_SYMBOL_GPL(__init_work);
508 void destroy_work_on_stack(struct work_struct *work)
510 debug_object_free(work, &work_debug_descr);
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
533 static int worker_pool_assign_id(struct worker_pool *pool)
535 int ret;
537 lockdep_assert_held(&wq_pool_mutex);
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
545 return ret;
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
558 * Return: The unbound pool_workqueue for @node.
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 static unsigned int work_color_to_flags(int color)
579 return color << WORK_STRUCT_COLOR_SHIFT;
582 static int get_work_color(struct work_struct *work)
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 static int work_next_color(int color)
590 return (color + 1) % WORK_NR_COLORS;
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
673 smp_mb();
676 static void clear_work_data(struct work_struct *work)
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684 unsigned long data = atomic_long_read(&work->data);
686 if (data & WORK_STRUCT_PWQ)
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
705 * Return: The worker_pool @work was last associated with. %NULL if none.
707 static struct worker_pool *get_work_pool(struct work_struct *work)
709 unsigned long data = atomic_long_read(&work->data);
710 int pool_id;
712 assert_rcu_or_pool_mutex();
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
720 return NULL;
722 return idr_find(&worker_pool_idr, pool_id);
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
732 static int get_work_pool_id(struct work_struct *work)
734 unsigned long data = atomic_long_read(&work->data);
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740 return data >> WORK_OFFQ_POOL_SHIFT;
743 static void mark_work_canceling(struct work_struct *work)
745 unsigned long pool_id = get_work_pool_id(work);
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 static bool work_is_canceling(struct work_struct *work)
753 unsigned long data = atomic_long_read(&work->data);
755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
764 static bool __need_more_worker(struct worker_pool *pool)
766 return !atomic_read(&pool->nr_running);
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
777 static bool need_more_worker(struct worker_pool *pool)
779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 /* Can I start working? Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
785 return pool->nr_idle;
788 /* Do I need to keep working? Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
795 /* Do we need a new worker? Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
798 return need_more_worker(pool) && !may_start_working(pool);
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
812 * Wake up functions.
815 /* Return the first idle worker. Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
818 if (unlikely(list_empty(&pool->idle_list)))
819 return NULL;
821 return list_first_entry(&pool->idle_list, struct worker, entry);
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
828 * Wake up the first idle worker of @pool.
830 * CONTEXT:
831 * spin_lock_irq(pool->lock).
833 static void wake_up_worker(struct worker_pool *pool)
835 struct worker *worker = first_idle_worker(pool);
837 if (likely(worker))
838 wake_up_process(worker->task);
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
854 struct worker *worker = kthread_data(task);
856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 WARN_ON_ONCE(worker->pool->cpu != cpu);
858 atomic_inc(&worker->pool->nr_running);
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
873 * Return:
874 * Worker task on @cpu to wake up, %NULL if none.
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 struct worker_pool *pool;
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
886 if (worker->flags & WORKER_NOT_RUNNING)
887 return NULL;
889 pool = worker->pool;
891 /* this can only happen on the local cpu */
892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 return NULL;
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
903 * manipulating idle_list, so dereferencing idle_list without pool
904 * lock is safe.
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
908 to_wakeup = first_idle_worker(pool);
909 return to_wakeup ? to_wakeup->task : NULL;
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
914 * @worker: self
915 * @flags: flags to set
917 * Set @flags in @worker->flags and adjust nr_running accordingly.
919 * CONTEXT:
920 * spin_lock_irq(pool->lock)
922 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924 struct worker_pool *pool = worker->pool;
926 WARN_ON_ONCE(worker->task != current);
928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
931 atomic_dec(&pool->nr_running);
934 worker->flags |= flags;
938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939 * @worker: self
940 * @flags: flags to clear
942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
944 * CONTEXT:
945 * spin_lock_irq(pool->lock)
947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
949 struct worker_pool *pool = worker->pool;
950 unsigned int oflags = worker->flags;
952 WARN_ON_ONCE(worker->task != current);
954 worker->flags &= ~flags;
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
963 atomic_inc(&pool->nr_running);
967 * find_worker_executing_work - find worker which is executing a work
968 * @pool: pool of interest
969 * @work: work to find worker for
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
992 * CONTEXT:
993 * spin_lock_irq(pool->lock).
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
997 * otherwise.
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 struct work_struct *work)
1002 struct worker *worker;
1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
1008 return worker;
1010 return NULL;
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1033 struct work_struct *n;
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1050 if (nextp)
1051 *nextp = n;
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1061 static void get_pwq(struct pool_workqueue *pwq)
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1075 static void put_pwq(struct pool_workqueue *pwq)
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1090 schedule_work(&pwq->unbound_release_work);
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1099 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1101 if (pwq) {
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1112 static void pwq_activate_delayed_work(struct work_struct *work)
1114 struct pool_workqueue *pwq = get_work_pwq(work);
1116 trace_workqueue_activate_work(work);
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
1119 move_linked_works(work, &pwq->pool->worklist, NULL);
1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 pwq->nr_active++;
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 struct work_struct, entry);
1129 pwq_activate_delayed_work(work);
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145 /* uncolored work items don't participate in flushing or nr_active */
1146 if (color == WORK_NO_COLOR)
1147 goto out_put;
1149 pwq->nr_in_flight[color]--;
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
1153 /* one down, submit a delayed one */
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
1158 /* is flush in progress and are we at the flushing tip? */
1159 if (likely(pwq->flush_color != color))
1160 goto out_put;
1162 /* are there still in-flight works? */
1163 if (pwq->nr_in_flight[color])
1164 goto out_put;
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
1170 * If this was the last pwq, wake up the first flusher. It
1171 * will handle the rest.
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 put_pwq(pwq);
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1188 * Return:
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1204 * This function is safe to call from any context including IRQ handler.
1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
1209 struct worker_pool *pool;
1210 struct pool_workqueue *pwq;
1212 local_irq_save(*flags);
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1227 /* try to claim PENDING the normal way */
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 pool = get_work_pool(work);
1236 if (!pool)
1237 goto fail;
1239 spin_lock(&pool->lock);
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
1246 * item is currently queued on that pool.
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
1250 debug_work_deactivate(work);
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
1255 * on the delayed_list, will confuse pwq->nr_active
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 pwq_activate_delayed_work(work);
1262 list_del_init(&work->entry);
1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1265 /* work->data points to pwq iff queued, point to pool */
1266 set_work_pool_and_keep_pending(work, pool->id);
1268 spin_unlock(&pool->lock);
1269 return 1;
1271 spin_unlock(&pool->lock);
1272 fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
1277 return -EAGAIN;
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1288 * work_struct flags.
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
1296 struct worker_pool *pool = pwq->pool;
1298 /* we own @work, set data and link */
1299 set_work_pwq(work, pwq, extra_flags);
1300 list_add_tail(&work->entry, head);
1301 get_pwq(pwq);
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
1308 smp_mb();
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1318 static bool is_chained_work(struct workqueue_struct *wq)
1320 struct worker *worker;
1322 worker = current_wq_worker();
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1327 return worker && worker->current_pwq->wq == wq;
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1335 static int wq_select_unbound_cpu(int cpu)
1337 static bool printed_dbg_warning;
1338 int new_cpu;
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1360 return new_cpu;
1363 static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 struct work_struct *work)
1366 struct pool_workqueue *pwq;
1367 struct worker_pool *last_pool;
1368 struct list_head *worklist;
1369 unsigned int work_flags;
1370 unsigned int req_cpu = cpu;
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1378 WARN_ON_ONCE(!irqs_disabled());
1380 debug_work_activate(work);
1382 /* if draining, only works from the same workqueue are allowed */
1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 WARN_ON_ONCE(!is_chained_work(wq)))
1385 return;
1386 retry:
1387 /* pwq which will be used unless @work is executing elsewhere */
1388 if (wq->flags & WQ_UNBOUND) {
1389 if (req_cpu == WORK_CPU_UNBOUND)
1390 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1391 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1392 } else {
1393 if (req_cpu == WORK_CPU_UNBOUND)
1394 cpu = raw_smp_processor_id();
1395 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1399 * If @work was previously on a different pool, it might still be
1400 * running there, in which case the work needs to be queued on that
1401 * pool to guarantee non-reentrancy.
1403 last_pool = get_work_pool(work);
1404 if (last_pool && last_pool != pwq->pool) {
1405 struct worker *worker;
1407 spin_lock(&last_pool->lock);
1409 worker = find_worker_executing_work(last_pool, work);
1411 if (worker && worker->current_pwq->wq == wq) {
1412 pwq = worker->current_pwq;
1413 } else {
1414 /* meh... not running there, queue here */
1415 spin_unlock(&last_pool->lock);
1416 spin_lock(&pwq->pool->lock);
1418 } else {
1419 spin_lock(&pwq->pool->lock);
1423 * pwq is determined and locked. For unbound pools, we could have
1424 * raced with pwq release and it could already be dead. If its
1425 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1426 * without another pwq replacing it in the numa_pwq_tbl or while
1427 * work items are executing on it, so the retrying is guaranteed to
1428 * make forward-progress.
1430 if (unlikely(!pwq->refcnt)) {
1431 if (wq->flags & WQ_UNBOUND) {
1432 spin_unlock(&pwq->pool->lock);
1433 cpu_relax();
1434 goto retry;
1436 /* oops */
1437 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1438 wq->name, cpu);
1441 /* pwq determined, queue */
1442 trace_workqueue_queue_work(req_cpu, pwq, work);
1444 if (WARN_ON(!list_empty(&work->entry))) {
1445 spin_unlock(&pwq->pool->lock);
1446 return;
1449 pwq->nr_in_flight[pwq->work_color]++;
1450 work_flags = work_color_to_flags(pwq->work_color);
1452 if (likely(pwq->nr_active < pwq->max_active)) {
1453 trace_workqueue_activate_work(work);
1454 pwq->nr_active++;
1455 worklist = &pwq->pool->worklist;
1456 if (list_empty(worklist))
1457 pwq->pool->watchdog_ts = jiffies;
1458 } else {
1459 work_flags |= WORK_STRUCT_DELAYED;
1460 worklist = &pwq->delayed_works;
1463 insert_work(pwq, work, worklist, work_flags);
1465 spin_unlock(&pwq->pool->lock);
1469 * queue_work_on - queue work on specific cpu
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
1472 * @work: work to queue
1474 * We queue the work to a specific CPU, the caller must ensure it
1475 * can't go away.
1477 * Return: %false if @work was already on a queue, %true otherwise.
1479 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1480 struct work_struct *work)
1482 bool ret = false;
1483 unsigned long flags;
1485 local_irq_save(flags);
1487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1488 __queue_work(cpu, wq, work);
1489 ret = true;
1492 local_irq_restore(flags);
1493 return ret;
1495 EXPORT_SYMBOL(queue_work_on);
1497 void delayed_work_timer_fn(unsigned long __data)
1499 struct delayed_work *dwork = (struct delayed_work *)__data;
1501 /* should have been called from irqsafe timer with irq already off */
1502 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1504 EXPORT_SYMBOL(delayed_work_timer_fn);
1506 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1507 struct delayed_work *dwork, unsigned long delay)
1509 struct timer_list *timer = &dwork->timer;
1510 struct work_struct *work = &dwork->work;
1512 WARN_ON_ONCE(!wq);
1513 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1514 timer->data != (unsigned long)dwork);
1515 WARN_ON_ONCE(timer_pending(timer));
1516 WARN_ON_ONCE(!list_empty(&work->entry));
1519 * If @delay is 0, queue @dwork->work immediately. This is for
1520 * both optimization and correctness. The earliest @timer can
1521 * expire is on the closest next tick and delayed_work users depend
1522 * on that there's no such delay when @delay is 0.
1524 if (!delay) {
1525 __queue_work(cpu, wq, &dwork->work);
1526 return;
1529 timer_stats_timer_set_start_info(&dwork->timer);
1531 dwork->wq = wq;
1532 dwork->cpu = cpu;
1533 timer->expires = jiffies + delay;
1535 if (unlikely(cpu != WORK_CPU_UNBOUND))
1536 add_timer_on(timer, cpu);
1537 else
1538 add_timer(timer);
1542 * queue_delayed_work_on - queue work on specific CPU after delay
1543 * @cpu: CPU number to execute work on
1544 * @wq: workqueue to use
1545 * @dwork: work to queue
1546 * @delay: number of jiffies to wait before queueing
1548 * Return: %false if @work was already on a queue, %true otherwise. If
1549 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1550 * execution.
1552 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1553 struct delayed_work *dwork, unsigned long delay)
1555 struct work_struct *work = &dwork->work;
1556 bool ret = false;
1557 unsigned long flags;
1559 /* read the comment in __queue_work() */
1560 local_irq_save(flags);
1562 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1563 __queue_delayed_work(cpu, wq, dwork, delay);
1564 ret = true;
1567 local_irq_restore(flags);
1568 return ret;
1570 EXPORT_SYMBOL(queue_delayed_work_on);
1573 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1574 * @cpu: CPU number to execute work on
1575 * @wq: workqueue to use
1576 * @dwork: work to queue
1577 * @delay: number of jiffies to wait before queueing
1579 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1580 * modify @dwork's timer so that it expires after @delay. If @delay is
1581 * zero, @work is guaranteed to be scheduled immediately regardless of its
1582 * current state.
1584 * Return: %false if @dwork was idle and queued, %true if @dwork was
1585 * pending and its timer was modified.
1587 * This function is safe to call from any context including IRQ handler.
1588 * See try_to_grab_pending() for details.
1590 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1591 struct delayed_work *dwork, unsigned long delay)
1593 unsigned long flags;
1594 int ret;
1596 do {
1597 ret = try_to_grab_pending(&dwork->work, true, &flags);
1598 } while (unlikely(ret == -EAGAIN));
1600 if (likely(ret >= 0)) {
1601 __queue_delayed_work(cpu, wq, dwork, delay);
1602 local_irq_restore(flags);
1605 /* -ENOENT from try_to_grab_pending() becomes %true */
1606 return ret;
1608 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1611 * worker_enter_idle - enter idle state
1612 * @worker: worker which is entering idle state
1614 * @worker is entering idle state. Update stats and idle timer if
1615 * necessary.
1617 * LOCKING:
1618 * spin_lock_irq(pool->lock).
1620 static void worker_enter_idle(struct worker *worker)
1622 struct worker_pool *pool = worker->pool;
1624 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1625 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1626 (worker->hentry.next || worker->hentry.pprev)))
1627 return;
1629 /* can't use worker_set_flags(), also called from create_worker() */
1630 worker->flags |= WORKER_IDLE;
1631 pool->nr_idle++;
1632 worker->last_active = jiffies;
1634 /* idle_list is LIFO */
1635 list_add(&worker->entry, &pool->idle_list);
1637 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1638 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1641 * Sanity check nr_running. Because wq_unbind_fn() releases
1642 * pool->lock between setting %WORKER_UNBOUND and zapping
1643 * nr_running, the warning may trigger spuriously. Check iff
1644 * unbind is not in progress.
1646 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1647 pool->nr_workers == pool->nr_idle &&
1648 atomic_read(&pool->nr_running));
1652 * worker_leave_idle - leave idle state
1653 * @worker: worker which is leaving idle state
1655 * @worker is leaving idle state. Update stats.
1657 * LOCKING:
1658 * spin_lock_irq(pool->lock).
