4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * ARMv7 support: Jean Pihet <jpihet@mvista.com>
9 * 2010 (c) MontaVista Software, LLC.
11 * This code is based on the sparc64 perf event code, which is in turn based
12 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
15 #define pr_fmt(fmt) "hw perfevents: " fmt
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/uaccess.h>
25 #include <asm/cputype.h>
27 #include <asm/irq_regs.h>
29 #include <asm/stacktrace.h>
31 static struct platform_device
*pmu_device
;
34 * Hardware lock to serialize accesses to PMU registers. Needed for the
35 * read/modify/write sequences.
37 DEFINE_SPINLOCK(pmu_lock
);
40 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
41 * another platform that supports more, we need to increase this to be the
42 * largest of all platforms.
44 * ARMv7 supports up to 32 events:
45 * cycle counter CCNT + 31 events counters CNT0..30.
46 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
48 #define ARMPMU_MAX_HWEVENTS 33
50 /* The events for a given CPU. */
51 struct cpu_hw_events
{
53 * The events that are active on the CPU for the given index. Index 0
56 struct perf_event
*events
[ARMPMU_MAX_HWEVENTS
];
59 * A 1 bit for an index indicates that the counter is being used for
60 * an event. A 0 means that the counter can be used.
62 unsigned long used_mask
[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS
)];
65 * A 1 bit for an index indicates that the counter is actively being
68 unsigned long active_mask
[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS
)];
70 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
73 static const char *arm_pmu_names
[] = {
74 [ARM_PERF_PMU_ID_XSCALE1
] = "xscale1",
75 [ARM_PERF_PMU_ID_XSCALE2
] = "xscale2",
76 [ARM_PERF_PMU_ID_V6
] = "v6",
77 [ARM_PERF_PMU_ID_V6MP
] = "v6mpcore",
78 [ARM_PERF_PMU_ID_CA8
] = "ARMv7 Cortex-A8",
79 [ARM_PERF_PMU_ID_CA9
] = "ARMv7 Cortex-A9",
83 enum arm_perf_pmu_ids id
;
84 irqreturn_t (*handle_irq
)(int irq_num
, void *dev
);
85 void (*enable
)(struct hw_perf_event
*evt
, int idx
);
86 void (*disable
)(struct hw_perf_event
*evt
, int idx
);
87 int (*event_map
)(int evt
);
88 u64 (*raw_event
)(u64
);
89 int (*get_event_idx
)(struct cpu_hw_events
*cpuc
,
90 struct hw_perf_event
*hwc
);
91 u32 (*read_counter
)(int idx
);
92 void (*write_counter
)(int idx
, u32 val
);
99 /* Set at runtime when we know what CPU type we are. */
100 static const struct arm_pmu
*armpmu
;
102 enum arm_perf_pmu_ids
103 armpmu_get_pmu_id(void)
112 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id
);
115 armpmu_get_max_events(void)
120 max_events
= armpmu
->num_events
;
124 EXPORT_SYMBOL_GPL(armpmu_get_max_events
);
126 #define HW_OP_UNSUPPORTED 0xFFFF
129 PERF_COUNT_HW_CACHE_##_x
131 #define CACHE_OP_UNSUPPORTED 0xFFFF
133 static unsigned armpmu_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
134 [PERF_COUNT_HW_CACHE_OP_MAX
]
135 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
138 armpmu_map_cache_event(u64 config
)
140 unsigned int cache_type
, cache_op
, cache_result
, ret
;
142 cache_type
= (config
>> 0) & 0xff;
143 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
146 cache_op
= (config
>> 8) & 0xff;
147 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
150 cache_result
= (config
>> 16) & 0xff;
151 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
154 ret
= (int)armpmu_perf_cache_map
[cache_type
][cache_op
][cache_result
];
156 if (ret
== CACHE_OP_UNSUPPORTED
)
163 armpmu_event_set_period(struct perf_event
*event
,
164 struct hw_perf_event
*hwc
,
167 s64 left
= atomic64_read(&hwc
->period_left
);
168 s64 period
= hwc
->sample_period
;
171 if (unlikely(left
<= -period
)) {
173 atomic64_set(&hwc
->period_left
, left
);
174 hwc
->last_period
= period
;
178 if (unlikely(left
<= 0)) {
180 atomic64_set(&hwc
->period_left
, left
);
181 hwc
->last_period
= period
;
185 if (left
> (s64
)armpmu
->max_period
)
186 left
= armpmu
->max_period
;
188 atomic64_set(&hwc
->prev_count
, (u64
)-left
);
190 armpmu
->write_counter(idx
, (u64
)(-left
) & 0xffffffff);
192 perf_event_update_userpage(event
);
198 armpmu_event_update(struct perf_event
*event
,
199 struct hw_perf_event
*hwc
,
203 s64 prev_raw_count
, new_raw_count
;
207 prev_raw_count
= atomic64_read(&hwc
->prev_count
);
208 new_raw_count
= armpmu
->read_counter(idx
);
210 if (atomic64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
211 new_raw_count
) != prev_raw_count
)
214 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
217 atomic64_add(delta
, &event
->count
);
218 atomic64_sub(delta
, &hwc
->period_left
);
220 return new_raw_count
;
224 armpmu_disable(struct perf_event
*event
)
226 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
227 struct hw_perf_event
*hwc
= &event
->hw
;
232 clear_bit(idx
, cpuc
->active_mask
);
233 armpmu
->disable(hwc
, idx
);
237 armpmu_event_update(event
, hwc
, idx
);
238 cpuc
->events
[idx
] = NULL
;
239 clear_bit(idx
, cpuc
->used_mask
);
241 perf_event_update_userpage(event
);
245 armpmu_read(struct perf_event
*event
)
247 struct hw_perf_event
*hwc
= &event
->hw
;
249 /* Don't read disabled counters! */
253 armpmu_event_update(event
, hwc
, hwc
->idx
);
257 armpmu_unthrottle(struct perf_event
*event
)
259 struct hw_perf_event
*hwc
= &event
->hw
;
262 * Set the period again. Some counters can't be stopped, so when we
263 * were throttled we simply disabled the IRQ source and the counter
264 * may have been left counting. If we don't do this step then we may
265 * get an interrupt too soon or *way* too late if the overflow has
266 * happened since disabling.
268 armpmu_event_set_period(event
, hwc
, hwc
->idx
);
269 armpmu
->enable(hwc
, hwc
->idx
);
273 armpmu_enable(struct perf_event
*event
)
275 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
276 struct hw_perf_event
*hwc
= &event
->hw
;
280 /* If we don't have a space for the counter then finish early. */
281 idx
= armpmu
->get_event_idx(cpuc
, hwc
);
288 * If there is an event in the counter we are going to use then make
289 * sure it is disabled.
292 armpmu
->disable(hwc
, idx
);
293 cpuc
->events
[idx
] = event
;
294 set_bit(idx
, cpuc
->active_mask
);
296 /* Set the period for the event. */
297 armpmu_event_set_period(event
, hwc
, idx
);
299 /* Enable the event. */
300 armpmu
->enable(hwc
, idx
);
302 /* Propagate our changes to the userspace mapping. */
303 perf_event_update_userpage(event
);
309 static struct pmu pmu
= {
310 .enable
= armpmu_enable
,
311 .disable
= armpmu_disable
,
312 .unthrottle
= armpmu_unthrottle
,
317 validate_event(struct cpu_hw_events
*cpuc
,
318 struct perf_event
*event
)
320 struct hw_perf_event fake_event
= event
->hw
;
322 if (event
->pmu
&& event
->pmu
!= &pmu
)
325 return armpmu
->get_event_idx(cpuc
, &fake_event
) >= 0;
329 validate_group(struct perf_event
*event
)
331 struct perf_event
*sibling
, *leader
= event
->group_leader
;
332 struct cpu_hw_events fake_pmu
;
334 memset(&fake_pmu
, 0, sizeof(fake_pmu
));
336 if (!validate_event(&fake_pmu
, leader
))
339 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
340 if (!validate_event(&fake_pmu
, sibling
))
344 if (!validate_event(&fake_pmu
, event
))
351 armpmu_reserve_hardware(void)
353 int i
, err
= -ENODEV
, irq
;
355 pmu_device
= reserve_pmu(ARM_PMU_DEVICE_CPU
);
356 if (IS_ERR(pmu_device
)) {
357 pr_warning("unable to reserve pmu\n");
358 return PTR_ERR(pmu_device
);
361 init_pmu(ARM_PMU_DEVICE_CPU
);
363 if (pmu_device
->num_resources
< 1) {
364 pr_err("no irqs for PMUs defined\n");
368 for (i
= 0; i
< pmu_device
->num_resources
; ++i
) {
369 irq
= platform_get_irq(pmu_device
, i
);
373 err
= request_irq(irq
, armpmu
->handle_irq
,
374 IRQF_DISABLED
| IRQF_NOBALANCING
,
377 pr_warning("unable to request IRQ%d for ARM perf "
384 for (i
= i
- 1; i
>= 0; --i
) {
385 irq
= platform_get_irq(pmu_device
, i
);
389 release_pmu(pmu_device
);
397 armpmu_release_hardware(void)
401 for (i
= pmu_device
->num_resources
- 1; i
>= 0; --i
) {
402 irq
= platform_get_irq(pmu_device
, i
);
408 release_pmu(pmu_device
);
412 static atomic_t active_events
= ATOMIC_INIT(0);
413 static DEFINE_MUTEX(pmu_reserve_mutex
);
416 hw_perf_event_destroy(struct perf_event
*event
)
418 if (atomic_dec_and_mutex_lock(&active_events
, &pmu_reserve_mutex
)) {
419 armpmu_release_hardware();
420 mutex_unlock(&pmu_reserve_mutex
);
425 __hw_perf_event_init(struct perf_event
*event
)
427 struct hw_perf_event
*hwc
= &event
->hw
;
430 /* Decode the generic type into an ARM event identifier. */
431 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
432 mapping
= armpmu
->event_map(event
->attr
.config
);
433 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
434 mapping
= armpmu_map_cache_event(event
->attr
.config
);
435 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
436 mapping
= armpmu
->raw_event(event
->attr
.config
);
438 pr_debug("event type %x not supported\n", event
->attr
.type
);
443 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
449 * Check whether we need to exclude the counter from certain modes.
450 * The ARM performance counters are on all of the time so if someone
451 * has asked us for some excludes then we have to fail.
453 if (event
->attr
.exclude_kernel
|| event
->attr
.exclude_user
||
454 event
->attr
.exclude_hv
|| event
->attr
.exclude_idle
) {
455 pr_debug("ARM performance counters do not support "
461 * We don't assign an index until we actually place the event onto
462 * hardware. Use -1 to signify that we haven't decided where to put it
463 * yet. For SMP systems, each core has it's own PMU so we can't do any
464 * clever allocation or constraints checking at this point.
469 * Store the event encoding into the config_base field. config and
470 * event_base are unused as the only 2 things we need to know are
471 * the event mapping and the counter to use. The counter to use is
472 * also the indx and the config_base is the event type.
474 hwc
->config_base
= (unsigned long)mapping
;
478 if (!hwc
->sample_period
) {
479 hwc
->sample_period
= armpmu
->max_period
;
480 hwc
->last_period
= hwc
->sample_period
;
481 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
485 if (event
->group_leader
!= event
) {
486 err
= validate_group(event
);
495 hw_perf_event_init(struct perf_event
*event
)
500 return ERR_PTR(-ENODEV
);
502 event
->destroy
= hw_perf_event_destroy
;
504 if (!atomic_inc_not_zero(&active_events
)) {
505 if (atomic_read(&active_events
) > perf_max_events
) {
506 atomic_dec(&active_events
);
507 return ERR_PTR(-ENOSPC
);
510 mutex_lock(&pmu_reserve_mutex
);
511 if (atomic_read(&active_events
) == 0) {
512 err
= armpmu_reserve_hardware();
516 atomic_inc(&active_events
);
517 mutex_unlock(&pmu_reserve_mutex
);
523 err
= __hw_perf_event_init(event
);
525 hw_perf_event_destroy(event
);
527 return err
? ERR_PTR(err
) : &pmu
;
533 /* Enable all of the perf events on hardware. */
535 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
540 for (idx
= 0; idx
<= armpmu
->num_events
; ++idx
) {
541 struct perf_event
*event
= cpuc
->events
[idx
];
546 armpmu
->enable(&event
->hw
, idx
);
553 hw_perf_disable(void)
560 * ARMv6 Performance counter handling code.
