selinux: Cache NetLabel secattrs in the socket's security struct
[linux/fpc-iii.git] / mm / rmap.c
blob0383acfcb0681a877f15f59d4d712980c37e1811
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 #include <linux/mmu_notifier.h>
54 #include <asm/tlbflush.h>
56 struct kmem_cache *anon_vma_cachep;
58 /* This must be called under the mmap_sem. */
59 int anon_vma_prepare(struct vm_area_struct *vma)
61 struct anon_vma *anon_vma = vma->anon_vma;
63 might_sleep();
64 if (unlikely(!anon_vma)) {
65 struct mm_struct *mm = vma->vm_mm;
66 struct anon_vma *allocated, *locked;
68 anon_vma = find_mergeable_anon_vma(vma);
69 if (anon_vma) {
70 allocated = NULL;
71 locked = anon_vma;
72 spin_lock(&locked->lock);
73 } else {
74 anon_vma = anon_vma_alloc();
75 if (unlikely(!anon_vma))
76 return -ENOMEM;
77 allocated = anon_vma;
78 locked = NULL;
81 /* page_table_lock to protect against threads */
82 spin_lock(&mm->page_table_lock);
83 if (likely(!vma->anon_vma)) {
84 vma->anon_vma = anon_vma;
85 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
86 allocated = NULL;
88 spin_unlock(&mm->page_table_lock);
90 if (locked)
91 spin_unlock(&locked->lock);
92 if (unlikely(allocated))
93 anon_vma_free(allocated);
95 return 0;
98 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
100 BUG_ON(vma->anon_vma != next->anon_vma);
101 list_del(&next->anon_vma_node);
104 void __anon_vma_link(struct vm_area_struct *vma)
106 struct anon_vma *anon_vma = vma->anon_vma;
108 if (anon_vma)
109 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
112 void anon_vma_link(struct vm_area_struct *vma)
114 struct anon_vma *anon_vma = vma->anon_vma;
116 if (anon_vma) {
117 spin_lock(&anon_vma->lock);
118 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
119 spin_unlock(&anon_vma->lock);
123 void anon_vma_unlink(struct vm_area_struct *vma)
125 struct anon_vma *anon_vma = vma->anon_vma;
126 int empty;
128 if (!anon_vma)
129 return;
131 spin_lock(&anon_vma->lock);
132 list_del(&vma->anon_vma_node);
134 /* We must garbage collect the anon_vma if it's empty */
135 empty = list_empty(&anon_vma->head);
136 spin_unlock(&anon_vma->lock);
138 if (empty)
139 anon_vma_free(anon_vma);
142 static void anon_vma_ctor(void *data)
144 struct anon_vma *anon_vma = data;
146 spin_lock_init(&anon_vma->lock);
147 INIT_LIST_HEAD(&anon_vma->head);
150 void __init anon_vma_init(void)
152 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
153 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
157 * Getting a lock on a stable anon_vma from a page off the LRU is
158 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
160 static struct anon_vma *page_lock_anon_vma(struct page *page)
162 struct anon_vma *anon_vma;
163 unsigned long anon_mapping;
165 rcu_read_lock();
166 anon_mapping = (unsigned long) page->mapping;
167 if (!(anon_mapping & PAGE_MAPPING_ANON))
168 goto out;
169 if (!page_mapped(page))
170 goto out;
172 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
173 spin_lock(&anon_vma->lock);
174 return anon_vma;
175 out:
176 rcu_read_unlock();
177 return NULL;
180 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
182 spin_unlock(&anon_vma->lock);
183 rcu_read_unlock();
187 * At what user virtual address is page expected in @vma?
188 * Returns virtual address or -EFAULT if page's index/offset is not
189 * within the range mapped the @vma.
