3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/uaccess.h>
23 * bitmaps provide an array of bits, implemented using an an
24 * array of unsigned longs. The number of valid bits in a
25 * given bitmap does _not_ need to be an exact multiple of
28 * The possible unused bits in the last, partially used word
29 * of a bitmap are 'don't care'. The implementation makes
30 * no particular effort to keep them zero. It ensures that
31 * their value will not affect the results of any operation.
32 * The bitmap operations that return Boolean (bitmap_empty,
33 * for example) or scalar (bitmap_weight, for example) results
34 * carefully filter out these unused bits from impacting their
37 * These operations actually hold to a slightly stronger rule:
38 * if you don't input any bitmaps to these ops that have some
39 * unused bits set, then they won't output any set unused bits
42 * The byte ordering of bitmaps is more natural on little
43 * endian architectures. See the big-endian headers
44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45 * for the best explanations of this ordering.
48 int __bitmap_equal(const unsigned long *bitmap1
,
49 const unsigned long *bitmap2
, unsigned int bits
)
51 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
52 for (k
= 0; k
< lim
; ++k
)
53 if (bitmap1
[k
] != bitmap2
[k
])
56 if (bits
% BITS_PER_LONG
)
57 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
62 EXPORT_SYMBOL(__bitmap_equal
);
64 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, unsigned int bits
)
66 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
67 for (k
= 0; k
< lim
; ++k
)
70 if (bits
% BITS_PER_LONG
)
73 EXPORT_SYMBOL(__bitmap_complement
);
76 * __bitmap_shift_right - logical right shift of the bits in a bitmap
77 * @dst : destination bitmap
78 * @src : source bitmap
79 * @shift : shift by this many bits
80 * @nbits : bitmap size, in bits
82 * Shifting right (dividing) means moving bits in the MS -> LS bit
83 * direction. Zeros are fed into the vacated MS positions and the
84 * LS bits shifted off the bottom are lost.
86 void __bitmap_shift_right(unsigned long *dst
, const unsigned long *src
,
87 unsigned shift
, unsigned nbits
)
89 unsigned k
, lim
= BITS_TO_LONGS(nbits
);
90 unsigned off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
91 unsigned long mask
= BITMAP_LAST_WORD_MASK(nbits
);
92 for (k
= 0; off
+ k
< lim
; ++k
) {
93 unsigned long upper
, lower
;
96 * If shift is not word aligned, take lower rem bits of
97 * word above and make them the top rem bits of result.
99 if (!rem
|| off
+ k
+ 1 >= lim
)
102 upper
= src
[off
+ k
+ 1];
103 if (off
+ k
+ 1 == lim
- 1)
105 upper
<<= (BITS_PER_LONG
- rem
);
107 lower
= src
[off
+ k
];
108 if (off
+ k
== lim
- 1)
111 dst
[k
] = lower
| upper
;
114 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
116 EXPORT_SYMBOL(__bitmap_shift_right
);
120 * __bitmap_shift_left - logical left shift of the bits in a bitmap
121 * @dst : destination bitmap
122 * @src : source bitmap
123 * @shift : shift by this many bits
124 * @nbits : bitmap size, in bits
126 * Shifting left (multiplying) means moving bits in the LS -> MS
127 * direction. Zeros are fed into the vacated LS bit positions
128 * and those MS bits shifted off the top are lost.
131 void __bitmap_shift_left(unsigned long *dst
, const unsigned long *src
,
132 unsigned int shift
, unsigned int nbits
)
135 unsigned int lim
= BITS_TO_LONGS(nbits
);
136 unsigned int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
137 for (k
= lim
- off
- 1; k
>= 0; --k
) {
138 unsigned long upper
, lower
;
141 * If shift is not word aligned, take upper rem bits of
142 * word below and make them the bottom rem bits of result.