562 * ARMv6 has 2 configurable performance counters and a single cycle counter.
563 * They all share a single reset bit but can be written to zero so we can use
566 * The counters can't be individually enabled or disabled so when we remove
567 * one event and replace it with another we could get spurious counts from the
568 * wrong event. However, we can take advantage of the fact that the
569 * performance counters can export events to the event bus, and the event bus
570 * itself can be monitored. This requires that we *don't* export the events to
571 * the event bus. The procedure for disabling a configurable counter is:
572 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
573 * effectively stops the counter from counting.
574 * - disable the counter's interrupt generation (each counter has it's
575 * own interrupt enable bit).
576 * Once stopped, the counter value can be written as 0 to reset.
578 * To enable a counter:
579 * - enable the counter's interrupt generation.
580 * - set the new event type.
582 * Note: the dedicated cycle counter only counts cycles and can't be
583 * enabled/disabled independently of the others. When we want to disable the
584 * cycle counter, we have to just disable the interrupt reporting and start
585 * ignoring that counter. When re-enabling, we have to reset the value and
586 * enable the interrupt.
589 enum armv6_perf_types
{
590 ARMV6_PERFCTR_ICACHE_MISS
= 0x0,
591 ARMV6_PERFCTR_IBUF_STALL
= 0x1,
592 ARMV6_PERFCTR_DDEP_STALL
= 0x2,
593 ARMV6_PERFCTR_ITLB_MISS
= 0x3,
594 ARMV6_PERFCTR_DTLB_MISS
= 0x4,
595 ARMV6_PERFCTR_BR_EXEC
= 0x5,
596 ARMV6_PERFCTR_BR_MISPREDICT
= 0x6,
597 ARMV6_PERFCTR_INSTR_EXEC
= 0x7,
598 ARMV6_PERFCTR_DCACHE_HIT
= 0x9,
599 ARMV6_PERFCTR_DCACHE_ACCESS
= 0xA,
600 ARMV6_PERFCTR_DCACHE_MISS
= 0xB,
601 ARMV6_PERFCTR_DCACHE_WBACK
= 0xC,
602 ARMV6_PERFCTR_SW_PC_CHANGE
= 0xD,
603 ARMV6_PERFCTR_MAIN_TLB_MISS
= 0xF,
604 ARMV6_PERFCTR_EXPL_D_ACCESS
= 0x10,
605 ARMV6_PERFCTR_LSU_FULL_STALL
= 0x11,
606 ARMV6_PERFCTR_WBUF_DRAINED
= 0x12,
607 ARMV6_PERFCTR_CPU_CYCLES
= 0xFF,
608 ARMV6_PERFCTR_NOP
= 0x20,
611 enum armv6_counters
{
612 ARMV6_CYCLE_COUNTER
= 1,
618 * The hardware events that we support. We do support cache operations but
619 * we have harvard caches and no way to combine instruction and data
620 * accesses/misses in hardware.
622 static const unsigned armv6_perf_map
[PERF_COUNT_HW_MAX
] = {
623 [PERF_COUNT_HW_CPU_CYCLES
] = ARMV6_PERFCTR_CPU_CYCLES
,
624 [PERF_COUNT_HW_INSTRUCTIONS
] = ARMV6_PERFCTR_INSTR_EXEC
,
625 [PERF_COUNT_HW_CACHE_REFERENCES
] = HW_OP_UNSUPPORTED
,
626 [PERF_COUNT_HW_CACHE_MISSES
] = HW_OP_UNSUPPORTED
,
627 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = ARMV6_PERFCTR_BR_EXEC
,
628 [PERF_COUNT_HW_BRANCH_MISSES
] = ARMV6_PERFCTR_BR_MISPREDICT
,
629 [PERF_COUNT_HW_BUS_CYCLES
] = HW_OP_UNSUPPORTED
,
632 static const unsigned armv6_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
633 [PERF_COUNT_HW_CACHE_OP_MAX
]
634 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
637 * The performance counters don't differentiate between read
638 * and write accesses/misses so this isn't strictly correct,
639 * but it's the best we can do. Writes and reads get
643 [C(RESULT_ACCESS
)] = ARMV6_PERFCTR_DCACHE_ACCESS
,
644 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DCACHE_MISS
,
647 [C(RESULT_ACCESS
)] = ARMV6_PERFCTR_DCACHE_ACCESS
,
648 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DCACHE_MISS
,
651 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
652 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
657 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
658 [C(RESULT_MISS
)] = ARMV6_PERFCTR_ICACHE_MISS
,
661 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
662 [C(RESULT_MISS
)] = ARMV6_PERFCTR_ICACHE_MISS
,
665 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
666 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
671 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
672 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
675 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
676 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
679 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
680 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
685 * The ARM performance counters can count micro DTLB misses,
686 * micro ITLB misses and main TLB misses. There isn't an event
687 * for TLB misses, so use the micro misses here and if users
688 * want the main TLB misses they can use a raw counter.
691 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
692 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DTLB_MISS
,
695 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
696 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DTLB_MISS
,
699 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
700 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
705 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
706 [C(RESULT_MISS
)] = ARMV6_PERFCTR_ITLB_MISS
,
709 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
710 [C(RESULT_MISS
)] = ARMV6_PERFCTR_ITLB_MISS
,
713 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
714 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
719 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
720 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
723 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
724 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
727 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
728 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
733 enum armv6mpcore_perf_types
{
734 ARMV6MPCORE_PERFCTR_ICACHE_MISS
= 0x0,
735 ARMV6MPCORE_PERFCTR_IBUF_STALL
= 0x1,
736 ARMV6MPCORE_PERFCTR_DDEP_STALL
= 0x2,
737 ARMV6MPCORE_PERFCTR_ITLB_MISS
= 0x3,
738 ARMV6MPCORE_PERFCTR_DTLB_MISS
= 0x4,
739 ARMV6MPCORE_PERFCTR_BR_EXEC
= 0x5,
740 ARMV6MPCORE_PERFCTR_BR_NOTPREDICT
= 0x6,
741 ARMV6MPCORE_PERFCTR_BR_MISPREDICT
= 0x7,
742 ARMV6MPCORE_PERFCTR_INSTR_EXEC
= 0x8,
743 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS
= 0xA,
744 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS
= 0xB,
745 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS
= 0xC,
746 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS
= 0xD,
747 ARMV6MPCORE_PERFCTR_DCACHE_EVICTION
= 0xE,
748 ARMV6MPCORE_PERFCTR_SW_PC_CHANGE
= 0xF,
749 ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS
= 0x10,
750 ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS
= 0x11,
751 ARMV6MPCORE_PERFCTR_LSU_FULL_STALL
= 0x12,
752 ARMV6MPCORE_PERFCTR_WBUF_DRAINED
= 0x13,
753 ARMV6MPCORE_PERFCTR_CPU_CYCLES
= 0xFF,
757 * The hardware events that we support. We do support cache operations but
758 * we have harvard caches and no way to combine instruction and data
759 * accesses/misses in hardware.
761 static const unsigned armv6mpcore_perf_map
[PERF_COUNT_HW_MAX
] = {
762 [PERF_COUNT_HW_CPU_CYCLES
] = ARMV6MPCORE_PERFCTR_CPU_CYCLES
,
763 [PERF_COUNT_HW_INSTRUCTIONS
] = ARMV6MPCORE_PERFCTR_INSTR_EXEC
,
764 [PERF_COUNT_HW_CACHE_REFERENCES
] = HW_OP_UNSUPPORTED
,
765 [PERF_COUNT_HW_CACHE_MISSES
] = HW_OP_UNSUPPORTED
,
766 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = ARMV6MPCORE_PERFCTR_BR_EXEC
,
767 [PERF_COUNT_HW_BRANCH_MISSES
] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT
,
768 [PERF_COUNT_HW_BUS_CYCLES
] = HW_OP_UNSUPPORTED
,
771 static const unsigned armv6mpcore_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
772 [PERF_COUNT_HW_CACHE_OP_MAX
]
773 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
777 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS
,
779 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS
,
783 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS
,
785 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS
,
788 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
789 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
794 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
795 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS
,
798 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
799 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS
,
802 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
803 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
808 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
809 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
812 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
813 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
816 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
817 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
822 * The ARM performance counters can count micro DTLB misses,
823 * micro ITLB misses and main TLB misses. There isn't an event
824 * for TLB misses, so use the micro misses here and if users
825 * want the main TLB misses they can use a raw counter.
828 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
829 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_DTLB_MISS
,
832 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
833 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_DTLB_MISS
,
836 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
837 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
842 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
843 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_ITLB_MISS
,
846 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
847 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_ITLB_MISS
,
850 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
851 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
856 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
857 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
860 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
861 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
864 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
865 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
870 static inline unsigned long
871 armv6_pmcr_read(void)
874 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val
));
879 armv6_pmcr_write(unsigned long val
)
881 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val
));
884 #define ARMV6_PMCR_ENABLE (1 << 0)
885 #define ARMV6_PMCR_CTR01_RESET (1 << 1)
886 #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
887 #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
888 #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
889 #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
890 #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
891 #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
892 #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
893 #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
894 #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
895 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
896 #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
897 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
899 #define ARMV6_PMCR_OVERFLOWED_MASK \
900 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
901 ARMV6_PMCR_CCOUNT_OVERFLOW)
904 armv6_pmcr_has_overflowed(unsigned long pmcr
)
906 return (pmcr
& ARMV6_PMCR_OVERFLOWED_MASK
);
910 armv6_pmcr_counter_has_overflowed(unsigned long pmcr
,
911 enum armv6_counters counter
)
915 if (ARMV6_CYCLE_COUNTER
== counter
)
916 ret
= pmcr
& ARMV6_PMCR_CCOUNT_OVERFLOW
;
917 else if (ARMV6_COUNTER0
== counter
)
918 ret
= pmcr
& ARMV6_PMCR_COUNT0_OVERFLOW
;
919 else if (ARMV6_COUNTER1
== counter
)
920 ret
= pmcr
& ARMV6_PMCR_COUNT1_OVERFLOW
;
922 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
928 armv6pmu_read_counter(int counter
)
930 unsigned long value
= 0;
932 if (ARMV6_CYCLE_COUNTER
== counter
)
933 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value
));
934 else if (ARMV6_COUNTER0
== counter
)
935 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value
));
936 else if (ARMV6_COUNTER1
== counter
)
937 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value
));
939 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
945 armv6pmu_write_counter(int counter
,
948 if (ARMV6_CYCLE_COUNTER
== counter
)
949 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value
));
950 else if (ARMV6_COUNTER0
== counter
)
951 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value
));
952 else if (ARMV6_COUNTER1
== counter
)
953 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value
));
955 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
959 armv6pmu_enable_event(struct hw_perf_event
*hwc
,
962 unsigned long val
, mask
, evt
, flags
;
964 if (ARMV6_CYCLE_COUNTER
== idx
) {
966 evt
= ARMV6_PMCR_CCOUNT_IEN
;
967 } else if (ARMV6_COUNTER0
== idx
) {
968 mask
= ARMV6_PMCR_EVT_COUNT0_MASK
;
969 evt
= (hwc
->config_base
<< ARMV6_PMCR_EVT_COUNT0_SHIFT
) |
970 ARMV6_PMCR_COUNT0_IEN
;
971 } else if (ARMV6_COUNTER1
== idx
) {
972 mask
= ARMV6_PMCR_EVT_COUNT1_MASK
;
973 evt
= (hwc
->config_base
<< ARMV6_PMCR_EVT_COUNT1_SHIFT
) |
974 ARMV6_PMCR_COUNT1_IEN
;
976 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
981 * Mask out the current event and set the counter to count the event
982 * that we're interested in.
984 spin_lock_irqsave(&pmu_lock
, flags
);
985 val
= armv6_pmcr_read();
988 armv6_pmcr_write(val
);
989 spin_unlock_irqrestore(&pmu_lock
, flags
);
993 armv6pmu_handle_irq(int irq_num
,
996 unsigned long pmcr
= armv6_pmcr_read();
997 struct perf_sample_data data
;
998 struct cpu_hw_events
*cpuc
;
999 struct pt_regs
*regs
;
1002 if (!armv6_pmcr_has_overflowed(pmcr
))
1005 regs
= get_irq_regs();
1008 * The interrupts are cleared by writing the overflow flags back to
1009 * the control register. All of the other bits don't have any effect
1010 * if they are rewritten, so write the whole value back.