191 static inline unsigned long
192 vma_address(struct page *page, struct vm_area_struct *vma)
194 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
195 unsigned long address;
197 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
198 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
199 /* page should be within @vma mapping range */
200 return -EFAULT;
202 return address;
206 * At what user virtual address is page expected in vma? checking that the
207 * page matches the vma: currently only used on anon pages, by unuse_vma;
209 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
211 if (PageAnon(page)) {
212 if ((void *)vma->anon_vma !=
213 (void *)page->mapping - PAGE_MAPPING_ANON)
214 return -EFAULT;
215 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
216 if (!vma->vm_file ||
217 vma->vm_file->f_mapping != page->mapping)
218 return -EFAULT;
219 } else
220 return -EFAULT;
221 return vma_address(page, vma);
225 * Check that @page is mapped at @address into @mm.
227 * If @sync is false, page_check_address may perform a racy check to avoid
228 * the page table lock when the pte is not present (helpful when reclaiming
229 * highly shared pages).
231 * On success returns with pte mapped and locked.
233 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
234 unsigned long address, spinlock_t **ptlp, int sync)
236 pgd_t *pgd;
237 pud_t *pud;
238 pmd_t *pmd;
239 pte_t *pte;
240 spinlock_t *ptl;
242 pgd = pgd_offset(mm, address);
243 if (!pgd_present(*pgd))
244 return NULL;
246 pud = pud_offset(pgd, address);
247 if (!pud_present(*pud))
248 return NULL;
250 pmd = pmd_offset(pud, address);
251 if (!pmd_present(*pmd))
252 return NULL;
254 pte = pte_offset_map(pmd, address);
255 /* Make a quick check before getting the lock */
256 if (!sync && !pte_present(*pte)) {
257 pte_unmap(pte);
258 return NULL;
261 ptl = pte_lockptr(mm, pmd);
262 spin_lock(ptl);
263 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
264 *ptlp = ptl;
265 return pte;
267 pte_unmap_unlock(pte, ptl);
268 return NULL;
272 * Subfunctions of page_referenced: page_referenced_one called
273 * repeatedly from either page_referenced_anon or page_referenced_file.
275 static int page_referenced_one(struct page *page,
276 struct vm_area_struct *vma, unsigned int *mapcount)
278 struct mm_struct *mm = vma->vm_mm;
279 unsigned long address;
280 pte_t *pte;
281 spinlock_t *ptl;
282 int referenced = 0;
284 address = vma_address(page, vma);
285 if (address == -EFAULT)
286 goto out;
288 pte = page_check_address(page, mm, address, &ptl, 0);
289 if (!pte)
290 goto out;
292 if (vma->vm_flags & VM_LOCKED) {
293 referenced++;
294 *mapcount = 1; /* break early from loop */
295 } else if (ptep_clear_flush_young_notify(vma, address, pte))
296 referenced++;
298 /* Pretend the page is referenced if the task has the
299 swap token and is in the middle of a page fault. */
300 if (mm != current->mm && has_swap_token(mm) &&
301 rwsem_is_locked(&mm->mmap_sem))
302 referenced++;
304 (*mapcount)--;
305 pte_unmap_unlock(pte, ptl);
306 out:
307 return referenced;
310 static int page_referenced_anon(struct page *page,
311 struct mem_cgroup *mem_cont)
313 unsigned int mapcount;
314 struct anon_vma *anon_vma;
315 struct vm_area_struct *vma;
316 int referenced = 0;
318 anon_vma = page_lock_anon_vma(page);
319 if (!anon_vma)
320 return referenced;
322 mapcount = page_mapcount(page);
323 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
325 * If we are reclaiming on behalf of a cgroup, skip
326 * counting on behalf of references from different
327 * cgroups
329 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
330 continue;
331 referenced += page_referenced_one(page, vma, &mapcount);
332 if (!mapcount)
333 break;
336 page_unlock_anon_vma(anon_vma);
337 return referenced;
341 * page_referenced_file - referenced check for object-based rmap
342 * @page: the page we're checking references on.
343 * @mem_cont: target memory controller
345 * For an object-based mapped page, find all the places it is mapped and
346 * check/clear the referenced flag. This is done by following the page->mapping
347 * pointer, then walking the chain of vmas it holds. It returns the number
348 * of references it found.
