Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux/fpc-iii.git] / arch / blackfin / kernel / setup.c
blobd37a397f43f5eacab8517c6c83fd2cf50e1905da
1 /*
2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
5 */
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 static struct bfin_memmap {
64 int nr_map;
65 struct bfin_memmap_entry {
66 unsigned long long addr; /* start of memory segment */
67 unsigned long long size;
68 unsigned long type;
69 } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
72 /* for memmap sanitization */
73 struct change_member {
74 struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 unsigned long long addr; /* address for this change point */
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
84 static int early_init_clkin_hz(char *buf);
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
89 unsigned int cpu;
91 generate_cplb_tables_all();
92 /* Generate per-CPU I&D CPLB tables */
93 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 generate_cplb_tables_cpu(cpu);
96 #endif
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
100 #ifdef CONFIG_BFIN_ICACHE
101 bfin_icache_init(icplb_tbl[cpu]);
102 #endif
104 #ifdef CONFIG_BFIN_DCACHE
105 bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
109 * In cache coherence emulation mode, we need to have the
110 * D-cache enabled before running any atomic operation which
111 * might involve cache invalidation (i.e. spinlock, rwlock).
112 * So printk's are deferred until then.
114 #ifdef CONFIG_BFIN_ICACHE
115 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 printk(KERN_INFO " External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118 " cacheable"
119 # else
120 " uncacheable"
121 # endif
122 " in instruction cache\n");
123 if (L2_LENGTH)
124 printk(KERN_INFO " L2 SRAM :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126 " cacheable"
127 # else
128 " uncacheable"
129 # endif
130 " in instruction cache\n");
132 #else
133 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
136 #ifdef CONFIG_BFIN_DCACHE
137 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138 printk(KERN_INFO " External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140 " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142 " cacheable (write-through)"
143 # else
144 " uncacheable"
145 # endif
146 " in data cache\n");
147 if (L2_LENGTH)
148 printk(KERN_INFO " L2 SRAM :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150 " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152 " cacheable (write-through)"
153 # else
154 " uncacheable"
155 # endif
156 " in data cache\n");
157 #else
158 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
164 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
166 cpudata->idle = current;
167 cpudata->imemctl = bfin_read_IMEM_CONTROL();
168 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
171 void __init bfin_cache_init(void)
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174 generate_cplb_tables();
175 #endif
176 bfin_setup_caches(0);
179 void __init bfin_relocate_l1_mem(void)
181 unsigned long text_l1_len = (unsigned long)_text_l1_len;
182 unsigned long data_l1_len = (unsigned long)_data_l1_len;
183 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
184 unsigned long l2_len = (unsigned long)_l2_len;
186 early_shadow_stamp();
189 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190 * we know that everything about l1 text/data is nice and aligned,
191 * so copy by 4 byte chunks, and don't worry about overlapping
192 * src/dest.
194 * We can't use the dma_memcpy functions, since they can call
195 * scheduler functions which might be in L1 :( and core writes
196 * into L1 instruction cause bad access errors, so we are stuck,
197 * we are required to use DMA, but can't use the common dma
198 * functions. We can't use memcpy either - since that might be
199 * going to be in the relocated L1
202 blackfin_dma_early_init();
204 /* if necessary, copy L1 text to L1 instruction SRAM */
205 if (L1_CODE_LENGTH && text_l1_len)
206 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
208 /* if necessary, copy L1 data to L1 data bank A SRAM */
209 if (L1_DATA_A_LENGTH && data_l1_len)
210 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
212 /* if necessary, copy L1 data B to L1 data bank B SRAM */
213 if (L1_DATA_B_LENGTH && data_b_l1_len)
214 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
216 early_dma_memcpy_done();
218 /* if necessary, copy L2 text/data to L2 SRAM */
219 if (L2_LENGTH && l2_len)
220 memcpy(_stext_l2, _l2_lma, l2_len);
223 #ifdef CONFIG_ROMKERNEL
224 void __init bfin_relocate_xip_data(void)
226 early_shadow_stamp();
228 memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
229 memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
231 #endif
233 /* add_memory_region to memmap */
234 static void __init add_memory_region(unsigned long long start,
235 unsigned long long size, int type)
237 int i;
239 i = bfin_memmap.nr_map;
241 if (i == BFIN_MEMMAP_MAX) {
242 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
243 return;
246 bfin_memmap.map[i].addr = start;
247 bfin_memmap.map[i].size = size;
248 bfin_memmap.map[i].type = type;
249 bfin_memmap.nr_map++;
253 * Sanitize the boot memmap, removing overlaps.