1660 static void worker_leave_idle(struct worker *worker)
1662 struct worker_pool *pool = worker->pool;
1664 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1665 return;
1666 worker_clr_flags(worker, WORKER_IDLE);
1667 pool->nr_idle--;
1668 list_del_init(&worker->entry);
1671 static struct worker *alloc_worker(int node)
1673 struct worker *worker;
1675 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1676 if (worker) {
1677 INIT_LIST_HEAD(&worker->entry);
1678 INIT_LIST_HEAD(&worker->scheduled);
1679 INIT_LIST_HEAD(&worker->node);
1680 /* on creation a worker is in !idle && prep state */
1681 worker->flags = WORKER_PREP;
1683 return worker;
1687 * worker_attach_to_pool() - attach a worker to a pool
1688 * @worker: worker to be attached
1689 * @pool: the target pool
1691 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1692 * cpu-binding of @worker are kept coordinated with the pool across
1693 * cpu-[un]hotplugs.
1695 static void worker_attach_to_pool(struct worker *worker,
1696 struct worker_pool *pool)
1698 mutex_lock(&pool->attach_mutex);
1701 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1702 * online CPUs. It'll be re-applied when any of the CPUs come up.
1704 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1707 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1708 * stable across this function. See the comments above the
1709 * flag definition for details.
1711 if (pool->flags & POOL_DISASSOCIATED)
1712 worker->flags |= WORKER_UNBOUND;
1714 list_add_tail(&worker->node, &pool->workers);
1716 mutex_unlock(&pool->attach_mutex);
1720 * worker_detach_from_pool() - detach a worker from its pool
1721 * @worker: worker which is attached to its pool
1722 * @pool: the pool @worker is attached to
1724 * Undo the attaching which had been done in worker_attach_to_pool(). The
1725 * caller worker shouldn't access to the pool after detached except it has
1726 * other reference to the pool.
1728 static void worker_detach_from_pool(struct worker *worker,
1729 struct worker_pool *pool)
1731 struct completion *detach_completion = NULL;
1733 mutex_lock(&pool->attach_mutex);
1734 list_del(&worker->node);
1735 if (list_empty(&pool->workers))
1736 detach_completion = pool->detach_completion;
1737 mutex_unlock(&pool->attach_mutex);
1739 /* clear leftover flags without pool->lock after it is detached */
1740 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1742 if (detach_completion)
1743 complete(detach_completion);
1747 * create_worker - create a new workqueue worker
1748 * @pool: pool the new worker will belong to
1750 * Create and start a new worker which is attached to @pool.
1752 * CONTEXT:
1753 * Might sleep. Does GFP_KERNEL allocations.
1755 * Return:
1756 * Pointer to the newly created worker.
1758 static struct worker *create_worker(struct worker_pool *pool)
1760 struct worker *worker = NULL;
1761 int id = -1;
1762 char id_buf[16];
1764 /* ID is needed to determine kthread name */
1765 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1766 if (id < 0)
1767 goto fail;
1769 worker = alloc_worker(pool->node);
1770 if (!worker)
1771 goto fail;
1773 worker->pool = pool;
1774 worker->id = id;
1776 if (pool->cpu >= 0)
1777 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1778 pool->attrs->nice < 0 ? "H" : "");
1779 else
1780 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1782 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1783 "kworker/%s", id_buf);
1784 if (IS_ERR(worker->task))
1785 goto fail;
1787 set_user_nice(worker->task, pool->attrs->nice);
1788 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1790 /* successful, attach the worker to the pool */
1791 worker_attach_to_pool(worker, pool);
1793 /* start the newly created worker */
1794 spin_lock_irq(&pool->lock);
1795 worker->pool->nr_workers++;
1796 worker_enter_idle(worker);
1797 wake_up_process(worker->task);
1798 spin_unlock_irq(&pool->lock);
1800 return worker;
1802 fail:
1803 if (id >= 0)
1804 ida_simple_remove(&pool->worker_ida, id);
1805 kfree(worker);
1806 return NULL;
1810 * destroy_worker - destroy a workqueue worker
1811 * @worker: worker to be destroyed
1813 * Destroy @worker and adjust @pool stats accordingly. The worker should
1814 * be idle.
1816 * CONTEXT:
1817 * spin_lock_irq(pool->lock).
1819 static void destroy_worker(struct worker *worker)
1821 struct worker_pool *pool = worker->pool;
1823 lockdep_assert_held(&pool->lock);
1825 /* sanity check frenzy */
1826 if (WARN_ON(worker->current_work) ||
1827 WARN_ON(!list_empty(&worker->scheduled)) ||
1828 WARN_ON(!(worker->flags & WORKER_IDLE)))
1829 return;
1831 pool->nr_workers--;
1832 pool->nr_idle--;
1834 list_del_init(&worker->entry);
1835 worker->flags |= WORKER_DIE;
1836 wake_up_process(worker->task);
1839 static void idle_worker_timeout(unsigned long __pool)
1841 struct worker_pool *pool = (void *)__pool;
1843 spin_lock_irq(&pool->lock);
1845 while (too_many_workers(pool)) {
1846 struct worker *worker;
1847 unsigned long expires;
1849 /* idle_list is kept in LIFO order, check the last one */
1850 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1851 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1853 if (time_before(jiffies, expires)) {
1854 mod_timer(&pool->idle_timer, expires);
1855 break;
1858 destroy_worker(worker);
1861 spin_unlock_irq(&pool->lock);
1864 static void send_mayday(struct work_struct *work)
1866 struct pool_workqueue *pwq = get_work_pwq(work);
1867 struct workqueue_struct *wq = pwq->wq;
1869 lockdep_assert_held(&wq_mayday_lock);
1871 if (!wq->rescuer)
1872 return;
1874 /* mayday mayday mayday */
1875 if (list_empty(&pwq->mayday_node)) {
1877 * If @pwq is for an unbound wq, its base ref may be put at
1878 * any time due to an attribute change. Pin @pwq until the
1879 * rescuer is done with it.
1881 get_pwq(pwq);
1882 list_add_tail(&pwq->mayday_node, &wq->maydays);
1883 wake_up_process(wq->rescuer->task);
1887 static void pool_mayday_timeout(unsigned long __pool)
1889 struct worker_pool *pool = (void *)__pool;
1890 struct work_struct *work;
1892 spin_lock_irq(&pool->lock);
1893 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1895 if (need_to_create_worker(pool)) {
1897 * We've been trying to create a new worker but
1898 * haven't been successful. We might be hitting an
1899 * allocation deadlock. Send distress signals to
1900 * rescuers.
1902 list_for_each_entry(work, &pool->worklist, entry)
1903 send_mayday(work);
1906 spin_unlock(&wq_mayday_lock);
1907 spin_unlock_irq(&pool->lock);
1909 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1913 * maybe_create_worker - create a new worker if necessary
1914 * @pool: pool to create a new worker for
1916 * Create a new worker for @pool if necessary. @pool is guaranteed to
1917 * have at least one idle worker on return from this function. If
1918 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1919 * sent to all rescuers with works scheduled on @pool to resolve
1920 * possible allocation deadlock.
1922 * On return, need_to_create_worker() is guaranteed to be %false and
1923 * may_start_working() %true.
1925 * LOCKING:
1926 * spin_lock_irq(pool->lock) which may be released and regrabbed
1927 * multiple times. Does GFP_KERNEL allocations. Called only from
1928 * manager.
1930 static void maybe_create_worker(struct worker_pool *pool)
1931 __releases(&pool->lock)
1932 __acquires(&pool->lock)
1934 restart:
1935 spin_unlock_irq(&pool->lock);
1937 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1938 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1940 while (true) {
1941 if (create_worker(pool) || !need_to_create_worker(pool))
1942 break;
1944 schedule_timeout_interruptible(CREATE_COOLDOWN);
1946 if (!need_to_create_worker(pool))
1947 break;
1950 del_timer_sync(&pool->mayday_timer);
1951 spin_lock_irq(&pool->lock);
1953 * This is necessary even after a new worker was just successfully
1954 * created as @pool->lock was dropped and the new worker might have
1955 * already become busy.
1957 if (need_to_create_worker(pool))
1958 goto restart;
1962 * manage_workers - manage worker pool
1963 * @worker: self
1965 * Assume the manager role and manage the worker pool @worker belongs
1966 * to. At any given time, there can be only zero or one manager per
1967 * pool. The exclusion is handled automatically by this function.
1969 * The caller can safely start processing works on false return. On
1970 * true return, it's guaranteed that need_to_create_worker() is false
1971 * and may_start_working() is true.
1973 * CONTEXT:
1974 * spin_lock_irq(pool->lock) which may be released and regrabbed
1975 * multiple times. Does GFP_KERNEL allocations.
1977 * Return:
1978 * %false if the pool doesn't need management and the caller can safely
1979 * start processing works, %true if management function was performed and
1980 * the conditions that the caller verified before calling the function may
1981 * no longer be true.
1983 static bool manage_workers(struct worker *worker)
1985 struct worker_pool *pool = worker->pool;
1987 if (pool->flags & POOL_MANAGER_ACTIVE)
1988 return false;
1990 pool->flags |= POOL_MANAGER_ACTIVE;
1991 pool->manager = worker;
1993 maybe_create_worker(pool);
1995 pool->manager = NULL;
1996 pool->flags &= ~POOL_MANAGER_ACTIVE;
1997 wake_up(&wq_manager_wait);
1998 return true;
2002 * process_one_work - process single work
2003 * @worker: self
2004 * @work: work to process
2006 * Process @work. This function contains all the logics necessary to
2007 * process a single work including synchronization against and
2008 * interaction with other workers on the same cpu, queueing and
2009 * flushing. As long as context requirement is met, any worker can
2010 * call this function to process a work.
2012 * CONTEXT:
2013 * spin_lock_irq(pool->lock) which is released and regrabbed.
2015 static void process_one_work(struct worker *worker, struct work_struct *work)
2016 __releases(&pool->lock)
2017 __acquires(&pool->lock)
2019 struct pool_workqueue *pwq = get_work_pwq(work);
2020 struct worker_pool *pool = worker->pool;
2021 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2022 int work_color;
2023 struct worker *collision;
2024 #ifdef CONFIG_LOCKDEP
2026 * It is permissible to free the struct work_struct from
2027 * inside the function that is called from it, this we need to
2028 * take into account for lockdep too. To avoid bogus "held
2029 * lock freed" warnings as well as problems when looking into
2030 * work->lockdep_map, make a copy and use that here.
2032 struct lockdep_map lockdep_map;
2034 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2035 #endif
2036 /* ensure we're on the correct CPU */
2037 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2038 raw_smp_processor_id() != pool->cpu);
2041 * A single work shouldn't be executed concurrently by
2042 * multiple workers on a single cpu. Check whether anyone is
2043 * already processing the work. If so, defer the work to the
2044 * currently executing one.
2046 collision = find_worker_executing_work(pool, work);
2047 if (unlikely(collision)) {
2048 move_linked_works(work, &collision->scheduled, NULL);
2049 return;
2052 /* claim and dequeue */
2053 debug_work_deactivate(work);
2054 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2055 worker->current_work = work;
2056 worker->current_func = work->func;
2057 worker->current_pwq = pwq;
2058 work_color = get_work_color(work);
2060 list_del_init(&work->entry);
2063 * CPU intensive works don't participate in concurrency management.
2064 * They're the scheduler's responsibility. This takes @worker out
2065 * of concurrency management and the next code block will chain
2066 * execution of the pending work items.
2068 if (unlikely(cpu_intensive))
2069 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2072 * Wake up another worker if necessary. The condition is always
2073 * false for normal per-cpu workers since nr_running would always
2074 * be >= 1 at this point. This is used to chain execution of the
2075 * pending work items for WORKER_NOT_RUNNING workers such as the
2076 * UNBOUND and CPU_INTENSIVE ones.
2078 if (need_more_worker(pool))
2079 wake_up_worker(pool);
2082 * Record the last pool and clear PENDING which should be the last
2083 * update to @work. Also, do this inside @pool->lock so that
2084 * PENDING and queued state changes happen together while IRQ is
2085 * disabled.
2087 set_work_pool_and_clear_pending(work, pool->id);
2089 spin_unlock_irq(&pool->lock);
2091 lock_map_acquire_read(&pwq->wq->lockdep_map);
2092 lock_map_acquire(&lockdep_map);
2093 trace_workqueue_execute_start(work);
2094 worker->current_func(work);
2096 * While we must be careful to not use "work" after this, the trace
2097 * point will only record its address.
2099 trace_workqueue_execute_end(work);
2100 lock_map_release(&lockdep_map);
2101 lock_map_release(&pwq->wq->lockdep_map);
2103 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2104 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2105 " last function: %pf\n",
2106 current->comm, preempt_count(), task_pid_nr(current),
2107 worker->current_func);
2108 debug_show_held_locks(current);
2109 dump_stack();
2113 * The following prevents a kworker from hogging CPU on !PREEMPT
2114 * kernels, where a requeueing work item waiting for something to
2115 * happen could deadlock with stop_machine as such work item could
2116 * indefinitely requeue itself while all other CPUs are trapped in
2117 * stop_machine. At the same time, report a quiescent RCU state so
2118 * the same condition doesn't freeze RCU.
2120 cond_resched_rcu_qs();
2122 spin_lock_irq(&pool->lock);
2124 /* clear cpu intensive status */
2125 if (unlikely(cpu_intensive))
2126 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2128 /* we're done with it, release */
2129 hash_del(&worker->hentry);
2130 worker->current_work = NULL;
2131 worker->current_func = NULL;
2132 worker->current_pwq = NULL;
2133 worker->desc_valid = false;
2134 pwq_dec_nr_in_flight(pwq, work_color);
2138 * process_scheduled_works - process scheduled works
2139 * @worker: self
2141 * Process all scheduled works. Please note that the scheduled list
2142 * may change while processing a work, so this function repeatedly
2143 * fetches a work from the top and executes it.
2145 * CONTEXT:
2146 * spin_lock_irq(pool->lock) which may be released and regrabbed
2147 * multiple times.
2149 static void process_scheduled_works(struct worker *worker)
2151 while (!list_empty(&worker->scheduled)) {
2152 struct work_struct *work = list_first_entry(&worker->scheduled,
2153 struct work_struct, entry);
2154 process_one_work(worker, work);
2159 * worker_thread - the worker thread function
2160 * @__worker: self
2162 * The worker thread function. All workers belong to a worker_pool -
2163 * either a per-cpu one or dynamic unbound one. These workers process all
2164 * work items regardless of their specific target workqueue. The only
2165 * exception is work items which belong to workqueues with a rescuer which
2166 * will be explained in rescuer_thread().
2168 * Return: 0
2170 static int worker_thread(void *__worker)
2172 struct worker *worker = __worker;
2173 struct worker_pool *pool = worker->pool;
2175 /* tell the scheduler that this is a workqueue worker */
2176 worker->task->flags |= PF_WQ_WORKER;
2177 woke_up:
2178 spin_lock_irq(&pool->lock);
2180 /* am I supposed to die? */
2181 if (unlikely(worker->flags & WORKER_DIE)) {
2182 spin_unlock_irq(&pool->lock);
2183 WARN_ON_ONCE(!list_empty(&worker->entry));
2184 worker->task->flags &= ~PF_WQ_WORKER;
2186 set_task_comm(worker->task, "kworker/dying");
2187 ida_simple_remove(&pool->worker_ida, worker->id);
2188 worker_detach_from_pool(worker, pool);
2189 kfree(worker);
2190 return 0;
2193 worker_leave_idle(worker);
2194 recheck:
2195 /* no more worker necessary? */
2196 if (!need_more_worker(pool))
2197 goto sleep;
2199 /* do we need to manage? */
2200 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2201 goto recheck;
2204 * ->scheduled list can only be filled while a worker is
2205 * preparing to process a work or actually processing it.