350 * This function is only called from page_referenced for object-based pages.
352 static int page_referenced_file(struct page *page,
353 struct mem_cgroup *mem_cont)
355 unsigned int mapcount;
356 struct address_space *mapping = page->mapping;
357 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
358 struct vm_area_struct *vma;
359 struct prio_tree_iter iter;
360 int referenced = 0;
363 * The caller's checks on page->mapping and !PageAnon have made
364 * sure that this is a file page: the check for page->mapping
365 * excludes the case just before it gets set on an anon page.
367 BUG_ON(PageAnon(page));
370 * The page lock not only makes sure that page->mapping cannot
371 * suddenly be NULLified by truncation, it makes sure that the
372 * structure at mapping cannot be freed and reused yet,
373 * so we can safely take mapping->i_mmap_lock.
375 BUG_ON(!PageLocked(page));
377 spin_lock(&mapping->i_mmap_lock);
380 * i_mmap_lock does not stabilize mapcount at all, but mapcount
381 * is more likely to be accurate if we note it after spinning.
383 mapcount = page_mapcount(page);
385 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
387 * If we are reclaiming on behalf of a cgroup, skip
388 * counting on behalf of references from different
389 * cgroups
391 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
392 continue;
393 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
394 == (VM_LOCKED|VM_MAYSHARE)) {
395 referenced++;
396 break;
398 referenced += page_referenced_one(page, vma, &mapcount);
399 if (!mapcount)
400 break;
403 spin_unlock(&mapping->i_mmap_lock);
404 return referenced;
408 * page_referenced - test if the page was referenced
409 * @page: the page to test
410 * @is_locked: caller holds lock on the page
411 * @mem_cont: target memory controller
413 * Quick test_and_clear_referenced for all mappings to a page,
414 * returns the number of ptes which referenced the page.
416 int page_referenced(struct page *page, int is_locked,
417 struct mem_cgroup *mem_cont)
419 int referenced = 0;
421 if (TestClearPageReferenced(page))
422 referenced++;
424 if (page_mapped(page) && page->mapping) {
425 if (PageAnon(page))
426 referenced += page_referenced_anon(page, mem_cont);
427 else if (is_locked)
428 referenced += page_referenced_file(page, mem_cont);
429 else if (!trylock_page(page))
430 referenced++;
431 else {
432 if (page->mapping)
433 referenced +=
434 page_referenced_file(page, mem_cont);
435 unlock_page(page);
439 if (page_test_and_clear_young(page))
440 referenced++;
442 return referenced;
445 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
447 struct mm_struct *mm = vma->vm_mm;
448 unsigned long address;
449 pte_t *pte;
450 spinlock_t *ptl;
451 int ret = 0;
453 address = vma_address(page, vma);
454 if (address == -EFAULT)
455 goto out;
457 pte = page_check_address(page, mm, address, &ptl, 1);
458 if (!pte)
459 goto out;
461 if (pte_dirty(*pte) || pte_write(*pte)) {
462 pte_t entry;
464 flush_cache_page(vma, address, pte_pfn(*pte));
465 entry = ptep_clear_flush_notify(vma, address, pte);
466 entry = pte_wrprotect(entry);
467 entry = pte_mkclean(entry);
468 set_pte_at(mm, address, pte, entry);
469 ret = 1;
472 pte_unmap_unlock(pte, ptl);
473 out:
474 return ret;
477 static int page_mkclean_file(struct address_space *mapping, struct page *page)
479 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
480 struct vm_area_struct *vma;
481 struct prio_tree_iter iter;
482 int ret = 0;
484 BUG_ON(PageAnon(page));
486 spin_lock(&mapping->i_mmap_lock);
487 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
488 if (vma->vm_flags & VM_SHARED)
489 ret += page_mkclean_one(page, vma);
491 spin_unlock(&mapping->i_mmap_lock);
492 return ret;
495 int page_mkclean(struct page *page)
497 int ret = 0;
499 BUG_ON(!PageLocked(page));
501 if (page_mapped(page)) {
502 struct address_space *mapping = page_mapping(page);
503 if (mapping) {
504 ret = page_mkclean_file(mapping, page);
505 if (page_test_dirty(page)) {
506 page_clear_dirty(page);
507 ret = 1;
512 return ret;
514 EXPORT_SYMBOL_GPL(page_mkclean);
517 * __page_set_anon_rmap - setup new anonymous rmap
518 * @page: the page to add the mapping to
519 * @vma: the vm area in which the mapping is added
520 * @address: the user virtual address mapped
522 static void __page_set_anon_rmap(struct page *page,
523 struct vm_area_struct *vma, unsigned long address)
525 struct anon_vma *anon_vma = vma->anon_vma;
527 BUG_ON(!anon_vma);
528 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
529 page->mapping = (struct address_space *) anon_vma;
531 page->index = linear_page_index(vma, address);
534 * nr_mapped state can be updated without turning off
535 * interrupts because it is not modified via interrupt.