145 lower
= src
[k
- 1] >> (BITS_PER_LONG
- rem
);
148 upper
= src
[k
] << rem
;
149 dst
[k
+ off
] = lower
| upper
;
152 memset(dst
, 0, off
*sizeof(unsigned long));
154 EXPORT_SYMBOL(__bitmap_shift_left
);
156 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
157 const unsigned long *bitmap2
, unsigned int bits
)
160 unsigned int lim
= bits
/BITS_PER_LONG
;
161 unsigned long result
= 0;
163 for (k
= 0; k
< lim
; k
++)
164 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
165 if (bits
% BITS_PER_LONG
)
166 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
] &
167 BITMAP_LAST_WORD_MASK(bits
));
170 EXPORT_SYMBOL(__bitmap_and
);
172 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
173 const unsigned long *bitmap2
, unsigned int bits
)
176 unsigned int nr
= BITS_TO_LONGS(bits
);
178 for (k
= 0; k
< nr
; k
++)
179 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
181 EXPORT_SYMBOL(__bitmap_or
);
183 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
184 const unsigned long *bitmap2
, unsigned int bits
)
187 unsigned int nr
= BITS_TO_LONGS(bits
);
189 for (k
= 0; k
< nr
; k
++)
190 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
192 EXPORT_SYMBOL(__bitmap_xor
);
194 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
195 const unsigned long *bitmap2
, unsigned int bits
)
198 unsigned int lim
= bits
/BITS_PER_LONG
;
199 unsigned long result
= 0;
201 for (k
= 0; k
< lim
; k
++)
202 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
203 if (bits
% BITS_PER_LONG
)
204 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
] &
205 BITMAP_LAST_WORD_MASK(bits
));
208 EXPORT_SYMBOL(__bitmap_andnot
);
210 int __bitmap_intersects(const unsigned long *bitmap1
,
211 const unsigned long *bitmap2
, unsigned int bits
)
213 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
214 for (k
= 0; k
< lim
; ++k
)
215 if (bitmap1
[k
] & bitmap2
[k
])
218 if (bits
% BITS_PER_LONG
)
219 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
223 EXPORT_SYMBOL(__bitmap_intersects
);
225 int __bitmap_subset(const unsigned long *bitmap1
,
226 const unsigned long *bitmap2
, unsigned int bits
)
228 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
229 for (k
= 0; k
< lim
; ++k
)
230 if (bitmap1
[k
] & ~bitmap2
[k
])
233 if (bits
% BITS_PER_LONG
)
234 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
238 EXPORT_SYMBOL(__bitmap_subset
);
240 int __bitmap_weight(const unsigned long *bitmap
, unsigned int bits
)
242 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
245 for (k
= 0; k
< lim
; k
++)
246 w
+= hweight_long(bitmap
[k
]);
248 if (bits
% BITS_PER_LONG
)
249 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
253 EXPORT_SYMBOL(__bitmap_weight
);
255 void bitmap_set(unsigned long *map
, unsigned int start
, int len
)
257 unsigned long *p
= map
+ BIT_WORD(start
);
258 const unsigned int size
= start
+ len
;
259 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
260 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
262 while (len
- bits_to_set
>= 0) {
265 bits_to_set
= BITS_PER_LONG
;
270 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
274 EXPORT_SYMBOL(bitmap_set
);
276 void bitmap_clear(unsigned long *map
, unsigned int start
, int len
)
278 unsigned long *p
= map
+ BIT_WORD(start
);
279 const unsigned int size
= start
+ len
;
280 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
281 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
283 while (len
- bits_to_clear
>= 0) {
284 *p
&= ~mask_to_clear
;
285 len
-= bits_to_clear
;
286 bits_to_clear
= BITS_PER_LONG
;
287 mask_to_clear
= ~0UL;
291 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
292 *p
&= ~mask_to_clear
;
295 EXPORT_SYMBOL(bitmap_clear
);
298 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
299 * @map: The address to base the search on
300 * @size: The bitmap size in bits
301 * @start: The bitnumber to start searching at
302 * @nr: The number of zeroed bits we're looking for
303 * @align_mask: Alignment mask for zero area
304 * @align_offset: Alignment offset for zero area.
306 * The @align_mask should be one less than a power of 2; the effect is that
307 * the bit offset of all zero areas this function finds plus @align_offset
308 * is multiple of that power of 2.
310 unsigned long bitmap_find_next_zero_area_off(unsigned long *map
,
314 unsigned long align_mask
,
315 unsigned long align_offset
)
317 unsigned long index
, end
, i
;
319 index
= find_next_zero_bit(map
, size
, start
);
321 /* Align allocation */
322 index
= __ALIGN_MASK(index
+ align_offset
, align_mask
) - align_offset
;
327 i
= find_next_bit(map
, end
, index
);
334 EXPORT_SYMBOL(bitmap_find_next_zero_area_off
);
337 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
338 * second version by Paul Jackson, third by Joe Korty.