2206 * Make sure nobody diddled with it while I was sleeping.
2208 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2211 * Finish PREP stage. We're guaranteed to have at least one idle
2212 * worker or that someone else has already assumed the manager
2213 * role. This is where @worker starts participating in concurrency
2214 * management if applicable and concurrency management is restored
2215 * after being rebound. See rebind_workers() for details.
2217 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2219 do {
2220 struct work_struct *work =
2221 list_first_entry(&pool->worklist,
2222 struct work_struct, entry);
2224 pool->watchdog_ts = jiffies;
2226 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2227 /* optimization path, not strictly necessary */
2228 process_one_work(worker, work);
2229 if (unlikely(!list_empty(&worker->scheduled)))
2230 process_scheduled_works(worker);
2231 } else {
2232 move_linked_works(work, &worker->scheduled, NULL);
2233 process_scheduled_works(worker);
2235 } while (keep_working(pool));
2237 worker_set_flags(worker, WORKER_PREP);
2238 sleep:
2240 * pool->lock is held and there's no work to process and no need to
2241 * manage, sleep. Workers are woken up only while holding
2242 * pool->lock or from local cpu, so setting the current state
2243 * before releasing pool->lock is enough to prevent losing any
2244 * event.
2246 worker_enter_idle(worker);
2247 __set_current_state(TASK_INTERRUPTIBLE);
2248 spin_unlock_irq(&pool->lock);
2249 schedule();
2250 goto woke_up;
2254 * rescuer_thread - the rescuer thread function
2255 * @__rescuer: self
2257 * Workqueue rescuer thread function. There's one rescuer for each
2258 * workqueue which has WQ_MEM_RECLAIM set.
2260 * Regular work processing on a pool may block trying to create a new
2261 * worker which uses GFP_KERNEL allocation which has slight chance of
2262 * developing into deadlock if some works currently on the same queue
2263 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2264 * the problem rescuer solves.
2266 * When such condition is possible, the pool summons rescuers of all
2267 * workqueues which have works queued on the pool and let them process
2268 * those works so that forward progress can be guaranteed.
2270 * This should happen rarely.
2272 * Return: 0
2274 static int rescuer_thread(void *__rescuer)
2276 struct worker *rescuer = __rescuer;
2277 struct workqueue_struct *wq = rescuer->rescue_wq;
2278 struct list_head *scheduled = &rescuer->scheduled;
2279 bool should_stop;
2281 set_user_nice(current, RESCUER_NICE_LEVEL);
2284 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2285 * doesn't participate in concurrency management.
2287 rescuer->task->flags |= PF_WQ_WORKER;
2288 repeat:
2289 set_current_state(TASK_INTERRUPTIBLE);
2292 * By the time the rescuer is requested to stop, the workqueue
2293 * shouldn't have any work pending, but @wq->maydays may still have
2294 * pwq(s) queued. This can happen by non-rescuer workers consuming
2295 * all the work items before the rescuer got to them. Go through
2296 * @wq->maydays processing before acting on should_stop so that the
2297 * list is always empty on exit.
2299 should_stop = kthread_should_stop();
2301 /* see whether any pwq is asking for help */
2302 spin_lock_irq(&wq_mayday_lock);
2304 while (!list_empty(&wq->maydays)) {
2305 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2306 struct pool_workqueue, mayday_node);
2307 struct worker_pool *pool = pwq->pool;
2308 struct work_struct *work, *n;
2309 bool first = true;
2311 __set_current_state(TASK_RUNNING);
2312 list_del_init(&pwq->mayday_node);
2314 spin_unlock_irq(&wq_mayday_lock);
2316 worker_attach_to_pool(rescuer, pool);
2318 spin_lock_irq(&pool->lock);
2319 rescuer->pool = pool;
2322 * Slurp in all works issued via this workqueue and
2323 * process'em.
2325 WARN_ON_ONCE(!list_empty(scheduled));
2326 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2327 if (get_work_pwq(work) == pwq) {
2328 if (first)
2329 pool->watchdog_ts = jiffies;
2330 move_linked_works(work, scheduled, &n);
2332 first = false;
2335 if (!list_empty(scheduled)) {
2336 process_scheduled_works(rescuer);
2339 * The above execution of rescued work items could
2340 * have created more to rescue through
2341 * pwq_activate_first_delayed() or chained
2342 * queueing. Let's put @pwq back on mayday list so
2343 * that such back-to-back work items, which may be
2344 * being used to relieve memory pressure, don't
2345 * incur MAYDAY_INTERVAL delay inbetween.
2347 if (need_to_create_worker(pool)) {
2348 spin_lock(&wq_mayday_lock);
2350 * Queue iff we aren't racing destruction
2351 * and somebody else hasn't queued it already.
2353 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2354 get_pwq(pwq);
2355 list_add_tail(&pwq->mayday_node, &wq->maydays);
2357 spin_unlock(&wq_mayday_lock);
2362 * Put the reference grabbed by send_mayday(). @pool won't
2363 * go away while we're still attached to it.
2365 put_pwq(pwq);
2368 * Leave this pool. If need_more_worker() is %true, notify a
2369 * regular worker; otherwise, we end up with 0 concurrency
2370 * and stalling the execution.
2372 if (need_more_worker(pool))
2373 wake_up_worker(pool);
2375 rescuer->pool = NULL;
2376 spin_unlock_irq(&pool->lock);
2378 worker_detach_from_pool(rescuer, pool);
2380 spin_lock_irq(&wq_mayday_lock);
2383 spin_unlock_irq(&wq_mayday_lock);
2385 if (should_stop) {
2386 __set_current_state(TASK_RUNNING);
2387 rescuer->task->flags &= ~PF_WQ_WORKER;
2388 return 0;
2391 /* rescuers should never participate in concurrency management */
2392 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2393 schedule();
2394 goto repeat;
2398 * check_flush_dependency - check for flush dependency sanity
2399 * @target_wq: workqueue being flushed
2400 * @target_work: work item being flushed (NULL for workqueue flushes)
2402 * %current is trying to flush the whole @target_wq or @target_work on it.
2403 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2404 * reclaiming memory or running on a workqueue which doesn't have
2405 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2406 * a deadlock.
2408 static void check_flush_dependency(struct workqueue_struct *target_wq,
2409 struct work_struct *target_work)
2411 work_func_t target_func = target_work ? target_work->func : NULL;
2412 struct worker *worker;
2414 if (target_wq->flags & WQ_MEM_RECLAIM)
2415 return;
2417 worker = current_wq_worker();
2419 WARN_ONCE(current->flags & PF_MEMALLOC,
2420 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2421 current->pid, current->comm, target_wq->name, target_func);
2422 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2423 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2424 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2425 worker->current_pwq->wq->name, worker->current_func,
2426 target_wq->name, target_func);
2429 struct wq_barrier {
2430 struct work_struct work;
2431 struct completion done;
2432 struct task_struct *task; /* purely informational */
2435 static void wq_barrier_func(struct work_struct *work)
2437 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2438 complete(&barr->done);
2442 * insert_wq_barrier - insert a barrier work
2443 * @pwq: pwq to insert barrier into
2444 * @barr: wq_barrier to insert
2445 * @target: target work to attach @barr to
2446 * @worker: worker currently executing @target, NULL if @target is not executing
2448 * @barr is linked to @target such that @barr is completed only after
2449 * @target finishes execution. Please note that the ordering
2450 * guarantee is observed only with respect to @target and on the local
2451 * cpu.
2453 * Currently, a queued barrier can't be canceled. This is because
2454 * try_to_grab_pending() can't determine whether the work to be
2455 * grabbed is at the head of the queue and thus can't clear LINKED
2456 * flag of the previous work while there must be a valid next work
2457 * after a work with LINKED flag set.
2459 * Note that when @worker is non-NULL, @target may be modified
2460 * underneath us, so we can't reliably determine pwq from @target.
2462 * CONTEXT:
2463 * spin_lock_irq(pool->lock).
2465 static void insert_wq_barrier(struct pool_workqueue *pwq,
2466 struct wq_barrier *barr,
2467 struct work_struct *target, struct worker *worker)
2469 struct list_head *head;
2470 unsigned int linked = 0;
2473 * debugobject calls are safe here even with pool->lock locked
2474 * as we know for sure that this will not trigger any of the
2475 * checks and call back into the fixup functions where we
2476 * might deadlock.
2478 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2479 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2480 init_completion(&barr->done);
2481 barr->task = current;
2484 * If @target is currently being executed, schedule the
2485 * barrier to the worker; otherwise, put it after @target.
2487 if (worker)
2488 head = worker->scheduled.next;
2489 else {
2490 unsigned long *bits = work_data_bits(target);
2492 head = target->entry.next;
2493 /* there can already be other linked works, inherit and set */
2494 linked = *bits & WORK_STRUCT_LINKED;
2495 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2498 debug_work_activate(&barr->work);
2499 insert_work(pwq, &barr->work, head,
2500 work_color_to_flags(WORK_NO_COLOR) | linked);
2504 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2505 * @wq: workqueue being flushed
2506 * @flush_color: new flush color, < 0 for no-op
2507 * @work_color: new work color, < 0 for no-op
2509 * Prepare pwqs for workqueue flushing.
2511 * If @flush_color is non-negative, flush_color on all pwqs should be
2512 * -1. If no pwq has in-flight commands at the specified color, all
2513 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2514 * has in flight commands, its pwq->flush_color is set to
2515 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2516 * wakeup logic is armed and %true is returned.
2518 * The caller should have initialized @wq->first_flusher prior to
2519 * calling this function with non-negative @flush_color. If
2520 * @flush_color is negative, no flush color update is done and %false
2521 * is returned.
2523 * If @work_color is non-negative, all pwqs should have the same
2524 * work_color which is previous to @work_color and all will be
2525 * advanced to @work_color.
2527 * CONTEXT:
2528 * mutex_lock(wq->mutex).
2530 * Return:
2531 * %true if @flush_color >= 0 and there's something to flush. %false
2532 * otherwise.
2534 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2535 int flush_color, int work_color)
2537 bool wait = false;
2538 struct pool_workqueue *pwq;
2540 if (flush_color >= 0) {
2541 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2542 atomic_set(&wq->nr_pwqs_to_flush, 1);
2545 for_each_pwq(pwq, wq) {
2546 struct worker_pool *pool = pwq->pool;
2548 spin_lock_irq(&pool->lock);
2550 if (flush_color >= 0) {
2551 WARN_ON_ONCE(pwq->flush_color != -1);
2553 if (pwq->nr_in_flight[flush_color]) {
2554 pwq->flush_color = flush_color;
2555 atomic_inc(&wq->nr_pwqs_to_flush);
2556 wait = true;
2560 if (work_color >= 0) {
2561 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2562 pwq->work_color = work_color;
2565 spin_unlock_irq(&pool->lock);
2568 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2569 complete(&wq->first_flusher->done);
2571 return wait;
2575 * flush_workqueue - ensure that any scheduled work has run to completion.
2576 * @wq: workqueue to flush
2578 * This function sleeps until all work items which were queued on entry
2579 * have finished execution, but it is not livelocked by new incoming ones.
2581 void flush_workqueue(struct workqueue_struct *wq)
2583 struct wq_flusher this_flusher = {
2584 .list = LIST_HEAD_INIT(this_flusher.list),
2585 .flush_color = -1,
2586 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2588 int next_color;
2590 lock_map_acquire(&wq->lockdep_map);
2591 lock_map_release(&wq->lockdep_map);
2593 mutex_lock(&wq->mutex);
2596 * Start-to-wait phase
2598 next_color = work_next_color(wq->work_color);
2600 if (next_color != wq->flush_color) {
2602 * Color space is not full. The current work_color
2603 * becomes our flush_color and work_color is advanced
2604 * by one.
2606 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2607 this_flusher.flush_color = wq->work_color;
2608 wq->work_color = next_color;
2610 if (!wq->first_flusher) {
2611 /* no flush in progress, become the first flusher */
2612 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2614 wq->first_flusher = &this_flusher;
2616 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2617 wq->work_color)) {
2618 /* nothing to flush, done */
2619 wq->flush_color = next_color;
2620 wq->first_flusher = NULL;
2621 goto out_unlock;
2623 } else {
2624 /* wait in queue */
2625 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2626 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2627 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2629 } else {
2631 * Oops, color space is full, wait on overflow queue.
2632 * The next flush completion will assign us
2633 * flush_color and transfer to flusher_queue.
2635 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2638 check_flush_dependency(wq, NULL);
2640 mutex_unlock(&wq->mutex);
2642 wait_for_completion(&this_flusher.done);
2645 * Wake-up-and-cascade phase
2647 * First flushers are responsible for cascading flushes and
2648 * handling overflow. Non-first flushers can simply return.
2650 if (wq->first_flusher != &this_flusher)
2651 return;
2653 mutex_lock(&wq->mutex);
2655 /* we might have raced, check again with mutex held */
2656 if (wq->first_flusher != &this_flusher)
2657 goto out_unlock;
2659 wq->first_flusher = NULL;
2661 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2662 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2664 while (true) {
2665 struct wq_flusher *next, *tmp;
2667 /* complete all the flushers sharing the current flush color */
2668 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2669 if (next->flush_color != wq->flush_color)
2670 break;
2671 list_del_init(&next->list);
2672 complete(&next->done);
2675 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2676 wq->flush_color != work_next_color(wq->work_color));
2678 /* this flush_color is finished, advance by one */
2679 wq->flush_color = work_next_color(wq->flush_color);
2681 /* one color has been freed, handle overflow queue */
2682 if (!list_empty(&wq->flusher_overflow)) {
2684 * Assign the same color to all overflowed
2685 * flushers, advance work_color and append to
2686 * flusher_queue. This is the start-to-wait
2687 * phase for these overflowed flushers.
2689 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2690 tmp->flush_color = wq->work_color;
2692 wq->work_color = work_next_color(wq->work_color);
2694 list_splice_tail_init(&wq->flusher_overflow,
2695 &wq->flusher_queue);
2696 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2699 if (list_empty(&wq->flusher_queue)) {
2700 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2701 break;
2705 * Need to flush more colors. Make the next flusher
2706 * the new first flusher and arm pwqs.
2708 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2709 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2711 list_del_init(&next->list);
2712 wq->first_flusher = next;
2714 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2715 break;
2718 * Meh... this color is already done, clear first
2719 * flusher and repeat cascading.
2721 wq->first_flusher = NULL;
2724 out_unlock:
2725 mutex_unlock(&wq->mutex);
2727 EXPORT_SYMBOL(flush_workqueue);
2730 * drain_workqueue - drain a workqueue
2731 * @wq: workqueue to drain
2733 * Wait until the workqueue becomes empty. While draining is in progress,
2734 * only chain queueing is allowed. IOW, only currently pending or running
2735 * work items on @wq can queue further work items on it. @wq is flushed
2736 * repeatedly until it becomes empty. The number of flushing is determined
2737 * by the depth of chaining and should be relatively short. Whine if it
2738 * takes too long.