537 __inc_zone_page_state(page, NR_ANON_PAGES);
541 * __page_check_anon_rmap - sanity check anonymous rmap addition
542 * @page: the page to add the mapping to
543 * @vma: the vm area in which the mapping is added
544 * @address: the user virtual address mapped
546 static void __page_check_anon_rmap(struct page *page,
547 struct vm_area_struct *vma, unsigned long address)
549 #ifdef CONFIG_DEBUG_VM
551 * The page's anon-rmap details (mapping and index) are guaranteed to
552 * be set up correctly at this point.
554 * We have exclusion against page_add_anon_rmap because the caller
555 * always holds the page locked, except if called from page_dup_rmap,
556 * in which case the page is already known to be setup.
558 * We have exclusion against page_add_new_anon_rmap because those pages
559 * are initially only visible via the pagetables, and the pte is locked
560 * over the call to page_add_new_anon_rmap.
562 struct anon_vma *anon_vma = vma->anon_vma;
563 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
564 BUG_ON(page->mapping != (struct address_space *)anon_vma);
565 BUG_ON(page->index != linear_page_index(vma, address));
566 #endif
570 * page_add_anon_rmap - add pte mapping to an anonymous page
571 * @page: the page to add the mapping to
572 * @vma: the vm area in which the mapping is added
573 * @address: the user virtual address mapped
575 * The caller needs to hold the pte lock and the page must be locked.
577 void page_add_anon_rmap(struct page *page,
578 struct vm_area_struct *vma, unsigned long address)
580 VM_BUG_ON(!PageLocked(page));
581 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
582 if (atomic_inc_and_test(&page->_mapcount))
583 __page_set_anon_rmap(page, vma, address);
584 else
585 __page_check_anon_rmap(page, vma, address);
589 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
590 * @page: the page to add the mapping to
591 * @vma: the vm area in which the mapping is added
592 * @address: the user virtual address mapped
594 * Same as page_add_anon_rmap but must only be called on *new* pages.
595 * This means the inc-and-test can be bypassed.
596 * Page does not have to be locked.
598 void page_add_new_anon_rmap(struct page *page,
599 struct vm_area_struct *vma, unsigned long address)
601 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
602 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
603 __page_set_anon_rmap(page, vma, address);
607 * page_add_file_rmap - add pte mapping to a file page
608 * @page: the page to add the mapping to
610 * The caller needs to hold the pte lock.
612 void page_add_file_rmap(struct page *page)
614 if (atomic_inc_and_test(&page->_mapcount))
615 __inc_zone_page_state(page, NR_FILE_MAPPED);
618 #ifdef CONFIG_DEBUG_VM
620 * page_dup_rmap - duplicate pte mapping to a page
621 * @page: the page to add the mapping to
622 * @vma: the vm area being duplicated
623 * @address: the user virtual address mapped
625 * For copy_page_range only: minimal extract from page_add_file_rmap /
626 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
627 * quicker.