255 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
257 struct change_member *change_tmp;
258 unsigned long current_type, last_type;
259 unsigned long long last_addr;
260 int chgidx, still_changing;
261 int overlap_entries;
262 int new_entry;
263 int old_nr, new_nr, chg_nr;
264 int i;
267 Visually we're performing the following (1,2,3,4 = memory types)
269 Sample memory map (w/overlaps):
270 ____22__________________
271 ______________________4_
272 ____1111________________
273 _44_____________________
274 11111111________________
275 ____________________33__
276 ___________44___________
277 __________33333_________
278 ______________22________
279 ___________________2222_
280 _________111111111______
281 _____________________11_
282 _________________4______
284 Sanitized equivalent (no overlap):
285 1_______________________
286 _44_____________________
287 ___1____________________
288 ____22__________________
289 ______11________________
290 _________1______________
291 __________3_____________
292 ___________44___________
293 _____________33_________
294 _______________2________
295 ________________1_______
296 _________________4______
297 ___________________2____
298 ____________________33__
299 ______________________4_
301 /* if there's only one memory region, don't bother */
302 if (*pnr_map < 2)
303 return -1;
305 old_nr = *pnr_map;
307 /* bail out if we find any unreasonable addresses in memmap */
308 for (i = 0; i < old_nr; i++)
309 if (map[i].addr + map[i].size < map[i].addr)
310 return -1;
312 /* create pointers for initial change-point information (for sorting) */
313 for (i = 0; i < 2*old_nr; i++)
314 change_point[i] = &change_point_list[i];
316 /* record all known change-points (starting and ending addresses),
317 omitting those that are for empty memory regions */
318 chgidx = 0;
319 for (i = 0; i < old_nr; i++) {
320 if (map[i].size != 0) {
321 change_point[chgidx]->addr = map[i].addr;
322 change_point[chgidx++]->pentry = &map[i];
323 change_point[chgidx]->addr = map[i].addr + map[i].size;
324 change_point[chgidx++]->pentry = &map[i];
327 chg_nr = chgidx; /* true number of change-points */
329 /* sort change-point list by memory addresses (low -> high) */
330 still_changing = 1;
331 while (still_changing) {
332 still_changing = 0;
333 for (i = 1; i < chg_nr; i++) {
334 /* if <current_addr> > <last_addr>, swap */
335 /* or, if current=<start_addr> & last=<end_addr>, swap */
336 if ((change_point[i]->addr < change_point[i-1]->addr) ||
337 ((change_point[i]->addr == change_point[i-1]->addr) &&
338 (change_point[i]->addr == change_point[i]->pentry->addr) &&
339 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
341 change_tmp = change_point[i];
342 change_point[i] = change_point[i-1];
343 change_point[i-1] = change_tmp;
344 still_changing = 1;
349 /* create a new memmap, removing overlaps */
350 overlap_entries = 0; /* number of entries in the overlap table */
351 new_entry = 0; /* index for creating new memmap entries */
352 last_type = 0; /* start with undefined memory type */
353 last_addr = 0; /* start with 0 as last starting address */
354 /* loop through change-points, determining affect on the new memmap */
355 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
356 /* keep track of all overlapping memmap entries */
357 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
358 /* add map entry to overlap list (> 1 entry implies an overlap) */
359 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
360 } else {
361 /* remove entry from list (order independent, so swap with last) */
362 for (i = 0; i < overlap_entries; i++) {
363 if (overlap_list[i] == change_point[chgidx]->pentry)
364 overlap_list[i] = overlap_list[overlap_entries-1];
366 overlap_entries--;
368 /* if there are overlapping entries, decide which "type" to use */
369 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
370 current_type = 0;
371 for (i = 0; i < overlap_entries; i++)
372 if (overlap_list[i]->type > current_type)
373 current_type = overlap_list[i]->type;
374 /* continue building up new memmap based on this information */
375 if (current_type != last_type) {
376 if (last_type != 0) {
377 new_map[new_entry].size =
378 change_point[chgidx]->addr - last_addr;
379 /* move forward only if the new size was non-zero */
380 if (new_map[new_entry].size != 0)
381 if (++new_entry >= BFIN_MEMMAP_MAX)
382 break; /* no more space left for new entries */
384 if (current_type != 0) {
385 new_map[new_entry].addr = change_point[chgidx]->addr;
386 new_map[new_entry].type = current_type;
387 last_addr = change_point[chgidx]->addr;
389 last_type = current_type;
392 new_nr = new_entry; /* retain count for new entries */
394 /* copy new mapping into original location */
395 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
396 *pnr_map = new_nr;
398 return 0;
401 static void __init print_memory_map(char *who)
403 int i;
405 for (i = 0; i < bfin_memmap.nr_map; i++) {