2740 void drain_workqueue(struct workqueue_struct *wq)
2742 unsigned int flush_cnt = 0;
2743 struct pool_workqueue *pwq;
2746 * __queue_work() needs to test whether there are drainers, is much
2747 * hotter than drain_workqueue() and already looks at @wq->flags.
2748 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2750 mutex_lock(&wq->mutex);
2751 if (!wq->nr_drainers++)
2752 wq->flags |= __WQ_DRAINING;
2753 mutex_unlock(&wq->mutex);
2754 reflush:
2755 flush_workqueue(wq);
2757 mutex_lock(&wq->mutex);
2759 for_each_pwq(pwq, wq) {
2760 bool drained;
2762 spin_lock_irq(&pwq->pool->lock);
2763 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2764 spin_unlock_irq(&pwq->pool->lock);
2766 if (drained)
2767 continue;
2769 if (++flush_cnt == 10 ||
2770 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2771 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2772 wq->name, flush_cnt);
2774 mutex_unlock(&wq->mutex);
2775 goto reflush;
2778 if (!--wq->nr_drainers)
2779 wq->flags &= ~__WQ_DRAINING;
2780 mutex_unlock(&wq->mutex);
2782 EXPORT_SYMBOL_GPL(drain_workqueue);
2784 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2786 struct worker *worker = NULL;
2787 struct worker_pool *pool;
2788 struct pool_workqueue *pwq;
2790 might_sleep();
2792 local_irq_disable();
2793 pool = get_work_pool(work);
2794 if (!pool) {
2795 local_irq_enable();
2796 return false;
2799 spin_lock(&pool->lock);
2800 /* see the comment in try_to_grab_pending() with the same code */
2801 pwq = get_work_pwq(work);
2802 if (pwq) {
2803 if (unlikely(pwq->pool != pool))
2804 goto already_gone;
2805 } else {
2806 worker = find_worker_executing_work(pool, work);
2807 if (!worker)
2808 goto already_gone;
2809 pwq = worker->current_pwq;
2812 check_flush_dependency(pwq->wq, work);
2814 insert_wq_barrier(pwq, barr, work, worker);
2815 spin_unlock_irq(&pool->lock);
2818 * If @max_active is 1 or rescuer is in use, flushing another work
2819 * item on the same workqueue may lead to deadlock. Make sure the
2820 * flusher is not running on the same workqueue by verifying write
2821 * access.
2823 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2824 lock_map_acquire(&pwq->wq->lockdep_map);
2825 else
2826 lock_map_acquire_read(&pwq->wq->lockdep_map);
2827 lock_map_release(&pwq->wq->lockdep_map);
2829 return true;
2830 already_gone:
2831 spin_unlock_irq(&pool->lock);
2832 return false;
2836 * flush_work - wait for a work to finish executing the last queueing instance
2837 * @work: the work to flush
2839 * Wait until @work has finished execution. @work is guaranteed to be idle
2840 * on return if it hasn't been requeued since flush started.
2842 * Return:
2843 * %true if flush_work() waited for the work to finish execution,
2844 * %false if it was already idle.
2846 bool flush_work(struct work_struct *work)
2848 struct wq_barrier barr;
2850 lock_map_acquire(&work->lockdep_map);
2851 lock_map_release(&work->lockdep_map);
2853 if (start_flush_work(work, &barr)) {
2854 wait_for_completion(&barr.done);
2855 destroy_work_on_stack(&barr.work);
2856 return true;
2857 } else {
2858 return false;
2861 EXPORT_SYMBOL_GPL(flush_work);
2863 struct cwt_wait {
2864 wait_queue_t wait;
2865 struct work_struct *work;
2868 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2870 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2872 if (cwait->work != key)
2873 return 0;
2874 return autoremove_wake_function(wait, mode, sync, key);
2877 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2879 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2880 unsigned long flags;
2881 int ret;
2883 do {
2884 ret = try_to_grab_pending(work, is_dwork, &flags);
2886 * If someone else is already canceling, wait for it to
2887 * finish. flush_work() doesn't work for PREEMPT_NONE
2888 * because we may get scheduled between @work's completion
2889 * and the other canceling task resuming and clearing
2890 * CANCELING - flush_work() will return false immediately
2891 * as @work is no longer busy, try_to_grab_pending() will
2892 * return -ENOENT as @work is still being canceled and the
2893 * other canceling task won't be able to clear CANCELING as
2894 * we're hogging the CPU.
2896 * Let's wait for completion using a waitqueue. As this
2897 * may lead to the thundering herd problem, use a custom
2898 * wake function which matches @work along with exclusive
2899 * wait and wakeup.
2901 if (unlikely(ret == -ENOENT)) {
2902 struct cwt_wait cwait;
2904 init_wait(&cwait.wait);
2905 cwait.wait.func = cwt_wakefn;
2906 cwait.work = work;
2908 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2909 TASK_UNINTERRUPTIBLE);
2910 if (work_is_canceling(work))
2911 schedule();
2912 finish_wait(&cancel_waitq, &cwait.wait);
2914 } while (unlikely(ret < 0));
2916 /* tell other tasks trying to grab @work to back off */
2917 mark_work_canceling(work);
2918 local_irq_restore(flags);
2920 flush_work(work);
2921 clear_work_data(work);
2924 * Paired with prepare_to_wait() above so that either
2925 * waitqueue_active() is visible here or !work_is_canceling() is
2926 * visible there.
2928 smp_mb();
2929 if (waitqueue_active(&cancel_waitq))
2930 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2932 return ret;
2936 * cancel_work_sync - cancel a work and wait for it to finish
2937 * @work: the work to cancel
2939 * Cancel @work and wait for its execution to finish. This function
2940 * can be used even if the work re-queues itself or migrates to
2941 * another workqueue. On return from this function, @work is
2942 * guaranteed to be not pending or executing on any CPU.
2944 * cancel_work_sync(&delayed_work->work) must not be used for
2945 * delayed_work's. Use cancel_delayed_work_sync() instead.
2947 * The caller must ensure that the workqueue on which @work was last
2948 * queued can't be destroyed before this function returns.
2950 * Return:
2951 * %true if @work was pending, %false otherwise.
2953 bool cancel_work_sync(struct work_struct *work)
2955 return __cancel_work_timer(work, false);
2957 EXPORT_SYMBOL_GPL(cancel_work_sync);
2960 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2961 * @dwork: the delayed work to flush
2963 * Delayed timer is cancelled and the pending work is queued for
2964 * immediate execution. Like flush_work(), this function only
2965 * considers the last queueing instance of @dwork.
2967 * Return:
2968 * %true if flush_work() waited for the work to finish execution,
2969 * %false if it was already idle.
2971 bool flush_delayed_work(struct delayed_work *dwork)
2973 local_irq_disable();
2974 if (del_timer_sync(&dwork->timer))
2975 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2976 local_irq_enable();
2977 return flush_work(&dwork->work);
2979 EXPORT_SYMBOL(flush_delayed_work);
2981 static bool __cancel_work(struct work_struct *work, bool is_dwork)
2983 unsigned long flags;
2984 int ret;
2986 do {
2987 ret = try_to_grab_pending(work, is_dwork, &flags);
2988 } while (unlikely(ret == -EAGAIN));
2990 if (unlikely(ret < 0))
2991 return false;
2993 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
2994 local_irq_restore(flags);
2995 return ret;
2999 * See cancel_delayed_work()
3001 bool cancel_work(struct work_struct *work)
3003 return __cancel_work(work, false);
3007 * cancel_delayed_work - cancel a delayed work
3008 * @dwork: delayed_work to cancel
3010 * Kill off a pending delayed_work.
3012 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3013 * pending.
3015 * Note:
3016 * The work callback function may still be running on return, unless
3017 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3018 * use cancel_delayed_work_sync() to wait on it.
3020 * This function is safe to call from any context including IRQ handler.
3022 bool cancel_delayed_work(struct delayed_work *dwork)
3024 return __cancel_work(&dwork->work, true);
3026 EXPORT_SYMBOL(cancel_delayed_work);
3029 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3030 * @dwork: the delayed work cancel
3032 * This is cancel_work_sync() for delayed works.
3034 * Return:
3035 * %true if @dwork was pending, %false otherwise.
3037 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3039 return __cancel_work_timer(&dwork->work, true);
3041 EXPORT_SYMBOL(cancel_delayed_work_sync);
3044 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3045 * @func: the function to call
3047 * schedule_on_each_cpu() executes @func on each online CPU using the
3048 * system workqueue and blocks until all CPUs have completed.
3049 * schedule_on_each_cpu() is very slow.
3051 * Return:
3052 * 0 on success, -errno on failure.
3054 int schedule_on_each_cpu(work_func_t func)
3056 int cpu;
3057 struct work_struct __percpu *works;
3059 works = alloc_percpu(struct work_struct);
3060 if (!works)
3061 return -ENOMEM;
3063 get_online_cpus();
3065 for_each_online_cpu(cpu) {
3066 struct work_struct *work = per_cpu_ptr(works, cpu);
3068 INIT_WORK(work, func);
3069 schedule_work_on(cpu, work);
3072 for_each_online_cpu(cpu)
3073 flush_work(per_cpu_ptr(works, cpu));
3075 put_online_cpus();
3076 free_percpu(works);
3077 return 0;
3081 * execute_in_process_context - reliably execute the routine with user context
3082 * @fn: the function to execute
3083 * @ew: guaranteed storage for the execute work structure (must
3084 * be available when the work executes)
3086 * Executes the function immediately if process context is available,
3087 * otherwise schedules the function for delayed execution.
3089 * Return: 0 - function was executed
3090 * 1 - function was scheduled for execution
3092 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3094 if (!in_interrupt()) {
3095 fn(&ew->work);
3096 return 0;
3099 INIT_WORK(&ew->work, fn);
3100 schedule_work(&ew->work);
3102 return 1;
3104 EXPORT_SYMBOL_GPL(execute_in_process_context);
3107 * free_workqueue_attrs - free a workqueue_attrs
3108 * @attrs: workqueue_attrs to free
3110 * Undo alloc_workqueue_attrs().
3112 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3114 if (attrs) {
3115 free_cpumask_var(attrs->cpumask);
3116 kfree(attrs);
3121 * alloc_workqueue_attrs - allocate a workqueue_attrs
3122 * @gfp_mask: allocation mask to use
3124 * Allocate a new workqueue_attrs, initialize with default settings and
3125 * return it.
3127 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3129 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3131 struct workqueue_attrs *attrs;
3133 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3134 if (!attrs)
3135 goto fail;
3136 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3137 goto fail;
3139 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3140 return attrs;
3141 fail:
3142 free_workqueue_attrs(attrs);
3143 return NULL;
3146 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3147 const struct workqueue_attrs *from)
3149 to->nice = from->nice;
3150 cpumask_copy(to->cpumask, from->cpumask);
3152 * Unlike hash and equality test, this function doesn't ignore
3153 * ->no_numa as it is used for both pool and wq attrs. Instead,
3154 * get_unbound_pool() explicitly clears ->no_numa after copying.
3156 to->no_numa = from->no_numa;
3159 /* hash value of the content of @attr */
3160 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3162 u32 hash = 0;
3164 hash = jhash_1word(attrs->nice, hash);
3165 hash = jhash(cpumask_bits(attrs->cpumask),
3166 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3167 return hash;
3170 /* content equality test */
3171 static bool wqattrs_equal(const struct workqueue_attrs *a,
3172 const struct workqueue_attrs *b)
3174 if (a->nice != b->nice)
3175 return false;
3176 if (!cpumask_equal(a->cpumask, b->cpumask))
3177 return false;
3178 return true;
3182 * init_worker_pool - initialize a newly zalloc'd worker_pool
3183 * @pool: worker_pool to initialize
3185 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3187 * Return: 0 on success, -errno on failure. Even on failure, all fields
3188 * inside @pool proper are initialized and put_unbound_pool() can be called
3189 * on @pool safely to release it.
3191 static int init_worker_pool(struct worker_pool *pool)
3193 spin_lock_init(&pool->lock);
3194 pool->id = -1;
3195 pool->cpu = -1;
3196 pool->node = NUMA_NO_NODE;
3197 pool->flags |= POOL_DISASSOCIATED;
3198 pool->watchdog_ts = jiffies;
3199 INIT_LIST_HEAD(&pool->worklist);
3200 INIT_LIST_HEAD(&pool->idle_list);
3201 hash_init(pool->busy_hash);
3203 init_timer_deferrable(&pool->idle_timer);
3204 pool->idle_timer.function = idle_worker_timeout;
3205 pool->idle_timer.data = (unsigned long)pool;
3207 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3208 (unsigned long)pool);
3210 mutex_init(&pool->attach_mutex);
3211 INIT_LIST_HEAD(&pool->workers);
3213 ida_init(&pool->worker_ida);
3214 INIT_HLIST_NODE(&pool->hash_node);
3215 pool->refcnt = 1;
3217 /* shouldn't fail above this point */
3218 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3219 if (!pool->attrs)
3220 return -ENOMEM;
3221 return 0;
3224 static void rcu_free_wq(struct rcu_head *rcu)
3226 struct workqueue_struct *wq =
3227 container_of(rcu, struct workqueue_struct, rcu);
3229 if (!(wq->flags & WQ_UNBOUND))
3230 free_percpu(wq->cpu_pwqs);
3231 else
3232 free_workqueue_attrs(wq->unbound_attrs);
3234 kfree(wq->rescuer);
3235 kfree(wq);
3238 static void rcu_free_pool(struct rcu_head *rcu)
3240 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3242 ida_destroy(&pool->worker_ida);
3243 free_workqueue_attrs(pool->attrs);
3244 kfree(pool);
3248 * put_unbound_pool - put a worker_pool
3249 * @pool: worker_pool to put
3251 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3252 * safe manner. get_unbound_pool() calls this function on its failure path
3253 * and this function should be able to release pools which went through,
3254 * successfully or not, init_worker_pool().
3256 * Should be called with wq_pool_mutex held.
3258 static void put_unbound_pool(struct worker_pool *pool)
3260 DECLARE_COMPLETION_ONSTACK(detach_completion);
3261 struct worker *worker;
3263 lockdep_assert_held(&wq_pool_mutex);
3265 if (--pool->refcnt)
3266 return;
3268 /* sanity checks */
3269 if (WARN_ON(!(pool->cpu < 0)) ||
3270 WARN_ON(!list_empty(&pool->worklist)))
3271 return;
3273 /* release id and unhash */
3274 if (pool->id >= 0)
3275 idr_remove(&worker_pool_idr, pool->id);
3276 hash_del(&pool->hash_node);
3279 * Become the manager and destroy all workers. This prevents
3280 * @pool's workers from blocking on attach_mutex. We're the last
3281 * manager and @pool gets freed with the flag set.
3283 spin_lock_irq(&pool->lock);
3284 wait_event_lock_irq(wq_manager_wait,
3285 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3286 pool->flags |= POOL_MANAGER_ACTIVE;
3288 while ((worker = first_idle_worker(pool)))
3289 destroy_worker(worker);
3290 WARN_ON(pool->nr_workers || pool->nr_idle);
3291 spin_unlock_irq(&pool->lock);
3293 mutex_lock(&pool->attach_mutex);
3294 if (!list_empty(&pool->workers))
3295 pool->detach_completion = &detach_completion;
3296 mutex_unlock(&pool->attach_mutex);
3298 if (pool->detach_completion)
3299 wait_for_completion(pool->detach_completion);
3301 /* shut down the timers */
3302 del_timer_sync(&pool->idle_timer);
3303 del_timer_sync(&pool->mayday_timer);
3305 /* sched-RCU protected to allow dereferences from get_work_pool() */
3306 call_rcu_sched(&pool->rcu, rcu_free_pool);
3310 * get_unbound_pool - get a worker_pool with the specified attributes
3311 * @attrs: the attributes of the worker_pool to get
3313 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3314 * reference count and return it. If there already is a matching
3315 * worker_pool, it will be used; otherwise, this function attempts to
3316 * create a new one.