629 * The caller needs to hold the pte lock.
631 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
633 BUG_ON(page_mapcount(page) == 0);
634 if (PageAnon(page))
635 __page_check_anon_rmap(page, vma, address);
636 atomic_inc(&page->_mapcount);
638 #endif
641 * page_remove_rmap - take down pte mapping from a page
642 * @page: page to remove mapping from
643 * @vma: the vm area in which the mapping is removed
645 * The caller needs to hold the pte lock.
647 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
649 if (atomic_add_negative(-1, &page->_mapcount)) {
650 if (unlikely(page_mapcount(page) < 0)) {
651 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
652 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
653 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
654 printk (KERN_EMERG " page->count = %x\n", page_count(page));
655 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
656 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
657 if (vma->vm_ops) {
658 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
660 if (vma->vm_file && vma->vm_file->f_op)
661 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
662 BUG();
666 * Now that the last pte has gone, s390 must transfer dirty
667 * flag from storage key to struct page. We can usually skip
668 * this if the page is anon, so about to be freed; but perhaps
669 * not if it's in swapcache - there might be another pte slot
670 * containing the swap entry, but page not yet written to swap.
672 if ((!PageAnon(page) || PageSwapCache(page)) &&
673 page_test_dirty(page)) {
674 page_clear_dirty(page);
675 set_page_dirty(page);
678 mem_cgroup_uncharge_page(page);
679 __dec_zone_page_state(page,
680 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
682 * It would be tidy to reset the PageAnon mapping here,
683 * but that might overwrite a racing page_add_anon_rmap
684 * which increments mapcount after us but sets mapping
685 * before us: so leave the reset to free_hot_cold_page,
686 * and remember that it's only reliable while mapped.
687 * Leaving it set also helps swapoff to reinstate ptes
688 * faster for those pages still in swapcache.
694 * Subfunctions of try_to_unmap: try_to_unmap_one called
695 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
697 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
698 int migration)
700 struct mm_struct *mm = vma->vm_mm;
701 unsigned long address;
702 pte_t *pte;
703 pte_t pteval;
704 spinlock_t *ptl;
705 int ret = SWAP_AGAIN;
707 address = vma_address(page, vma);
708 if (address == -EFAULT)
709 goto out;
711 pte = page_check_address(page, mm, address, &ptl, 0);
712 if (!pte)
713 goto out;
716 * If the page is mlock()d, we cannot swap it out.
717 * If it's recently referenced (perhaps page_referenced
718 * skipped over this mm) then we should reactivate it.
720 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
721 (ptep_clear_flush_young_notify(vma, address, pte)))) {
722 ret = SWAP_FAIL;
723 goto out_unmap;
726 /* Nuke the page table entry. */
727 flush_cache_page(vma, address, page_to_pfn(page));
728 pteval = ptep_clear_flush_notify(vma, address, pte);
730 /* Move the dirty bit to the physical page now the pte is gone. */
731 if (pte_dirty(pteval))
732 set_page_dirty(page);
734 /* Update high watermark before we lower rss */
735 update_hiwater_rss(mm);
737 if (PageAnon(page)) {
738 swp_entry_t entry = { .val = page_private(page) };
740 if (PageSwapCache(page)) {
742 * Store the swap location in the pte.
743 * See handle_pte_fault() ...
745 swap_duplicate(entry);
746 if (list_empty(&mm->mmlist)) {
747 spin_lock(&mmlist_lock);
748 if (list_empty(&mm->mmlist))
749 list_add(&mm->mmlist, &init_mm.mmlist);
750 spin_unlock(&mmlist_lock);
752 dec_mm_counter(mm, anon_rss);
753 #ifdef CONFIG_MIGRATION
754 } else {
756 * Store the pfn of the page in a special migration
757 * pte. do_swap_page() will wait until the migration
758 * pte is removed and then restart fault handling.