342 #define nbits_to_hold_value(val) fls(val)
343 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
346 * __bitmap_parse - convert an ASCII hex string into a bitmap.
347 * @buf: pointer to buffer containing string.
348 * @buflen: buffer size in bytes. If string is smaller than this
349 * then it must be terminated with a \0.
350 * @is_user: location of buffer, 0 indicates kernel space
351 * @maskp: pointer to bitmap array that will contain result.
352 * @nmaskbits: size of bitmap, in bits.
354 * Commas group hex digits into chunks. Each chunk defines exactly 32
355 * bits of the resultant bitmask. No chunk may specify a value larger
356 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
357 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
358 * characters and for grouping errors such as "1,,5", ",44", "," and "".
359 * Leading and trailing whitespace accepted, but not embedded whitespace.
361 int __bitmap_parse(const char *buf
, unsigned int buflen
,
362 int is_user
, unsigned long *maskp
,
365 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
367 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
369 bitmap_zero(maskp
, nmaskbits
);
371 nchunks
= nbits
= totaldigits
= c
= 0;
374 ndigits
= totaldigits
;
376 /* Get the next chunk of the bitmap */
380 if (__get_user(c
, ubuf
++))
390 * If the last character was a space and the current
391 * character isn't '\0', we've got embedded whitespace.
392 * This is a no-no, so throw an error.
394 if (totaldigits
&& c
&& isspace(old_c
))
397 /* A '\0' or a ',' signal the end of the chunk */
398 if (c
== '\0' || c
== ',')
405 * Make sure there are at least 4 free bits in 'chunk'.
406 * If not, this hexdigit will overflow 'chunk', so
409 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
412 chunk
= (chunk
<< 4) | hex_to_bin(c
);
415 if (ndigits
== totaldigits
)
417 if (nchunks
== 0 && chunk
== 0)
420 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
423 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
424 if (nbits
> nmaskbits
)
426 } while (buflen
&& c
== ',');
430 EXPORT_SYMBOL(__bitmap_parse
);
433 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
435 * @ubuf: pointer to user buffer containing string.
436 * @ulen: buffer size in bytes. If string is smaller than this
437 * then it must be terminated with a \0.
438 * @maskp: pointer to bitmap array that will contain result.
439 * @nmaskbits: size of bitmap, in bits.
441 * Wrapper for __bitmap_parse(), providing it with user buffer.
443 * We cannot have this as an inline function in bitmap.h because it needs
444 * linux/uaccess.h to get the access_ok() declaration and this causes
445 * cyclic dependencies.
447 int bitmap_parse_user(const char __user
*ubuf
,
448 unsigned int ulen
, unsigned long *maskp
,
451 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
453 return __bitmap_parse((const char __force
*)ubuf
,
454 ulen
, 1, maskp
, nmaskbits
);
457 EXPORT_SYMBOL(bitmap_parse_user
);
460 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
461 * @list: indicates whether the bitmap must be list
462 * @buf: page aligned buffer into which string is placed
463 * @maskp: pointer to bitmap to convert
464 * @nmaskbits: size of bitmap, in bits
466 * Output format is a comma-separated list of decimal numbers and
467 * ranges if list is specified or hex digits grouped into comma-separated
468 * sets of 8 digits/set. Returns the number of characters written to buf.
470 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
471 * sufficient storage remains at @buf to accommodate the
472 * bitmap_print_to_pagebuf() output.
474 int bitmap_print_to_pagebuf(bool list
, char *buf
, const unsigned long *maskp
,
477 ptrdiff_t len
= PTR_ALIGN(buf
+ PAGE_SIZE
- 1, PAGE_SIZE
) - buf
;
481 n
= list
? scnprintf(buf
, len
, "%*pbl\n", nmaskbits
, maskp
) :
482 scnprintf(buf
, len
, "%*pb\n", nmaskbits
, maskp
);
485 EXPORT_SYMBOL(bitmap_print_to_pagebuf
);
488 * __bitmap_parselist - convert list format ASCII string to bitmap
489 * @buf: read nul-terminated user string from this buffer
490 * @buflen: buffer size in bytes. If string is smaller than this
491 * then it must be terminated with a \0.
492 * @is_user: location of buffer, 0 indicates kernel space
493 * @maskp: write resulting mask here
494 * @nmaskbits: number of bits in mask to be written
496 * Input format is a comma-separated list of decimal numbers and
497 * ranges. Consecutively set bits are shown as two hyphen-separated
498 * decimal numbers, the smallest and largest bit numbers set in
500 * Optionally each range can be postfixed to denote that only parts of it
501 * should be set. The range will divided to groups of specific size.