3318 * Should be called with wq_pool_mutex held.
3320 * Return: On success, a worker_pool with the same attributes as @attrs.
3321 * On failure, %NULL.
3323 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3325 u32 hash = wqattrs_hash(attrs);
3326 struct worker_pool *pool;
3327 int node;
3328 int target_node = NUMA_NO_NODE;
3330 lockdep_assert_held(&wq_pool_mutex);
3332 /* do we already have a matching pool? */
3333 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3334 if (wqattrs_equal(pool->attrs, attrs)) {
3335 pool->refcnt++;
3336 return pool;
3340 /* if cpumask is contained inside a NUMA node, we belong to that node */
3341 if (wq_numa_enabled) {
3342 for_each_node(node) {
3343 if (cpumask_subset(attrs->cpumask,
3344 wq_numa_possible_cpumask[node])) {
3345 target_node = node;
3346 break;
3351 /* nope, create a new one */
3352 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3353 if (!pool || init_worker_pool(pool) < 0)
3354 goto fail;
3356 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3357 copy_workqueue_attrs(pool->attrs, attrs);
3358 pool->node = target_node;
3361 * no_numa isn't a worker_pool attribute, always clear it. See
3362 * 'struct workqueue_attrs' comments for detail.
3364 pool->attrs->no_numa = false;
3366 if (worker_pool_assign_id(pool) < 0)
3367 goto fail;
3369 /* create and start the initial worker */
3370 if (!create_worker(pool))
3371 goto fail;
3373 /* install */
3374 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3376 return pool;
3377 fail:
3378 if (pool)
3379 put_unbound_pool(pool);
3380 return NULL;
3383 static void rcu_free_pwq(struct rcu_head *rcu)
3385 kmem_cache_free(pwq_cache,
3386 container_of(rcu, struct pool_workqueue, rcu));
3390 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3391 * and needs to be destroyed.
3393 static void pwq_unbound_release_workfn(struct work_struct *work)
3395 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3396 unbound_release_work);
3397 struct workqueue_struct *wq = pwq->wq;
3398 struct worker_pool *pool = pwq->pool;
3399 bool is_last;
3401 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3402 return;
3404 mutex_lock(&wq->mutex);
3405 list_del_rcu(&pwq->pwqs_node);
3406 is_last = list_empty(&wq->pwqs);
3407 mutex_unlock(&wq->mutex);
3409 mutex_lock(&wq_pool_mutex);
3410 put_unbound_pool(pool);
3411 mutex_unlock(&wq_pool_mutex);
3413 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3416 * If we're the last pwq going away, @wq is already dead and no one
3417 * is gonna access it anymore. Schedule RCU free.
3419 if (is_last)
3420 call_rcu_sched(&wq->rcu, rcu_free_wq);
3424 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3425 * @pwq: target pool_workqueue
3427 * If @pwq isn't freezing, set @pwq->max_active to the associated
3428 * workqueue's saved_max_active and activate delayed work items
3429 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3431 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3433 struct workqueue_struct *wq = pwq->wq;
3434 bool freezable = wq->flags & WQ_FREEZABLE;
3436 /* for @wq->saved_max_active */
3437 lockdep_assert_held(&wq->mutex);
3439 /* fast exit for non-freezable wqs */
3440 if (!freezable && pwq->max_active == wq->saved_max_active)
3441 return;
3443 spin_lock_irq(&pwq->pool->lock);
3446 * During [un]freezing, the caller is responsible for ensuring that
3447 * this function is called at least once after @workqueue_freezing
3448 * is updated and visible.
3450 if (!freezable || !workqueue_freezing) {
3451 pwq->max_active = wq->saved_max_active;
3453 while (!list_empty(&pwq->delayed_works) &&
3454 pwq->nr_active < pwq->max_active)
3455 pwq_activate_first_delayed(pwq);
3458 * Need to kick a worker after thawed or an unbound wq's
3459 * max_active is bumped. It's a slow path. Do it always.
3461 wake_up_worker(pwq->pool);
3462 } else {
3463 pwq->max_active = 0;
3466 spin_unlock_irq(&pwq->pool->lock);
3469 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3470 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3471 struct worker_pool *pool)
3473 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3475 memset(pwq, 0, sizeof(*pwq));
3477 pwq->pool = pool;
3478 pwq->wq = wq;
3479 pwq->flush_color = -1;
3480 pwq->refcnt = 1;
3481 INIT_LIST_HEAD(&pwq->delayed_works);
3482 INIT_LIST_HEAD(&pwq->pwqs_node);
3483 INIT_LIST_HEAD(&pwq->mayday_node);
3484 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3487 /* sync @pwq with the current state of its associated wq and link it */
3488 static void link_pwq(struct pool_workqueue *pwq)
3490 struct workqueue_struct *wq = pwq->wq;
3492 lockdep_assert_held(&wq->mutex);
3494 /* may be called multiple times, ignore if already linked */
3495 if (!list_empty(&pwq->pwqs_node))
3496 return;
3498 /* set the matching work_color */
3499 pwq->work_color = wq->work_color;
3501 /* sync max_active to the current setting */
3502 pwq_adjust_max_active(pwq);
3504 /* link in @pwq */
3505 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3508 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3509 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3510 const struct workqueue_attrs *attrs)
3512 struct worker_pool *pool;
3513 struct pool_workqueue *pwq;
3515 lockdep_assert_held(&wq_pool_mutex);
3517 pool = get_unbound_pool(attrs);
3518 if (!pool)
3519 return NULL;
3521 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3522 if (!pwq) {
3523 put_unbound_pool(pool);
3524 return NULL;
3527 init_pwq(pwq, wq, pool);
3528 return pwq;
3532 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3533 * @attrs: the wq_attrs of the default pwq of the target workqueue
3534 * @node: the target NUMA node
3535 * @cpu_going_down: if >= 0, the CPU to consider as offline
3536 * @cpumask: outarg, the resulting cpumask
3538 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3539 * @cpu_going_down is >= 0, that cpu is considered offline during
3540 * calculation. The result is stored in @cpumask.
3542 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3543 * enabled and @node has online CPUs requested by @attrs, the returned
3544 * cpumask is the intersection of the possible CPUs of @node and
3545 * @attrs->cpumask.
3547 * The caller is responsible for ensuring that the cpumask of @node stays
3548 * stable.
3550 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3551 * %false if equal.
3553 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3554 int cpu_going_down, cpumask_t *cpumask)
3556 if (!wq_numa_enabled || attrs->no_numa)
3557 goto use_dfl;
3559 /* does @node have any online CPUs @attrs wants? */
3560 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3561 if (cpu_going_down >= 0)
3562 cpumask_clear_cpu(cpu_going_down, cpumask);
3564 if (cpumask_empty(cpumask))
3565 goto use_dfl;
3567 /* yeap, return possible CPUs in @node that @attrs wants */
3568 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3569 return !cpumask_equal(cpumask, attrs->cpumask);
3571 use_dfl:
3572 cpumask_copy(cpumask, attrs->cpumask);
3573 return false;
3576 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3577 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3578 int node,
3579 struct pool_workqueue *pwq)
3581 struct pool_workqueue *old_pwq;
3583 lockdep_assert_held(&wq_pool_mutex);
3584 lockdep_assert_held(&wq->mutex);
3586 /* link_pwq() can handle duplicate calls */
3587 link_pwq(pwq);
3589 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3590 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3591 return old_pwq;
3594 /* context to store the prepared attrs & pwqs before applying */
3595 struct apply_wqattrs_ctx {
3596 struct workqueue_struct *wq; /* target workqueue */
3597 struct workqueue_attrs *attrs; /* attrs to apply */
3598 struct list_head list; /* queued for batching commit */
3599 struct pool_workqueue *dfl_pwq;
3600 struct pool_workqueue *pwq_tbl[];
3603 /* free the resources after success or abort */
3604 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3606 if (ctx) {
3607 int node;
3609 for_each_node(node)
3610 put_pwq_unlocked(ctx->pwq_tbl[node]);
3611 put_pwq_unlocked(ctx->dfl_pwq);
3613 free_workqueue_attrs(ctx->attrs);
3615 kfree(ctx);
3619 /* allocate the attrs and pwqs for later installation */
3620 static struct apply_wqattrs_ctx *
3621 apply_wqattrs_prepare(struct workqueue_struct *wq,
3622 const struct workqueue_attrs *attrs)
3624 struct apply_wqattrs_ctx *ctx;
3625 struct workqueue_attrs *new_attrs, *tmp_attrs;
3626 int node;
3628 lockdep_assert_held(&wq_pool_mutex);
3630 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3631 GFP_KERNEL);
3633 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3634 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3635 if (!ctx || !new_attrs || !tmp_attrs)
3636 goto out_free;
3639 * Calculate the attrs of the default pwq.
3640 * If the user configured cpumask doesn't overlap with the
3641 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3643 copy_workqueue_attrs(new_attrs, attrs);
3644 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3645 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3646 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3649 * We may create multiple pwqs with differing cpumasks. Make a
3650 * copy of @new_attrs which will be modified and used to obtain
3651 * pools.
3653 copy_workqueue_attrs(tmp_attrs, new_attrs);
3656 * If something goes wrong during CPU up/down, we'll fall back to
3657 * the default pwq covering whole @attrs->cpumask. Always create
3658 * it even if we don't use it immediately.
3660 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3661 if (!ctx->dfl_pwq)
3662 goto out_free;
3664 for_each_node(node) {
3665 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3666 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3667 if (!ctx->pwq_tbl[node])
3668 goto out_free;
3669 } else {
3670 ctx->dfl_pwq->refcnt++;
3671 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3675 /* save the user configured attrs and sanitize it. */
3676 copy_workqueue_attrs(new_attrs, attrs);
3677 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3678 ctx->attrs = new_attrs;
3680 ctx->wq = wq;
3681 free_workqueue_attrs(tmp_attrs);
3682 return ctx;
3684 out_free:
3685 free_workqueue_attrs(tmp_attrs);
3686 free_workqueue_attrs(new_attrs);
3687 apply_wqattrs_cleanup(ctx);
3688 return NULL;
3691 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3692 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3694 int node;
3696 /* all pwqs have been created successfully, let's install'em */
3697 mutex_lock(&ctx->wq->mutex);
3699 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3701 /* save the previous pwq and install the new one */
3702 for_each_node(node)
3703 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3704 ctx->pwq_tbl[node]);
3706 /* @dfl_pwq might not have been used, ensure it's linked */
3707 link_pwq(ctx->dfl_pwq);
3708 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3710 mutex_unlock(&ctx->wq->mutex);
3713 static void apply_wqattrs_lock(void)
3715 /* CPUs should stay stable across pwq creations and installations */
3716 get_online_cpus();
3717 mutex_lock(&wq_pool_mutex);
3720 static void apply_wqattrs_unlock(void)
3722 mutex_unlock(&wq_pool_mutex);
3723 put_online_cpus();
3726 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3727 const struct workqueue_attrs *attrs)
3729 struct apply_wqattrs_ctx *ctx;
3731 /* only unbound workqueues can change attributes */
3732 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3733 return -EINVAL;
3735 /* creating multiple pwqs breaks ordering guarantee */
3736 if (!list_empty(&wq->pwqs)) {
3737 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3738 return -EINVAL;
3740 wq->flags &= ~__WQ_ORDERED;
3743 ctx = apply_wqattrs_prepare(wq, attrs);
3744 if (!ctx)
3745 return -ENOMEM;
3747 /* the ctx has been prepared successfully, let's commit it */
3748 apply_wqattrs_commit(ctx);
3749 apply_wqattrs_cleanup(ctx);
3751 return 0;
3755 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3756 * @wq: the target workqueue
3757 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3759 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3760 * machines, this function maps a separate pwq to each NUMA node with
3761 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3762 * NUMA node it was issued on. Older pwqs are released as in-flight work
3763 * items finish. Note that a work item which repeatedly requeues itself
3764 * back-to-back will stay on its current pwq.
3766 * Performs GFP_KERNEL allocations.
3768 * Return: 0 on success and -errno on failure.
3770 int apply_workqueue_attrs(struct workqueue_struct *wq,
3771 const struct workqueue_attrs *attrs)
3773 int ret;
3775 apply_wqattrs_lock();
3776 ret = apply_workqueue_attrs_locked(wq, attrs);
3777 apply_wqattrs_unlock();
3779 return ret;
3783 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3784 * @wq: the target workqueue
3785 * @cpu: the CPU coming up or going down
3786 * @online: whether @cpu is coming up or going down
3788 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3789 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3790 * @wq accordingly.
3792 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3793 * falls back to @wq->dfl_pwq which may not be optimal but is always
3794 * correct.
3796 * Note that when the last allowed CPU of a NUMA node goes offline for a
3797 * workqueue with a cpumask spanning multiple nodes, the workers which were
3798 * already executing the work items for the workqueue will lose their CPU
3799 * affinity and may execute on any CPU. This is similar to how per-cpu
3800 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3801 * affinity, it's the user's responsibility to flush the work item from
3802 * CPU_DOWN_PREPARE.
3804 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3805 bool online)
3807 int node = cpu_to_node(cpu);
3808 int cpu_off = online ? -1 : cpu;
3809 struct pool_workqueue *old_pwq = NULL, *pwq;
3810 struct workqueue_attrs *target_attrs;
3811 cpumask_t *cpumask;
3813 lockdep_assert_held(&wq_pool_mutex);
3815 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3816 wq->unbound_attrs->no_numa)
3817 return;
3820 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3821 * Let's use a preallocated one. The following buf is protected by
3822 * CPU hotplug exclusion.
3824 target_attrs = wq_update_unbound_numa_attrs_buf;
3825 cpumask = target_attrs->cpumask;
3827 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3828 pwq = unbound_pwq_by_node(wq, node);
3831 * Let's determine what needs to be done. If the target cpumask is
3832 * different from the default pwq's, we need to compare it to @pwq's
3833 * and create a new one if they don't match. If the target cpumask
3834 * equals the default pwq's, the default pwq should be used.