406 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
407 bfin_memmap.map[i].addr,
408 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
409 switch (bfin_memmap.map[i].type) {
410 case BFIN_MEMMAP_RAM:
411 printk(KERN_CONT "(usable)\n");
412 break;
413 case BFIN_MEMMAP_RESERVED:
414 printk(KERN_CONT "(reserved)\n");
415 break;
416 default:
417 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
418 break;
423 static __init int parse_memmap(char *arg)
425 unsigned long long start_at, mem_size;
427 if (!arg)
428 return -EINVAL;
430 mem_size = memparse(arg, &arg);
431 if (*arg == '@') {
432 start_at = memparse(arg+1, &arg);
433 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
434 } else if (*arg == '$') {
435 start_at = memparse(arg+1, &arg);
436 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
439 return 0;
443 * Initial parsing of the command line. Currently, we support:
444 * - Controlling the linux memory size: mem=xxx[KMG]
445 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
446 * $ -> reserved memory is dcacheable
447 * # -> reserved memory is icacheable
448 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
449 * @ from <start> to <start>+<mem>, type RAM
450 * $ from <start> to <start>+<mem>, type RESERVED
452 static __init void parse_cmdline_early(char *cmdline_p)
454 char c = ' ', *to = cmdline_p;
455 unsigned int memsize;
456 for (;;) {
457 if (c == ' ') {
458 if (!memcmp(to, "mem=", 4)) {
459 to += 4;
460 memsize = memparse(to, &to);
461 if (memsize)
462 _ramend = memsize;
464 } else if (!memcmp(to, "max_mem=", 8)) {
465 to += 8;
466 memsize = memparse(to, &to);
467 if (memsize) {
468 physical_mem_end = memsize;
469 if (*to != ' ') {
470 if (*to == '$'
471 || *(to + 1) == '$')
472 reserved_mem_dcache_on = 1;
473 if (*to == '#'
474 || *(to + 1) == '#')
475 reserved_mem_icache_on = 1;
478 } else if (!memcmp(to, "clkin_hz=", 9)) {
479 to += 9;
480 early_init_clkin_hz(to);
481 #ifdef CONFIG_EARLY_PRINTK
482 } else if (!memcmp(to, "earlyprintk=", 12)) {
483 to += 12;
484 setup_early_printk(to);
485 #endif
486 } else if (!memcmp(to, "memmap=", 7)) {
487 to += 7;
488 parse_memmap(to);
491 c = *(to++);
492 if (!c)
493 break;
498 * Setup memory defaults from user config.
499 * The physical memory layout looks like:
501 * [_rambase, _ramstart]: kernel image
502 * [memory_start, memory_end]: dynamic memory managed by kernel
503 * [memory_end, _ramend]: reserved memory
504 * [memory_mtd_start(memory_end),
505 * memory_mtd_start + mtd_size]: rootfs (if any)
506 * [_ramend - DMA_UNCACHED_REGION,
507 * _ramend]: uncached DMA region
508 * [_ramend, physical_mem_end]: memory not managed by kernel
510 static __init void memory_setup(void)
512 #ifdef CONFIG_MTD_UCLINUX
513 unsigned long mtd_phys = 0;
514 #endif
515 unsigned long max_mem;
517 _rambase = CONFIG_BOOT_LOAD;
518 _ramstart = (unsigned long)_end;
520 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
521 console_init();
522 panic("DMA region exceeds memory limit: %lu.",
523 _ramend - _ramstart);
525 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
527 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
528 /* Due to a Hardware Anomaly we need to limit the size of usable
529 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
530 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
532 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
533 if (max_mem >= 56 * 1024 * 1024)
534 max_mem = 56 * 1024 * 1024;
535 # else
536 if (max_mem >= 60 * 1024 * 1024)
537 max_mem = 60 * 1024 * 1024;
538 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
539 #endif /* ANOMALY_05000263 */
542 #ifdef CONFIG_MPU
543 /* Round up to multiple of 4MB */
544 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
545 #else
546 memory_start = PAGE_ALIGN(_ramstart);
547 #endif
549 #if defined(CONFIG_MTD_UCLINUX)
550 /* generic memory mapped MTD driver */
551 memory_mtd_end = memory_end;
553 mtd_phys = _ramstart;
554 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
556 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
557 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
558 mtd_size =
559 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
560 # endif
562 # if defined(CONFIG_CRAMFS)
563 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
564 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
565 # endif
567 # if defined(CONFIG_ROMFS_FS)
568 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
569 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
570 mtd_size =
571 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
573 /* ROM_FS is XIP, so if we found it, we need to limit memory */
574 if (memory_end > max_mem) {
575 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
576 memory_end = max_mem;
579 # endif /* CONFIG_ROMFS_FS */
581 /* Since the default MTD_UCLINUX has no magic number, we just blindly
582 * read 8 past the end of the kernel's image, and look at it.