502 * From each group will be used only defined amount of bits.
503 * Syntax: range:used_size/group_size
504 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
506 * Returns 0 on success, -errno on invalid input strings.
508 * %-EINVAL: second number in range smaller than first
509 * %-EINVAL: invalid character in string
510 * %-ERANGE: bit number specified too large for mask
512 static int __bitmap_parselist(const char *buf
, unsigned int buflen
,
513 int is_user
, unsigned long *maskp
,
516 unsigned int a
, b
, old_a
, old_b
;
517 unsigned int group_size
, used_size
;
518 int c
, old_c
, totaldigits
, ndigits
;
519 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
520 int at_start
, in_range
, in_partial_range
;
524 group_size
= used_size
= 0;
525 bitmap_zero(maskp
, nmaskbits
);
529 in_partial_range
= 0;
531 ndigits
= totaldigits
;
533 /* Get the next cpu# or a range of cpu#'s */
537 if (__get_user(c
, ubuf
++))
545 /* A '\0' or a ',' signal the end of a cpu# or range */
546 if (c
== '\0' || c
== ',')
549 * whitespaces between digits are not allowed,
550 * but it's ok if whitespaces are on head or tail.
551 * when old_c is whilespace,
552 * if totaldigits == ndigits, whitespace is on head.
553 * if whitespace is on tail, it should not run here.
554 * as c was ',' or '\0',
555 * the last code line has broken the current loop.
557 if ((totaldigits
!= ndigits
) && isspace(old_c
))
573 in_partial_range
= 1;
579 if (at_start
|| in_range
)
590 b
= b
* 10 + (c
- '0');
596 if (ndigits
== totaldigits
)
598 if (in_partial_range
) {
604 /* if no digit is after '-', it's wrong*/
605 if (at_start
&& in_range
)
607 if (!(a
<= b
) || !(used_size
<= group_size
))
612 if (in_partial_range
) {
613 static int pos_in_group
= 1;
615 if (pos_in_group
<= used_size
)
618 if (a
== b
|| ++pos_in_group
> group_size
)
624 } while (buflen
&& c
== ',');
628 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
630 char *nl
= strchrnul(bp
, '\n');
633 return __bitmap_parselist(bp
, len
, 0, maskp
, nmaskbits
);
635 EXPORT_SYMBOL(bitmap_parselist
);
639 * bitmap_parselist_user()
641 * @ubuf: pointer to user buffer containing string.
642 * @ulen: buffer size in bytes. If string is smaller than this
643 * then it must be terminated with a \0.
644 * @maskp: pointer to bitmap array that will contain result.
645 * @nmaskbits: size of bitmap, in bits.
647 * Wrapper for bitmap_parselist(), providing it with user buffer.
649 * We cannot have this as an inline function in bitmap.h because it needs
650 * linux/uaccess.h to get the access_ok() declaration and this causes
651 * cyclic dependencies.
653 int bitmap_parselist_user(const char __user
*ubuf
,
654 unsigned int ulen
, unsigned long *maskp
,
657 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
659 return __bitmap_parselist((const char __force
*)ubuf
,
660 ulen
, 1, maskp
, nmaskbits
);
662 EXPORT_SYMBOL(bitmap_parselist_user
);
666 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
667 * @buf: pointer to a bitmap
668 * @pos: a bit position in @buf (0 <= @pos < @nbits)
669 * @nbits: number of valid bit positions in @buf
671 * Map the bit at position @pos in @buf (of length @nbits) to the
672 * ordinal of which set bit it is. If it is not set or if @pos
673 * is not a valid bit position, map to -1.
675 * If for example, just bits 4 through 7 are set in @buf, then @pos
676 * values 4 through 7 will get mapped to 0 through 3, respectively,
677 * and other @pos values will get mapped to -1. When @pos value 7
678 * gets mapped to (returns) @ord value 3 in this example, that means
679 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
681 * The bit positions 0 through @bits are valid positions in @buf.