3836 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3837 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3838 return;
3839 } else {
3840 goto use_dfl_pwq;
3843 /* create a new pwq */
3844 pwq = alloc_unbound_pwq(wq, target_attrs);
3845 if (!pwq) {
3846 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3847 wq->name);
3848 goto use_dfl_pwq;
3851 /* Install the new pwq. */
3852 mutex_lock(&wq->mutex);
3853 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3854 goto out_unlock;
3856 use_dfl_pwq:
3857 mutex_lock(&wq->mutex);
3858 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3859 get_pwq(wq->dfl_pwq);
3860 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3861 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3862 out_unlock:
3863 mutex_unlock(&wq->mutex);
3864 put_pwq_unlocked(old_pwq);
3867 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3869 bool highpri = wq->flags & WQ_HIGHPRI;
3870 int cpu, ret;
3872 if (!(wq->flags & WQ_UNBOUND)) {
3873 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3874 if (!wq->cpu_pwqs)
3875 return -ENOMEM;
3877 for_each_possible_cpu(cpu) {
3878 struct pool_workqueue *pwq =
3879 per_cpu_ptr(wq->cpu_pwqs, cpu);
3880 struct worker_pool *cpu_pools =
3881 per_cpu(cpu_worker_pools, cpu);
3883 init_pwq(pwq, wq, &cpu_pools[highpri]);
3885 mutex_lock(&wq->mutex);
3886 link_pwq(pwq);
3887 mutex_unlock(&wq->mutex);
3889 return 0;
3890 } else if (wq->flags & __WQ_ORDERED) {
3891 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3892 /* there should only be single pwq for ordering guarantee */
3893 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3894 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3895 "ordering guarantee broken for workqueue %s\n", wq->name);
3896 return ret;
3897 } else {
3898 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3902 static int wq_clamp_max_active(int max_active, unsigned int flags,
3903 const char *name)
3905 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3907 if (max_active < 1 || max_active > lim)
3908 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3909 max_active, name, 1, lim);
3911 return clamp_val(max_active, 1, lim);
3914 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3915 unsigned int flags,
3916 int max_active,
3917 struct lock_class_key *key,
3918 const char *lock_name, ...)
3920 size_t tbl_size = 0;
3921 va_list args;
3922 struct workqueue_struct *wq;
3923 struct pool_workqueue *pwq;
3926 * Unbound && max_active == 1 used to imply ordered, which is no
3927 * longer the case on NUMA machines due to per-node pools. While
3928 * alloc_ordered_workqueue() is the right way to create an ordered
3929 * workqueue, keep the previous behavior to avoid subtle breakages
3930 * on NUMA.
3932 if ((flags & WQ_UNBOUND) && max_active == 1)
3933 flags |= __WQ_ORDERED;
3935 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3936 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3937 flags |= WQ_UNBOUND;
3939 /* allocate wq and format name */
3940 if (flags & WQ_UNBOUND)
3941 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3943 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3944 if (!wq)
3945 return NULL;
3947 if (flags & WQ_UNBOUND) {
3948 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3949 if (!wq->unbound_attrs)
3950 goto err_free_wq;
3953 va_start(args, lock_name);
3954 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3955 va_end(args);
3957 max_active = max_active ?: WQ_DFL_ACTIVE;
3958 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3960 /* init wq */
3961 wq->flags = flags;
3962 wq->saved_max_active = max_active;
3963 mutex_init(&wq->mutex);
3964 atomic_set(&wq->nr_pwqs_to_flush, 0);
3965 INIT_LIST_HEAD(&wq->pwqs);
3966 INIT_LIST_HEAD(&wq->flusher_queue);
3967 INIT_LIST_HEAD(&wq->flusher_overflow);
3968 INIT_LIST_HEAD(&wq->maydays);
3970 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3971 INIT_LIST_HEAD(&wq->list);
3973 if (alloc_and_link_pwqs(wq) < 0)
3974 goto err_free_wq;
3977 * Workqueues which may be used during memory reclaim should
3978 * have a rescuer to guarantee forward progress.
3980 if (flags & WQ_MEM_RECLAIM) {
3981 struct worker *rescuer;
3983 rescuer = alloc_worker(NUMA_NO_NODE);
3984 if (!rescuer)
3985 goto err_destroy;
3987 rescuer->rescue_wq = wq;
3988 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3989 wq->name);
3990 if (IS_ERR(rescuer->task)) {
3991 kfree(rescuer);
3992 goto err_destroy;
3995 wq->rescuer = rescuer;
3996 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3997 wake_up_process(rescuer->task);
4000 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4001 goto err_destroy;
4004 * wq_pool_mutex protects global freeze state and workqueues list.
4005 * Grab it, adjust max_active and add the new @wq to workqueues
4006 * list.
4008 mutex_lock(&wq_pool_mutex);
4010 mutex_lock(&wq->mutex);
4011 for_each_pwq(pwq, wq)
4012 pwq_adjust_max_active(pwq);
4013 mutex_unlock(&wq->mutex);
4015 list_add_tail_rcu(&wq->list, &workqueues);
4017 mutex_unlock(&wq_pool_mutex);
4019 return wq;
4021 err_free_wq:
4022 free_workqueue_attrs(wq->unbound_attrs);
4023 kfree(wq);
4024 return NULL;
4025 err_destroy:
4026 destroy_workqueue(wq);
4027 return NULL;
4029 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4032 * destroy_workqueue - safely terminate a workqueue
4033 * @wq: target workqueue
4035 * Safely destroy a workqueue. All work currently pending will be done first.
4037 void destroy_workqueue(struct workqueue_struct *wq)
4039 struct pool_workqueue *pwq;
4040 int node;
4043 * Remove it from sysfs first so that sanity check failure doesn't
4044 * lead to sysfs name conflicts.
4046 workqueue_sysfs_unregister(wq);
4048 /* drain it before proceeding with destruction */
4049 drain_workqueue(wq);
4051 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4052 if (wq->rescuer) {
4053 struct worker *rescuer = wq->rescuer;
4055 /* this prevents new queueing */
4056 spin_lock_irq(&wq_mayday_lock);
4057 wq->rescuer = NULL;
4058 spin_unlock_irq(&wq_mayday_lock);
4060 /* rescuer will empty maydays list before exiting */
4061 kthread_stop(rescuer->task);
4062 kfree(rescuer);
4065 /* sanity checks */
4066 mutex_lock(&wq->mutex);
4067 for_each_pwq(pwq, wq) {
4068 int i;
4070 for (i = 0; i < WORK_NR_COLORS; i++) {
4071 if (WARN_ON(pwq->nr_in_flight[i])) {
4072 mutex_unlock(&wq->mutex);
4073 return;
4077 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4078 WARN_ON(pwq->nr_active) ||
4079 WARN_ON(!list_empty(&pwq->delayed_works))) {
4080 mutex_unlock(&wq->mutex);
4081 return;
4084 mutex_unlock(&wq->mutex);
4087 * wq list is used to freeze wq, remove from list after
4088 * flushing is complete in case freeze races us.
4090 mutex_lock(&wq_pool_mutex);
4091 list_del_rcu(&wq->list);
4092 mutex_unlock(&wq_pool_mutex);
4094 if (!(wq->flags & WQ_UNBOUND)) {
4096 * The base ref is never dropped on per-cpu pwqs. Directly
4097 * schedule RCU free.
4099 call_rcu_sched(&wq->rcu, rcu_free_wq);
4100 } else {
4102 * We're the sole accessor of @wq at this point. Directly
4103 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4104 * @wq will be freed when the last pwq is released.
4106 for_each_node(node) {
4107 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4108 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4109 put_pwq_unlocked(pwq);
4113 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4114 * put. Don't access it afterwards.
4116 pwq = wq->dfl_pwq;
4117 wq->dfl_pwq = NULL;
4118 put_pwq_unlocked(pwq);
4121 EXPORT_SYMBOL_GPL(destroy_workqueue);
4124 * workqueue_set_max_active - adjust max_active of a workqueue
4125 * @wq: target workqueue
4126 * @max_active: new max_active value.
4128 * Set max_active of @wq to @max_active.
4130 * CONTEXT:
4131 * Don't call from IRQ context.
4133 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4135 struct pool_workqueue *pwq;
4137 /* disallow meddling with max_active for ordered workqueues */
4138 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4139 return;
4141 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4143 mutex_lock(&wq->mutex);
4145 wq->flags &= ~__WQ_ORDERED;
4146 wq->saved_max_active = max_active;
4148 for_each_pwq(pwq, wq)
4149 pwq_adjust_max_active(pwq);
4151 mutex_unlock(&wq->mutex);
4153 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4156 * current_work - retrieve %current task's work struct
4158 * Determine if %current task is a workqueue worker and what it's working on.
4159 * Useful to find out the context that the %current task is running in.
4161 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4163 struct work_struct *current_work(void)
4165 struct worker *worker = current_wq_worker();
4167 return worker ? worker->current_work : NULL;
4169 EXPORT_SYMBOL(current_work);
4172 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4174 * Determine whether %current is a workqueue rescuer. Can be used from
4175 * work functions to determine whether it's being run off the rescuer task.
4177 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4179 bool current_is_workqueue_rescuer(void)
4181 struct worker *worker = current_wq_worker();
4183 return worker && worker->rescue_wq;
4187 * workqueue_congested - test whether a workqueue is congested
4188 * @cpu: CPU in question
4189 * @wq: target workqueue
4191 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4192 * no synchronization around this function and the test result is
4193 * unreliable and only useful as advisory hints or for debugging.
4195 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4196 * Note that both per-cpu and unbound workqueues may be associated with
4197 * multiple pool_workqueues which have separate congested states. A
4198 * workqueue being congested on one CPU doesn't mean the workqueue is also
4199 * contested on other CPUs / NUMA nodes.
4201 * Return:
4202 * %true if congested, %false otherwise.
4204 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4206 struct pool_workqueue *pwq;
4207 bool ret;
4209 rcu_read_lock_sched();
4211 if (cpu == WORK_CPU_UNBOUND)
4212 cpu = smp_processor_id();
4214 if (!(wq->flags & WQ_UNBOUND))
4215 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4216 else
4217 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4219 ret = !list_empty(&pwq->delayed_works);
4220 rcu_read_unlock_sched();
4222 return ret;
4224 EXPORT_SYMBOL_GPL(workqueue_congested);
4227 * work_busy - test whether a work is currently pending or running
4228 * @work: the work to be tested
4230 * Test whether @work is currently pending or running. There is no
4231 * synchronization around this function and the test result is
4232 * unreliable and only useful as advisory hints or for debugging.
4234 * Return:
4235 * OR'd bitmask of WORK_BUSY_* bits.
4237 unsigned int work_busy(struct work_struct *work)
4239 struct worker_pool *pool;
4240 unsigned long flags;
4241 unsigned int ret = 0;
4243 if (work_pending(work))
4244 ret |= WORK_BUSY_PENDING;
4246 local_irq_save(flags);
4247 pool = get_work_pool(work);
4248 if (pool) {
4249 spin_lock(&pool->lock);
4250 if (find_worker_executing_work(pool, work))
4251 ret |= WORK_BUSY_RUNNING;
4252 spin_unlock(&pool->lock);
4254 local_irq_restore(flags);
4256 return ret;
4258 EXPORT_SYMBOL_GPL(work_busy);
4261 * set_worker_desc - set description for the current work item
4262 * @fmt: printf-style format string
4263 * @...: arguments for the format string
4265 * This function can be called by a running work function to describe what
4266 * the work item is about. If the worker task gets dumped, this
4267 * information will be printed out together to help debugging. The
4268 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4270 void set_worker_desc(const char *fmt, ...)
4272 struct worker *worker = current_wq_worker();
4273 va_list args;
4275 if (worker) {
4276 va_start(args, fmt);
4277 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4278 va_end(args);
4279 worker->desc_valid = true;
4284 * print_worker_info - print out worker information and description
4285 * @log_lvl: the log level to use when printing
4286 * @task: target task
4288 * If @task is a worker and currently executing a work item, print out the
4289 * name of the workqueue being serviced and worker description set with
4290 * set_worker_desc() by the currently executing work item.
4292 * This function can be safely called on any task as long as the
4293 * task_struct itself is accessible. While safe, this function isn't
4294 * synchronized and may print out mixups or garbages of limited length.
4296 void print_worker_info(const char *log_lvl, struct task_struct *task)
4298 work_func_t *fn = NULL;
4299 char name[WQ_NAME_LEN] = { };
4300 char desc[WORKER_DESC_LEN] = { };
4301 struct pool_workqueue *pwq = NULL;
4302 struct workqueue_struct *wq = NULL;
4303 bool desc_valid = false;
4304 struct worker *worker;
4306 if (!(task->flags & PF_WQ_WORKER))
4307 return;
4310 * This function is called without any synchronization and @task
4311 * could be in any state. Be careful with dereferences.
4313 worker = kthread_probe_data(task);
4316 * Carefully copy the associated workqueue's workfn and name. Keep
4317 * the original last '\0' in case the original contains garbage.
4319 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4320 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4321 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4322 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4324 /* copy worker description */
4325 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4326 if (desc_valid)
4327 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4329 if (fn || name[0] || desc[0]) {
4330 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4331 if (desc[0])
4332 pr_cont(" (%s)", desc);
4333 pr_cont("\n");
4337 static void pr_cont_pool_info(struct worker_pool *pool)
4339 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4340 if (pool->node != NUMA_NO_NODE)
4341 pr_cont(" node=%d", pool->node);
4342 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4345 static void pr_cont_work(bool comma, struct work_struct *work)
4347 if (work->func == wq_barrier_func) {
4348 struct wq_barrier *barr;
4350 barr = container_of(work, struct wq_barrier, work);
4352 pr_cont("%s BAR(%d)", comma ? "," : "",
4353 task_pid_nr(barr->task));
4354 } else {
4355 pr_cont("%s %pf", comma ? "," : "", work->func);
4359 static void show_pwq(struct pool_workqueue *pwq)
4361 struct worker_pool *pool = pwq->pool;
4362 struct work_struct *work;
4363 struct worker *worker;
4364 bool has_in_flight = false, has_pending = false;
4365 int bkt;
4367 pr_info(" pwq %d:", pool->id);
4368 pr_cont_pool_info(pool);
4370 pr_cont(" active=%d/%d refcnt=%d%s\n",
4371 pwq->nr_active, pwq->max_active, pwq->refcnt,
4372 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4374 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4375 if (worker->current_pwq == pwq) {
4376 has_in_flight = true;
4377 break;
4380 if (has_in_flight) {
4381 bool comma = false;
4383 pr_info(" in-flight:");
4384 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4385 if (worker->current_pwq != pwq)
4386 continue;
4388 pr_cont("%s %d%s:%pf", comma ? "," : "",
4389 task_pid_nr(worker->task),
4390 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4391 worker->current_func);
4392 list_for_each_entry(work, &worker->scheduled, entry)
4393 pr_cont_work(false, work);
4394 comma = true;
4396 pr_cont("\n");
4399 list_for_each_entry(work, &pool->worklist, entry) {
4400 if (get_work_pwq(work) == pwq) {
4401 has_pending = true;
4402 break;
4405 if (has_pending) {
4406 bool comma = false;
4408 pr_info(" pending:");
4409 list_for_each_entry(work, &pool->worklist, entry) {
4410 if (get_work_pwq(work) != pwq)
4411 continue;
4413 pr_cont_work(comma, work);
4414 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4416 pr_cont("\n");
4419 if (!list_empty(&pwq->delayed_works)) {
4420 bool comma = false;
4422 pr_info(" delayed:");
4423 list_for_each_entry(work, &pwq->delayed_works, entry) {
4424 pr_cont_work(comma, work);
4425 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4427 pr_cont("\n");
4432 * show_workqueue_state - dump workqueue state
4434 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4435 * all busy workqueues and pools.