1012 armv6_pmcr_write(pmcr
);
1014 perf_sample_data_init(&data
, 0);
1016 cpuc
= &__get_cpu_var(cpu_hw_events
);
1017 for (idx
= 0; idx
<= armpmu
->num_events
; ++idx
) {
1018 struct perf_event
*event
= cpuc
->events
[idx
];
1019 struct hw_perf_event
*hwc
;
1021 if (!test_bit(idx
, cpuc
->active_mask
))
1025 * We have a single interrupt for all counters. Check that
1026 * each counter has overflowed before we process it.
1028 if (!armv6_pmcr_counter_has_overflowed(pmcr
, idx
))
1032 armpmu_event_update(event
, hwc
, idx
);
1033 data
.period
= event
->hw
.last_period
;
1034 if (!armpmu_event_set_period(event
, hwc
, idx
))
1037 if (perf_event_overflow(event
, 0, &data
, regs
))
1038 armpmu
->disable(hwc
, idx
);
1042 * Handle the pending perf events.
1044 * Note: this call *must* be run with interrupts enabled. For
1045 * platforms that can have the PMU interrupts raised as a PMI, this
1048 perf_event_do_pending();
1054 armv6pmu_start(void)
1056 unsigned long flags
, val
;
1058 spin_lock_irqsave(&pmu_lock
, flags
);
1059 val
= armv6_pmcr_read();
1060 val
|= ARMV6_PMCR_ENABLE
;
1061 armv6_pmcr_write(val
);
1062 spin_unlock_irqrestore(&pmu_lock
, flags
);
1068 unsigned long flags
, val
;
1070 spin_lock_irqsave(&pmu_lock
, flags
);
1071 val
= armv6_pmcr_read();
1072 val
&= ~ARMV6_PMCR_ENABLE
;
1073 armv6_pmcr_write(val
);
1074 spin_unlock_irqrestore(&pmu_lock
, flags
);
1078 armv6pmu_event_map(int config
)
1080 int mapping
= armv6_perf_map
[config
];
1081 if (HW_OP_UNSUPPORTED
== mapping
)
1082 mapping
= -EOPNOTSUPP
;
1087 armv6mpcore_pmu_event_map(int config
)
1089 int mapping
= armv6mpcore_perf_map
[config
];
1090 if (HW_OP_UNSUPPORTED
== mapping
)
1091 mapping
= -EOPNOTSUPP
;
1096 armv6pmu_raw_event(u64 config
)
1098 return config
& 0xff;
1102 armv6pmu_get_event_idx(struct cpu_hw_events
*cpuc
,
1103 struct hw_perf_event
*event
)
1105 /* Always place a cycle counter into the cycle counter. */
1106 if (ARMV6_PERFCTR_CPU_CYCLES
== event
->config_base
) {
1107 if (test_and_set_bit(ARMV6_CYCLE_COUNTER
, cpuc
->used_mask
))
1110 return ARMV6_CYCLE_COUNTER
;
1113 * For anything other than a cycle counter, try and use
1114 * counter0 and counter1.
1116 if (!test_and_set_bit(ARMV6_COUNTER1
, cpuc
->used_mask
)) {
1117 return ARMV6_COUNTER1
;
1120 if (!test_and_set_bit(ARMV6_COUNTER0
, cpuc
->used_mask
)) {
1121 return ARMV6_COUNTER0
;
1124 /* The counters are all in use. */
1130 armv6pmu_disable_event(struct hw_perf_event
*hwc
,
1133 unsigned long val
, mask
, evt
, flags
;
1135 if (ARMV6_CYCLE_COUNTER
== idx
) {
1136 mask
= ARMV6_PMCR_CCOUNT_IEN
;
1138 } else if (ARMV6_COUNTER0
== idx
) {
1139 mask
= ARMV6_PMCR_COUNT0_IEN
| ARMV6_PMCR_EVT_COUNT0_MASK
;
1140 evt
= ARMV6_PERFCTR_NOP
<< ARMV6_PMCR_EVT_COUNT0_SHIFT
;
1141 } else if (ARMV6_COUNTER1
== idx
) {
1142 mask
= ARMV6_PMCR_COUNT1_IEN
| ARMV6_PMCR_EVT_COUNT1_MASK
;
1143 evt
= ARMV6_PERFCTR_NOP
<< ARMV6_PMCR_EVT_COUNT1_SHIFT
;
1145 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
1150 * Mask out the current event and set the counter to count the number
1151 * of ETM bus signal assertion cycles. The external reporting should
1152 * be disabled and so this should never increment.
1154 spin_lock_irqsave(&pmu_lock
, flags
);
1155 val
= armv6_pmcr_read();
1158 armv6_pmcr_write(val
);
1159 spin_unlock_irqrestore(&pmu_lock
, flags
);
1163 armv6mpcore_pmu_disable_event(struct hw_perf_event
*hwc
,
1166 unsigned long val
, mask
, flags
, evt
= 0;
1168 if (ARMV6_CYCLE_COUNTER
== idx
) {
1169 mask
= ARMV6_PMCR_CCOUNT_IEN
;
1170 } else if (ARMV6_COUNTER0
== idx
) {
1171 mask
= ARMV6_PMCR_COUNT0_IEN
;
1172 } else if (ARMV6_COUNTER1
== idx
) {
1173 mask
= ARMV6_PMCR_COUNT1_IEN
;
1175 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
1180 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
1181 * simply disable the interrupt reporting.
1183 spin_lock_irqsave(&pmu_lock
, flags
);
1184 val
= armv6_pmcr_read();
1187 armv6_pmcr_write(val
);
1188 spin_unlock_irqrestore(&pmu_lock
, flags
);
1191 static const struct arm_pmu armv6pmu
= {
1192 .id
= ARM_PERF_PMU_ID_V6
,
1193 .handle_irq
= armv6pmu_handle_irq
,
1194 .enable
= armv6pmu_enable_event
,
1195 .disable
= armv6pmu_disable_event
,
1196 .event_map
= armv6pmu_event_map
,
1197 .raw_event
= armv6pmu_raw_event
,
1198 .read_counter
= armv6pmu_read_counter
,
1199 .write_counter
= armv6pmu_write_counter
,
1200 .get_event_idx
= armv6pmu_get_event_idx
,
1201 .start
= armv6pmu_start
,
1202 .stop
= armv6pmu_stop
,
1204 .max_period
= (1LLU << 32) - 1,
1208 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
1209 * that some of the events have different enumerations and that there is no
1210 * *hack* to stop the programmable counters. To stop the counters we simply
1211 * disable the interrupt reporting and update the event. When unthrottling we
1212 * reset the period and enable the interrupt reporting.
1214 static const struct arm_pmu armv6mpcore_pmu
= {
1215 .id
= ARM_PERF_PMU_ID_V6MP
,
1216 .handle_irq
= armv6pmu_handle_irq
,
1217 .enable
= armv6pmu_enable_event
,
1218 .disable
= armv6mpcore_pmu_disable_event
,
1219 .event_map
= armv6mpcore_pmu_event_map
,
1220 .raw_event
= armv6pmu_raw_event
,
1221 .read_counter
= armv6pmu_read_counter
,
1222 .write_counter
= armv6pmu_write_counter
,
1223 .get_event_idx
= armv6pmu_get_event_idx
,
1224 .start
= armv6pmu_start
,
1225 .stop
= armv6pmu_stop
,
1227 .max_period
= (1LLU << 32) - 1,
1231 * ARMv7 Cortex-A8 and Cortex-A9 Performance Events handling code.
1233 * Copied from ARMv6 code, with the low level code inspired
1234 * by the ARMv7 Oprofile code.
1236 * Cortex-A8 has up to 4 configurable performance counters and
1237 * a single cycle counter.
1238 * Cortex-A9 has up to 31 configurable performance counters and
1239 * a single cycle counter.
1241 * All counters can be enabled/disabled and IRQ masked separately. The cycle
1242 * counter and all 4 performance counters together can be reset separately.
1245 /* Common ARMv7 event types */
1246 enum armv7_perf_types
{
1247 ARMV7_PERFCTR_PMNC_SW_INCR
= 0x00,
1248 ARMV7_PERFCTR_IFETCH_MISS
= 0x01,
1249 ARMV7_PERFCTR_ITLB_MISS
= 0x02,
1250 ARMV7_PERFCTR_DCACHE_REFILL
= 0x03,
1251 ARMV7_PERFCTR_DCACHE_ACCESS
= 0x04,
1252 ARMV7_PERFCTR_DTLB_REFILL
= 0x05,
1253 ARMV7_PERFCTR_DREAD
= 0x06,
1254 ARMV7_PERFCTR_DWRITE
= 0x07,
1256 ARMV7_PERFCTR_EXC_TAKEN
= 0x09,
1257 ARMV7_PERFCTR_EXC_EXECUTED
= 0x0A,
1258 ARMV7_PERFCTR_CID_WRITE
= 0x0B,
1259 /* ARMV7_PERFCTR_PC_WRITE is equivalent to HW_BRANCH_INSTRUCTIONS.
1261 * - all branch instructions,
1262 * - instructions that explicitly write the PC,
1263 * - exception generating instructions.