683 static int bitmap_pos_to_ord(const unsigned long *buf
, unsigned int pos
, unsigned int nbits
)
685 if (pos
>= nbits
|| !test_bit(pos
, buf
))
688 return __bitmap_weight(buf
, pos
);
692 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
693 * @buf: pointer to bitmap
694 * @ord: ordinal bit position (n-th set bit, n >= 0)
695 * @nbits: number of valid bit positions in @buf
697 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
698 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
699 * >= weight(buf), returns @nbits.
701 * If for example, just bits 4 through 7 are set in @buf, then @ord
702 * values 0 through 3 will get mapped to 4 through 7, respectively,
703 * and all other @ord values returns @nbits. When @ord value 3
704 * gets mapped to (returns) @pos value 7 in this example, that means
705 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
707 * The bit positions 0 through @nbits-1 are valid positions in @buf.
709 unsigned int bitmap_ord_to_pos(const unsigned long *buf
, unsigned int ord
, unsigned int nbits
)
713 for (pos
= find_first_bit(buf
, nbits
);
715 pos
= find_next_bit(buf
, nbits
, pos
+ 1))
722 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
723 * @dst: remapped result
724 * @src: subset to be remapped
725 * @old: defines domain of map
726 * @new: defines range of map
727 * @nbits: number of bits in each of these bitmaps
729 * Let @old and @new define a mapping of bit positions, such that
730 * whatever position is held by the n-th set bit in @old is mapped
731 * to the n-th set bit in @new. In the more general case, allowing
732 * for the possibility that the weight 'w' of @new is less than the
733 * weight of @old, map the position of the n-th set bit in @old to
734 * the position of the m-th set bit in @new, where m == n % w.
736 * If either of the @old and @new bitmaps are empty, or if @src and
737 * @dst point to the same location, then this routine copies @src
740 * The positions of unset bits in @old are mapped to themselves
741 * (the identify map).
743 * Apply the above specified mapping to @src, placing the result in
744 * @dst, clearing any bits previously set in @dst.
746 * For example, lets say that @old has bits 4 through 7 set, and
747 * @new has bits 12 through 15 set. This defines the mapping of bit
748 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
749 * bit positions unchanged. So if say @src comes into this routine
750 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
753 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
754 const unsigned long *old
, const unsigned long *new,
757 unsigned int oldbit
, w
;
759 if (dst
== src
) /* following doesn't handle inplace remaps */
761 bitmap_zero(dst
, nbits
);
763 w
= bitmap_weight(new, nbits
);
764 for_each_set_bit(oldbit
, src
, nbits
) {
765 int n
= bitmap_pos_to_ord(old
, oldbit
, nbits
);
768 set_bit(oldbit
, dst
); /* identity map */
770 set_bit(bitmap_ord_to_pos(new, n
% w
, nbits
), dst
);
773 EXPORT_SYMBOL(bitmap_remap
);
776 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
777 * @oldbit: bit position to be mapped
778 * @old: defines domain of map
779 * @new: defines range of map
780 * @bits: number of bits in each of these bitmaps
782 * Let @old and @new define a mapping of bit positions, such that
783 * whatever position is held by the n-th set bit in @old is mapped
784 * to the n-th set bit in @new. In the more general case, allowing
785 * for the possibility that the weight 'w' of @new is less than the
786 * weight of @old, map the position of the n-th set bit in @old to
787 * the position of the m-th set bit in @new, where m == n % w.
789 * The positions of unset bits in @old are mapped to themselves
790 * (the identify map).
792 * Apply the above specified mapping to bit position @oldbit, returning
793 * the new bit position.
795 * For example, lets say that @old has bits 4 through 7 set, and
796 * @new has bits 12 through 15 set. This defines the mapping of bit
797 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
798 * bit positions unchanged. So if say @oldbit is 5, then this routine
801 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
802 const unsigned long *new, int bits
)
804 int w
= bitmap_weight(new, bits
);
805 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
809 return bitmap_ord_to_pos(new, n
% w
, bits
);
811 EXPORT_SYMBOL(bitmap_bitremap
);
814 * bitmap_onto - translate one bitmap relative to another
815 * @dst: resulting translated bitmap
816 * @orig: original untranslated bitmap
817 * @relmap: bitmap relative to which translated
818 * @bits: number of bits in each of these bitmaps
820 * Set the n-th bit of @dst iff there exists some m such that the
821 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
822 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
823 * (If you understood the previous sentence the first time your
824 * read it, you're overqualified for your current job.)
826 * In other words, @orig is mapped onto (surjectively) @dst,
827 * using the map { <n, m> | the n-th bit of @relmap is the
828 * m-th set bit of @relmap }.