4437 void show_workqueue_state(void)
4439 struct workqueue_struct *wq;
4440 struct worker_pool *pool;
4441 unsigned long flags;
4442 int pi;
4444 rcu_read_lock_sched();
4446 pr_info("Showing busy workqueues and worker pools:\n");
4448 list_for_each_entry_rcu(wq, &workqueues, list) {
4449 struct pool_workqueue *pwq;
4450 bool idle = true;
4452 for_each_pwq(pwq, wq) {
4453 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4454 idle = false;
4455 break;
4458 if (idle)
4459 continue;
4461 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4463 for_each_pwq(pwq, wq) {
4464 spin_lock_irqsave(&pwq->pool->lock, flags);
4465 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4466 show_pwq(pwq);
4467 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4469 * We could be printing a lot from atomic context, e.g.
4470 * sysrq-t -> show_workqueue_state(). Avoid triggering
4471 * hard lockup.
4473 touch_nmi_watchdog();
4477 for_each_pool(pool, pi) {
4478 struct worker *worker;
4479 bool first = true;
4481 spin_lock_irqsave(&pool->lock, flags);
4482 if (pool->nr_workers == pool->nr_idle)
4483 goto next_pool;
4485 pr_info("pool %d:", pool->id);
4486 pr_cont_pool_info(pool);
4487 pr_cont(" hung=%us workers=%d",
4488 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4489 pool->nr_workers);
4490 if (pool->manager)
4491 pr_cont(" manager: %d",
4492 task_pid_nr(pool->manager->task));
4493 list_for_each_entry(worker, &pool->idle_list, entry) {
4494 pr_cont(" %s%d", first ? "idle: " : "",
4495 task_pid_nr(worker->task));
4496 first = false;
4498 pr_cont("\n");
4499 next_pool:
4500 spin_unlock_irqrestore(&pool->lock, flags);
4502 * We could be printing a lot from atomic context, e.g.
4503 * sysrq-t -> show_workqueue_state(). Avoid triggering
4504 * hard lockup.
4506 touch_nmi_watchdog();
4509 rcu_read_unlock_sched();
4513 * CPU hotplug.
4515 * There are two challenges in supporting CPU hotplug. Firstly, there
4516 * are a lot of assumptions on strong associations among work, pwq and
4517 * pool which make migrating pending and scheduled works very
4518 * difficult to implement without impacting hot paths. Secondly,
4519 * worker pools serve mix of short, long and very long running works making
4520 * blocked draining impractical.
4522 * This is solved by allowing the pools to be disassociated from the CPU
4523 * running as an unbound one and allowing it to be reattached later if the
4524 * cpu comes back online.
4527 static void wq_unbind_fn(struct work_struct *work)
4529 int cpu = smp_processor_id();
4530 struct worker_pool *pool;
4531 struct worker *worker;
4533 for_each_cpu_worker_pool(pool, cpu) {
4534 mutex_lock(&pool->attach_mutex);
4535 spin_lock_irq(&pool->lock);
4538 * We've blocked all attach/detach operations. Make all workers
4539 * unbound and set DISASSOCIATED. Before this, all workers
4540 * except for the ones which are still executing works from
4541 * before the last CPU down must be on the cpu. After
4542 * this, they may become diasporas.
4544 for_each_pool_worker(worker, pool)
4545 worker->flags |= WORKER_UNBOUND;
4547 pool->flags |= POOL_DISASSOCIATED;
4549 spin_unlock_irq(&pool->lock);
4550 mutex_unlock(&pool->attach_mutex);
4553 * Call schedule() so that we cross rq->lock and thus can
4554 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4555 * This is necessary as scheduler callbacks may be invoked
4556 * from other cpus.
4558 schedule();
4561 * Sched callbacks are disabled now. Zap nr_running.
4562 * After this, nr_running stays zero and need_more_worker()
4563 * and keep_working() are always true as long as the
4564 * worklist is not empty. This pool now behaves as an
4565 * unbound (in terms of concurrency management) pool which
4566 * are served by workers tied to the pool.
4568 atomic_set(&pool->nr_running, 0);
4571 * With concurrency management just turned off, a busy
4572 * worker blocking could lead to lengthy stalls. Kick off
4573 * unbound chain execution of currently pending work items.
4575 spin_lock_irq(&pool->lock);
4576 wake_up_worker(pool);
4577 spin_unlock_irq(&pool->lock);
4582 * rebind_workers - rebind all workers of a pool to the associated CPU
4583 * @pool: pool of interest
4585 * @pool->cpu is coming online. Rebind all workers to the CPU.
4587 static void rebind_workers(struct worker_pool *pool)
4589 struct worker *worker;
4591 lockdep_assert_held(&pool->attach_mutex);
4594 * Restore CPU affinity of all workers. As all idle workers should
4595 * be on the run-queue of the associated CPU before any local
4596 * wake-ups for concurrency management happen, restore CPU affinity
4597 * of all workers first and then clear UNBOUND. As we're called
4598 * from CPU_ONLINE, the following shouldn't fail.
4600 for_each_pool_worker(worker, pool)
4601 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4602 pool->attrs->cpumask) < 0);
4604 spin_lock_irq(&pool->lock);
4607 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4608 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4609 * being reworked and this can go away in time.
4611 if (!(pool->flags & POOL_DISASSOCIATED)) {
4612 spin_unlock_irq(&pool->lock);
4613 return;
4616 pool->flags &= ~POOL_DISASSOCIATED;
4618 for_each_pool_worker(worker, pool) {
4619 unsigned int worker_flags = worker->flags;
4622 * A bound idle worker should actually be on the runqueue
4623 * of the associated CPU for local wake-ups targeting it to
4624 * work. Kick all idle workers so that they migrate to the
4625 * associated CPU. Doing this in the same loop as
4626 * replacing UNBOUND with REBOUND is safe as no worker will
4627 * be bound before @pool->lock is released.
4629 if (worker_flags & WORKER_IDLE)
4630 wake_up_process(worker->task);
4633 * We want to clear UNBOUND but can't directly call
4634 * worker_clr_flags() or adjust nr_running. Atomically
4635 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4636 * @worker will clear REBOUND using worker_clr_flags() when
4637 * it initiates the next execution cycle thus restoring
4638 * concurrency management. Note that when or whether
4639 * @worker clears REBOUND doesn't affect correctness.
4641 * ACCESS_ONCE() is necessary because @worker->flags may be
4642 * tested without holding any lock in
4643 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4644 * fail incorrectly leading to premature concurrency
4645 * management operations.
4647 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4648 worker_flags |= WORKER_REBOUND;
4649 worker_flags &= ~WORKER_UNBOUND;
4650 ACCESS_ONCE(worker->flags) = worker_flags;
4653 spin_unlock_irq(&pool->lock);
4657 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4658 * @pool: unbound pool of interest
4659 * @cpu: the CPU which is coming up
4661 * An unbound pool may end up with a cpumask which doesn't have any online
4662 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4663 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4664 * online CPU before, cpus_allowed of all its workers should be restored.
4666 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4668 static cpumask_t cpumask;
4669 struct worker *worker;
4671 lockdep_assert_held(&pool->attach_mutex);
4673 /* is @cpu allowed for @pool? */
4674 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4675 return;
4677 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4679 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4680 for_each_pool_worker(worker, pool)
4681 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4684 int workqueue_prepare_cpu(unsigned int cpu)
4686 struct worker_pool *pool;
4688 for_each_cpu_worker_pool(pool, cpu) {
4689 if (pool->nr_workers)
4690 continue;
4691 if (!create_worker(pool))
4692 return -ENOMEM;
4694 return 0;
4697 int workqueue_online_cpu(unsigned int cpu)
4699 struct worker_pool *pool;
4700 struct workqueue_struct *wq;
4701 int pi;
4703 mutex_lock(&wq_pool_mutex);
4705 for_each_pool(pool, pi) {
4706 mutex_lock(&pool->attach_mutex);
4708 if (pool->cpu == cpu)
4709 rebind_workers(pool);
4710 else if (pool->cpu < 0)
4711 restore_unbound_workers_cpumask(pool, cpu);
4713 mutex_unlock(&pool->attach_mutex);
4716 /* update NUMA affinity of unbound workqueues */
4717 list_for_each_entry(wq, &workqueues, list)
4718 wq_update_unbound_numa(wq, cpu, true);
4720 mutex_unlock(&wq_pool_mutex);
4721 return 0;
4724 int workqueue_offline_cpu(unsigned int cpu)
4726 struct work_struct unbind_work;
4727 struct workqueue_struct *wq;
4729 /* unbinding per-cpu workers should happen on the local CPU */
4730 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4731 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4733 /* update NUMA affinity of unbound workqueues */
4734 mutex_lock(&wq_pool_mutex);
4735 list_for_each_entry(wq, &workqueues, list)
4736 wq_update_unbound_numa(wq, cpu, false);
4737 mutex_unlock(&wq_pool_mutex);
4739 /* wait for per-cpu unbinding to finish */
4740 flush_work(&unbind_work);
4741 destroy_work_on_stack(&unbind_work);
4742 return 0;
4745 #ifdef CONFIG_SMP
4747 struct work_for_cpu {
4748 struct work_struct work;
4749 long (*fn)(void *);
4750 void *arg;
4751 long ret;
4754 static void work_for_cpu_fn(struct work_struct *work)
4756 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4758 wfc->ret = wfc->fn(wfc->arg);
4762 * work_on_cpu - run a function in thread context on a particular cpu
4763 * @cpu: the cpu to run on
4764 * @fn: the function to run
4765 * @arg: the function arg
4767 * It is up to the caller to ensure that the cpu doesn't go offline.
4768 * The caller must not hold any locks which would prevent @fn from completing.
4770 * Return: The value @fn returns.
4772 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4774 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4776 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4777 schedule_work_on(cpu, &wfc.work);
4778 flush_work(&wfc.work);
4779 destroy_work_on_stack(&wfc.work);
4780 return wfc.ret;
4782 EXPORT_SYMBOL_GPL(work_on_cpu);
4783 #endif /* CONFIG_SMP */
4785 #ifdef CONFIG_FREEZER
4788 * freeze_workqueues_begin - begin freezing workqueues
4790 * Start freezing workqueues. After this function returns, all freezable
4791 * workqueues will queue new works to their delayed_works list instead of
4792 * pool->worklist.
4794 * CONTEXT:
4795 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4797 void freeze_workqueues_begin(void)
4799 struct workqueue_struct *wq;
4800 struct pool_workqueue *pwq;
4802 mutex_lock(&wq_pool_mutex);
4804 WARN_ON_ONCE(workqueue_freezing);
4805 workqueue_freezing = true;
4807 list_for_each_entry(wq, &workqueues, list) {
4808 mutex_lock(&wq->mutex);
4809 for_each_pwq(pwq, wq)
4810 pwq_adjust_max_active(pwq);
4811 mutex_unlock(&wq->mutex);
4814 mutex_unlock(&wq_pool_mutex);
4818 * freeze_workqueues_busy - are freezable workqueues still busy?
4820 * Check whether freezing is complete. This function must be called
4821 * between freeze_workqueues_begin() and thaw_workqueues().
4823 * CONTEXT:
4824 * Grabs and releases wq_pool_mutex.
4826 * Return:
4827 * %true if some freezable workqueues are still busy. %false if freezing
4828 * is complete.
4830 bool freeze_workqueues_busy(void)
4832 bool busy = false;
4833 struct workqueue_struct *wq;
4834 struct pool_workqueue *pwq;
4836 mutex_lock(&wq_pool_mutex);
4838 WARN_ON_ONCE(!workqueue_freezing);
4840 list_for_each_entry(wq, &workqueues, list) {
4841 if (!(wq->flags & WQ_FREEZABLE))
4842 continue;
4844 * nr_active is monotonically decreasing. It's safe
4845 * to peek without lock.
4847 rcu_read_lock_sched();
4848 for_each_pwq(pwq, wq) {
4849 WARN_ON_ONCE(pwq->nr_active < 0);
4850 if (pwq->nr_active) {
4851 busy = true;
4852 rcu_read_unlock_sched();
4853 goto out_unlock;
4856 rcu_read_unlock_sched();
4858 out_unlock:
4859 mutex_unlock(&wq_pool_mutex);
4860 return busy;
4864 * thaw_workqueues - thaw workqueues
4866 * Thaw workqueues. Normal queueing is restored and all collected
4867 * frozen works are transferred to their respective pool worklists.
4869 * CONTEXT:
4870 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4872 void thaw_workqueues(void)
4874 struct workqueue_struct *wq;
4875 struct pool_workqueue *pwq;
4877 mutex_lock(&wq_pool_mutex);
4879 if (!workqueue_freezing)
4880 goto out_unlock;
4882 workqueue_freezing = false;
4884 /* restore max_active and repopulate worklist */
4885 list_for_each_entry(wq, &workqueues, list) {
4886 mutex_lock(&wq->mutex);
4887 for_each_pwq(pwq, wq)
4888 pwq_adjust_max_active(pwq);
4889 mutex_unlock(&wq->mutex);
4892 out_unlock:
4893 mutex_unlock(&wq_pool_mutex);
4895 #endif /* CONFIG_FREEZER */
4897 static int workqueue_apply_unbound_cpumask(void)
4899 LIST_HEAD(ctxs);
4900 int ret = 0;
4901 struct workqueue_struct *wq;
4902 struct apply_wqattrs_ctx *ctx, *n;
4904 lockdep_assert_held(&wq_pool_mutex);
4906 list_for_each_entry(wq, &workqueues, list) {
4907 if (!(wq->flags & WQ_UNBOUND))
4908 continue;
4909 /* creating multiple pwqs breaks ordering guarantee */
4910 if (wq->flags & __WQ_ORDERED)
4911 continue;
4913 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4914 if (!ctx) {
4915 ret = -ENOMEM;
4916 break;
4919 list_add_tail(&ctx->list, &ctxs);
4922 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4923 if (!ret)
4924 apply_wqattrs_commit(ctx);
4925 apply_wqattrs_cleanup(ctx);
4928 return ret;
4932 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4933 * @cpumask: the cpumask to set
4935 * The low-level workqueues cpumask is a global cpumask that limits
4936 * the affinity of all unbound workqueues. This function check the @cpumask
4937 * and apply it to all unbound workqueues and updates all pwqs of them.
4939 * Retun: 0 - Success
4940 * -EINVAL - Invalid @cpumask
4941 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4943 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4945 int ret = -EINVAL;
4946 cpumask_var_t saved_cpumask;
4948 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4949 return -ENOMEM;
4951 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4952 if (!cpumask_empty(cpumask)) {
4953 apply_wqattrs_lock();
4955 /* save the old wq_unbound_cpumask. */
4956 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4958 /* update wq_unbound_cpumask at first and apply it to wqs. */
4959 cpumask_copy(wq_unbound_cpumask, cpumask);
4960 ret = workqueue_apply_unbound_cpumask();
4962 /* restore the wq_unbound_cpumask when failed. */
4963 if (ret < 0)
4964 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4966 apply_wqattrs_unlock();
4969 free_cpumask_var(saved_cpumask);
4970 return ret;
4973 #ifdef CONFIG_SYSFS
4975 * Workqueues with WQ_SYSFS flag set is visible to userland via
4976 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4977 * following attributes.
4979 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4980 * max_active RW int : maximum number of in-flight work items
4982 * Unbound workqueues have the following extra attributes.