1265 ARMV7_PERFCTR_PC_WRITE
= 0x0C,
1266 ARMV7_PERFCTR_PC_IMM_BRANCH
= 0x0D,
1267 ARMV7_PERFCTR_UNALIGNED_ACCESS
= 0x0F,
1268 ARMV7_PERFCTR_PC_BRANCH_MIS_PRED
= 0x10,
1269 ARMV7_PERFCTR_CLOCK_CYCLES
= 0x11,
1271 ARMV7_PERFCTR_PC_BRANCH_MIS_USED
= 0x12,
1273 ARMV7_PERFCTR_CPU_CYCLES
= 0xFF
1276 /* ARMv7 Cortex-A8 specific event types */
1277 enum armv7_a8_perf_types
{
1278 ARMV7_PERFCTR_INSTR_EXECUTED
= 0x08,
1280 ARMV7_PERFCTR_PC_PROC_RETURN
= 0x0E,
1282 ARMV7_PERFCTR_WRITE_BUFFER_FULL
= 0x40,
1283 ARMV7_PERFCTR_L2_STORE_MERGED
= 0x41,
1284 ARMV7_PERFCTR_L2_STORE_BUFF
= 0x42,
1285 ARMV7_PERFCTR_L2_ACCESS
= 0x43,
1286 ARMV7_PERFCTR_L2_CACH_MISS
= 0x44,
1287 ARMV7_PERFCTR_AXI_READ_CYCLES
= 0x45,
1288 ARMV7_PERFCTR_AXI_WRITE_CYCLES
= 0x46,
1289 ARMV7_PERFCTR_MEMORY_REPLAY
= 0x47,
1290 ARMV7_PERFCTR_UNALIGNED_ACCESS_REPLAY
= 0x48,
1291 ARMV7_PERFCTR_L1_DATA_MISS
= 0x49,
1292 ARMV7_PERFCTR_L1_INST_MISS
= 0x4A,
1293 ARMV7_PERFCTR_L1_DATA_COLORING
= 0x4B,
1294 ARMV7_PERFCTR_L1_NEON_DATA
= 0x4C,
1295 ARMV7_PERFCTR_L1_NEON_CACH_DATA
= 0x4D,
1296 ARMV7_PERFCTR_L2_NEON
= 0x4E,
1297 ARMV7_PERFCTR_L2_NEON_HIT
= 0x4F,
1298 ARMV7_PERFCTR_L1_INST
= 0x50,
1299 ARMV7_PERFCTR_PC_RETURN_MIS_PRED
= 0x51,
1300 ARMV7_PERFCTR_PC_BRANCH_FAILED
= 0x52,
1301 ARMV7_PERFCTR_PC_BRANCH_TAKEN
= 0x53,
1302 ARMV7_PERFCTR_PC_BRANCH_EXECUTED
= 0x54,
1303 ARMV7_PERFCTR_OP_EXECUTED
= 0x55,
1304 ARMV7_PERFCTR_CYCLES_INST_STALL
= 0x56,
1305 ARMV7_PERFCTR_CYCLES_INST
= 0x57,
1306 ARMV7_PERFCTR_CYCLES_NEON_DATA_STALL
= 0x58,
1307 ARMV7_PERFCTR_CYCLES_NEON_INST_STALL
= 0x59,
1308 ARMV7_PERFCTR_NEON_CYCLES
= 0x5A,
1310 ARMV7_PERFCTR_PMU0_EVENTS
= 0x70,
1311 ARMV7_PERFCTR_PMU1_EVENTS
= 0x71,
1312 ARMV7_PERFCTR_PMU_EVENTS
= 0x72,
1315 /* ARMv7 Cortex-A9 specific event types */
1316 enum armv7_a9_perf_types
{
1317 ARMV7_PERFCTR_JAVA_HW_BYTECODE_EXEC
= 0x40,
1318 ARMV7_PERFCTR_JAVA_SW_BYTECODE_EXEC
= 0x41,
1319 ARMV7_PERFCTR_JAZELLE_BRANCH_EXEC
= 0x42,
1321 ARMV7_PERFCTR_COHERENT_LINE_MISS
= 0x50,
1322 ARMV7_PERFCTR_COHERENT_LINE_HIT
= 0x51,
1324 ARMV7_PERFCTR_ICACHE_DEP_STALL_CYCLES
= 0x60,
1325 ARMV7_PERFCTR_DCACHE_DEP_STALL_CYCLES
= 0x61,
1326 ARMV7_PERFCTR_TLB_MISS_DEP_STALL_CYCLES
= 0x62,
1327 ARMV7_PERFCTR_STREX_EXECUTED_PASSED
= 0x63,
1328 ARMV7_PERFCTR_STREX_EXECUTED_FAILED
= 0x64,
1329 ARMV7_PERFCTR_DATA_EVICTION
= 0x65,
1330 ARMV7_PERFCTR_ISSUE_STAGE_NO_INST
= 0x66,
1331 ARMV7_PERFCTR_ISSUE_STAGE_EMPTY
= 0x67,
1332 ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE
= 0x68,
1334 ARMV7_PERFCTR_PREDICTABLE_FUNCT_RETURNS
= 0x6E,
1336 ARMV7_PERFCTR_MAIN_UNIT_EXECUTED_INST
= 0x70,
1337 ARMV7_PERFCTR_SECOND_UNIT_EXECUTED_INST
= 0x71,
1338 ARMV7_PERFCTR_LD_ST_UNIT_EXECUTED_INST
= 0x72,
1339 ARMV7_PERFCTR_FP_EXECUTED_INST
= 0x73,
1340 ARMV7_PERFCTR_NEON_EXECUTED_INST
= 0x74,
1342 ARMV7_PERFCTR_PLD_FULL_DEP_STALL_CYCLES
= 0x80,
1343 ARMV7_PERFCTR_DATA_WR_DEP_STALL_CYCLES
= 0x81,
1344 ARMV7_PERFCTR_ITLB_MISS_DEP_STALL_CYCLES
= 0x82,
1345 ARMV7_PERFCTR_DTLB_MISS_DEP_STALL_CYCLES
= 0x83,
1346 ARMV7_PERFCTR_MICRO_ITLB_MISS_DEP_STALL_CYCLES
= 0x84,
1347 ARMV7_PERFCTR_MICRO_DTLB_MISS_DEP_STALL_CYCLES
= 0x85,
1348 ARMV7_PERFCTR_DMB_DEP_STALL_CYCLES
= 0x86,
1350 ARMV7_PERFCTR_INTGR_CLK_ENABLED_CYCLES
= 0x8A,
1351 ARMV7_PERFCTR_DATA_ENGINE_CLK_EN_CYCLES
= 0x8B,
1353 ARMV7_PERFCTR_ISB_INST
= 0x90,
1354 ARMV7_PERFCTR_DSB_INST
= 0x91,
1355 ARMV7_PERFCTR_DMB_INST
= 0x92,
1356 ARMV7_PERFCTR_EXT_INTERRUPTS
= 0x93,
1358 ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_COMPLETED
= 0xA0,
1359 ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_SKIPPED
= 0xA1,
1360 ARMV7_PERFCTR_PLE_FIFO_FLUSH
= 0xA2,
1361 ARMV7_PERFCTR_PLE_RQST_COMPLETED
= 0xA3,
1362 ARMV7_PERFCTR_PLE_FIFO_OVERFLOW
= 0xA4,
1363 ARMV7_PERFCTR_PLE_RQST_PROG
= 0xA5
1367 * Cortex-A8 HW events mapping
1369 * The hardware events that we support. We do support cache operations but
1370 * we have harvard caches and no way to combine instruction and data
1371 * accesses/misses in hardware.
1373 static const unsigned armv7_a8_perf_map
[PERF_COUNT_HW_MAX
] = {
1374 [PERF_COUNT_HW_CPU_CYCLES
] = ARMV7_PERFCTR_CPU_CYCLES
,
1375 [PERF_COUNT_HW_INSTRUCTIONS
] = ARMV7_PERFCTR_INSTR_EXECUTED
,
1376 [PERF_COUNT_HW_CACHE_REFERENCES
] = HW_OP_UNSUPPORTED
,
1377 [PERF_COUNT_HW_CACHE_MISSES
] = HW_OP_UNSUPPORTED
,
1378 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = ARMV7_PERFCTR_PC_WRITE
,
1379 [PERF_COUNT_HW_BRANCH_MISSES
] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED
,
1380 [PERF_COUNT_HW_BUS_CYCLES
] = ARMV7_PERFCTR_CLOCK_CYCLES
,
1383 static const unsigned armv7_a8_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
1384 [PERF_COUNT_HW_CACHE_OP_MAX
]
1385 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1388 * The performance counters don't differentiate between read
1389 * and write accesses/misses so this isn't strictly correct,
1390 * but it's the best we can do. Writes and reads get
1394 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_DCACHE_ACCESS
,
1395 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DCACHE_REFILL
,
1398 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_DCACHE_ACCESS
,
1399 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DCACHE_REFILL
,
1401 [C(OP_PREFETCH
)] = {
1402 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1403 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1408 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_L1_INST
,
1409 [C(RESULT_MISS
)] = ARMV7_PERFCTR_L1_INST_MISS
,
1412 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_L1_INST
,
1413 [C(RESULT_MISS
)] = ARMV7_PERFCTR_L1_INST_MISS
,
1415 [C(OP_PREFETCH
)] = {
1416 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1417 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1422 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_L2_ACCESS
,
1423 [C(RESULT_MISS
)] = ARMV7_PERFCTR_L2_CACH_MISS
,
1426 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_L2_ACCESS
,
1427 [C(RESULT_MISS
)] = ARMV7_PERFCTR_L2_CACH_MISS
,
1429 [C(OP_PREFETCH
)] = {
1430 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1431 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1436 * Only ITLB misses and DTLB refills are supported.
1437 * If users want the DTLB refills misses a raw counter
1441 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1442 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DTLB_REFILL
,
1445 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1446 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DTLB_REFILL
,
1448 [C(OP_PREFETCH
)] = {
1449 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1450 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1455 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1456 [C(RESULT_MISS
)] = ARMV7_PERFCTR_ITLB_MISS
,
1459 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1460 [C(RESULT_MISS
)] = ARMV7_PERFCTR_ITLB_MISS
,
1462 [C(OP_PREFETCH
)] = {
1463 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1464 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1469 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_PC_WRITE
,
1471 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED
,
1474 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_PC_WRITE
,
1476 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED
,
1478 [C(OP_PREFETCH
)] = {
1479 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1480 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1486 * Cortex-A9 HW events mapping
1488 static const unsigned armv7_a9_perf_map
[PERF_COUNT_HW_MAX
] = {
1489 [PERF_COUNT_HW_CPU_CYCLES
] = ARMV7_PERFCTR_CPU_CYCLES
,
1490 [PERF_COUNT_HW_INSTRUCTIONS
] =
1491 ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE
,
1492 [PERF_COUNT_HW_CACHE_REFERENCES
] = ARMV7_PERFCTR_COHERENT_LINE_HIT
,
1493 [PERF_COUNT_HW_CACHE_MISSES
] = ARMV7_PERFCTR_COHERENT_LINE_MISS
,
1494 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = ARMV7_PERFCTR_PC_WRITE
,
1495 [PERF_COUNT_HW_BRANCH_MISSES
] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED
,
1496 [PERF_COUNT_HW_BUS_CYCLES
] = ARMV7_PERFCTR_CLOCK_CYCLES
,
1499 static const unsigned armv7_a9_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
1500 [PERF_COUNT_HW_CACHE_OP_MAX
]
1501 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1504 * The performance counters don't differentiate between read
1505 * and write accesses/misses so this isn't strictly correct,
1506 * but it's the best we can do. Writes and reads get
1510 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_DCACHE_ACCESS
,
1511 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DCACHE_REFILL
,
1514 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_DCACHE_ACCESS
,
1515 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DCACHE_REFILL
,
1517 [C(OP_PREFETCH
)] = {
1518 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1519 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1524 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1525 [C(RESULT_MISS
)] = ARMV7_PERFCTR_IFETCH_MISS
,
1528 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1529 [C(RESULT_MISS
)] = ARMV7_PERFCTR_IFETCH_MISS
,
1531 [C(OP_PREFETCH
)] = {
1532 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1533 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1538 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1539 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1542 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1543 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1545 [C(OP_PREFETCH
)] = {
1546 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1547 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1552 * Only ITLB misses and DTLB refills are supported.
1553 * If users want the DTLB refills misses a raw counter
1557 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1558 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DTLB_REFILL
,
1561 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1562 [C(RESULT_MISS
)] = ARMV7_PERFCTR_DTLB_REFILL
,
1564 [C(OP_PREFETCH
)] = {
1565 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1566 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1571 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1572 [C(RESULT_MISS
)] = ARMV7_PERFCTR_ITLB_MISS
,
1575 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1576 [C(RESULT_MISS
)] = ARMV7_PERFCTR_ITLB_MISS
,
1578 [C(OP_PREFETCH
)] = {
1579 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1580 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1585 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_PC_WRITE
,
1587 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED
,
1590 [C(RESULT_ACCESS
)] = ARMV7_PERFCTR_PC_WRITE
,
1592 = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED
,
1594 [C(OP_PREFETCH
)] = {
1595 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
1596 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
1602 * Perf Events counters
1604 enum armv7_counters
{
1605 ARMV7_CYCLE_COUNTER
= 1, /* Cycle counter */
1606 ARMV7_COUNTER0
= 2, /* First event counter */
1610 * The cycle counter is ARMV7_CYCLE_COUNTER.
1611 * The first event counter is ARMV7_COUNTER0.
1612 * The last event counter is (ARMV7_COUNTER0 + armpmu->num_events - 1).