830 * Any set bits in @orig above bit number W, where W is the
831 * weight of (number of set bits in) @relmap are mapped nowhere.
832 * In particular, if for all bits m set in @orig, m >= W, then
833 * @dst will end up empty. In situations where the possibility
834 * of such an empty result is not desired, one way to avoid it is
835 * to use the bitmap_fold() operator, below, to first fold the
836 * @orig bitmap over itself so that all its set bits x are in the
837 * range 0 <= x < W. The bitmap_fold() operator does this by
838 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
840 * Example [1] for bitmap_onto():
841 * Let's say @relmap has bits 30-39 set, and @orig has bits
842 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
843 * @dst will have bits 31, 33, 35, 37 and 39 set.
845 * When bit 0 is set in @orig, it means turn on the bit in
846 * @dst corresponding to whatever is the first bit (if any)
847 * that is turned on in @relmap. Since bit 0 was off in the
848 * above example, we leave off that bit (bit 30) in @dst.
850 * When bit 1 is set in @orig (as in the above example), it
851 * means turn on the bit in @dst corresponding to whatever
852 * is the second bit that is turned on in @relmap. The second
853 * bit in @relmap that was turned on in the above example was
854 * bit 31, so we turned on bit 31 in @dst.
856 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
857 * because they were the 4th, 6th, 8th and 10th set bits
858 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
859 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
861 * When bit 11 is set in @orig, it means turn on the bit in
862 * @dst corresponding to whatever is the twelfth bit that is
863 * turned on in @relmap. In the above example, there were
864 * only ten bits turned on in @relmap (30..39), so that bit
865 * 11 was set in @orig had no affect on @dst.
867 * Example [2] for bitmap_fold() + bitmap_onto():
868 * Let's say @relmap has these ten bits set:
869 * 40 41 42 43 45 48 53 61 74 95
870 * (for the curious, that's 40 plus the first ten terms of the
871 * Fibonacci sequence.)
873 * Further lets say we use the following code, invoking
874 * bitmap_fold() then bitmap_onto, as suggested above to
875 * avoid the possibility of an empty @dst result:
877 * unsigned long *tmp; // a temporary bitmap's bits
879 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
880 * bitmap_onto(dst, tmp, relmap, bits);
882 * Then this table shows what various values of @dst would be, for
883 * various @orig's. I list the zero-based positions of each set bit.
884 * The tmp column shows the intermediate result, as computed by
885 * using bitmap_fold() to fold the @orig bitmap modulo ten
886 * (the weight of @relmap).
893 * 1 3 5 7 1 3 5 7 41 43 48 61
894 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
895 * 0 9 18 27 0 9 8 7 40 61 74 95
897 * 0 11 22 33 0 1 2 3 40 41 42 43
898 * 0 12 24 36 0 2 4 6 40 42 45 53
899 * 78 102 211 1 2 8 41 42 74 (*)
901 * (*) For these marked lines, if we hadn't first done bitmap_fold()
902 * into tmp, then the @dst result would have been empty.
904 * If either of @orig or @relmap is empty (no set bits), then @dst
905 * will be returned empty.
907 * If (as explained above) the only set bits in @orig are in positions
908 * m where m >= W, (where W is the weight of @relmap) then @dst will
909 * once again be returned empty.
911 * All bits in @dst not set by the above rule are cleared.
913 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
914 const unsigned long *relmap
, unsigned int bits
)
916 unsigned int n
, m
; /* same meaning as in above comment */
918 if (dst
== orig
) /* following doesn't handle inplace mappings */
920 bitmap_zero(dst
, bits
);
923 * The following code is a more efficient, but less
924 * obvious, equivalent to the loop:
925 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
926 * n = bitmap_ord_to_pos(orig, m, bits);
927 * if (test_bit(m, orig))
933 for_each_set_bit(n
, relmap
, bits
) {
934 /* m == bitmap_pos_to_ord(relmap, n, bits) */
935 if (test_bit(m
, orig
))
940 EXPORT_SYMBOL(bitmap_onto
);
943 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
944 * @dst: resulting smaller bitmap
945 * @orig: original larger bitmap
946 * @sz: specified size
947 * @nbits: number of bits in each of these bitmaps
949 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
950 * Clear all other bits in @dst. See further the comment and
951 * Example [2] for bitmap_onto() for why and how to use this.