583 * When no image is attached, mtd_size is set to a random number
584 * Do some basic sanity checks before operating on things
586 if (mtd_size == 0 || memory_end <= mtd_size) {
587 pr_emerg("Could not find valid ram mtd attached.\n");
588 } else {
589 memory_end -= mtd_size;
591 /* Relocate MTD image to the top of memory after the uncached memory area */
592 uclinux_ram_map.phys = memory_mtd_start = memory_end;
593 uclinux_ram_map.size = mtd_size;
594 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
595 _end, mtd_size, (void *)memory_mtd_start);
596 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
598 #endif /* CONFIG_MTD_UCLINUX */
600 /* We need lo limit memory, since everything could have a text section
601 * of userspace in it, and expose anomaly 05000263. If the anomaly
602 * doesn't exist, or we don't need to - then dont.
604 if (memory_end > max_mem) {
605 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
606 memory_end = max_mem;
609 #ifdef CONFIG_MPU
610 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
611 page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
612 ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
613 #else
614 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
615 #endif
616 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
617 #endif
619 init_mm.start_code = (unsigned long)_stext;
620 init_mm.end_code = (unsigned long)_etext;
621 init_mm.end_data = (unsigned long)_edata;
622 init_mm.brk = (unsigned long)0;
624 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
625 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
627 printk(KERN_INFO "Memory map:\n"
628 " fixedcode = 0x%p-0x%p\n"
629 " text = 0x%p-0x%p\n"
630 " rodata = 0x%p-0x%p\n"
631 " bss = 0x%p-0x%p\n"
632 " data = 0x%p-0x%p\n"
633 " stack = 0x%p-0x%p\n"
634 " init = 0x%p-0x%p\n"
635 " available = 0x%p-0x%p\n"
636 #ifdef CONFIG_MTD_UCLINUX
637 " rootfs = 0x%p-0x%p\n"
638 #endif
639 #if DMA_UNCACHED_REGION > 0
640 " DMA Zone = 0x%p-0x%p\n"
641 #endif
642 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
643 _stext, _etext,
644 __start_rodata, __end_rodata,
645 __bss_start, __bss_stop,
646 _sdata, _edata,
647 (void *)&init_thread_union,
648 (void *)((int)(&init_thread_union) + THREAD_SIZE),
649 __init_begin, __init_end,
650 (void *)_ramstart, (void *)memory_end
651 #ifdef CONFIG_MTD_UCLINUX
652 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
653 #endif
654 #if DMA_UNCACHED_REGION > 0
655 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
656 #endif
661 * Find the lowest, highest page frame number we have available
663 void __init find_min_max_pfn(void)
665 int i;
667 max_pfn = 0;
668 min_low_pfn = memory_end;
670 for (i = 0; i < bfin_memmap.nr_map; i++) {
671 unsigned long start, end;
672 /* RAM? */
673 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
674 continue;
675 start = PFN_UP(bfin_memmap.map[i].addr);
676 end = PFN_DOWN(bfin_memmap.map[i].addr +
677 bfin_memmap.map[i].size);
678 if (start >= end)
679 continue;
680 if (end > max_pfn)
681 max_pfn = end;
682 if (start < min_low_pfn)
683 min_low_pfn = start;
687 static __init void setup_bootmem_allocator(void)
689 int bootmap_size;
690 int i;
691 unsigned long start_pfn, end_pfn;
692 unsigned long curr_pfn, last_pfn, size;
694 /* mark memory between memory_start and memory_end usable */
695 add_memory_region(memory_start,
696 memory_end - memory_start, BFIN_MEMMAP_RAM);
697 /* sanity check for overlap */
698 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
699 print_memory_map("boot memmap");
701 /* initialize globals in linux/bootmem.h */
702 find_min_max_pfn();
703 /* pfn of the last usable page frame */
704 if (max_pfn > memory_end >> PAGE_SHIFT)
705 max_pfn = memory_end >> PAGE_SHIFT;
706 /* pfn of last page frame directly mapped by kernel */
707 max_low_pfn = max_pfn;
708 /* pfn of the first usable page frame after kernel image*/
709 if (min_low_pfn < memory_start >> PAGE_SHIFT)
710 min_low_pfn = memory_start >> PAGE_SHIFT;
712 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
713 end_pfn = memory_end >> PAGE_SHIFT;
716 * give all the memory to the bootmap allocator, tell it to put the
717 * boot mem_map at the start of memory.