4984 * id RO int : the associated pool ID
4985 * nice RW int : nice value of the workers
4986 * cpumask RW mask : bitmask of allowed CPUs for the workers
4988 struct wq_device {
4989 struct workqueue_struct *wq;
4990 struct device dev;
4993 static struct workqueue_struct *dev_to_wq(struct device *dev)
4995 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4997 return wq_dev->wq;
5000 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5001 char *buf)
5003 struct workqueue_struct *wq = dev_to_wq(dev);
5005 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5007 static DEVICE_ATTR_RO(per_cpu);
5009 static ssize_t max_active_show(struct device *dev,
5010 struct device_attribute *attr, char *buf)
5012 struct workqueue_struct *wq = dev_to_wq(dev);
5014 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5017 static ssize_t max_active_store(struct device *dev,
5018 struct device_attribute *attr, const char *buf,
5019 size_t count)
5021 struct workqueue_struct *wq = dev_to_wq(dev);
5022 int val;
5024 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5025 return -EINVAL;
5027 workqueue_set_max_active(wq, val);
5028 return count;
5030 static DEVICE_ATTR_RW(max_active);
5032 static struct attribute *wq_sysfs_attrs[] = {
5033 &dev_attr_per_cpu.attr,
5034 &dev_attr_max_active.attr,
5035 NULL,
5037 ATTRIBUTE_GROUPS(wq_sysfs);
5039 static ssize_t wq_pool_ids_show(struct device *dev,
5040 struct device_attribute *attr, char *buf)
5042 struct workqueue_struct *wq = dev_to_wq(dev);
5043 const char *delim = "";
5044 int node, written = 0;
5046 rcu_read_lock_sched();
5047 for_each_node(node) {
5048 written += scnprintf(buf + written, PAGE_SIZE - written,
5049 "%s%d:%d", delim, node,
5050 unbound_pwq_by_node(wq, node)->pool->id);
5051 delim = " ";
5053 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5054 rcu_read_unlock_sched();
5056 return written;
5059 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5060 char *buf)
5062 struct workqueue_struct *wq = dev_to_wq(dev);
5063 int written;
5065 mutex_lock(&wq->mutex);
5066 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5067 mutex_unlock(&wq->mutex);
5069 return written;
5072 /* prepare workqueue_attrs for sysfs store operations */
5073 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5075 struct workqueue_attrs *attrs;
5077 lockdep_assert_held(&wq_pool_mutex);
5079 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5080 if (!attrs)
5081 return NULL;
5083 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5084 return attrs;
5087 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5088 const char *buf, size_t count)
5090 struct workqueue_struct *wq = dev_to_wq(dev);
5091 struct workqueue_attrs *attrs;
5092 int ret = -ENOMEM;
5094 apply_wqattrs_lock();
5096 attrs = wq_sysfs_prep_attrs(wq);
5097 if (!attrs)
5098 goto out_unlock;
5100 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5101 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5102 ret = apply_workqueue_attrs_locked(wq, attrs);
5103 else
5104 ret = -EINVAL;
5106 out_unlock:
5107 apply_wqattrs_unlock();
5108 free_workqueue_attrs(attrs);
5109 return ret ?: count;
5112 static ssize_t wq_cpumask_show(struct device *dev,
5113 struct device_attribute *attr, char *buf)
5115 struct workqueue_struct *wq = dev_to_wq(dev);
5116 int written;
5118 mutex_lock(&wq->mutex);
5119 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5120 cpumask_pr_args(wq->unbound_attrs->cpumask));
5121 mutex_unlock(&wq->mutex);
5122 return written;
5125 static ssize_t wq_cpumask_store(struct device *dev,
5126 struct device_attribute *attr,
5127 const char *buf, size_t count)
5129 struct workqueue_struct *wq = dev_to_wq(dev);
5130 struct workqueue_attrs *attrs;
5131 int ret = -ENOMEM;
5133 apply_wqattrs_lock();
5135 attrs = wq_sysfs_prep_attrs(wq);
5136 if (!attrs)
5137 goto out_unlock;
5139 ret = cpumask_parse(buf, attrs->cpumask);
5140 if (!ret)
5141 ret = apply_workqueue_attrs_locked(wq, attrs);
5143 out_unlock:
5144 apply_wqattrs_unlock();
5145 free_workqueue_attrs(attrs);
5146 return ret ?: count;
5149 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5150 char *buf)
5152 struct workqueue_struct *wq = dev_to_wq(dev);
5153 int written;
5155 mutex_lock(&wq->mutex);
5156 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5157 !wq->unbound_attrs->no_numa);
5158 mutex_unlock(&wq->mutex);
5160 return written;
5163 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5164 const char *buf, size_t count)
5166 struct workqueue_struct *wq = dev_to_wq(dev);
5167 struct workqueue_attrs *attrs;
5168 int v, ret = -ENOMEM;
5170 apply_wqattrs_lock();
5172 attrs = wq_sysfs_prep_attrs(wq);
5173 if (!attrs)
5174 goto out_unlock;
5176 ret = -EINVAL;
5177 if (sscanf(buf, "%d", &v) == 1) {
5178 attrs->no_numa = !v;
5179 ret = apply_workqueue_attrs_locked(wq, attrs);
5182 out_unlock:
5183 apply_wqattrs_unlock();
5184 free_workqueue_attrs(attrs);
5185 return ret ?: count;
5188 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5189 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5190 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5191 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5192 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5193 __ATTR_NULL,
5196 static struct bus_type wq_subsys = {
5197 .name = "workqueue",
5198 .dev_groups = wq_sysfs_groups,
5201 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5202 struct device_attribute *attr, char *buf)
5204 int written;
5206 mutex_lock(&wq_pool_mutex);
5207 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5208 cpumask_pr_args(wq_unbound_cpumask));
5209 mutex_unlock(&wq_pool_mutex);
5211 return written;
5214 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5215 struct device_attribute *attr, const char *buf, size_t count)
5217 cpumask_var_t cpumask;
5218 int ret;
5220 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5221 return -ENOMEM;
5223 ret = cpumask_parse(buf, cpumask);
5224 if (!ret)
5225 ret = workqueue_set_unbound_cpumask(cpumask);
5227 free_cpumask_var(cpumask);
5228 return ret ? ret : count;
5231 static struct device_attribute wq_sysfs_cpumask_attr =
5232 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5233 wq_unbound_cpumask_store);
5235 static int __init wq_sysfs_init(void)
5237 int err;
5239 err = subsys_virtual_register(&wq_subsys, NULL);
5240 if (err)
5241 return err;
5243 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5245 core_initcall(wq_sysfs_init);
5247 static void wq_device_release(struct device *dev)
5249 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5251 kfree(wq_dev);
5255 * workqueue_sysfs_register - make a workqueue visible in sysfs
5256 * @wq: the workqueue to register
5258 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5259 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5260 * which is the preferred method.
5262 * Workqueue user should use this function directly iff it wants to apply
5263 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5264 * apply_workqueue_attrs() may race against userland updating the
5265 * attributes.
5267 * Return: 0 on success, -errno on failure.
5269 int workqueue_sysfs_register(struct workqueue_struct *wq)
5271 struct wq_device *wq_dev;
5272 int ret;
5275 * Adjusting max_active or creating new pwqs by applying
5276 * attributes breaks ordering guarantee. Disallow exposing ordered
5277 * workqueues.
5279 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5280 return -EINVAL;
5282 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5283 if (!wq_dev)
5284 return -ENOMEM;
5286 wq_dev->wq = wq;
5287 wq_dev->dev.bus = &wq_subsys;
5288 wq_dev->dev.release = wq_device_release;
5289 dev_set_name(&wq_dev->dev, "%s", wq->name);
5292 * unbound_attrs are created separately. Suppress uevent until
5293 * everything is ready.
5295 dev_set_uevent_suppress(&wq_dev->dev, true);
5297 ret = device_register(&wq_dev->dev);
5298 if (ret) {
5299 put_device(&wq_dev->dev);
5300 wq->wq_dev = NULL;
5301 return ret;
5304 if (wq->flags & WQ_UNBOUND) {
5305 struct device_attribute *attr;
5307 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5308 ret = device_create_file(&wq_dev->dev, attr);
5309 if (ret) {
5310 device_unregister(&wq_dev->dev);
5311 wq->wq_dev = NULL;
5312 return ret;
5317 dev_set_uevent_suppress(&wq_dev->dev, false);
5318 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5319 return 0;
5323 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5324 * @wq: the workqueue to unregister
5326 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5328 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5330 struct wq_device *wq_dev = wq->wq_dev;
5332 if (!wq->wq_dev)
5333 return;
5335 wq->wq_dev = NULL;
5336 device_unregister(&wq_dev->dev);
5338 #else /* CONFIG_SYSFS */
5339 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5340 #endif /* CONFIG_SYSFS */
5343 * Workqueue watchdog.
5345 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5346 * flush dependency, a concurrency managed work item which stays RUNNING
5347 * indefinitely. Workqueue stalls can be very difficult to debug as the
5348 * usual warning mechanisms don't trigger and internal workqueue state is
5349 * largely opaque.
5351 * Workqueue watchdog monitors all worker pools periodically and dumps
5352 * state if some pools failed to make forward progress for a while where
5353 * forward progress is defined as the first item on ->worklist changing.
5355 * This mechanism is controlled through the kernel parameter
5356 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5357 * corresponding sysfs parameter file.
5359 #ifdef CONFIG_WQ_WATCHDOG
5361 static void wq_watchdog_timer_fn(unsigned long data);
5363 static unsigned long wq_watchdog_thresh = 30;
5364 static struct timer_list wq_watchdog_timer =
5365 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5367 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5368 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5370 static void wq_watchdog_reset_touched(void)
5372 int cpu;
5374 wq_watchdog_touched = jiffies;
5375 for_each_possible_cpu(cpu)
5376 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5379 static void wq_watchdog_timer_fn(unsigned long data)
5381 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5382 bool lockup_detected = false;
5383 struct worker_pool *pool;
5384 int pi;
5386 if (!thresh)
5387 return;
5389 rcu_read_lock();
5391 for_each_pool(pool, pi) {
5392 unsigned long pool_ts, touched, ts;
5394 if (list_empty(&pool->worklist))
5395 continue;
5397 /* get the latest of pool and touched timestamps */
5398 pool_ts = READ_ONCE(pool->watchdog_ts);
5399 touched = READ_ONCE(wq_watchdog_touched);
5401 if (time_after(pool_ts, touched))
5402 ts = pool_ts;
5403 else
5404 ts = touched;
5406 if (pool->cpu >= 0) {
5407 unsigned long cpu_touched =
5408 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5409 pool->cpu));
5410 if (time_after(cpu_touched, ts))
5411 ts = cpu_touched;
5414 /* did we stall? */
5415 if (time_after(jiffies, ts + thresh)) {
5416 lockup_detected = true;
5417 pr_emerg("BUG: workqueue lockup - pool");
5418 pr_cont_pool_info(pool);
5419 pr_cont(" stuck for %us!\n",
5420 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5424 rcu_read_unlock();
5426 if (lockup_detected)
5427 show_workqueue_state();
5429 wq_watchdog_reset_touched();
5430 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5433 void wq_watchdog_touch(int cpu)
5435 if (cpu >= 0)
5436 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5437 else
5438 wq_watchdog_touched = jiffies;
5441 static void wq_watchdog_set_thresh(unsigned long thresh)
5443 wq_watchdog_thresh = 0;
5444 del_timer_sync(&wq_watchdog_timer);
5446 if (thresh) {
5447 wq_watchdog_thresh = thresh;
5448 wq_watchdog_reset_touched();
5449 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5453 static int wq_watchdog_param_set_thresh(const char *val,
5454 const struct kernel_param *kp)
5456 unsigned long thresh;
5457 int ret;
5459 ret = kstrtoul(val, 0, &thresh);
5460 if (ret)
5461 return ret;
5463 if (system_wq)
5464 wq_watchdog_set_thresh(thresh);
5465 else
5466 wq_watchdog_thresh = thresh;
5468 return 0;
5471 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5472 .set = wq_watchdog_param_set_thresh,
5473 .get = param_get_ulong,
5476 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5477 0644);
5479 static void wq_watchdog_init(void)
5481 wq_watchdog_set_thresh(wq_watchdog_thresh);
5484 #else /* CONFIG_WQ_WATCHDOG */
5486 static inline void wq_watchdog_init(void) { }
5488 #endif /* CONFIG_WQ_WATCHDOG */
5490 static void __init wq_numa_init(void)
5492 cpumask_var_t *tbl;
5493 int node, cpu;
5495 if (num_possible_nodes() <= 1)
5496 return;
5498 if (wq_disable_numa) {
5499 pr_info("workqueue: NUMA affinity support disabled\n");
5500 return;
5503 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5504 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5507 * We want masks of possible CPUs of each node which isn't readily
5508 * available. Build one from cpu_to_node() which should have been
5509 * fully initialized by now.
5511 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5512 BUG_ON(!tbl);
5514 for_each_node(node)
5515 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5516 node_online(node) ? node : NUMA_NO_NODE));
5518 for_each_possible_cpu(cpu) {
5519 node = cpu_to_node(cpu);
5520 if (WARN_ON(node == NUMA_NO_NODE)) {
5521 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5522 /* happens iff arch is bonkers, let's just proceed */
5523 return;
5525 cpumask_set_cpu(cpu, tbl[node]);
5528 wq_numa_possible_cpumask = tbl;
5529 wq_numa_enabled = true;
5532 static int __init init_workqueues(void)
5534 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5535 int i, cpu;
5537 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5539 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5540 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5542 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5544 wq_numa_init();
5546 /* initialize CPU pools */
5547 for_each_possible_cpu(cpu) {
5548 struct worker_pool *pool;
5550 i = 0;
5551 for_each_cpu_worker_pool(pool, cpu) {
5552 BUG_ON(init_worker_pool(pool));
5553 pool->cpu = cpu;
5554 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5555 pool->attrs->nice = std_nice[i++];
5556 pool->node = cpu_to_node(cpu);
5558 /* alloc pool ID */
5559 mutex_lock(&wq_pool_mutex);
5560 BUG_ON(worker_pool_assign_id(pool));
5561 mutex_unlock(&wq_pool_mutex);
5565 /* create the initial worker */
5566 for_each_online_cpu(cpu) {
5567 struct worker_pool *pool;
5569 for_each_cpu_worker_pool(pool, cpu) {
5570 pool->flags &= ~POOL_DISASSOCIATED;
5571 BUG_ON(!create_worker(pool));
5575 /* create default unbound and ordered wq attrs */
5576 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5577 struct workqueue_attrs *attrs;
5579 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5580 attrs->nice = std_nice[i];
5581 unbound_std_wq_attrs[i] = attrs;
5584 * An ordered wq should have only one pwq as ordering is
5585 * guaranteed by max_active which is enforced by pwqs.
5586 * Turn off NUMA so that dfl_pwq is used for all nodes.
5588 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5589 attrs->nice = std_nice[i];
5590 attrs->no_numa = true;
5591 ordered_wq_attrs[i] = attrs;
5594 system_wq = alloc_workqueue("events", 0, 0);
5595 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5596 system_long_wq = alloc_workqueue("events_long", 0, 0);
5597 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5598 WQ_UNBOUND_MAX_ACTIVE);
5599 system_freezable_wq = alloc_workqueue("events_freezable",
5600 WQ_FREEZABLE, 0);
5601 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5602 WQ_POWER_EFFICIENT, 0);
5603 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5604 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5606 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5607 !system_unbound_wq || !system_freezable_wq ||
5608 !system_power_efficient_wq ||
5609 !system_freezable_power_efficient_wq);
5611 wq_watchdog_init();
5613 return 0;
5615 early_initcall(init_workqueues);