1614 #define ARMV7_COUNTER_LAST (ARMV7_COUNTER0 + armpmu->num_events - 1)
1617 * ARMv7 low level PMNC access
1621 * Per-CPU PMNC: config reg
1623 #define ARMV7_PMNC_E (1 << 0) /* Enable all counters */
1624 #define ARMV7_PMNC_P (1 << 1) /* Reset all counters */
1625 #define ARMV7_PMNC_C (1 << 2) /* Cycle counter reset */
1626 #define ARMV7_PMNC_D (1 << 3) /* CCNT counts every 64th cpu cycle */
1627 #define ARMV7_PMNC_X (1 << 4) /* Export to ETM */
1628 #define ARMV7_PMNC_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
1629 #define ARMV7_PMNC_N_SHIFT 11 /* Number of counters supported */
1630 #define ARMV7_PMNC_N_MASK 0x1f
1631 #define ARMV7_PMNC_MASK 0x3f /* Mask for writable bits */
1634 * Available counters
1636 #define ARMV7_CNT0 0 /* First event counter */
1637 #define ARMV7_CCNT 31 /* Cycle counter */
1639 /* Perf Event to low level counters mapping */
1640 #define ARMV7_EVENT_CNT_TO_CNTx (ARMV7_COUNTER0 - ARMV7_CNT0)
1643 * CNTENS: counters enable reg
1645 #define ARMV7_CNTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1646 #define ARMV7_CNTENS_C (1 << ARMV7_CCNT)
1649 * CNTENC: counters disable reg
1651 #define ARMV7_CNTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1652 #define ARMV7_CNTENC_C (1 << ARMV7_CCNT)
1655 * INTENS: counters overflow interrupt enable reg
1657 #define ARMV7_INTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1658 #define ARMV7_INTENS_C (1 << ARMV7_CCNT)
1661 * INTENC: counters overflow interrupt disable reg
1663 #define ARMV7_INTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1664 #define ARMV7_INTENC_C (1 << ARMV7_CCNT)
1667 * EVTSEL: Event selection reg
1669 #define ARMV7_EVTSEL_MASK 0xff /* Mask for writable bits */
1672 * SELECT: Counter selection reg
1674 #define ARMV7_SELECT_MASK 0x1f /* Mask for writable bits */
1677 * FLAG: counters overflow flag status reg
1679 #define ARMV7_FLAG_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
1680 #define ARMV7_FLAG_C (1 << ARMV7_CCNT)
1681 #define ARMV7_FLAG_MASK 0xffffffff /* Mask for writable bits */
1682 #define ARMV7_OVERFLOWED_MASK ARMV7_FLAG_MASK
1684 static inline unsigned long armv7_pmnc_read(void)
1687 asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r"(val
));
1691 static inline void armv7_pmnc_write(unsigned long val
)
1693 val
&= ARMV7_PMNC_MASK
;
1694 asm volatile("mcr p15, 0, %0, c9, c12, 0" : : "r"(val
));
1697 static inline int armv7_pmnc_has_overflowed(unsigned long pmnc
)
1699 return pmnc
& ARMV7_OVERFLOWED_MASK
;
1702 static inline int armv7_pmnc_counter_has_overflowed(unsigned long pmnc
,
1703 enum armv7_counters counter
)
1707 if (counter
== ARMV7_CYCLE_COUNTER
)
1708 ret
= pmnc
& ARMV7_FLAG_C
;
1709 else if ((counter
>= ARMV7_COUNTER0
) && (counter
<= ARMV7_COUNTER_LAST
))
1710 ret
= pmnc
& ARMV7_FLAG_P(counter
);
1712 pr_err("CPU%u checking wrong counter %d overflow status\n",
1713 smp_processor_id(), counter
);
1718 static inline int armv7_pmnc_select_counter(unsigned int idx
)
1722 if ((idx
< ARMV7_COUNTER0
) || (idx
> ARMV7_COUNTER_LAST
)) {
1723 pr_err("CPU%u selecting wrong PMNC counter"
1724 " %d\n", smp_processor_id(), idx
);
1728 val
= (idx
- ARMV7_EVENT_CNT_TO_CNTx
) & ARMV7_SELECT_MASK
;
1729 asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (val
));
1734 static inline u32
armv7pmu_read_counter(int idx
)
1736 unsigned long value
= 0;
1738 if (idx
== ARMV7_CYCLE_COUNTER
)
1739 asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (value
));
1740 else if ((idx
>= ARMV7_COUNTER0
) && (idx
<= ARMV7_COUNTER_LAST
)) {
1741 if (armv7_pmnc_select_counter(idx
) == idx
)
1742 asm volatile("mrc p15, 0, %0, c9, c13, 2"
1745 pr_err("CPU%u reading wrong counter %d\n",
1746 smp_processor_id(), idx
);
1751 static inline void armv7pmu_write_counter(int idx
, u32 value
)
1753 if (idx
== ARMV7_CYCLE_COUNTER
)
1754 asm volatile("mcr p15, 0, %0, c9, c13, 0" : : "r" (value
));
1755 else if ((idx
>= ARMV7_COUNTER0
) && (idx
<= ARMV7_COUNTER_LAST
)) {
1756 if (armv7_pmnc_select_counter(idx
) == idx
)
1757 asm volatile("mcr p15, 0, %0, c9, c13, 2"
1760 pr_err("CPU%u writing wrong counter %d\n",
1761 smp_processor_id(), idx
);
1764 static inline void armv7_pmnc_write_evtsel(unsigned int idx
, u32 val
)
1766 if (armv7_pmnc_select_counter(idx
) == idx
) {
1767 val
&= ARMV7_EVTSEL_MASK
;
1768 asm volatile("mcr p15, 0, %0, c9, c13, 1" : : "r" (val
));
1772 static inline u32
armv7_pmnc_enable_counter(unsigned int idx
)
1776 if ((idx
!= ARMV7_CYCLE_COUNTER
) &&
1777 ((idx
< ARMV7_COUNTER0
) || (idx
> ARMV7_COUNTER_LAST
))) {
1778 pr_err("CPU%u enabling wrong PMNC counter"
1779 " %d\n", smp_processor_id(), idx
);
1783 if (idx
== ARMV7_CYCLE_COUNTER
)
1784 val
= ARMV7_CNTENS_C
;
1786 val
= ARMV7_CNTENS_P(idx
);
1788 asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (val
));
1793 static inline u32
armv7_pmnc_disable_counter(unsigned int idx
)
1798 if ((idx
!= ARMV7_CYCLE_COUNTER
) &&
1799 ((idx
< ARMV7_COUNTER0
) || (idx
> ARMV7_COUNTER_LAST
))) {
1800 pr_err("CPU%u disabling wrong PMNC counter"
1801 " %d\n", smp_processor_id(), idx
);
1805 if (idx
== ARMV7_CYCLE_COUNTER
)
1806 val
= ARMV7_CNTENC_C
;
1808 val
= ARMV7_CNTENC_P(idx
);
1810 asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (val
));
1815 static inline u32
armv7_pmnc_enable_intens(unsigned int idx
)
1819 if ((idx
!= ARMV7_CYCLE_COUNTER
) &&
1820 ((idx
< ARMV7_COUNTER0
) || (idx
> ARMV7_COUNTER_LAST
))) {
1821 pr_err("CPU%u enabling wrong PMNC counter"
1822 " interrupt enable %d\n", smp_processor_id(), idx
);
1826 if (idx
== ARMV7_CYCLE_COUNTER
)
1827 val
= ARMV7_INTENS_C
;
1829 val
= ARMV7_INTENS_P(idx
);
1831 asm volatile("mcr p15, 0, %0, c9, c14, 1" : : "r" (val
));
1836 static inline u32
armv7_pmnc_disable_intens(unsigned int idx
)
1840 if ((idx
!= ARMV7_CYCLE_COUNTER
) &&
1841 ((idx
< ARMV7_COUNTER0
) || (idx
> ARMV7_COUNTER_LAST
))) {
1842 pr_err("CPU%u disabling wrong PMNC counter"
1843 " interrupt enable %d\n", smp_processor_id(), idx
);
1847 if (idx
== ARMV7_CYCLE_COUNTER
)
1848 val
= ARMV7_INTENC_C
;
1850 val
= ARMV7_INTENC_P(idx
);
1852 asm volatile("mcr p15, 0, %0, c9, c14, 2" : : "r" (val
));
1857 static inline u32
armv7_pmnc_getreset_flags(void)
1862 asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val
));
1864 /* Write to clear flags */
1865 val
&= ARMV7_FLAG_MASK
;
1866 asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (val
));
1872 static void armv7_pmnc_dump_regs(void)
1877 printk(KERN_INFO
"PMNC registers dump:\n");
1879 asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r" (val
));
1880 printk(KERN_INFO
"PMNC =0x%08x\n", val
);
1882 asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r" (val
));
1883 printk(KERN_INFO
"CNTENS=0x%08x\n", val
);
1885 asm volatile("mrc p15, 0, %0, c9, c14, 1" : "=r" (val
));
1886 printk(KERN_INFO
"INTENS=0x%08x\n", val
);
1888 asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val
));
1889 printk(KERN_INFO
"FLAGS =0x%08x\n", val
);
1891 asm volatile("mrc p15, 0, %0, c9, c12, 5" : "=r" (val
));
1892 printk(KERN_INFO
"SELECT=0x%08x\n", val
);
1894 asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (val
));
1895 printk(KERN_INFO
"CCNT =0x%08x\n", val
);
1897 for (cnt
= ARMV7_COUNTER0
; cnt
< ARMV7_COUNTER_LAST
; cnt
++) {
1898 armv7_pmnc_select_counter(cnt
);
1899 asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (val
));
1900 printk(KERN_INFO
"CNT[%d] count =0x%08x\n",
1901 cnt
-ARMV7_EVENT_CNT_TO_CNTx
, val
);
1902 asm volatile("mrc p15, 0, %0, c9, c13, 1" : "=r" (val
));
1903 printk(KERN_INFO
"CNT[%d] evtsel=0x%08x\n",
1904 cnt
-ARMV7_EVENT_CNT_TO_CNTx
, val
);
1909 void armv7pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
1911 unsigned long flags
;
1914 * Enable counter and interrupt, and set the counter to count
1915 * the event that we're interested in.
1917 spin_lock_irqsave(&pmu_lock
, flags
);
1922 armv7_pmnc_disable_counter(idx
);
1925 * Set event (if destined for PMNx counters)
1926 * We don't need to set the event if it's a cycle count
1928 if (idx
!= ARMV7_CYCLE_COUNTER
)
1929 armv7_pmnc_write_evtsel(idx
, hwc
->config_base
);
1932 * Enable interrupt for this counter
1934 armv7_pmnc_enable_intens(idx
);
1939 armv7_pmnc_enable_counter(idx
);
1941 spin_unlock_irqrestore(&pmu_lock
, flags
);
1944 static void armv7pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
1946 unsigned long flags
;
1949 * Disable counter and interrupt
1951 spin_lock_irqsave(&pmu_lock
, flags
);
1956 armv7_pmnc_disable_counter(idx
);
1959 * Disable interrupt for this counter
1961 armv7_pmnc_disable_intens(idx
);
1963 spin_unlock_irqrestore(&pmu_lock
, flags
);
1966 static irqreturn_t
armv7pmu_handle_irq(int irq_num
, void *dev
)
1969 struct perf_sample_data data
;
1970 struct cpu_hw_events
*cpuc
;
1971 struct pt_regs
*regs
;
1975 * Get and reset the IRQ flags
1977 pmnc
= armv7_pmnc_getreset_flags();
1980 * Did an overflow occur?
1982 if (!armv7_pmnc_has_overflowed(pmnc
))
1986 * Handle the counter(s) overflow(s)
1988 regs
= get_irq_regs();
1990 perf_sample_data_init(&data
, 0);
1992 cpuc
= &__get_cpu_var(cpu_hw_events
);
1993 for (idx
= 0; idx
<= armpmu
->num_events
; ++idx
) {
1994 struct perf_event
*event
= cpuc
->events
[idx
];
1995 struct hw_perf_event
*hwc
;
1997 if (!test_bit(idx
, cpuc
->active_mask
))
2001 * We have a single interrupt for all counters. Check that
2002 * each counter has overflowed before we process it.
2004 if (!armv7_pmnc_counter_has_overflowed(pmnc
, idx
))
2008 armpmu_event_update(event
, hwc
, idx
);
2009 data
.period
= event
->hw
.last_period
;
2010 if (!armpmu_event_set_period(event
, hwc
, idx
))
2013 if (perf_event_overflow(event
, 0, &data
, regs
))
2014 armpmu
->disable(hwc
, idx
);
2018 * Handle the pending perf events.