719 bootmap_size = init_bootmem_node(NODE_DATA(0),
720 memory_start >> PAGE_SHIFT, /* map goes here */
721 start_pfn, end_pfn);
723 /* register the memmap regions with the bootmem allocator */
724 for (i = 0; i < bfin_memmap.nr_map; i++) {
726 * Reserve usable memory
728 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
729 continue;
731 * We are rounding up the start address of usable memory:
733 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
734 if (curr_pfn >= end_pfn)
735 continue;
737 * ... and at the end of the usable range downwards:
739 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
740 bfin_memmap.map[i].size);
742 if (last_pfn > end_pfn)
743 last_pfn = end_pfn;
746 * .. finally, did all the rounding and playing
747 * around just make the area go away?
749 if (last_pfn <= curr_pfn)
750 continue;
752 size = last_pfn - curr_pfn;
753 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
756 /* reserve memory before memory_start, including bootmap */
757 reserve_bootmem(PAGE_OFFSET,
758 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
759 BOOTMEM_DEFAULT);
762 #define EBSZ_TO_MEG(ebsz) \
763 ({ \
764 int meg = 0; \
765 switch (ebsz & 0xf) { \
766 case 0x1: meg = 16; break; \
767 case 0x3: meg = 32; break; \
768 case 0x5: meg = 64; break; \
769 case 0x7: meg = 128; break; \
770 case 0x9: meg = 256; break; \
771 case 0xb: meg = 512; break; \
773 meg; \
775 static inline int __init get_mem_size(void)
777 #if defined(EBIU_SDBCTL)
778 # if defined(BF561_FAMILY)
779 int ret = 0;
780 u32 sdbctl = bfin_read_EBIU_SDBCTL();
781 ret += EBSZ_TO_MEG(sdbctl >> 0);
782 ret += EBSZ_TO_MEG(sdbctl >> 8);
783 ret += EBSZ_TO_MEG(sdbctl >> 16);
784 ret += EBSZ_TO_MEG(sdbctl >> 24);
785 return ret;
786 # else
787 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
788 # endif
789 #elif defined(EBIU_DDRCTL1)
790 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
791 int ret = 0;
792 switch (ddrctl & 0xc0000) {
793 case DEVSZ_64: ret = 64 / 8;
794 case DEVSZ_128: ret = 128 / 8;
795 case DEVSZ_256: ret = 256 / 8;
796 case DEVSZ_512: ret = 512 / 8;
798 switch (ddrctl & 0x30000) {
799 case DEVWD_4: ret *= 2;
800 case DEVWD_8: ret *= 2;
801 case DEVWD_16: break;
803 if ((ddrctl & 0xc000) == 0x4000)
804 ret *= 2;
805 return ret;
806 #endif
807 BUG();
810 __attribute__((weak))
811 void __init native_machine_early_platform_add_devices(void)
815 void __init setup_arch(char **cmdline_p)
817 unsigned long sclk, cclk;
819 native_machine_early_platform_add_devices();
821 enable_shadow_console();
823 /* Check to make sure we are running on the right processor */
824 if (unlikely(CPUID != bfin_cpuid()))
825 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
826 CPU, bfin_cpuid(), bfin_revid());
828 #ifdef CONFIG_DUMMY_CONSOLE
829 conswitchp = &dummy_con;
830 #endif
832 #if defined(CONFIG_CMDLINE_BOOL)
833 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
834 command_line[sizeof(command_line) - 1] = 0;
835 #endif
837 /* Keep a copy of command line */
838 *cmdline_p = &command_line[0];
839 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
840 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
842 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
844 /* If the user does not specify things on the command line, use
845 * what the bootloader set things up as
847 physical_mem_end = 0;
848 parse_cmdline_early(&command_line[0]);
850 if (_ramend == 0)
851 _ramend = get_mem_size() * 1024 * 1024;
853 if (physical_mem_end == 0)
854 physical_mem_end = _ramend;
856 memory_setup();
858 /* Initialize Async memory banks */
859 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
860 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
861 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
862 #ifdef CONFIG_EBIU_MBSCTLVAL
863 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
864 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
865 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
866 #endif
868 cclk = get_cclk();
869 sclk = get_sclk();
871 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
872 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
874 #ifdef BF561_FAMILY
875 if (ANOMALY_05000266) {
876 bfin_read_IMDMA_D0_IRQ_STATUS();
877 bfin_read_IMDMA_D1_IRQ_STATUS();
879 #endif
880 printk(KERN_INFO "Hardware Trace ");
881 if (bfin_read_TBUFCTL() & 0x1)
882 printk(KERN_CONT "Active ");
883 else
884 printk(KERN_CONT "Off ");
885 if (bfin_read_TBUFCTL() & 0x2)
886 printk(KERN_CONT "and Enabled\n");
887 else
888 printk(KERN_CONT "and Disabled\n");
890 printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
892 /* Newer parts mirror SWRST bits in SYSCR */
893 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