953 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
954 unsigned int sz
, unsigned int nbits
)
958 if (dst
== orig
) /* following doesn't handle inplace mappings */
960 bitmap_zero(dst
, nbits
);
962 for_each_set_bit(oldbit
, orig
, nbits
)
963 set_bit(oldbit
% sz
, dst
);
965 EXPORT_SYMBOL(bitmap_fold
);
968 * Common code for bitmap_*_region() routines.
969 * bitmap: array of unsigned longs corresponding to the bitmap
970 * pos: the beginning of the region
971 * order: region size (log base 2 of number of bits)
972 * reg_op: operation(s) to perform on that region of bitmap
974 * Can set, verify and/or release a region of bits in a bitmap,
975 * depending on which combination of REG_OP_* flag bits is set.
977 * A region of a bitmap is a sequence of bits in the bitmap, of
978 * some size '1 << order' (a power of two), aligned to that same
979 * '1 << order' power of two.
981 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
982 * Returns 0 in all other cases and reg_ops.
986 REG_OP_ISFREE
, /* true if region is all zero bits */
987 REG_OP_ALLOC
, /* set all bits in region */
988 REG_OP_RELEASE
, /* clear all bits in region */
991 static int __reg_op(unsigned long *bitmap
, unsigned int pos
, int order
, int reg_op
)
993 int nbits_reg
; /* number of bits in region */
994 int index
; /* index first long of region in bitmap */
995 int offset
; /* bit offset region in bitmap[index] */
996 int nlongs_reg
; /* num longs spanned by region in bitmap */
997 int nbitsinlong
; /* num bits of region in each spanned long */
998 unsigned long mask
; /* bitmask for one long of region */
999 int i
; /* scans bitmap by longs */
1000 int ret
= 0; /* return value */
1003 * Either nlongs_reg == 1 (for small orders that fit in one long)
1004 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1006 nbits_reg
= 1 << order
;
1007 index
= pos
/ BITS_PER_LONG
;
1008 offset
= pos
- (index
* BITS_PER_LONG
);
1009 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1010 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1013 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1014 * overflows if nbitsinlong == BITS_PER_LONG.
1016 mask
= (1UL << (nbitsinlong
- 1));
1022 for (i
= 0; i
< nlongs_reg
; i
++) {
1023 if (bitmap
[index
+ i
] & mask
)
1026 ret
= 1; /* all bits in region free (zero) */
1030 for (i
= 0; i
< nlongs_reg
; i
++)
1031 bitmap
[index
+ i
] |= mask
;
1034 case REG_OP_RELEASE
:
1035 for (i
= 0; i
< nlongs_reg
; i
++)
1036 bitmap
[index
+ i
] &= ~mask
;
1044 * bitmap_find_free_region - find a contiguous aligned mem region
1045 * @bitmap: array of unsigned longs corresponding to the bitmap
1046 * @bits: number of bits in the bitmap
1047 * @order: region size (log base 2 of number of bits) to find
1049 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1050 * allocate them (set them to one). Only consider regions of length
1051 * a power (@order) of two, aligned to that power of two, which
1052 * makes the search algorithm much faster.
1054 * Return the bit offset in bitmap of the allocated region,
1055 * or -errno on failure.
1057 int bitmap_find_free_region(unsigned long *bitmap
, unsigned int bits
, int order
)
1059 unsigned int pos
, end
; /* scans bitmap by regions of size order */
1061 for (pos
= 0 ; (end
= pos
+ (1U << order
)) <= bits
; pos
= end
) {
1062 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1064 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1069 EXPORT_SYMBOL(bitmap_find_free_region
);
1072 * bitmap_release_region - release allocated bitmap region
1073 * @bitmap: array of unsigned longs corresponding to the bitmap
1074 * @pos: beginning of bit region to release
1075 * @order: region size (log base 2 of number of bits) to release
1077 * This is the complement to __bitmap_find_free_region() and releases
1078 * the found region (by clearing it in the bitmap).
1082 void bitmap_release_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1084 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1086 EXPORT_SYMBOL(bitmap_release_region
);
1089 * bitmap_allocate_region - allocate bitmap region
1090 * @bitmap: array of unsigned longs corresponding to the bitmap
1091 * @pos: beginning of bit region to allocate
1092 * @order: region size (log base 2 of number of bits) to allocate
1094 * Allocate (set bits in) a specified region of a bitmap.