2020 * Note: this call *must* be run with interrupts enabled. For
2021 * platforms that can have the PMU interrupts raised as a PMI, this
2024 perf_event_do_pending();
2029 static void armv7pmu_start(void)
2031 unsigned long flags
;
2033 spin_lock_irqsave(&pmu_lock
, flags
);
2034 /* Enable all counters */
2035 armv7_pmnc_write(armv7_pmnc_read() | ARMV7_PMNC_E
);
2036 spin_unlock_irqrestore(&pmu_lock
, flags
);
2039 static void armv7pmu_stop(void)
2041 unsigned long flags
;
2043 spin_lock_irqsave(&pmu_lock
, flags
);
2044 /* Disable all counters */
2045 armv7_pmnc_write(armv7_pmnc_read() & ~ARMV7_PMNC_E
);
2046 spin_unlock_irqrestore(&pmu_lock
, flags
);
2049 static inline int armv7_a8_pmu_event_map(int config
)
2051 int mapping
= armv7_a8_perf_map
[config
];
2052 if (HW_OP_UNSUPPORTED
== mapping
)
2053 mapping
= -EOPNOTSUPP
;
2057 static inline int armv7_a9_pmu_event_map(int config
)
2059 int mapping
= armv7_a9_perf_map
[config
];
2060 if (HW_OP_UNSUPPORTED
== mapping
)
2061 mapping
= -EOPNOTSUPP
;
2065 static u64
armv7pmu_raw_event(u64 config
)
2067 return config
& 0xff;
2070 static int armv7pmu_get_event_idx(struct cpu_hw_events
*cpuc
,
2071 struct hw_perf_event
*event
)
2075 /* Always place a cycle counter into the cycle counter. */
2076 if (event
->config_base
== ARMV7_PERFCTR_CPU_CYCLES
) {
2077 if (test_and_set_bit(ARMV7_CYCLE_COUNTER
, cpuc
->used_mask
))
2080 return ARMV7_CYCLE_COUNTER
;
2083 * For anything other than a cycle counter, try and use
2084 * the events counters
2086 for (idx
= ARMV7_COUNTER0
; idx
<= armpmu
->num_events
; ++idx
) {
2087 if (!test_and_set_bit(idx
, cpuc
->used_mask
))
2091 /* The counters are all in use. */
2096 static struct arm_pmu armv7pmu
= {
2097 .handle_irq
= armv7pmu_handle_irq
,
2098 .enable
= armv7pmu_enable_event
,
2099 .disable
= armv7pmu_disable_event
,
2100 .raw_event
= armv7pmu_raw_event
,
2101 .read_counter
= armv7pmu_read_counter
,
2102 .write_counter
= armv7pmu_write_counter
,
2103 .get_event_idx
= armv7pmu_get_event_idx
,
2104 .start
= armv7pmu_start
,
2105 .stop
= armv7pmu_stop
,
2106 .max_period
= (1LLU << 32) - 1,
2109 static u32 __init
armv7_reset_read_pmnc(void)
2113 /* Initialize & Reset PMNC: C and P bits */
2114 armv7_pmnc_write(ARMV7_PMNC_P
| ARMV7_PMNC_C
);
2116 /* Read the nb of CNTx counters supported from PMNC */
2117 nb_cnt
= (armv7_pmnc_read() >> ARMV7_PMNC_N_SHIFT
) & ARMV7_PMNC_N_MASK
;
2119 /* Add the CPU cycles counter and return */
2124 * ARMv5 [xscale] Performance counter handling code.
2126 * Based on xscale OProfile code.
2128 * There are two variants of the xscale PMU that we support:
2129 * - xscale1pmu: 2 event counters and a cycle counter
2130 * - xscale2pmu: 4 event counters and a cycle counter
2131 * The two variants share event definitions, but have different
2135 enum xscale_perf_types
{
2136 XSCALE_PERFCTR_ICACHE_MISS
= 0x00,
2137 XSCALE_PERFCTR_ICACHE_NO_DELIVER
= 0x01,
2138 XSCALE_PERFCTR_DATA_STALL
= 0x02,
2139 XSCALE_PERFCTR_ITLB_MISS
= 0x03,
2140 XSCALE_PERFCTR_DTLB_MISS
= 0x04,
2141 XSCALE_PERFCTR_BRANCH
= 0x05,
2142 XSCALE_PERFCTR_BRANCH_MISS
= 0x06,
2143 XSCALE_PERFCTR_INSTRUCTION
= 0x07,
2144 XSCALE_PERFCTR_DCACHE_FULL_STALL
= 0x08,
2145 XSCALE_PERFCTR_DCACHE_FULL_STALL_CONTIG
= 0x09,
2146 XSCALE_PERFCTR_DCACHE_ACCESS
= 0x0A,
2147 XSCALE_PERFCTR_DCACHE_MISS
= 0x0B,
2148 XSCALE_PERFCTR_DCACHE_WRITE_BACK
= 0x0C,
2149 XSCALE_PERFCTR_PC_CHANGED
= 0x0D,
2150 XSCALE_PERFCTR_BCU_REQUEST
= 0x10,
2151 XSCALE_PERFCTR_BCU_FULL
= 0x11,
2152 XSCALE_PERFCTR_BCU_DRAIN
= 0x12,
2153 XSCALE_PERFCTR_BCU_ECC_NO_ELOG
= 0x14,
2154 XSCALE_PERFCTR_BCU_1_BIT_ERR
= 0x15,
2155 XSCALE_PERFCTR_RMW
= 0x16,
2156 /* XSCALE_PERFCTR_CCNT is not hardware defined */
2157 XSCALE_PERFCTR_CCNT
= 0xFE,
2158 XSCALE_PERFCTR_UNUSED
= 0xFF,
2161 enum xscale_counters
{
2162 XSCALE_CYCLE_COUNTER
= 1,
2169 static const unsigned xscale_perf_map
[PERF_COUNT_HW_MAX
] = {
2170 [PERF_COUNT_HW_CPU_CYCLES
] = XSCALE_PERFCTR_CCNT
,
2171 [PERF_COUNT_HW_INSTRUCTIONS
] = XSCALE_PERFCTR_INSTRUCTION
,
2172 [PERF_COUNT_HW_CACHE_REFERENCES
] = HW_OP_UNSUPPORTED
,
2173 [PERF_COUNT_HW_CACHE_MISSES
] = HW_OP_UNSUPPORTED
,
2174 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = XSCALE_PERFCTR_BRANCH
,
2175 [PERF_COUNT_HW_BRANCH_MISSES
] = XSCALE_PERFCTR_BRANCH_MISS
,
2176 [PERF_COUNT_HW_BUS_CYCLES
] = HW_OP_UNSUPPORTED
,
2179 static const unsigned xscale_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
2180 [PERF_COUNT_HW_CACHE_OP_MAX
]
2181 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
2184 [C(RESULT_ACCESS
)] = XSCALE_PERFCTR_DCACHE_ACCESS
,
2185 [C(RESULT_MISS
)] = XSCALE_PERFCTR_DCACHE_MISS
,
2188 [C(RESULT_ACCESS
)] = XSCALE_PERFCTR_DCACHE_ACCESS
,
2189 [C(RESULT_MISS
)] = XSCALE_PERFCTR_DCACHE_MISS
,
2191 [C(OP_PREFETCH
)] = {
2192 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2193 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2198 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2199 [C(RESULT_MISS
)] = XSCALE_PERFCTR_ICACHE_MISS
,
2202 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2203 [C(RESULT_MISS
)] = XSCALE_PERFCTR_ICACHE_MISS
,
2205 [C(OP_PREFETCH
)] = {
2206 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2207 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2212 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2213 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2216 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2217 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2219 [C(OP_PREFETCH
)] = {
2220 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2221 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2226 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2227 [C(RESULT_MISS
)] = XSCALE_PERFCTR_DTLB_MISS
,
2230 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2231 [C(RESULT_MISS
)] = XSCALE_PERFCTR_DTLB_MISS
,
2233 [C(OP_PREFETCH
)] = {
2234 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2235 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2240 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2241 [C(RESULT_MISS
)] = XSCALE_PERFCTR_ITLB_MISS
,
2244 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2245 [C(RESULT_MISS
)] = XSCALE_PERFCTR_ITLB_MISS
,
2247 [C(OP_PREFETCH
)] = {
2248 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2249 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2254 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2255 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2258 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2259 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2261 [C(OP_PREFETCH
)] = {
2262 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
2263 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
2268 #define XSCALE_PMU_ENABLE 0x001
2269 #define XSCALE_PMN_RESET 0x002
2270 #define XSCALE_CCNT_RESET 0x004
2271 #define XSCALE_PMU_RESET (CCNT_RESET | PMN_RESET)
2272 #define XSCALE_PMU_CNT64 0x008
2275 xscalepmu_event_map(int config
)
2277 int mapping
= xscale_perf_map
[config
];
2278 if (HW_OP_UNSUPPORTED
== mapping
)
2279 mapping
= -EOPNOTSUPP
;
2284 xscalepmu_raw_event(u64 config
)
2286 return config
& 0xff;
2289 #define XSCALE1_OVERFLOWED_MASK 0x700
2290 #define XSCALE1_CCOUNT_OVERFLOW 0x400
2291 #define XSCALE1_COUNT0_OVERFLOW 0x100
2292 #define XSCALE1_COUNT1_OVERFLOW 0x200
2293 #define XSCALE1_CCOUNT_INT_EN 0x040
2294 #define XSCALE1_COUNT0_INT_EN 0x010
2295 #define XSCALE1_COUNT1_INT_EN 0x020
2296 #define XSCALE1_COUNT0_EVT_SHFT 12
2297 #define XSCALE1_COUNT0_EVT_MASK (0xff << XSCALE1_COUNT0_EVT_SHFT)
2298 #define XSCALE1_COUNT1_EVT_SHFT 20
2299 #define XSCALE1_COUNT1_EVT_MASK (0xff << XSCALE1_COUNT1_EVT_SHFT)
2302 xscale1pmu_read_pmnc(void)
2305 asm volatile("mrc p14, 0, %0, c0, c0, 0" : "=r" (val
));
2310 xscale1pmu_write_pmnc(u32 val
)
2312 /* upper 4bits and 7, 11 are write-as-0 */
2314 asm volatile("mcr p14, 0, %0, c0, c0, 0" : : "r" (val
));
2318 xscale1_pmnc_counter_has_overflowed(unsigned long pmnc
,
2319 enum xscale_counters counter
)
2324 case XSCALE_CYCLE_COUNTER
:
2325 ret
= pmnc
& XSCALE1_CCOUNT_OVERFLOW
;
2327 case XSCALE_COUNTER0
:
2328 ret
= pmnc
& XSCALE1_COUNT0_OVERFLOW
;
2330 case XSCALE_COUNTER1
:
2331 ret
= pmnc
& XSCALE1_COUNT1_OVERFLOW
;
2334 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
2341 xscale1pmu_handle_irq(int irq_num
, void *dev
)
2344 struct perf_sample_data data
;
2345 struct cpu_hw_events
*cpuc
;
2346 struct pt_regs
*regs
;
2350 * NOTE: there's an A stepping erratum that states if an overflow
2351 * bit already exists and another occurs, the previous
2352 * Overflow bit gets cleared. There's no workaround.
2353 * Fixed in B stepping or later.
2355 pmnc
= xscale1pmu_read_pmnc();
2358 * Write the value back to clear the overflow flags. Overflow
2359 * flags remain in pmnc for use below. We also disable the PMU
2360 * while we process the interrupt.
2362 xscale1pmu_write_pmnc(pmnc
& ~XSCALE_PMU_ENABLE
);
2364 if (!(pmnc
& XSCALE1_OVERFLOWED_MASK
))
2367 regs
= get_irq_regs();
2369 perf_sample_data_init(&data
, 0);
2371 cpuc
= &__get_cpu_var(cpu_hw_events
);
2372 for (idx
= 0; idx
<= armpmu
->num_events
; ++idx
) {
2373 struct perf_event
*event
= cpuc
->events
[idx
];
2374 struct hw_perf_event
*hwc
;
2376 if (!test_bit(idx
, cpuc
->active_mask
))
2379 if (!xscale1_pmnc_counter_has_overflowed(pmnc
, idx
))
2383 armpmu_event_update(event
, hwc
, idx
);
2384 data
.period
= event
->hw
.last_period
;
2385 if (!armpmu_event_set_period(event
, hwc
, idx
))
2388 if (perf_event_overflow(event
, 0, &data
, regs
))
2389 armpmu
->disable(hwc
, idx
);
2392 perf_event_do_pending();
2395 * Re-enable the PMU.