894 defined(CONFIG_BF538) || defined(CONFIG_BF539)
895 _bfin_swrst = bfin_read_SWRST();
896 #else
897 /* Clear boot mode field */
898 _bfin_swrst = bfin_read_SYSCR() & ~0xf;
899 #endif
901 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
902 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
903 #endif
904 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
905 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
906 #endif
908 #ifdef CONFIG_SMP
909 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
910 #else
911 if (_bfin_swrst & RESET_DOUBLE) {
912 #endif
913 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
914 #ifdef CONFIG_DEBUG_DOUBLEFAULT
915 /* We assume the crashing kernel, and the current symbol table match */
916 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
917 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
918 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
919 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
920 #endif
921 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
922 init_retx);
923 } else if (_bfin_swrst & RESET_WDOG)
924 printk(KERN_INFO "Recovering from Watchdog event\n");
925 else if (_bfin_swrst & RESET_SOFTWARE)
926 printk(KERN_NOTICE "Reset caused by Software reset\n");
928 printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
929 if (bfin_compiled_revid() == 0xffff)
930 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
931 else if (bfin_compiled_revid() == -1)
932 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
933 else
934 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
936 if (likely(CPUID == bfin_cpuid())) {
937 if (bfin_revid() != bfin_compiled_revid()) {
938 if (bfin_compiled_revid() == -1)
939 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
940 bfin_revid());
941 else if (bfin_compiled_revid() != 0xffff) {
942 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
943 bfin_compiled_revid(), bfin_revid());
944 if (bfin_compiled_revid() > bfin_revid())
945 panic("Error: you are missing anomaly workarounds for this rev");
948 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
949 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
950 CPU, bfin_revid());
953 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
955 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
956 cclk / 1000000, sclk / 1000000);
958 setup_bootmem_allocator();
960 paging_init();
962 /* Copy atomic sequences to their fixed location, and sanity check that
963 these locations are the ones that we advertise to userspace. */
964 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
965 FIXED_CODE_END - FIXED_CODE_START);
966 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
967 != SIGRETURN_STUB - FIXED_CODE_START);
968 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
969 != ATOMIC_XCHG32 - FIXED_CODE_START);
970 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
971 != ATOMIC_CAS32 - FIXED_CODE_START);
972 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
973 != ATOMIC_ADD32 - FIXED_CODE_START);
974 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
975 != ATOMIC_SUB32 - FIXED_CODE_START);
976 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
977 != ATOMIC_IOR32 - FIXED_CODE_START);
978 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
979 != ATOMIC_AND32 - FIXED_CODE_START);
980 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
981 != ATOMIC_XOR32 - FIXED_CODE_START);
982 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
983 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
985 #ifdef CONFIG_SMP
986 platform_init_cpus();
987 #endif
988 init_exception_vectors();
989 bfin_cache_init(); /* Initialize caches for the boot CPU */
992 static int __init topology_init(void)
994 unsigned int cpu;
995 /* Record CPU-private information for the boot processor. */
996 bfin_setup_cpudata(0);
998 for_each_possible_cpu(cpu) {
999 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1002 return 0;
1005 subsys_initcall(topology_init);
1007 /* Get the input clock frequency */
1008 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1009 static u_long get_clkin_hz(void)
1011 return cached_clkin_hz;
1013 static int __init early_init_clkin_hz(char *buf)
1015 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1016 #ifdef BFIN_KERNEL_CLOCK
1017 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1018 panic("cannot change clkin_hz when reprogramming clocks");
1019 #endif
1020 return 1;
1022 early_param("clkin_hz=", early_init_clkin_hz);
1024 /* Get the voltage input multiplier */
1025 static u_long get_vco(void)
1027 static u_long cached_vco;
1028 u_long msel, pll_ctl;
1030 /* The assumption here is that VCO never changes at runtime.