760 BUG_ON(!migration);
761 entry = make_migration_entry(page, pte_write(pteval));
762 #endif
764 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
765 BUG_ON(pte_file(*pte));
766 } else
767 #ifdef CONFIG_MIGRATION
768 if (migration) {
769 /* Establish migration entry for a file page */
770 swp_entry_t entry;
771 entry = make_migration_entry(page, pte_write(pteval));
772 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
773 } else
774 #endif
775 dec_mm_counter(mm, file_rss);
778 page_remove_rmap(page, vma);
779 page_cache_release(page);
781 out_unmap:
782 pte_unmap_unlock(pte, ptl);
783 out:
784 return ret;
788 * objrmap doesn't work for nonlinear VMAs because the assumption that
789 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
790 * Consequently, given a particular page and its ->index, we cannot locate the
791 * ptes which are mapping that page without an exhaustive linear search.
793 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
794 * maps the file to which the target page belongs. The ->vm_private_data field
795 * holds the current cursor into that scan. Successive searches will circulate
796 * around the vma's virtual address space.
798 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
799 * more scanning pressure is placed against them as well. Eventually pages
800 * will become fully unmapped and are eligible for eviction.
802 * For very sparsely populated VMAs this is a little inefficient - chances are
803 * there there won't be many ptes located within the scan cluster. In this case
804 * maybe we could scan further - to the end of the pte page, perhaps.
806 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
807 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
809 static void try_to_unmap_cluster(unsigned long cursor,
810 unsigned int *mapcount, struct vm_area_struct *vma)
812 struct mm_struct *mm = vma->vm_mm;
813 pgd_t *pgd;
814 pud_t *pud;
815 pmd_t *pmd;
816 pte_t *pte;
817 pte_t pteval;
818 spinlock_t *ptl;
819 struct page *page;
820 unsigned long address;
821 unsigned long end;
823 address = (vma->vm_start + cursor) & CLUSTER_MASK;
824 end = address + CLUSTER_SIZE;
825 if (address < vma->vm_start)
826 address = vma->vm_start;
827 if (end > vma->vm_end)
828 end = vma->vm_end;
830 pgd = pgd_offset(mm, address);
831 if (!pgd_present(*pgd))
832 return;
834 pud = pud_offset(pgd, address);
835 if (!pud_present(*pud))
836 return;
838 pmd = pmd_offset(pud, address);
839 if (!pmd_present(*pmd))
840 return;
842 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
844 /* Update high watermark before we lower rss */
845 update_hiwater_rss(mm);
847 for (; address < end; pte++, address += PAGE_SIZE) {
848 if (!pte_present(*pte))
849 continue;
850 page = vm_normal_page(vma, address, *pte);
851 BUG_ON(!page || PageAnon(page));
853 if (ptep_clear_flush_young_notify(vma, address, pte))
854 continue;
856 /* Nuke the page table entry. */
857 flush_cache_page(vma, address, pte_pfn(*pte));
858 pteval = ptep_clear_flush_notify(vma, address, pte);
860 /* If nonlinear, store the file page offset in the pte. */
861 if (page->index != linear_page_index(vma, address))
862 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
864 /* Move the dirty bit to the physical page now the pte is gone. */
865 if (pte_dirty(pteval))
866 set_page_dirty(page);
868 page_remove_rmap(page, vma);
869 page_cache_release(page);
870 dec_mm_counter(mm, file_rss);
871 (*mapcount)--;
873 pte_unmap_unlock(pte - 1, ptl);
876 static int try_to_unmap_anon(struct page *page, int migration)
878 struct anon_vma *anon_vma;
879 struct vm_area_struct *vma;
880 int ret = SWAP_AGAIN;
882 anon_vma = page_lock_anon_vma(page);
883 if (!anon_vma)
884 return ret;
886 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
887 ret = try_to_unmap_one(page, vma, migration);
888 if (ret == SWAP_FAIL || !page_mapped(page))
889 break;
892 page_unlock_anon_vma(anon_vma);
893 return ret;
897 * try_to_unmap_file - unmap file page using the object-based rmap method
898 * @page: the page to unmap
899 * @migration: migration flag
901 * Find all the mappings of a page using the mapping pointer and the vma chains
902 * contained in the address_space struct it points to.