1096 * Return 0 on success, or %-EBUSY if specified region wasn't
1097 * free (not all bits were zero).
1099 int bitmap_allocate_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1101 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1103 return __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1105 EXPORT_SYMBOL(bitmap_allocate_region
);
1108 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1109 * @bitmap: array of unsigned longs, the destination bitmap, non NULL
1110 * @nbits: number of bits in @bitmap
1111 * @buf: array of u32 (in host byte order), the source bitmap, non NULL
1112 * @nwords: number of u32 words in @buf
1114 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1115 * bits between nword and nbits in @bitmap (if any) are cleared. In
1116 * last word of @bitmap, the bits beyond nbits (if any) are kept
1119 * Return the number of bits effectively copied.
1122 bitmap_from_u32array(unsigned long *bitmap
, unsigned int nbits
,
1123 const u32
*buf
, unsigned int nwords
)
1125 unsigned int dst_idx
, src_idx
;
1127 for (src_idx
= dst_idx
= 0; dst_idx
< BITS_TO_LONGS(nbits
); ++dst_idx
) {
1128 unsigned long part
= 0;
1130 if (src_idx
< nwords
)
1131 part
= buf
[src_idx
++];
1133 #if BITS_PER_LONG == 64
1134 if (src_idx
< nwords
)
1135 part
|= ((unsigned long) buf
[src_idx
++]) << 32;
1138 if (dst_idx
< nbits
/BITS_PER_LONG
)
1139 bitmap
[dst_idx
] = part
;
1141 unsigned long mask
= BITMAP_LAST_WORD_MASK(nbits
);
1143 bitmap
[dst_idx
] = (bitmap
[dst_idx
] & ~mask
)
1148 return min_t(unsigned int, nbits
, 32*nwords
);
1150 EXPORT_SYMBOL(bitmap_from_u32array
);
1153 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1154 * @buf: array of u32 (in host byte order), the dest bitmap, non NULL
1155 * @nwords: number of u32 words in @buf
1156 * @bitmap: array of unsigned longs, the source bitmap, non NULL
1157 * @nbits: number of bits in @bitmap
1159 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1160 * bits after nbits in @buf (if any) are cleared.
1162 * Return the number of bits effectively copied.
1165 bitmap_to_u32array(u32
*buf
, unsigned int nwords
,
1166 const unsigned long *bitmap
, unsigned int nbits
)
1168 unsigned int dst_idx
= 0, src_idx
= 0;
1170 while (dst_idx
< nwords
) {
1171 unsigned long part
= 0;
1173 if (src_idx
< BITS_TO_LONGS(nbits
)) {
1174 part
= bitmap
[src_idx
];
1175 if (src_idx
>= nbits
/BITS_PER_LONG
)
1176 part
&= BITMAP_LAST_WORD_MASK(nbits
);
1180 buf
[dst_idx
++] = part
& 0xffffffffUL
;
1182 #if BITS_PER_LONG == 64
1183 if (dst_idx
< nwords
) {
1185 buf
[dst_idx
++] = part
& 0xffffffffUL
;
1190 return min_t(unsigned int, nbits
, 32*nwords
);
1192 EXPORT_SYMBOL(bitmap_to_u32array
);
1195 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1196 * @dst: destination buffer
1197 * @src: bitmap to copy
1198 * @nbits: number of bits in the bitmap
1200 * Require nbits % BITS_PER_LONG == 0.
1203 void bitmap_copy_le(unsigned long *dst
, const unsigned long *src
, unsigned int nbits
)
1207 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1208 if (BITS_PER_LONG
== 64)
1209 dst
[i
] = cpu_to_le64(src
[i
]);
1211 dst
[i
] = cpu_to_le32(src
[i
]);
1214 EXPORT_SYMBOL(bitmap_copy_le
);
1217 unsigned long *bitmap_alloc(unsigned int nbits
, gfp_t flags
)
1219 return kmalloc_array(BITS_TO_LONGS(nbits
), sizeof(unsigned long),
1222 EXPORT_SYMBOL(bitmap_alloc
);
1224 unsigned long *bitmap_zalloc(unsigned int nbits
, gfp_t flags
)
1226 return bitmap_alloc(nbits
, flags
| __GFP_ZERO
);
1228 EXPORT_SYMBOL(bitmap_zalloc
);
1230 void bitmap_free(const unsigned long *bitmap
)
1234 EXPORT_SYMBOL(bitmap_free
);