1031 * If, someday, we support that, then we'll have to change this.
1033 if (cached_vco)
1034 return cached_vco;
1036 pll_ctl = bfin_read_PLL_CTL();
1037 msel = (pll_ctl >> 9) & 0x3F;
1038 if (0 == msel)
1039 msel = 64;
1041 cached_vco = get_clkin_hz();
1042 cached_vco >>= (1 & pll_ctl); /* DF bit */
1043 cached_vco *= msel;
1044 return cached_vco;
1047 /* Get the Core clock */
1048 u_long get_cclk(void)
1050 static u_long cached_cclk_pll_div, cached_cclk;
1051 u_long csel, ssel;
1053 if (bfin_read_PLL_STAT() & 0x1)
1054 return get_clkin_hz();
1056 ssel = bfin_read_PLL_DIV();
1057 if (ssel == cached_cclk_pll_div)
1058 return cached_cclk;
1059 else
1060 cached_cclk_pll_div = ssel;
1062 csel = ((ssel >> 4) & 0x03);
1063 ssel &= 0xf;
1064 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1065 cached_cclk = get_vco() / ssel;
1066 else
1067 cached_cclk = get_vco() >> csel;
1068 return cached_cclk;
1070 EXPORT_SYMBOL(get_cclk);
1072 /* Get the System clock */
1073 u_long get_sclk(void)
1075 static u_long cached_sclk;
1076 u_long ssel;
1078 /* The assumption here is that SCLK never changes at runtime.
1079 * If, someday, we support that, then we'll have to change this.
1081 if (cached_sclk)
1082 return cached_sclk;
1084 if (bfin_read_PLL_STAT() & 0x1)
1085 return get_clkin_hz();
1087 ssel = bfin_read_PLL_DIV() & 0xf;
1088 if (0 == ssel) {
1089 printk(KERN_WARNING "Invalid System Clock\n");
1090 ssel = 1;
1093 cached_sclk = get_vco() / ssel;
1094 return cached_sclk;
1096 EXPORT_SYMBOL(get_sclk);
1098 unsigned long sclk_to_usecs(unsigned long sclk)
1100 u64 tmp = USEC_PER_SEC * (u64)sclk;
1101 do_div(tmp, get_sclk());
1102 return tmp;
1104 EXPORT_SYMBOL(sclk_to_usecs);
1106 unsigned long usecs_to_sclk(unsigned long usecs)
1108 u64 tmp = get_sclk() * (u64)usecs;
1109 do_div(tmp, USEC_PER_SEC);
1110 return tmp;
1112 EXPORT_SYMBOL(usecs_to_sclk);
1115 * Get CPU information for use by the procfs.