2397 pmnc
= xscale1pmu_read_pmnc() | XSCALE_PMU_ENABLE
;
2398 xscale1pmu_write_pmnc(pmnc
);
2404 xscale1pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
2406 unsigned long val
, mask
, evt
, flags
;
2409 case XSCALE_CYCLE_COUNTER
:
2411 evt
= XSCALE1_CCOUNT_INT_EN
;
2413 case XSCALE_COUNTER0
:
2414 mask
= XSCALE1_COUNT0_EVT_MASK
;
2415 evt
= (hwc
->config_base
<< XSCALE1_COUNT0_EVT_SHFT
) |
2416 XSCALE1_COUNT0_INT_EN
;
2418 case XSCALE_COUNTER1
:
2419 mask
= XSCALE1_COUNT1_EVT_MASK
;
2420 evt
= (hwc
->config_base
<< XSCALE1_COUNT1_EVT_SHFT
) |
2421 XSCALE1_COUNT1_INT_EN
;
2424 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
2428 spin_lock_irqsave(&pmu_lock
, flags
);
2429 val
= xscale1pmu_read_pmnc();
2432 xscale1pmu_write_pmnc(val
);
2433 spin_unlock_irqrestore(&pmu_lock
, flags
);
2437 xscale1pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
2439 unsigned long val
, mask
, evt
, flags
;
2442 case XSCALE_CYCLE_COUNTER
:
2443 mask
= XSCALE1_CCOUNT_INT_EN
;
2446 case XSCALE_COUNTER0
:
2447 mask
= XSCALE1_COUNT0_INT_EN
| XSCALE1_COUNT0_EVT_MASK
;
2448 evt
= XSCALE_PERFCTR_UNUSED
<< XSCALE1_COUNT0_EVT_SHFT
;
2450 case XSCALE_COUNTER1
:
2451 mask
= XSCALE1_COUNT1_INT_EN
| XSCALE1_COUNT1_EVT_MASK
;
2452 evt
= XSCALE_PERFCTR_UNUSED
<< XSCALE1_COUNT1_EVT_SHFT
;
2455 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
2459 spin_lock_irqsave(&pmu_lock
, flags
);
2460 val
= xscale1pmu_read_pmnc();
2463 xscale1pmu_write_pmnc(val
);
2464 spin_unlock_irqrestore(&pmu_lock
, flags
);
2468 xscale1pmu_get_event_idx(struct cpu_hw_events
*cpuc
,
2469 struct hw_perf_event
*event
)
2471 if (XSCALE_PERFCTR_CCNT
== event
->config_base
) {
2472 if (test_and_set_bit(XSCALE_CYCLE_COUNTER
, cpuc
->used_mask
))
2475 return XSCALE_CYCLE_COUNTER
;
2477 if (!test_and_set_bit(XSCALE_COUNTER1
, cpuc
->used_mask
)) {
2478 return XSCALE_COUNTER1
;
2481 if (!test_and_set_bit(XSCALE_COUNTER0
, cpuc
->used_mask
)) {
2482 return XSCALE_COUNTER0
;
2490 xscale1pmu_start(void)
2492 unsigned long flags
, val
;
2494 spin_lock_irqsave(&pmu_lock
, flags
);
2495 val
= xscale1pmu_read_pmnc();
2496 val
|= XSCALE_PMU_ENABLE
;
2497 xscale1pmu_write_pmnc(val
);
2498 spin_unlock_irqrestore(&pmu_lock
, flags
);
2502 xscale1pmu_stop(void)
2504 unsigned long flags
, val
;
2506 spin_lock_irqsave(&pmu_lock
, flags
);
2507 val
= xscale1pmu_read_pmnc();
2508 val
&= ~XSCALE_PMU_ENABLE
;
2509 xscale1pmu_write_pmnc(val
);
2510 spin_unlock_irqrestore(&pmu_lock
, flags
);
2514 xscale1pmu_read_counter(int counter
)
2519 case XSCALE_CYCLE_COUNTER
:
2520 asm volatile("mrc p14, 0, %0, c1, c0, 0" : "=r" (val
));
2522 case XSCALE_COUNTER0
:
2523 asm volatile("mrc p14, 0, %0, c2, c0, 0" : "=r" (val
));
2525 case XSCALE_COUNTER1
:
2526 asm volatile("mrc p14, 0, %0, c3, c0, 0" : "=r" (val
));
2534 xscale1pmu_write_counter(int counter
, u32 val
)
2537 case XSCALE_CYCLE_COUNTER
:
2538 asm volatile("mcr p14, 0, %0, c1, c0, 0" : : "r" (val
));
2540 case XSCALE_COUNTER0
:
2541 asm volatile("mcr p14, 0, %0, c2, c0, 0" : : "r" (val
));
2543 case XSCALE_COUNTER1
:
2544 asm volatile("mcr p14, 0, %0, c3, c0, 0" : : "r" (val
));
2549 static const struct arm_pmu xscale1pmu
= {
2550 .id
= ARM_PERF_PMU_ID_XSCALE1
,
2551 .handle_irq
= xscale1pmu_handle_irq
,
2552 .enable
= xscale1pmu_enable_event
,
2553 .disable
= xscale1pmu_disable_event
,
2554 .event_map
= xscalepmu_event_map
,
2555 .raw_event
= xscalepmu_raw_event
,
2556 .read_counter
= xscale1pmu_read_counter
,
2557 .write_counter
= xscale1pmu_write_counter
,
2558 .get_event_idx
= xscale1pmu_get_event_idx
,
2559 .start
= xscale1pmu_start
,
2560 .stop
= xscale1pmu_stop
,
2562 .max_period
= (1LLU << 32) - 1,
2565 #define XSCALE2_OVERFLOWED_MASK 0x01f
2566 #define XSCALE2_CCOUNT_OVERFLOW 0x001
2567 #define XSCALE2_COUNT0_OVERFLOW 0x002
2568 #define XSCALE2_COUNT1_OVERFLOW 0x004
2569 #define XSCALE2_COUNT2_OVERFLOW 0x008
2570 #define XSCALE2_COUNT3_OVERFLOW 0x010
2571 #define XSCALE2_CCOUNT_INT_EN 0x001
2572 #define XSCALE2_COUNT0_INT_EN 0x002
2573 #define XSCALE2_COUNT1_INT_EN 0x004
2574 #define XSCALE2_COUNT2_INT_EN 0x008
2575 #define XSCALE2_COUNT3_INT_EN 0x010
2576 #define XSCALE2_COUNT0_EVT_SHFT 0
2577 #define XSCALE2_COUNT0_EVT_MASK (0xff << XSCALE2_COUNT0_EVT_SHFT)
2578 #define XSCALE2_COUNT1_EVT_SHFT 8
2579 #define XSCALE2_COUNT1_EVT_MASK (0xff << XSCALE2_COUNT1_EVT_SHFT)
2580 #define XSCALE2_COUNT2_EVT_SHFT 16
2581 #define XSCALE2_COUNT2_EVT_MASK (0xff << XSCALE2_COUNT2_EVT_SHFT)
2582 #define XSCALE2_COUNT3_EVT_SHFT 24
2583 #define XSCALE2_COUNT3_EVT_MASK (0xff << XSCALE2_COUNT3_EVT_SHFT)
2586 xscale2pmu_read_pmnc(void)
2589 asm volatile("mrc p14, 0, %0, c0, c1, 0" : "=r" (val
));
2590 /* bits 1-2 and 4-23 are read-unpredictable */
2591 return val
& 0xff000009;
2595 xscale2pmu_write_pmnc(u32 val
)
2597 /* bits 4-23 are write-as-0, 24-31 are write ignored */
2599 asm volatile("mcr p14, 0, %0, c0, c1, 0" : : "r" (val
));
2603 xscale2pmu_read_overflow_flags(void)
2606 asm volatile("mrc p14, 0, %0, c5, c1, 0" : "=r" (val
));
2611 xscale2pmu_write_overflow_flags(u32 val
)
2613 asm volatile("mcr p14, 0, %0, c5, c1, 0" : : "r" (val
));
2617 xscale2pmu_read_event_select(void)
2620 asm volatile("mrc p14, 0, %0, c8, c1, 0" : "=r" (val
));
2625 xscale2pmu_write_event_select(u32 val
)
2627 asm volatile("mcr p14, 0, %0, c8, c1, 0" : : "r"(val
));
2631 xscale2pmu_read_int_enable(void)
2634 asm volatile("mrc p14, 0, %0, c4, c1, 0" : "=r" (val
));
2639 xscale2pmu_write_int_enable(u32 val
)
2641 asm volatile("mcr p14, 0, %0, c4, c1, 0" : : "r" (val
));
2645 xscale2_pmnc_counter_has_overflowed(unsigned long of_flags
,
2646 enum xscale_counters counter
)
2651 case XSCALE_CYCLE_COUNTER
:
2652 ret
= of_flags
& XSCALE2_CCOUNT_OVERFLOW
;
2654 case XSCALE_COUNTER0
:
2655 ret
= of_flags
& XSCALE2_COUNT0_OVERFLOW
;
2657 case XSCALE_COUNTER1
:
2658 ret
= of_flags
& XSCALE2_COUNT1_OVERFLOW
;
2660 case XSCALE_COUNTER2
:
2661 ret
= of_flags
& XSCALE2_COUNT2_OVERFLOW
;
2663 case XSCALE_COUNTER3
:
2664 ret
= of_flags
& XSCALE2_COUNT3_OVERFLOW
;
2667 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
2674 xscale2pmu_handle_irq(int irq_num
, void *dev
)
2676 unsigned long pmnc
, of_flags
;
2677 struct perf_sample_data data
;
2678 struct cpu_hw_events
*cpuc
;
2679 struct pt_regs
*regs
;
2682 /* Disable the PMU. */
2683 pmnc
= xscale2pmu_read_pmnc();
2684 xscale2pmu_write_pmnc(pmnc
& ~XSCALE_PMU_ENABLE
);
2686 /* Check the overflow flag register. */
2687 of_flags
= xscale2pmu_read_overflow_flags();
2688 if (!(of_flags
& XSCALE2_OVERFLOWED_MASK
))
2691 /* Clear the overflow bits. */
2692 xscale2pmu_write_overflow_flags(of_flags
);
2694 regs
= get_irq_regs();
2696 perf_sample_data_init(&data
, 0);
2698 cpuc
= &__get_cpu_var(cpu_hw_events
);
2699 for (idx
= 0; idx
<= armpmu
->num_events
; ++idx
) {
2700 struct perf_event
*event
= cpuc
->events
[idx
];
2701 struct hw_perf_event
*hwc
;
2703 if (!test_bit(idx
, cpuc
->active_mask
))
2706 if (!xscale2_pmnc_counter_has_overflowed(pmnc
, idx
))
2710 armpmu_event_update(event
, hwc
, idx
);
2711 data
.period
= event
->hw
.last_period
;
2712 if (!armpmu_event_set_period(event
, hwc
, idx
))
2715 if (perf_event_overflow(event
, 0, &data
, regs
))
2716 armpmu
->disable(hwc
, idx
);
2719 perf_event_do_pending();
2722 * Re-enable the PMU.