904 * This function is only called from try_to_unmap for object-based pages.
906 static int try_to_unmap_file(struct page *page, int migration)
908 struct address_space *mapping = page->mapping;
909 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
910 struct vm_area_struct *vma;
911 struct prio_tree_iter iter;
912 int ret = SWAP_AGAIN;
913 unsigned long cursor;
914 unsigned long max_nl_cursor = 0;
915 unsigned long max_nl_size = 0;
916 unsigned int mapcount;
918 spin_lock(&mapping->i_mmap_lock);
919 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
920 ret = try_to_unmap_one(page, vma, migration);
921 if (ret == SWAP_FAIL || !page_mapped(page))
922 goto out;
925 if (list_empty(&mapping->i_mmap_nonlinear))
926 goto out;
928 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
929 shared.vm_set.list) {
930 if ((vma->vm_flags & VM_LOCKED) && !migration)
931 continue;
932 cursor = (unsigned long) vma->vm_private_data;
933 if (cursor > max_nl_cursor)
934 max_nl_cursor = cursor;
935 cursor = vma->vm_end - vma->vm_start;
936 if (cursor > max_nl_size)
937 max_nl_size = cursor;
940 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
941 ret = SWAP_FAIL;
942 goto out;
946 * We don't try to search for this page in the nonlinear vmas,
947 * and page_referenced wouldn't have found it anyway. Instead
948 * just walk the nonlinear vmas trying to age and unmap some.
949 * The mapcount of the page we came in with is irrelevant,
950 * but even so use it as a guide to how hard we should try?
952 mapcount = page_mapcount(page);
953 if (!mapcount)
954 goto out;
955 cond_resched_lock(&mapping->i_mmap_lock);
957 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
958 if (max_nl_cursor == 0)
959 max_nl_cursor = CLUSTER_SIZE;
961 do {
962 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
963 shared.vm_set.list) {
964 if ((vma->vm_flags & VM_LOCKED) && !migration)
965 continue;
966 cursor = (unsigned long) vma->vm_private_data;
967 while ( cursor < max_nl_cursor &&
968 cursor < vma->vm_end - vma->vm_start) {
969 try_to_unmap_cluster(cursor, &mapcount, vma);
970 cursor += CLUSTER_SIZE;
971 vma->vm_private_data = (void *) cursor;
972 if ((int)mapcount <= 0)
973 goto out;
975 vma->vm_private_data = (void *) max_nl_cursor;
977 cond_resched_lock(&mapping->i_mmap_lock);
978 max_nl_cursor += CLUSTER_SIZE;
979 } while (max_nl_cursor <= max_nl_size);
982 * Don't loop forever (perhaps all the remaining pages are
983 * in locked vmas). Reset cursor on all unreserved nonlinear
984 * vmas, now forgetting on which ones it had fallen behind.
986 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
987 vma->vm_private_data = NULL;
988 out:
989 spin_unlock(&mapping->i_mmap_lock);
990 return ret;
994 * try_to_unmap - try to remove all page table mappings to a page
995 * @page: the page to get unmapped
996 * @migration: migration flag
998 * Tries to remove all the page table entries which are mapping this
999 * page, used in the pageout path. Caller must hold the page lock.
1000 * Return values are:
1002 * SWAP_SUCCESS - we succeeded in removing all mappings
1003 * SWAP_AGAIN - we missed a mapping, try again later
1004 * SWAP_FAIL - the page is unswappable
1006 int try_to_unmap(struct page *page, int migration)
1008 int ret;
1010 BUG_ON(!PageLocked(page));
1012 if (PageAnon(page))
1013 ret = try_to_unmap_anon(page, migration);
1014 else
1015 ret = try_to_unmap_file(page, migration);
1017 if (!page_mapped(page))
1018 ret = SWAP_SUCCESS;
1019 return ret;