1117 static int show_cpuinfo(struct seq_file *m, void *v)
1119 char *cpu, *mmu, *fpu, *vendor, *cache;
1120 uint32_t revid;
1121 int cpu_num = *(unsigned int *)v;
1122 u_long sclk, cclk;
1123 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1124 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1126 cpu = CPU;
1127 mmu = "none";
1128 fpu = "none";
1129 revid = bfin_revid();
1131 sclk = get_sclk();
1132 cclk = get_cclk();
1134 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1135 case 0xca:
1136 vendor = "Analog Devices";
1137 break;
1138 default:
1139 vendor = "unknown";
1140 break;
1143 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1145 if (CPUID == bfin_cpuid())
1146 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1147 else
1148 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1149 CPUID, bfin_cpuid());
1151 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1152 "stepping\t: %d ",
1153 cpu, cclk/1000000, sclk/1000000,
1154 #ifdef CONFIG_MPU
1155 "mpu on",
1156 #else
1157 "mpu off",
1158 #endif
1159 revid);
1161 if (bfin_revid() != bfin_compiled_revid()) {
1162 if (bfin_compiled_revid() == -1)
1163 seq_printf(m, "(Compiled for Rev none)");
1164 else if (bfin_compiled_revid() == 0xffff)
1165 seq_printf(m, "(Compiled for Rev any)");
1166 else
1167 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1170 seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1171 cclk/1000000, cclk%1000000,
1172 sclk/1000000, sclk%1000000);
1173 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1174 "Calibration\t: %lu loops\n",
1175 (loops_per_jiffy * HZ) / 500000,
1176 ((loops_per_jiffy * HZ) / 5000) % 100,
1177 (loops_per_jiffy * HZ));
1179 /* Check Cache configutation */
1180 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1181 case ACACHE_BSRAM:
1182 cache = "dbank-A/B\t: cache/sram";
1183 dcache_size = 16;
1184 dsup_banks = 1;
1185 break;
1186 case ACACHE_BCACHE:
1187 cache = "dbank-A/B\t: cache/cache";
1188 dcache_size = 32;
1189 dsup_banks = 2;
1190 break;
1191 case ASRAM_BSRAM:
1192 cache = "dbank-A/B\t: sram/sram";
1193 dcache_size = 0;
1194 dsup_banks = 0;
1195 break;
1196 default:
1197 cache = "unknown";
1198 dcache_size = 0;
1199 dsup_banks = 0;
1200 break;
1203 /* Is it turned on? */
1204 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1205 dcache_size = 0;
1207 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1208 icache_size = 0;
1210 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1211 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1212 icache_size, dcache_size, 0);
1213 seq_printf(m, "%s\n", cache);
1214 seq_printf(m, "external memory\t: "
1215 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1216 "cacheable"
1217 #else
1218 "uncacheable"
1219 #endif
1220 " in instruction cache\n");
1221 seq_printf(m, "external memory\t: "
1222 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1223 "cacheable (write-back)"
1224 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1225 "cacheable (write-through)"
1226 #else
1227 "uncacheable"
1228 #endif
1229 " in data cache\n");
1231 if (icache_size)
1232 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1233 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1234 else
1235 seq_printf(m, "icache setup\t: off\n");
1237 seq_printf(m,
1238 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1239 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1240 BFIN_DLINES);
1241 #ifdef __ARCH_SYNC_CORE_DCACHE
1242 seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", dcache_invld_count[cpu_num]);
1243 #endif
1244 #ifdef __ARCH_SYNC_CORE_ICACHE
1245 seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", icache_invld_count[cpu_num]);
1246 #endif
1248 if (cpu_num != num_possible_cpus() - 1)
1249 return 0;
1251 if (L2_LENGTH) {
1252 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1253 seq_printf(m, "L2 SRAM\t\t: "
1254 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1255 "cacheable"
1256 #else
1257 "uncacheable"
1258 #endif
1259 " in instruction cache\n");
1260 seq_printf(m, "L2 SRAM\t\t: "
1261 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1262 "cacheable (write-back)"
1263 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1264 "cacheable (write-through)"
1265 #else
1266 "uncacheable"
1267 #endif
1268 " in data cache\n");
1270 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1271 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1272 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1273 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1274 ((int)memory_end - (int)_rambase) >> 10,
1275 (void *)_rambase,
1276 (void *)memory_end);
1277 seq_printf(m, "\n");
1279 return 0;
1282 static void *c_start(struct seq_file *m, loff_t *pos)
1284 if (*pos == 0)
1285 *pos = first_cpu(cpu_online_map);
1286 if (*pos >= num_online_cpus())
1287 return NULL;
1289 return pos;
1292 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1294 *pos = next_cpu(*pos, cpu_online_map);
1296 return c_start(m, pos);
1299 static void c_stop(struct seq_file *m, void *v)
1303 const struct seq_operations cpuinfo_op = {
1304 .start = c_start,
1305 .next = c_next,
1306 .stop = c_stop,
1307 .show = show_cpuinfo,
1310 void __init cmdline_init(const char *r0)
1312 early_shadow_stamp();
1313 if (r0)
1314 strncpy(command_line, r0, COMMAND_LINE_SIZE);