2724 pmnc
= xscale2pmu_read_pmnc() | XSCALE_PMU_ENABLE
;
2725 xscale2pmu_write_pmnc(pmnc
);
2731 xscale2pmu_enable_event(struct hw_perf_event
*hwc
, int idx
)
2733 unsigned long flags
, ien
, evtsel
;
2735 ien
= xscale2pmu_read_int_enable();
2736 evtsel
= xscale2pmu_read_event_select();
2739 case XSCALE_CYCLE_COUNTER
:
2740 ien
|= XSCALE2_CCOUNT_INT_EN
;
2742 case XSCALE_COUNTER0
:
2743 ien
|= XSCALE2_COUNT0_INT_EN
;
2744 evtsel
&= ~XSCALE2_COUNT0_EVT_MASK
;
2745 evtsel
|= hwc
->config_base
<< XSCALE2_COUNT0_EVT_SHFT
;
2747 case XSCALE_COUNTER1
:
2748 ien
|= XSCALE2_COUNT1_INT_EN
;
2749 evtsel
&= ~XSCALE2_COUNT1_EVT_MASK
;
2750 evtsel
|= hwc
->config_base
<< XSCALE2_COUNT1_EVT_SHFT
;
2752 case XSCALE_COUNTER2
:
2753 ien
|= XSCALE2_COUNT2_INT_EN
;
2754 evtsel
&= ~XSCALE2_COUNT2_EVT_MASK
;
2755 evtsel
|= hwc
->config_base
<< XSCALE2_COUNT2_EVT_SHFT
;
2757 case XSCALE_COUNTER3
:
2758 ien
|= XSCALE2_COUNT3_INT_EN
;
2759 evtsel
&= ~XSCALE2_COUNT3_EVT_MASK
;
2760 evtsel
|= hwc
->config_base
<< XSCALE2_COUNT3_EVT_SHFT
;
2763 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
2767 spin_lock_irqsave(&pmu_lock
, flags
);
2768 xscale2pmu_write_event_select(evtsel
);
2769 xscale2pmu_write_int_enable(ien
);
2770 spin_unlock_irqrestore(&pmu_lock
, flags
);
2774 xscale2pmu_disable_event(struct hw_perf_event
*hwc
, int idx
)
2776 unsigned long flags
, ien
, evtsel
;
2778 ien
= xscale2pmu_read_int_enable();
2779 evtsel
= xscale2pmu_read_event_select();
2782 case XSCALE_CYCLE_COUNTER
:
2783 ien
&= ~XSCALE2_CCOUNT_INT_EN
;
2785 case XSCALE_COUNTER0
:
2786 ien
&= ~XSCALE2_COUNT0_INT_EN
;
2787 evtsel
&= ~XSCALE2_COUNT0_EVT_MASK
;
2788 evtsel
|= XSCALE_PERFCTR_UNUSED
<< XSCALE2_COUNT0_EVT_SHFT
;
2790 case XSCALE_COUNTER1
:
2791 ien
&= ~XSCALE2_COUNT1_INT_EN
;
2792 evtsel
&= ~XSCALE2_COUNT1_EVT_MASK
;
2793 evtsel
|= XSCALE_PERFCTR_UNUSED
<< XSCALE2_COUNT1_EVT_SHFT
;
2795 case XSCALE_COUNTER2
:
2796 ien
&= ~XSCALE2_COUNT2_INT_EN
;
2797 evtsel
&= ~XSCALE2_COUNT2_EVT_MASK
;
2798 evtsel
|= XSCALE_PERFCTR_UNUSED
<< XSCALE2_COUNT2_EVT_SHFT
;
2800 case XSCALE_COUNTER3
:
2801 ien
&= ~XSCALE2_COUNT3_INT_EN
;
2802 evtsel
&= ~XSCALE2_COUNT3_EVT_MASK
;
2803 evtsel
|= XSCALE_PERFCTR_UNUSED
<< XSCALE2_COUNT3_EVT_SHFT
;
2806 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
2810 spin_lock_irqsave(&pmu_lock
, flags
);
2811 xscale2pmu_write_event_select(evtsel
);
2812 xscale2pmu_write_int_enable(ien
);
2813 spin_unlock_irqrestore(&pmu_lock
, flags
);
2817 xscale2pmu_get_event_idx(struct cpu_hw_events
*cpuc
,
2818 struct hw_perf_event
*event
)
2820 int idx
= xscale1pmu_get_event_idx(cpuc
, event
);
2824 if (!test_and_set_bit(XSCALE_COUNTER3
, cpuc
->used_mask
))
2825 idx
= XSCALE_COUNTER3
;
2826 else if (!test_and_set_bit(XSCALE_COUNTER2
, cpuc
->used_mask
))
2827 idx
= XSCALE_COUNTER2
;
2833 xscale2pmu_start(void)
2835 unsigned long flags
, val
;
2837 spin_lock_irqsave(&pmu_lock
, flags
);
2838 val
= xscale2pmu_read_pmnc() & ~XSCALE_PMU_CNT64
;
2839 val
|= XSCALE_PMU_ENABLE
;
2840 xscale2pmu_write_pmnc(val
);
2841 spin_unlock_irqrestore(&pmu_lock
, flags
);
2845 xscale2pmu_stop(void)
2847 unsigned long flags
, val
;
2849 spin_lock_irqsave(&pmu_lock
, flags
);
2850 val
= xscale2pmu_read_pmnc();
2851 val
&= ~XSCALE_PMU_ENABLE
;
2852 xscale2pmu_write_pmnc(val
);
2853 spin_unlock_irqrestore(&pmu_lock
, flags
);
2857 xscale2pmu_read_counter(int counter
)
2862 case XSCALE_CYCLE_COUNTER
:
2863 asm volatile("mrc p14, 0, %0, c1, c1, 0" : "=r" (val
));
2865 case XSCALE_COUNTER0
:
2866 asm volatile("mrc p14, 0, %0, c0, c2, 0" : "=r" (val
));
2868 case XSCALE_COUNTER1
:
2869 asm volatile("mrc p14, 0, %0, c1, c2, 0" : "=r" (val
));
2871 case XSCALE_COUNTER2
:
2872 asm volatile("mrc p14, 0, %0, c2, c2, 0" : "=r" (val
));
2874 case XSCALE_COUNTER3
:
2875 asm volatile("mrc p14, 0, %0, c3, c2, 0" : "=r" (val
));
2883 xscale2pmu_write_counter(int counter
, u32 val
)
2886 case XSCALE_CYCLE_COUNTER
:
2887 asm volatile("mcr p14, 0, %0, c1, c1, 0" : : "r" (val
));
2889 case XSCALE_COUNTER0
:
2890 asm volatile("mcr p14, 0, %0, c0, c2, 0" : : "r" (val
));
2892 case XSCALE_COUNTER1
:
2893 asm volatile("mcr p14, 0, %0, c1, c2, 0" : : "r" (val
));
2895 case XSCALE_COUNTER2
:
2896 asm volatile("mcr p14, 0, %0, c2, c2, 0" : : "r" (val
));
2898 case XSCALE_COUNTER3
:
2899 asm volatile("mcr p14, 0, %0, c3, c2, 0" : : "r" (val
));
2904 static const struct arm_pmu xscale2pmu
= {
2905 .id
= ARM_PERF_PMU_ID_XSCALE2
,
2906 .handle_irq
= xscale2pmu_handle_irq
,
2907 .enable
= xscale2pmu_enable_event
,
2908 .disable
= xscale2pmu_disable_event
,
2909 .event_map
= xscalepmu_event_map
,
2910 .raw_event
= xscalepmu_raw_event
,
2911 .read_counter
= xscale2pmu_read_counter
,
2912 .write_counter
= xscale2pmu_write_counter
,
2913 .get_event_idx
= xscale2pmu_get_event_idx
,
2914 .start
= xscale2pmu_start
,
2915 .stop
= xscale2pmu_stop
,
2917 .max_period
= (1LLU << 32) - 1,
2921 init_hw_perf_events(void)
2923 unsigned long cpuid
= read_cpuid_id();
2924 unsigned long implementor
= (cpuid
& 0xFF000000) >> 24;
2925 unsigned long part_number
= (cpuid
& 0xFFF0);
2928 if (0x41 == implementor
) {
2929 switch (part_number
) {
2930 case 0xB360: /* ARM1136 */
2931 case 0xB560: /* ARM1156 */
2932 case 0xB760: /* ARM1176 */
2934 memcpy(armpmu_perf_cache_map
, armv6_perf_cache_map
,
2935 sizeof(armv6_perf_cache_map
));
2936 perf_max_events
= armv6pmu
.num_events
;
2938 case 0xB020: /* ARM11mpcore */
2939 armpmu
= &armv6mpcore_pmu
;
2940 memcpy(armpmu_perf_cache_map
,
2941 armv6mpcore_perf_cache_map
,
2942 sizeof(armv6mpcore_perf_cache_map
));
2943 perf_max_events
= armv6mpcore_pmu
.num_events
;
2945 case 0xC080: /* Cortex-A8 */
2946 armv7pmu
.id
= ARM_PERF_PMU_ID_CA8
;
2947 memcpy(armpmu_perf_cache_map
, armv7_a8_perf_cache_map
,
2948 sizeof(armv7_a8_perf_cache_map
));
2949 armv7pmu
.event_map
= armv7_a8_pmu_event_map
;
2952 /* Reset PMNC and read the nb of CNTx counters
2954 armv7pmu
.num_events
= armv7_reset_read_pmnc();
2955 perf_max_events
= armv7pmu
.num_events
;
2957 case 0xC090: /* Cortex-A9 */
2958 armv7pmu
.id
= ARM_PERF_PMU_ID_CA9
;
2959 memcpy(armpmu_perf_cache_map
, armv7_a9_perf_cache_map
,
2960 sizeof(armv7_a9_perf_cache_map
));
2961 armv7pmu
.event_map
= armv7_a9_pmu_event_map
;
2964 /* Reset PMNC and read the nb of CNTx counters
2966 armv7pmu
.num_events
= armv7_reset_read_pmnc();
2967 perf_max_events
= armv7pmu
.num_events
;
2970 /* Intel CPUs [xscale]. */
2971 } else if (0x69 == implementor
) {
2972 part_number
= (cpuid
>> 13) & 0x7;
2973 switch (part_number
) {
2975 armpmu
= &xscale1pmu
;
2976 memcpy(armpmu_perf_cache_map
, xscale_perf_cache_map
,
2977 sizeof(xscale_perf_cache_map
));
2978 perf_max_events
= xscale1pmu
.num_events
;
2981 armpmu
= &xscale2pmu
;
2982 memcpy(armpmu_perf_cache_map
, xscale_perf_cache_map
,
2983 sizeof(xscale_perf_cache_map
));
2984 perf_max_events
= xscale2pmu
.num_events
;
2990 pr_info("enabled with %s PMU driver, %d counters available\n",
2991 arm_pmu_names
[armpmu
->id
], armpmu
->num_events
);
2993 pr_info("no hardware support available\n");
2994 perf_max_events
= -1;
2999 arch_initcall(init_hw_perf_events
);
3002 * Callchain handling code.
3005 callchain_store(struct perf_callchain_entry
*entry
,
3008 if (entry
->nr
< PERF_MAX_STACK_DEPTH
)
3009 entry
->ip
[entry
->nr
++] = ip
;
3013 * The registers we're interested in are at the end of the variable
3014 * length saved register structure. The fp points at the end of this
3015 * structure so the address of this struct is:
3016 * (struct frame_tail *)(xxx->fp)-1
3018 * This code has been adapted from the ARM OProfile support.
3021 struct frame_tail
*fp
;
3024 } __attribute__((packed
));
3027 * Get the return address for a single stackframe and return a pointer to the
3030 static struct frame_tail
*
3031 user_backtrace(struct frame_tail
*tail
,
3032 struct perf_callchain_entry
*entry
)
3034 struct frame_tail buftail
;
3036 /* Also check accessibility of one struct frame_tail beyond */
3037 if (!access_ok(VERIFY_READ
, tail
, sizeof(buftail
)))
3039 if (__copy_from_user_inatomic(&buftail
, tail
, sizeof(buftail
)))
3042 callchain_store(entry
, buftail
.lr
);
3045 * Frame pointers should strictly progress back up the stack
3046 * (towards higher addresses).
3048 if (tail
>= buftail
.fp
)
3051 return buftail
.fp
- 1;
3055 perf_callchain_user(struct pt_regs
*regs
,
3056 struct perf_callchain_entry
*entry
)
3058 struct frame_tail
*tail
;
3060 callchain_store(entry
, PERF_CONTEXT_USER
);
3062 if (!user_mode(regs
))
3063 regs
= task_pt_regs(current
);
3065 tail
= (struct frame_tail
*)regs
->ARM_fp
- 1;
3067 while (tail
&& !((unsigned long)tail
& 0x3))
3068 tail
= user_backtrace(tail
, entry
);
3072 * Gets called by walk_stackframe() for every stackframe. This will be called
3073 * whist unwinding the stackframe and is like a subroutine return so we use
3077 callchain_trace(struct stackframe
*fr
,
3080 struct perf_callchain_entry
*entry
= data
;
3081 callchain_store(entry
, fr
->pc
);
3086 perf_callchain_kernel(struct pt_regs
*regs
,
3087 struct perf_callchain_entry
*entry
)
3089 struct stackframe fr
;
3091 callchain_store(entry
, PERF_CONTEXT_KERNEL
);
3092 fr
.fp
= regs
->ARM_fp
;
3093 fr
.sp
= regs
->ARM_sp
;
3094 fr
.lr
= regs
->ARM_lr
;
3095 fr
.pc
= regs
->ARM_pc
;
3096 walk_stackframe(&fr
, callchain_trace
, entry
);
3100 perf_do_callchain(struct pt_regs
*regs
,
3101 struct perf_callchain_entry
*entry
)
3108 is_user
= user_mode(regs
);
3110 if (!current
|| !current
->pid
)
3113 if (is_user
&& current
->state
!= TASK_RUNNING
)
3117 perf_callchain_kernel(regs
, entry
);
3120 perf_callchain_user(regs
, entry
);
3123 static DEFINE_PER_CPU(struct perf_callchain_entry
, pmc_irq_entry
);
3125 struct perf_callchain_entry
*
3126 perf_callchain(struct pt_regs
*regs
)
3128 struct perf_callchain_entry
*entry
= &__get_cpu_var(pmc_irq_entry
);
3131 perf_do_callchain(regs
, entry
);